WO2022041558A1 - 一种光学功能导丝、探测系统及探测方法 - Google Patents

一种光学功能导丝、探测系统及探测方法 Download PDF

Info

Publication number
WO2022041558A1
WO2022041558A1 PCT/CN2020/134600 CN2020134600W WO2022041558A1 WO 2022041558 A1 WO2022041558 A1 WO 2022041558A1 CN 2020134600 W CN2020134600 W CN 2020134600W WO 2022041558 A1 WO2022041558 A1 WO 2022041558A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
optical function
section
function guide
optical
Prior art date
Application number
PCT/CN2020/134600
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Priority to US17/395,134 priority Critical patent/US20220061763A1/en
Publication of WO2022041558A1 publication Critical patent/WO2022041558A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09016Guide wires with mandrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09116Design of handles or shafts or gripping surfaces thereof for manipulating guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/0915Guide wires having features for changing the stiffness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • A61M2025/09183Guide wires having specific characteristics at the distal tip having tools at the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to an optical function guide wire, a detection system and a detection method.
  • Minimally invasive interventional therapy is a medical technology that uses specific puncture needles, guide wires or catheters and other instruments under the guidance of images to accurately reach the lesion site for diagnosis and treatment without opening the human tissue.
  • Minimally invasive interventional therapy is increasingly favored by patients due to its definite curative effect, fast recovery, strong targeting, anti-recurrence, no side effects, less trauma, safety and reliability, and low cost.
  • guide wires are used very frequently in clinical practice, such as assisting the installation of cardiac stents, thrombus ablation, and tumor embolization.
  • interventional surgery the safety of the guide wire is the first priority. Therefore, a soft tip, good compliance, non-invasiveness, easy plasticity, and low to moderate support are all necessary characteristics of a guide wire.
  • the medical guide wires on the market are usually composed of a core stainless steel wire with multiple sections of different diameters, and the wire is wound at the top. in blood vessels.
  • a guide wire with a head that can be actively bent is usually used at present, so that the shape of the head can be changed according to the direction of the cavity, so that it is easy to enter the relatively small branch cavity.
  • the guide wire is guided to travel along a predetermined route in the lumen by means of multiple tendon driving, magnetic field driving, and memory metal driving, but the above-mentioned methods have great operational limitations. Therefore, how to improve the operating performance, driving performance and detection performance of the guide wire has become an urgent problem to be solved.
  • the embodiments of the present application provide an optical function guide wire, a detection system and a detection method, so as to solve the technical defects existing in the prior art.
  • the present application provides an optical functional guide wire
  • the optical functional guide wire includes an optical fiber and a sleeve surrounding the optical fiber
  • the optical fiber includes a functional section capable of emitting and collecting laser light
  • the functional section At least one grating assembly is provided
  • the sleeve includes a shaping segment capable of bending and a support segment capable of supporting the advancement of the functional segment
  • the shaping segment is connected with the functional segment
  • the shaping segment is located close to the function segment.
  • One end of the functional segment, the support segment is located at one end away from the functional segment, and an asymmetric structure capable of directional bending of the optical functional guide wire is also provided on the optical functional guide wire.
  • the functional section is provided with a plurality of grating components, the grating components are sleeved outside the functional section of the optical functional guide wire at intervals, and are arranged longitudinally along the optical fiber.
  • the optical fiber includes a core layer located at an axial center position and a cladding layer wrapped around the core layer, the grating components are spaced and sleeved outside the cladding layer, and each grating component is in the shape of a hollow prism. .
  • the grating assembly includes a plurality of gratings with different periods, and each of the gratings constitutes one side surface of the grating assembly.
  • the diameter of the support section is larger than the diameter of the shaping section.
  • the sleeve further includes a transition section and a push section, the transition section is located between the shaping section and the support section, and the diameter of the transition section is along the direction from the shaping section to the support section Increasing gradually, one end of the pushing section is connected with the supporting section, and the other end of the pushing section is connected with the driving mechanism.
  • the functional section of the optical fiber is connected to the shaping section of the sleeve through a spiral tube, and a developing ring is arranged between the spiral tube and the optical fiber.
  • the asymmetric structure is an asymmetric wall structure of the sleeve.
  • the asymmetric pipe wall structure is an asymmetric slit opened on the casing shaping section, the asymmetric slit is a spiral slit or a rectangular slit, and the asymmetric slit is
  • the slit is a spiral slit, the widths of the asymmetric slits on both sides of the sleeve are not equal, and in the case that the asymmetric slit is a rectangular slit, the asymmetric slits on both sides of the sleeve are not equal.
  • the depths of the slits are not equal.
  • the asymmetric pipe wall structure is the asymmetric pipe wall thickness of the sleeve, and the thickness of the pipe walls on both sides of the sleeve is not equal.
  • the asymmetric tube wall structure is in the shape of a sleeve, the sleeve is composed of a convex side and a flat side, or a convex side and a concave side, wherein the convex side is arched structure.
  • one end of the functional segment away from the shaping segment is provided with a hemispherical optical component capable of blocking laser light scattering
  • the optical functional guide wire is also provided with a polymer coating
  • the polymer coating is: Hydrophilic or hydrophobic coating.
  • the sleeve is a hypotube
  • the outer diameter of the sleeve is 0.6-0.8 mm
  • the inner diameter of the sleeve is 0.3-0.5 mm.
  • the application also provides a detection system, including:
  • optical function guide wire is the optical function guide wire as described above;
  • a control center that sends control signals to the attitude controller, the multi-wavelength pulsed laser, the waveform collector, and the treatment laser to control the attitude controller, the multi-wavelength pulsed laser, the waveform collector, and the treatment laser to turn on, operate, or turn off ;
  • the attitude controller receives the signal and distance information sent by the control center, and drives the optical function guide wire into and out of the cavity or moves in the cavity;
  • the multi-wavelength pulsed laser receives the signal sent by the control center, sends out pulsed laser light and transmits it to the optical function guide wire, and is scattered into the cavity through the grating assembly (8) on the optical function guide wire;
  • the waveform collector receives the signal sent by the control center, analyzes the laser light scattered in the cavity through the grating component on the optical function guide wire, determines the position information between the cavity wall and the optical function guide wire, and calculates the position Information is fed back to the control center.
  • the multi-wavelength pulsed laser and the waveform collector are coupled to the optical fiber through a fiber beam splitter coupler.
  • the present application also provides a detection method for the detection system as described above, the method comprising:
  • the control center accepts control instructions, and sends control signals to the attitude controller and the multi-wavelength pulsed laser based on the control instructions;
  • the attitude controller receives the control signal sent by the control center, and drives the optical function guide wire into the lumen based on the control signal;
  • the pulse detector receives the control signal sent by the control center, emits pulsed laser light, and scatters the pulsed laser light into the cavity via the optical function guide wire and the grating assembly;
  • the optically functional guide wire receives the reflected pulsed laser light through the grating component and sends it to a waveform collector, and the waveform collector determines the position of the optically functional guidewire in the cavity based on the reflected pulsed laser light;
  • the attitude controller controls the next movement of the optical function guide wire based on the position of the optical function guide wire in the lumen until the optical function guide wire exits the lumen after reaching the target area and completing detection.
  • the optical functional guide wire provided by the present application includes at least one optical fiber and a sleeve surrounding the optical fiber.
  • the optical fiber includes a functional section capable of emitting and collecting laser light.
  • the functional section is provided with at least one grating component, and the grating component has The function of emitting and collecting the detection laser, which can determine the distance between the cavity wall and the optical fiber by emitting and collecting lasers of different specific wavelengths and analyzing its time waveform, so as to guide the optical function guide wire to change the shape and posture at any time
  • the sleeve includes a functional section, a guide section and a support section that are connected in sequence, and the sleeve itself or around the sleeve is provided with an asymmetric structure along the optical fiber,
  • the optical function guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the laser conduction is used for
  • the detection system provided in this application includes an optical function guide wire, a control center, an attitude controller, a multi-wavelength pulsed laser and a waveform collector, wherein the control center can send control signals to other components to coordinately control the interaction between the components Working together, the attitude controller can control the optical function guide wire to enter and exit the cavity or move in the cavity, which improves the flexibility of the optical function guide wire.
  • the time delay determines the relative position of the optical function guide wire and the cavity wall, and then accurately judges the next step posture and travel direction of the optical function guide wire.
  • the detection system provided by the present application innovatively uses light to guide the travel of the guide wire, with high detection efficiency and good detection effect.
  • the detection method provided by the present application realizes the intelligent and automatic guidance of the optical function guide wire in the lumen through the cooperation of the control center, the attitude controller, the pulse detector, the optical function guide wire and the waveform collector.
  • the detection efficiency and detection effect of the optical function guide wire are improved.
  • laser irradiation treatment can also be performed on the diseased part of the patient through the cooperation of the control center, the optical function guide wire and the treatment laser.
  • the treatment efficiency is high and the effect is good, which improves the flexibility and application scope of the optical function guide wire.
  • FIG. 1 is a schematic diagram of the overall structure of an optically functional guide wire according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a partial structure of an optically functional guide wire according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a grating assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a use scene of the optical function guide wire according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of pulse ranging according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a partial structure of an optically functional guide wire according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of the overall structure of the optical function guide wire according to an embodiment of the present application.
  • FIG 8 is another schematic diagram of the overall structure of the optically functional guide wire according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of the overall structure of the optical function guide wire according to an embodiment of the present application.
  • FIG. 10 is another schematic diagram of the overall structure of the optical function guide wire according to an embodiment of the present application.
  • FIG. 11 is another schematic diagram of the overall structure of the optical function guide wire according to an embodiment of the present application.
  • FIG. 12 is a working principle diagram of a detection system according to an embodiment of the present application.
  • FIG. 13 is a waveform diagram of a laser pulse superposition delay according to an embodiment of the present application.
  • 1-optical fiber 2-sleeve, 3-functional section, 4-shaping section, 5-support section, 6-transition section, 7-push section, 8-grating assembly, 9-core layer, 10- Cladding, 11-Spiral Tube, 12-Development Ring, 13-Polymer Coating, 14-Hemispherical Optical Component, 15-Asymmetrical Slot, 16-Convex Side, 17-Flat Side.
  • a hypotube refers to a long metal tube with micro-engineered properties throughout its conduit. It is an important component of minimally invasive treatment catheters and is used in conjunction with balloons and stents to open blocked arteries.
  • the balloon portion of the catheter is attached to the distal end of the hypotube.
  • the hypotube enters the human body and pushes the balloon along the tortuous and complex long blood vessel to the blocked artery. During this process, the hypotube needs to avoid kinking while being able to travel (propulsion, tracking and turning) smoothly through the anatomy.
  • the optically functional guidewire includes an optical fiber 1 and a sleeve 2 surrounding the optical fiber 1.
  • the optical fiber 1 includes an optical fiber capable of emitting and The functional section 3 for collecting laser light
  • the functional section 3 is provided with at least one grating assembly 8
  • the sleeve 2 includes a plastic section 4 capable of bending and a support section 5 capable of supporting the advancement of the functional section 3, the plastic
  • the shaping segment 4 is connected to the functional segment 3, the shaping segment 4 is located at one end close to the functional segment 3, the support segment 5 is located at one end away from the functional segment 3, and the optical functional guide wire is also An asymmetric structure capable of directional bending of the optically functional guide wire is provided.
  • the optical fiber 1 in this embodiment is a man-made fiber for transmitting light, which is located at the axial center of the optically functional guide wire.
  • the functional section 3 of the optical fiber 1 emits and collects laser light through the grating assembly 8 provided therein, and then determines the position of the optical functional guide wire in the cavity through the time waveform generated by the laser light.
  • the number of grating components 8 may be one or more, such as two, three, four, five, etc., preferably three.
  • the grating components 8 are sleeved outside the functional section 3 of the optical functional guide wire at intervals, and are arranged longitudinally along the optical fiber 1 at intervals. The separation distance may be determined according to specific circumstances, which is not limited in this application.
  • the optical fiber 1 includes a core layer 9 located at an axial center position and a cladding layer 10 wrapped around the core layer 9 , and adjacent grating components 8 are sleeved outside the cladding layer 10 at intervals. All are hollow prismatic.
  • the cladding layer 10 is made of a transparent polymer, so that the laser light in the optical fiber 1 is scattered into the cavity through the cladding layer 10 through the grating component 8 .
  • the grating assembly 8 can be in the shape of a hollow quadrangular prism, a hollow hexagonal prism, a hollow octagonal prism, a hollow ten prism, etc., preferably a hollow hexagonal prism.
  • the structure of the grating assembly 8 is shown in Figure 3.
  • the grating assembly 8 is composed of a plurality of gratings.
  • the grating is an optical device fixed on the optical fiber 1 for emitting and collecting laser light, which is composed of a large number of parallel slits of equal width and equal spacing. .
  • Each grating assembly 8 includes a plurality of gratings with different periods, each of which is fixed to one side surface of the prismatic cladding 10 .
  • the multi-wavelength pulsed laser is transmitted into the optical fiber, and the pulse wavelengths emitted from different grating couplings are different.
  • the number of gratings in the grating assembly 8 is the same as the number of the sides of the prism. For example, when the grating assembly 8 is in the shape of a hollow hexagonal prism, it consists of 6 gratings with different periods.
  • a and b represent two gratings in opposite directions.
  • the laser light emitted by grating a is scattered by the cavity wall, it is coupled into the fiber through grating a, and the laser light emitted by grating b is After being scattered by the channel wall, it is coupled into the optical fiber through the grating b.
  • the distance between the grating a and the channel wall is greater than that between the grating b and the channel wall. The distance between the scatter pulses collected by grating a lags behind that of grating b.
  • ⁇ 1 represents the wavelength emitted by grating a
  • ⁇ 2 represents the wavelength emitted by grating b.
  • the functional section 3 of the optical fiber 1 can be connected to the shaping section 4 of the sleeve 2 through a spiral tube 11.
  • the spiral tube 11 is preferably made of metal, and the spiral tube 11 is connected to the optical fiber.
  • a developing ring 12 can also be arranged between the 1, and the developing ring 12, the spiral tube 11 on the outer side and the optical fiber 1 on the inner side can be fixed by bonding.
  • the developing ring 12 is preferably made of heavy metals, such as gold, platinum, etc., which can present a clear image under the irradiation of X-rays, thereby assisting in detection and treatment.
  • a polymer coating 13 can also be provided in addition to the optically functional guide wire.
  • the polymer coating 13 can be a hydrophilic coating or a hydrophobic coating.
  • the hydrophilic coating can attract water molecules to form a "gel-like" surface on the surface of the guide wire, reducing the passing resistance of the guide wire, and the hydrophobic coating can resist water The molecules form a "waxy" surface that reduces friction and enhances the tracking of the guidewire.
  • the casing 2 may be an equal-diameter casing 2 or a variable-diameter casing 2.
  • the shaping section 4 and the supporting section of the casing 2 5 are equal in diameter.
  • the diameters of the shaping section 4 and the supporting section 5 of the casing 2 increase sequentially.
  • the sleeve 2 is preferably a reducing sleeve 2, and the diameter of the shaping section 4 is smaller than the diameter of the support section 5, which can make the shaping section 4 easier to bend relative to the support section 5, so that it is easier to bend When traveling in the cavity, the larger diameter of the support section 5 has sufficient rigidity to provide the forward driving force for the shaping section 4 .
  • the shaping section 4 and the supporting section 5 of the casing 2 can be either equal diameter sections or variable diameter sections.
  • the shaping section 4 and/or the supporting section 5 are variable diameter sections, the The diameters gradually increase in the direction from the shaping section 4 to the supporting section 5, but regardless of whether the shaping section 4 and the supporting section 5 are equal-diameter sections or variable-diameter sections, the outer diameters of the two are different, and the outer diameter of the shaping section 4 is different. Always smaller than the outer diameter of the support section 5.
  • the cannula 2 may further include a transition section 6 and a push section 7 .
  • the transition section 6 is located between the shaping section 4 and the support section 5 , and the transition section The diameter of 6 gradually increases along the direction from the shaping section 4 to the supporting section 5.
  • One end of the pushing section 7 is connected with the supporting section 5, and the other end of the pushing section 7 is connected with the driving mechanism, thereby providing a forward driving force.
  • the driving mechanism may be an operating handle that manually drives the optical function guide wire to travel, or a machine such as a posture controller that drives the optical function guide wire to travel by electricity, which is not limited in this application.
  • the optical function guide wire is also provided with an asymmetric structure that can make it directionally bent to one side.
  • the asymmetric structure is preferably the asymmetric tube wall structure of the cannula 2, such as the asymmetric slit 15, the asymmetric tube wall thickness, shape, etc. .
  • the arrangement of the asymmetric structure can make the optical function guide wire easier to bend to one side, improve the bending performance and operability of the optical function guide wire, and facilitate the manipulation of the optical function guide wire to enter smaller blood vessels and branch vessels with larger opening angles. Detection and treatment.
  • the total length of the optical function guide wire is preferably 2m
  • the total outer diameter of the push section 7 of the cannula 2 is preferably 0.8mm
  • the length is preferably 1m
  • the cannula 2 is preferably made of medical 304 stainless steel.
  • the support section 5 of the sleeve 2 can be formed by stretching the push section 7, and the outer diameter is preferably 0.4 mm, the inner diameter is preferably 0.3 mm, and the length is preferably 0.8 m.
  • the transition section 6 and the shaping section 4 of the sleeve 2 can also be formed by stretching the pushing section 7.
  • the length of the transition section 6 is preferably 0.1 m
  • the outer diameter of the shaping section 4 is preferably 0.2 mm
  • the inner diameter is preferably 0.15 mm
  • the length is preferably 0.15 mm. It is preferably 0.1 m.
  • the diameter of the optical fiber 1 is preferably 0.1 mm and the length is preferably 2 m, preferably made of quartz or polymer. It can be seen that the optical function guide wire provided in this embodiment has a diameter of a millimeter level, so that it can safely enter into a relatively thin blood vessel for detection or treatment, avoid damage to the blood vessel wall caused by the guide wire, and has a wide range of applications.
  • the optical fiber 1 in the optical function guide wire can be connected to the multi-wavelength pulse laser and the waveform collector through the fiber beam splitter coupler, and the end of the optical function guide wire away from the functional section 3 can be connected to the attitude controller.
  • the wavelength pulse laser, waveform collector and attitude controller are all controlled by the control center.
  • the control center sends a control signal to the attitude controller, the attitude controller controls the optical function guide wire to enter, exit the cavity or move in the cavity according to the above control signal, and the control center sends a control signal to the multi-wavelength pulsed laser.
  • the control signal sends out pulsed laser light through the optical function guide wire and the grating assembly 8 on the optical function guide wire to conduct into the cavity and form laser scattering in the cavity, the control center sends a control signal to the waveform collector, and the waveform collector passes the
  • the grating component 8 on the optical function guide wire collects the time delay waveform of the scattered laser light, and then determines the distance information between the cavity wall and the optical function guide wire through calculation, including the relative position of the two and whether there is a branch in front of the optical function guide wire.
  • the waveform collector feeds back the above distance information to the control center and the attitude controller, and then controls and adjusts the posture of the guide wire and the next travel direction, so as to avoid damage to the cavity wall during the guide wire travel.
  • the optical functional guide wire provided in this embodiment includes at least one optical fiber 1 and a sleeve 2 surrounding the optical fiber 1.
  • the optical fiber 1 includes a functional section 3 capable of emitting and collecting laser light, and the functional section 3 is provided with at least one A grating assembly 8, the grating assembly 8 has the function of emitting and collecting the detection laser, which can determine the distance between the cavity wall and the optical fiber 1 by emitting and collecting lasers of different specific wavelengths and analyzing its time waveform, so as to guide the optical
  • the functional guide wire changes its shape and posture at any time, so as to realize the intelligent guidance and detection of the optical functional guide wire in the lumen.
  • An asymmetric structure is arranged along the optical fiber 1 around itself or the casing 2 to improve the bending performance and operability of the optical function guide wire, so that the optical function guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the use of laser Conduction is accurately detected and treated in the lumen, thereby improving the effect of minimally invasive interventional therapy.
  • the optical function guide wire of the present invention also has the functions of diagnosis and treatment.
  • diagnosis and treatment For example, in the process of photodynamic therapy, after being guided to the lesion through the above-mentioned guiding process, singlet oxygen can be excited by the grating component 8 to emit therapeutic red light, and after the photosensitive drug generates fluorescence, the grating can collect and analyze the fluorescence spectrum, so as to achieve The role of diagnosis; after the diagnosis process is completed, the photosensitive drug is stimulated by guiding the photodynamic laser for treatment to emit, which plays a therapeutic role and has a good therapeutic effect.
  • this embodiment provides an optical functional guide wire, and the side cross-sectional structures of the shaping section 4 and the functional section 3 are shown in FIG. 8 .
  • the asymmetric pipe wall structure is an asymmetric slit 15 opened on the sleeve 2, wherein the asymmetric slit 15 is a spiral slit, and the asymmetric slits 15 on both sides of the sleeve 2
  • the widths are not equal, and the asymmetric slits 15 are preferably opened on the shaping section 4 of the sleeve 2.
  • the slit width on one side is smaller and the slit width on the other side is larger, so that the shaping section 4 can be biased when it is stressed. Larger incision side curvature for improved flexibility of optically functional guidewires.
  • the spiral slit on the sleeve 2 can be formed by a laser cutting process by performing a rotary slit.
  • the slit width of the support section 5 is preferably 0.5 mm, the pitch is preferably 1 mm, and the slit width on one side of the shaping section 4 is preferably 0.5 mm. It is preferably 0.1 mm, and the slit width on the other side is preferably 0.5 mm.
  • the optical function guide wire provided in this embodiment further improves the bending performance and operation performance of the optical function guide wire through the setting of the spiral asymmetric slit 15, so that the optical function guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle. , which can realize the self-guidance and flexible detection of the optical function guide wire in the lumen, thereby improving the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical function guide wire, and the side cross-sectional structures of the shaping section 4 and the supporting section 5 are shown in FIG. 9 .
  • the asymmetric pipe wall structure is an asymmetric slit 15 opened on the sleeve 2
  • the asymmetric slit 15 is a rectangular slit
  • the depths of the slits 15 are not equal.
  • the asymmetric slit 15 is preferably opened on the shaping section 4 of the sleeve 2.
  • the asymmetric slit 15 on the shaping section 4 can make it have asymmetric mechanical properties, and the slit will be deeper when it is stressed.
  • One side of the slit is bent, so that the optical function guide wire can easily and quickly enter the cavity with a large opening angle, and the rectangular slit has a simple manufacturing process, easy to control the use process, strong maneuverability and wide application range.
  • the optical function guide wire provided in this embodiment further improves the bending performance and operation performance of the optical function guide wire through the setting of the rectangular asymmetric slit 15, so that the optical function guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle,
  • the self-guidance and flexible detection of the optical function guide wire in the lumen can be realized, thereby improving the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical function guide wire, and the side cross-sectional structure of the shaping section 4 is shown in FIG. 10 .
  • the asymmetric pipe wall structure is the asymmetric pipe wall thickness of the sleeve 2 , and the thickness of one side of the sleeve 2 is smaller than the thickness of the other side of the pipe wall.
  • the casing 2 is divided into two half-cylindrical casings 2 according to the diameter of the cross-section, as shown in FIG. 10 , where A represents the thinner side of the casing.
  • the thickness of the wall is preferably 0.1mm-0.3mm, and B represents the thicker side of the pipe wall, and its thickness is preferably 0.3mm-0.5mm.
  • the thickness of one side of the tube wall of the sleeve 2 is smaller, and the thickness of the other layer of the tube wall is larger. Bend, so as to continue to advance into the cavity with a larger opening angle.
  • the optical function guide wire provided in this embodiment further improves the bending performance and operation performance of the optical function guide wire through the arrangement of the asymmetric tube wall, so that the optical function guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, which can realize
  • the self-guided and flexible detection of the optical function guide wire in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical function guide wire, the cross-sectional structure of which is shown in FIG. 11 .
  • the asymmetric tube wall structure is in the shape of a sleeve 2, which is composed of a convex side 16 and a flat side 17, or a convex side 16 and a concave side, wherein the convex side 16 is in an arched structure.
  • the convex side 16 has an arched structure and its rigidity is relatively strong, when the optical function guide wire is subjected to force, it will bend to the concave side or the plane side 17 opposite to the convex side 16, so that the optical function The guide wire is more smoothly advanced into the curved lumen.
  • the optical function guide wire provided in this embodiment further improves the bending performance and operation performance of the optical function guide wire through the arrangement of the asymmetric tubular structure, so that the optical function guide wire is easy to be manipulated and easy to enter into the cavity with a large opening angle, which can realize
  • the self-guided and flexible detection of the optical function guide wire in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • This embodiment provides a detection system, including:
  • optical function guide wire is the optical function guide wire described in any one of Embodiments 1-5;
  • a control center that sends control signals to the attitude controller, the multi-wavelength pulsed laser, the waveform collector, and the treatment laser to control the attitude controller, the multi-wavelength pulsed laser, the waveform collector, and the treatment laser to turn on, operate, or turn off ;
  • the attitude controller receives the signal and distance information sent by the control center, and drives the optical function guide wire into and out of the cavity or moves in the cavity;
  • the multi-wavelength pulsed laser receives the signal sent by the control center, sends out pulsed laser light and transmits it to the optical function guide wire, and is scattered into the cavity through the grating assembly 8 on the optical function guide wire;
  • the waveform collector which receives the signal sent by the control center, analyzes the laser light scattered in the cavity through the grating component 8 on the optical function guide wire, determines the position information between the cavity wall and the optical function guide wire, and analyzes the position information between the cavity wall and the optical function guide wire. Position information is fed back to the control center.
  • the optical fiber 1 in the optical functional guide wire can be coupled with the multi-wavelength pulse laser and the waveform collector through the fiber beam splitter coupler.
  • the end of the optical function guide wire close to the support section 5 can be connected to the attitude controller, and the multi-wavelength pulse laser, the waveform collector and the attitude controller are all controlled by the control center.
  • the control center sends a control signal to the attitude controller, and the attitude controller controls the optical function guide wire to enter, exit the lumen or move in the lumen according to the above control signal, for example, by providing the guide wire forward and backward power through a linear stepping motor, and through the step
  • the rotation of the feeding motor and the steering gear drives the guide wire to rotate, and the linear stepping motor pulls the optical fiber to drive the shaping section 4 to bend toward the larger side of the slit.
  • the control center sends a control signal to the multi-wavelength pulsed laser, and the multi-wavelength pulsed laser sends out a pulsed laser according to the above-mentioned control signal.
  • the pulsed laser is transmitted through the optical function guide wire and its grating assembly 8 to scatter the pulsed laser into the cavity, and the control center sends a control signal to the waveform collector.
  • the waveform collector collects the time delay waveform of the scattered laser through the grating component 8 according to the above control signal, and then determines through calculation that the optical function guide wire is in the cavity, including the relative position of the two, whether there is a branch cavity in front of the optical function guide wire, etc. .
  • the optical function guide wire can be tensioned by applying a certain tension through the tensioning mechanism, and the optical function guide wire transmits the tension force to the developing ring 12 of the shaping section 4, and then transmits the tension through the developing ring 12 to the asymmetrical guide wire.
  • the sleeve 2 is structured so that the sleeve 2 is bent laterally.
  • a multi-wavelength pulsed laser emits picosecond pulses with 18 wavelengths (for example, 18 wavelengths in increments of 1020nm-1080nm), and the single pulse width is 1 picosecond.
  • the 18 wavelengths are combined by the 18-1 beam combiner and then enter the optical function guide wire, and exit through 18 gratings respectively.
  • the echoes scattered by the picosecond pulse through the channel wall are collected by the grating of the corresponding wavelength, and then returned to the waveform collector.
  • a 1 picosecond pulse corresponds to a distance resolution of .
  • the laser light emitted by grating a passes through the channel wall scattering echoes at different distances, and the waveform shown in Figure 13 is formed after time superposition; the laser light emitted by grating b passes through different distances.
  • the echoes scattered by the channel wall are superimposed in time to form a waveform as shown in Figure 13. Since the grating group b is closer to the channel wall, and the grating group a has a branch cavity, the time length of the echo pulse delay stacking is longer than the time length. According to the time waveform analysis of the control center, we obtain The grating group a has a branch cavity correspondingly.
  • the detection system provided in this embodiment includes an optical function guide wire, a control center, an attitude controller, a multi-wavelength pulse laser, and a waveform collector, wherein the control center can send control signals to other components to coordinately control the Working in cooperation with each other, the attitude controller can control the optical function guide wire to enter and exit the cavity or move in the cavity, which improves the flexibility of the optical function guide wire.
  • the cooperation of the multi-wavelength pulse laser, the waveform collector and the optical function guide wire can be achieved through The delay of the laser determines the relative position of the optical function guide wire and the cavity wall, and then accurately judges the next step posture and travel direction of the optical function guide wire.
  • the detection system provided by the present application innovatively uses light to guide the travel of the guide wire, with high detection efficiency and good detection effect.
  • the detection system provided in this embodiment may further include: a treatment laser, the treatment laser receives a signal sent by the control center, emits a treatment laser, and irradiates the diseased part through an optical function.
  • the optical function guide wire is connected with the pulse detection laser, the waveform collector and the treatment laser through the optical fiber combiner.
  • the treatment laser irradiates the lesion site by emitting a treatment laser through an optical fiber guide wire, which can effectively improve the flexibility and efficiency of treatment.
  • This embodiment provides a detection method, which is used in the detection system described in Embodiment 6, and the method includes steps S1 to S5.
  • the control center accepts the control instruction, and sends a control signal to the attitude controller and the multi-wavelength pulsed laser based on the control instruction.
  • the attitude controller receives the control signal sent by the control center, and drives the optical function guide wire into the lumen based on the control signal.
  • the pulse detector receives the control signal sent by the control center, emits pulsed laser light, and scatters the pulsed laser light into the cavity through the optical function guide wire and grating assembly 8 .
  • the optically functional guide wire receives the reflected pulsed laser light through the grating assembly 8 and sends it to a waveform collector, and the waveform collector determines the position of the optically functional guidewire in the cavity based on the reflected pulsed laser light.
  • the attitude controller controls the next movement of the optical function guide wire based on the position of the optical function guide wire in the lumen until the optical function guide wire exits the lumen after reaching the target area and completing detection.
  • control center can also send a control signal to the treatment laser, and the treatment laser emits the treatment laser and scatters it to the target area through the optical function guide wire to treat the target area.
  • the detection method provided in this embodiment realizes the intelligent and automatic guidance of the optical function guide wire in the lumen through the cooperation of the control center, the attitude controller, the pulse detector, the optical function guide wire and the waveform collector, and the operation is simple and convenient.
  • the detection efficiency and detection effect of the optical function guide wire are greatly improved.
  • laser irradiation treatment can also be performed on the diseased part of the patient through the cooperation of the control center, the optical function guide wire and the treatment laser.
  • the treatment efficiency is high and the effect is good, which improves the flexibility and application scope of the optical function guide wire.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Laser Surgery Devices (AREA)

Abstract

一种光学功能导丝、探测系统及探测方法,光学功能导丝包括光学纤维(1)和围绕于光学纤维(1)外的套管(2),光学纤维(1)包括能够发射和收集激光的功能段(3),功能段(3)设置有至少一个光栅组件(8),套管(2)包括能够弯曲的塑形段(4)和能够支持功能段(3)前进的支撑段(5),塑形段(4)与功能段(3)相连,塑形段(4)位于靠近功能段(3)的一端,支撑段(5)位于远离功能段(3)的一端,光学功能导丝上还设置有能够使光学功能导丝定向弯曲的非对称结构。该光学功能导丝的弯曲性能和可操作性强,使光学功能导丝易于操控易于进入张角较大的腔道,可以实现光学功能导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。

Description

一种光学功能导丝、探测系统及探测方法 技术领域
本申请涉及医疗器械技术领域,特别涉及一种光学功能导丝、探测系统及探测方法。
背景技术
微创介入治疗是在影像导引下,利用特定的穿刺针、导丝或导管等器械,不用打开人体组织即可准确到达病变部位进行诊断和治疗的医学技术。微创介入治疗以其疗效确切、康复快、靶向性强、防复发、无副作用、创伤少、安全可靠、费用少等的特点越来越受到患者的青睐。
其中,导丝在临床上使用十分频繁,比如辅助心脏支架的安装、血栓消融、肿瘤栓塞治疗等都会用到导丝。在介入手术中,导丝的安全性是第一位的。因此,头端柔软、顺应性好、无损伤性、易塑性、可提供低至中度支撑等均为导丝所必需的特性。
目前,市场上所售医用导丝通常是一根具有多段不同直径的核心不锈钢丝构成,并在顶端进行绕丝制成的,但是上述方案均会导致导丝直径较粗,难以进入较细的血管中。
同时,为了实现在人体腔道内的良好的操纵性能,目前通常采用头部可主动弯曲的导丝,如此可按照腔道的走向改变头部形态,从而易于进入较为细小的分支腔道,目前主要通过多根肌腱驱动、磁场驱动、记忆金属驱动的方式引导导丝在腔道内按照既定路线行进,但上述的方式具有很大的操作局限性。所以,如何提高导丝的操作性能、驱动性能、探测性能成为了亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种光学功能导丝、探测系统及探测方法,以解决现有技术中存在的技术缺陷。
本申请提供了一种光学功能导丝,所述光学功能导丝包括光学纤维和围绕于所述光学纤维外的套管,所述光学纤维包括能够发射和收集激光的功能段,所述功能段设置有至少一个光栅组件,所述套管包括能够弯曲的塑形段和能够支持所述功能段前进的支撑段,所述塑形段与所述功能段相连,所述塑形段位于靠近所述功能段的一端,所述支撑段位于远离所述功能段的一端,所述光学功能导丝上还设置有能够使所述光学功能导丝定向弯曲的非对称结构。
可选地,所述功能段设置有多个光栅组件,所述光栅组件间隔套设于所述光学功能导丝的功能段外,且沿所述光学纤维纵向排列。
可选地,所述光学纤维包括位于轴心位置处的芯层和包裹于所述芯层外的包层,所述光栅组件间隔套设于包层外,每个光栅组件均呈空心棱柱状。
可选地,所述光栅组件包括周期不同的多个光栅,每一个所述光栅构成所述光栅组件的一个侧面。
可选地,所述支撑段的直径大于所述塑形段的直径。
可选地,所述套管还包括过渡段和推送段,所述过渡段位于所述塑形段与所述支撑段之间,且所述过渡段的直径沿塑形段至支撑段的方向逐渐增加,所述推送段的一端与所述支撑段相连,所述推送段的另一端与驱动机构相连。
可选地,所述光学纤维的功能段通过螺旋管与所述套管的塑形段相连,所述螺旋管与所述光学纤维之间设置有显影环。
可选地,所述非对称结构为所述套管的非对称管壁结构。
可选地,所述非对称管壁结构为开设在所述套管塑形段上的非对称切缝,所述非对称切缝为螺旋型切缝或矩形切缝,在所述非对称切缝为螺旋形切缝的情况下,所述套管两侧的非对称切缝的宽度不相等,在所述非对称切缝为矩形切缝的情况下,所述套管两侧的非对称切缝的深度不相等。
可选地,所述非对称管壁结构为所述套管的非对称管壁厚度,所述套管的两侧管壁厚度不相等。
可选地,所述非对称管壁结构为套管的形状,所述套管由凸起侧和平面侧构成,或由凸起侧和凹面侧构成,其中,所述凸起侧呈拱形结构。
可选地,所述功能段远离所述塑形段的一端设置有能够阻挡激光散射的半球形光学组件,所述光学功能导丝外还设置有聚合物涂层,所述聚合物涂层为亲水涂层或疏水涂层。
可选地,所述套管为海波管,所述套管的外径为0.6-0.8mm,所述套管的内径为0.3-0.5mm。
本申请还提供一种探测系统,包括:
光学功能导丝,所述光学功能导丝为如上所述的光学功能导丝;
控制中心,所述控制中心向姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器的开启、运作或关闭;
姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光学功能导丝进出腔道或在腔道内移动;
多波长脉冲激光器,所述多波长脉冲激光器接收控制中心发出的信号,发出脉冲激光传导至光学功能导丝,并通过光学功能导丝上的光栅组件(8)散射至腔道中;
波形采集器,所述波形采集器接收控制中心发出的信号,通过光学功能导丝上的光栅组件分析腔道内散射的激光并确定腔道壁与光学功能导丝之间的位置信息,并将位置信息反馈至控制中心。
可选地,所述多波长脉冲激光器、所述波形采集器通过光纤分束耦合器与所述光学纤维耦合。
本申请还提供一种探测方法,用于如上所述的探测系统,所述方法包括:
控制中心接受控制指令,并基于所述控制指令向姿态控制器和多波长脉冲激光器发送控制信号;
所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光学功能导丝进入腔道;
所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光学功能导丝及光栅组件将脉冲激光散射至腔道内;
所述光学功能导丝通过光栅组件接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光学功能导丝在腔道内的位置;
所述姿态控制器基于所述光学功能导丝在腔道内的位置控制所述光学功能导丝的下一步移动,直至所述光学功能导丝到达目标区域完成探测后退出腔道。
本申请提供的光学功能导丝,包括至少一个光学纤维和围绕于光学纤维外的套管,光学纤维包括能够发射和收集激光的功能段,所述功能段设置有至少一个光栅组件,光栅组件具有发射和收集探测激光的功能,其可以通过发射和收集不同特定波长的激光,并分析其时间波形确定腔道壁与光学纤维之间的距离,以指导光学功能导丝随时进行形状和姿态的改变,进而实现光学功能导丝在腔道内的智能化引导及探测,套管包括依次相连的功能段、导引段和支撑段,并且套管自身或套管周围沿光学纤维设置有非对称结构,以提高光学功能导丝的弯曲性能和可操作性,使光学功能导丝易于操控易于进入张角较大的腔道,并利用激光传导在腔道内进行精确探测和治疗,从而提高微创介入治疗的效果。
本申请提供的探测系统,包括光学功能导丝、控制中心、姿态控制器、多波长脉冲激光器和波形采集器,其中,控制中心可以向其他组件发送控制信号,以协调控制各组件之间的相互配合运作,姿态控制器可以控制光学功能导丝进出腔道或在腔道内移动,提高光学功能导丝的使用灵活性,多波长脉冲激光器、波形采集器和光学功能导丝的配合,可以通过激光的延时确定光学功能导丝与腔道壁的相对位置,进而准确判断光学功能导丝下一 步的姿态以及行进方向。本申请提供的探测系统创新的以光来引导导丝的行进,探测效率高,探测效果好。
本申请提供的探测方法,通过控制中心、姿态控制器、脉冲探测器、光学功能导丝以及波形采集器的相互配合实现光学功能导丝在腔道内的智能化和自动化导引,操作简便,大大提高了光学功能导丝的探测效率和探测效果。此外,还可以通过控制中心、光学功能导丝与治疗激光器的配合对患者的病变部位进行激光照射治疗,治疗效率高效果好,提高了光学功能导丝的使用灵活性和适用范围。
附图说明
图1是本申请一实施例所述的光学功能导丝的整体结构示意图;
图2是本申请一实施例所述的光学功能导丝局部结构示意图;
图3是本申请一实施例所述的光栅组件结构示意图;
图4是本申请一实施例所述的光学功能导丝使用场景示意图;
图5是本申请一实施例所述的脉冲测距示意图;
图6是本申请一实施例所述的光学功能导丝局部结构示意图;
图7是本申请一实施例所述的光学功能导丝的另一整体结构示意图;
图8是本申请一实施例所述的光学功能导丝的另一整体结构示意图;
图9是本申请一实施例所述的光学功能导丝的另一整体结构示意图;
图10是本申请一实施例所述的光学功能导丝的另一整体结构示意图;
图11是本申请一实施例所述的光学功能导丝的另一整体结构示意图;
图12是本申请一实施例所述的探测系统的工作原理图;
图13是本申请一实施例所述的激光脉冲叠加延时波形图。
其中,1-光学纤维,2-套管,3-功能段,4-塑形段,5-支撑段,6-过渡段,7-推送段,8-光栅组件,9-芯层,10-包层,11-螺旋管,12-显影环,13-聚合物涂层,14-半球形光学组件,15-非对称切缝,16-凸起侧,17-平面侧。
具体实施方式
下面结合附图对本申请的具体实施方式进行描述。
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的试剂、材料和操作步骤均为相应领域内广泛使用的试剂、材料和常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
在本申请中,海波管是指一种长金属管,在其整个管道上具有微工程特性。它是微创治疗用导管的重要组件,需与球囊和支架配合使用来打开动脉阻塞。导管的球囊部分附着于海波管远端。海波管进入人体,将球囊沿着曲折复杂的长血管向动脉阻塞处推去。在这个过程中,海波管需避免扭结,同时能够顺畅地在人体结构中行进(推进、追踪和转动)。
实施例1
本实施例提供一种光学功能导丝,如图1所示,所述光学功能导丝包括光学纤维1和围绕于所述光学纤维1外的套管2,所述光学纤维1包括能够发射和收集激光的功能段3,所述功能段3设置有至少一个光栅组件8,所述套管2包括能够弯曲的塑形段4和能够支持所述功能段3前进的支撑段5,所述塑形段4与所述功能段3相连,所述塑形段4位于靠近所述功能段3的一端,所述支撑段5位于远离所述功能段3的一端,所述光学功能导丝上还设置有能够使所述光学功能导丝定向弯曲的非对称结构。
本实施例中的光学纤维1是用于传导光的人造纤维,其位于光学功能导丝的轴心位置处。光学纤维1的功能段3通过其设置的光栅组件8发射和收集激光,进而通过激光产生的时间波形确定光学功能导丝在腔道中的位置。
如图2所示,光栅组件8的数量可以为1个也可以为多个,比如2个、3个、4个、5个等,优选为3个。在光栅组件8数量为多个的情况下,光栅组件8间隔套设于光学功能导丝的功能段3外,且沿所述光学纤维1间隔纵向排列,相邻两个光栅组件8之间的间隔距离可以视具体情况而定,本申请对此不做限制。
更为具体地,光学纤维1包括位于轴心位置处的芯层9和包裹于芯层9外的包层10,相邻的光栅组件8间隔套设于包层10外,每个光栅组件8均呈空心棱柱状。其中,包层10采用透明聚合物制成,以使光学纤维1中的激光透过包层10经光栅组件8散射至腔道中。光栅组件8可以呈空心四棱柱状、空心六棱柱状、空心八棱柱状、空心十棱柱状等,优选为空心六棱柱状。
光栅组件8的结构如图3所示,光栅组件8由多个光栅组成,光栅是固定于光学纤维1上用于发射和收集激光的光学器件,其由大量等宽等间距的平行狭缝构成。
每个光栅组件8均包括周期不同的多个光栅,每个所述光栅均固定于棱柱状包层10的一个侧面。将多波长的脉冲激光传输至光纤中,从不同光栅耦合发出的脉冲波长不同。光栅组件8中光栅的数量与棱柱的侧面数量相同,比如在光栅组件8呈空心六棱柱状的情况下,其由6个周期不同的光栅组成。
参见图3,在该图中,a和b表示处于相反方向的两个光栅,在实际应用中,光栅a发出的激光经腔道壁散射后,经光栅a耦合入光纤,光栅b发出的激光经腔道壁散射后, 经光栅b耦合入光纤,在光栅a处具有一个分支腔道的情况下,如图4所示,光栅a与腔道壁之间的距离大于光栅b与腔道壁之间的距离,光栅a收集的散射脉冲时间相对于光栅b较为滞后,如图5所示,λ1表示光栅a发出的波长,λ2表示光栅b发出的波长,通过对散射回波的波形进行分析,即可得到腔道的分支形貌,从而指引塑形段4弯曲进入该分支腔道,通过位于不同方向的光栅回波波形分析,可以判断每一个光栅所处位置的腔道分支情况,如此能够为形状较为复杂的腔道通路提供更为详细的判断数据,以提高导丝行进的效率。
如图2、图6所示,光学纤维1的功能段3可以通过螺旋管11与套管2的塑形段4相连,上述螺旋管11优选采用金属材质制成,螺旋管11与所光学纤维1之间还可以设置显影环12,显影环12与其外侧的螺旋管11及内侧的光学纤维1均可以通过粘结的方式固定。显影环12优选采用重金属制成,例如黄金、白金等,其在X光的照射下能够呈现清晰影像,进而辅助探测与治疗。
光学功能导丝外还可以设置聚合物涂层13。该聚合物涂层13可以是亲水涂层或疏水涂层,亲水涂层可以吸引水分子在导丝表面形成“凝胶状”表面,降低导丝的通过阻力,疏水涂层可以抵制水分子形成“蜡状”表面,减少摩擦,增强导丝的跟踪性。
在本实施例中,套管2可以为等径套管2,也可以为变径套管2,在套管2为等径套管2的情况下,套管2塑形段4和支撑段5的直径相等,在套管2为变径套管2的情况下,套管2塑形段4和支撑段5的直径依次增加。在实际应用中,套管2优选为变径套管2,塑形段4的直径小于支撑段5的直径,可以促使塑形段4相对于支撑段5更加易于弯曲,从而更加易于在弯曲的腔道中行进,支撑段5的直径较大则具有足够的刚性,可以为塑形段4提供前进驱动力。
此外,套管2的塑形段4和支撑段5既可以是等径段,也可以是变径段,在塑形段4和/或支撑段5为变径段的情况下,每一段的直径均沿塑形段4至支撑段5的方向逐渐增加,但不论塑形段4、支撑段5是等径段还是变径段,二者的外径均不相同,塑形段4外径始终小于支撑段5外径。
如图7所示,在本实施例提供的光学功能导丝中,套管2还可以包括过渡段6和推送段7,过渡段6位于塑形段4与支撑段5之间,且过渡段6的直径沿塑形段4至支撑段5的方向逐渐增加,推送段7的一端与支撑段5相连,推送段7的另一端与驱动机构相连,从而提供前进驱动力。驱动机构可以为手动驱动光学功能导丝行进的操作手柄,或靠电力驱动光学功能导丝行进的姿态控制器等机器,本申请对此不做限制。
光学功能导丝还设置有能够使其向一侧定向弯曲的非对称结构,非对称结构优选为套管2的非对称管壁结构,比如非对称切缝15、非对称管壁厚度、形状等。非对称结构的设置可以使光学功能导丝更易于向一侧弯曲,提高光学功能导丝的弯曲性能和可操作性,易于操控光学功能导丝进入较细血管以及张角较大的分支血管进行探测和治疗。
在本实施例中,光学功能导丝的总长度优选为2m,套管2推送段7的总外径优选为0.8mm,长度优选为1m,套管2优选采用医用304不锈钢制成。套管2的支撑段5可以通过推送段7经拉伸构成,外径优选为0.4mm,内径优选为0.3mm,长度优选为0.8m。套管2的过渡段6和塑形段4也可以通过推送段7经拉伸构成,过渡段6长度优选为0.1m,塑形段4外径优选为0.2mm,内径优选为0.15mm,长度优选为0.1m。光学纤维1的直径为优选0.1mm,长度优选为2m,优选采用石英或聚合物制成。可见本实施例提供的光学功能导丝,直径达到了毫米级别,如此可以安全地进入较细的血管内进行探测或治疗,避免导丝对血管壁造成的损伤,适用范围广。
在实际应用中,光学功能导丝中的光学纤维1可以通过光纤分束耦合器与多波长脉冲激光器、波形采集器相连,光学功能导丝远离功能段3的一端可以与姿态控制器相连,多波长脉冲激光器、波形采集器和姿态控制器均接受控制中心的控制。控制中心向姿态控制器发送控制信号,姿态控制器根据上述控制信号控制光学功能导丝进入、退出腔道或在腔道内移动,控制中心向多波长脉冲激光器发送控制信号,多波长脉冲激光器根据上述控制信号发出脉冲激光经光学功能导丝及光学功能导丝上的光栅组件8传导至腔道内并在腔道内形成激光散射,控制中心向波形采集器发送控制信号,波形采集器根据上述控制信号通过光学功能导丝上的光栅组件8采集散射激光的时延波形,进而通过计算确定腔道壁与光学功能导丝之间的距离信息,包括二者的相对位置、光学功能导丝前方是否存在分支腔道等,波形采集器将上述距离信息反馈至控制中心以及姿态控制器,进而控制调整导丝的姿态和下一步行进方向,以避免导丝行进过程中对腔道壁造成的损伤。
本实施例提供的光学功能导丝,包括至少一个光学纤维1和围绕于光学纤维1外的套管2,光学纤维1包括能够发射和收集激光的功能段3,所述功能段3设置有至少一个光栅组件8,光栅组件8具有发射和收集探测激光的功能,其可以通过发射和收集不同特定波长的激光,并分析其时间波形确定腔道壁与光学纤维1之间的距离,以指导光学功能导丝随时进行形状和姿态的改变,进而实现光学功能导丝在腔道内的智能化引导及探测,套管2包括依次相连的功能段3、导引段和支撑段5,并且套管2自身或套管2周围沿光学纤维1设置有非对称结构,以提高光学功能导丝的弯曲性能和可操作性,使光学功能导丝易于操控易于进入张角较大的腔道,并利用激光传导在腔道内进行精确探测和治疗,从而提高微创介入治疗的效果。
需要说明的是,本发明的光学功能导丝还具有诊断和治疗的功能。例如在光动力治疗过程中,在经上述引导过程引导至病灶处后,可以通过光栅组件8出射治疗用红光激发单线态氧,在光敏药物产生荧光后经光栅收集并分析荧光光谱,起到诊断的作用;在诊断过程结束之后,通过引导治疗用光动力激光出射,对光敏药物进行激发,起到治疗的作用,治疗效果好。
实施例2
在实施例1的基础上,本实施例提供一种光学功能导丝,其塑形段4和功能段3侧截面结构如图8所示。
在本实施例中,所述非对称管壁结构为开设在套管2上的非对称切缝15,其中非对称切缝15为螺旋形切缝,套管2两侧非对称切缝15的宽度不相等,非对称切缝15优选开设在套管2的塑形段4上,一侧切缝宽度较小,另一侧切缝宽度较大,从而可以使得塑形段4在受力时产生偏向较大切缝侧的弯曲,提高光学功能导丝的灵活性。
在实际应用中,套管2上的螺旋形切缝可以通过激光切割工艺进行旋转切缝形成,支撑段5的切缝宽度优选为0.5mm,螺距优选为1mm,塑形段4一侧切缝宽度优选为0.1mm,另一侧切缝宽度优选为0.5mm。
所以本实施例提供的光学功能导丝,通过螺旋形非对称切缝15的设置进一步提高光学功能导丝的弯曲性能和操作性能,使光学功能导丝易于操控易于进入张角较大的腔道,可以实现光学功能导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例3
在实施例1的基础上,本实施例提供一种光学功能导丝,其塑形段4和支撑段5侧截面结构如图9所示。
在本实施例中,所述非对称管壁结构为开设在套管2上的非对称切缝15,所述非对称切缝15为矩形切缝,所述套管2两侧的非对称切缝15的深度不相等。其中,非对称切缝15优选开设在套管2的塑形段4上,塑形段4上的非对称切缝15可以使其具有非对称的力学性质,在受力时向切缝较深的一侧弯曲,进而可以使光学功能导丝方便快捷的进入张角较大的腔道,并且,矩形切缝制作工艺简单,使用过程易于控制,可操控性强,适用范围广。
所以本实施例提供的光学功能导丝,通过矩形非对称切缝15的设置进一步提高光学功能导丝的弯曲性能和操作性能,使光学功能导丝易于操控易于进入张角较大的腔道,可以实现光学功能导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例4
在实施例1的基础上,本实施例提供一种光学功能导丝,其塑形段4的侧截面结构如图10所示。
非对称管壁结构为套管2的非对称管壁厚度,套管2的其中一侧管壁厚度小于另一侧管壁厚度。具体地,以套管2为圆柱形套管2为例,将其按横截面直径一分为二,成为两个半圆柱形套管2,参见图10,其中A表示较薄一侧的管壁,其厚度优选为0.1mm-0.3mm,B表示较厚一侧的管壁,其厚度优选为0.3mm-0.5mm。
在本实施例所述的光学功能导丝中,套管2的一侧管壁厚度较小,另一层管壁厚度较大,导丝在受力时,可以向管壁较薄的一侧弯曲,从而向张角较大的腔道中继续推进。
所以本实施例提供的光学功能导丝,通过非对称管壁的设置进一步提高光学功能导丝的弯曲性能和操作性能,使光学功能导丝易于操控易于进入张角较大的腔道,可以实现光学功能导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例5
在实施例1的基础上,本实施例提供一种光学功能导丝,其横截面结构如图11所示。
非对称管壁结构为套管2的形状,套管2由凸起侧16和平面侧17构成,或由凸起侧16和凹面侧构成,其中,凸起侧16呈拱形结构。
具体地,由于凸起侧16呈拱形结构,其刚性较强,所以光学功能导丝在受力时,其会向与凸起侧16相对的凹面侧或平面侧17弯曲,从而使光学功能导丝更为顺利的向弯曲的腔道中推进。
所以本实施例提供的光学功能导丝,通过非对称管状结构的设置进一步提高光学功能导丝的弯曲性能和操作性能,使光学功能导丝易于操控易于进入张角较大的腔道,可以实现光学功能导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例6
本实施例提供一种探测系统,包括:
光学功能导丝,所述光学功能导丝为实施例1-5任意一项所述的光学功能导丝;
控制中心,所述控制中心向姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器的开启、运作或关闭;
姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光学功能导丝进出腔道或在腔道内移动;
多波长脉冲激光器,所述多波长脉冲激光器接收控制中心发出的信号,发出脉冲激光传导至光学功能导丝,并通过光学功能导丝上的光栅组件8散射至腔道中;
波形采集器,所述波形采集器接收控制中心发出的信号,通过光学功能导丝上的光栅组件8分析腔道内散射的激光并确定腔道壁与光学功能导丝之间的位置信息,并将位置信息反馈至控制中心。
其中,光学功能导丝中的光学纤维1可以通过光纤分束耦合器与多波长脉冲激光器、波形采集器耦合。光学功能导丝靠近支撑段5的一端可以与姿态控制器相连,多波长脉冲激光器、波形采集器和姿态控制器均接受控制中心的控制。
控制中心向姿态控制器发送控制信号,姿态控制器根据上述控制信号控制光学功能导丝进入、退出腔道或在腔道内移动,例如通过通过直线步进电机提供导丝前进、后退动力,通过步进电机、舵机等旋转带动导丝旋转,通过直线步进电机拉动光纤,带动塑形段4向切缝较大一侧弯曲等。
控制中心向多波长脉冲激光器发送控制信号,多波长脉冲激光器根据上述控制信号发出脉冲激光经光学功能导丝及其光栅组件8传导将脉冲激光散射至腔道内,控制中心向波形采集器发送控制信号,波形采集器根据上述控制信号通过光栅组件8采集散射激光的时延波形,进而通过计算确定光学功能导丝在腔道内,包括二者的相对位置、光学功能导丝前方是否存在分支腔道等。在进行顶端弯曲控制时,可以通过张紧机构施加一定拉力将光学功能导丝进行张紧,光学功能导丝将拉力传导至塑形段4的显影环12,通过显影环12传递到具有非对称结构的套管2,使套管2产生侧向的弯曲。
具体地,在此以一个实际例子对位置计算进行具体说明。比如多波长脉冲激光器发出可以18个波长(例如1020nm-1080nm中递增的的18个波长)的皮秒脉冲,单脉冲宽度为1皮秒。该18个波长经18-1合束器合束后进入光学功能导丝,并通过18个光栅分别出射。皮秒脉冲经腔道壁散射后的回波经对应波长的光栅收集后,返回波形采集器。1皮秒脉冲对应距离分辨率为。如图3-5、图13所示,光栅a发射的激光经过不同距离的腔道壁散射回波,在时间上叠加后形成如图13所示的波形;光栅b发射的激光经过不同距离的腔道壁散射回波,在时间上叠加后形成如图13所示的波形。由于光栅组b距离腔道壁较近,而光栅组a处具有一分支空腔,因此回波脉冲时延叠加的的时间长度比的时间长度长,据此通过控制中心的时间波形分析,获得光栅组a对应处具有一分支空腔。
本实施例提供的探测系统,包括光学功能导丝、控制中心、姿态控制器、多波长脉冲激光器和波形采集器,其中,控制中心可以向其他组件发送控制信号,以协调控制各组件之间的相互配合运作,姿态控制器可以控制光学功能导丝进出腔道或在腔道内移动,提高 光学功能导丝的使用灵活性,多波长脉冲激光器、波形采集器和光学功能导丝的配合,可以通过激光的延时确定光学功能导丝与腔道壁的相对位置,进而准确判断光学功能导丝下一步的姿态以及行进方向。本申请提供的探测系统创新的以光来引导导丝的行进,探测效率高,探测效果好。
可选地,本实施例提供的探测系统,还可以包括:治疗激光器,治疗激光器接收控制中心发出的信号,发出治疗用激光,经光学功能照射病变部位。
光学功能导丝通过光纤合束器与所述脉冲探测激光器、波形采集器、治疗激光器相连。在实际应用中,治疗激光器通过光纤导丝发射治疗激光照射病变部位,能够有效提高治疗灵活性和效率。
实施例7
本实施例提供一种探测方法,用于实施例6所述的探测系统,所述方法包括步骤S1至S5。
S1、控制中心接受控制指令,并基于所述控制指令向姿态控制器和多波长脉冲激光器发送控制信号。
S2、所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光学功能导丝进入腔道。
S3、所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光学功能导丝及光栅组件8将脉冲激光散射至腔道内。
S4、所述光学功能导丝通过光栅组件8接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光学功能导丝在腔道内的位置。
S5、所述姿态控制器基于所述光学功能导丝在腔道内的位置控制所述光学功能导丝的下一步移动,直至所述光学功能导丝到达目标区域完成探测后退出腔道。
此外,控制中心还可以向治疗激光器发送控制信号,治疗激光器发出治疗激光并经由光学功能导丝散射至目标区域,对目标区域进行治疗。
本实施例提供的探测方法,通过控制中心、姿态控制器、脉冲探测器、光学功能导丝以及波形采集器的相互配合实现光学功能导丝在腔道内的智能化和自动化导引,操作简便,大大提高了光学功能导丝的探测效率和探测效果。此外,还可以通过控制中心、光学功能导丝与治疗激光器的配合对患者的病变部位进行激光照射治疗,治疗效率高效果好,提高了光学功能导丝的使用灵活性和适用范围。
在本文中,“相等”、“相同”等并非严格的数学和/或几何学意义上的限制,还包含本领域技术人员可以理解的且制造或使用等允许的误差。
除非另有说明,本文中的数值范围不仅包括其两个端点内的整个范围,也包括含于其中的若干子范围。
上面结合附图对本申请优选的具体实施方式和实施例作了详细说明,但是本申请并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本申请构思的前提下做出各种变化。

Claims (10)

  1. 一种光学功能导丝,其特征在于,所述光学功能导丝包括光学纤维(1)和围绕于所述光学纤维(1)外的套管(2),所述光学纤维(1)包括能够发射和收集激光的功能段(3),所述功能段(3)设置有至少一个光栅组件(8),所述套管(2)包括能够弯曲的塑形段(4)和能够支持所述功能段(3)前进的支撑段(5),所述塑形段(4)与所述功能段(3)相连,所述塑形段(4)位于靠近所述功能段(3)的一端,所述支撑段(5)位于远离所述功能段(3)的一端,所述光学功能导丝上还设置有能够使所述光学功能导丝定向弯曲的非对称结构。
  2. 根据权利要求1所述的光学功能导丝,其特征在于,所述功能段(3)设置有多个光栅组件(8),所述光栅组件(8)间隔套设于所述光学功能导丝的功能段(3)外,且沿所述光学纤维(1)纵向排列。
  3. 根据权利要求2所述的光学功能导丝,其特征在于,所述光学纤维(1)包括位于轴心位置处的芯层(9)和包裹于所述芯层(9)外的包层(10),所述光栅组件(8)间隔套设于包层(10)外,每个光栅组件(8)均呈空心棱柱状。
  4. 根据权利要求3所述的光学功能导丝,其特征在于,所述光栅组件(8)包括周期不同的多个光栅,每一个所述光栅构成所述光栅组件(8)的一个侧面。
  5. 根据权利要求1所述的光学功能导丝,其特征在于,所述支撑段(5)的直径大于所述塑形段(4)的直径;
    优选地,所述套管(2)还包括过渡段(6)和推送段(7),所述过渡段(6)位于所述塑形段(4)与所述支撑段(5)之间,且所述过渡段(6)的直径沿塑形段(4)至支撑段(5)的方向逐渐增加,所述推送段(7)的一端与所述支撑段(5)相连,所述推送段(7)的另一端与驱动机构相连。
  6. 根据权利要求1所述的光学功能导丝,其特征在于,所述光学纤维(1)的功能段(3)通过螺旋管(11)与所述套管(2)的塑形段(4)相连,所述螺旋管(11)与所述光学纤维(1)之间设置有显影环(12)。
  7. 根据权利要求1所述的光学功能导丝,其特征在于,所述非对称结构为所述套管(2)的非对称管壁结构;
    优选地,所述非对称管壁结构为开设在所述套管(2)塑形段(4)上的非对称切缝(15)、所述套管(2)的非对称管壁厚度、或所述套管(2)的形状。
  8. 根据权利要求1所述的光学功能导丝,其特征在于,所述功能段(3)远离所述塑形段(4)的一端设置有能够阻挡激光散射的半球形光学组件(14),所述光学功能导丝外还设置有聚合物涂层(13),所述聚合物涂层(13)为亲水涂层或疏水涂层。
  9. 一种探测系统,其特征在于,包括:
    光学功能导丝,所述光学功能导丝为权利要求1-8任意一项所述的光学功能导丝;
    控制中心,所述控制中心向姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、多波长脉冲激光器、波形采集器、治疗激光器的开启、运作或关闭;
    姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光学功能导丝进出腔道或在腔道内移动;
    多波长脉冲激光器,所述多波长脉冲激光器接收控制中心发出的信号,发出脉冲激光传导至光学功能导丝,并通过光学功能导丝上的光栅组件(8)散射至腔道中;
    波形采集器,所述波形采集器接收控制中心发出的信号,通过光学功能导丝上的光栅组件(8)分析腔道内散射的激光并确定腔道壁与光学功能导丝之间的位置信息,并将位置信息反馈至控制中心。
  10. 一种探测方法,其特征在于,用于权利要求9所述的探测系统,所述方法包括:
    控制中心接受控制指令,并基于所述控制指令向姿态控制器和多波长脉冲激光器发送控制信号;
    所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光学功能导丝进入腔道;
    所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光学功能导丝及光栅组件(8)将脉冲激光散射至腔道内;
    所述光学功能导丝通过光栅组件(8)接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光学功能导丝在腔道内的位置;
    所述姿态控制器基于所述光学功能导丝在腔道内的位置控制所述光学功能导丝的下一步移动,直至所述光学功能导丝到达目标区域完成探测后退出腔道。
PCT/CN2020/134600 2020-08-31 2020-12-08 一种光学功能导丝、探测系统及探测方法 WO2022041558A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/395,134 US20220061763A1 (en) 2020-08-31 2021-08-05 Optical functional guidewire, detection system, and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010894792.7 2020-08-31
CN202010894792.7A CN111973864B (zh) 2020-08-31 2020-08-31 一种光学功能导丝、探测系统及探测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/395,134 Continuation US20220061763A1 (en) 2020-08-31 2021-08-05 Optical functional guidewire, detection system, and detection method

Publications (1)

Publication Number Publication Date
WO2022041558A1 true WO2022041558A1 (zh) 2022-03-03

Family

ID=73440825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134600 WO2022041558A1 (zh) 2020-08-31 2020-12-08 一种光学功能导丝、探测系统及探测方法

Country Status (3)

Country Link
US (1) US20220061763A1 (zh)
CN (1) CN111973864B (zh)
WO (1) WO2022041558A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973864B (zh) * 2020-08-31 2021-07-23 尚华 一种光学功能导丝、探测系统及探测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328033A (zh) * 2010-11-09 2013-09-25 奥普森斯公司 具有内部压力传感器的导丝
CN104427927A (zh) * 2012-06-28 2015-03-18 皇家飞利浦有限公司 用于血管可视化和监测的由光纤传感器引导的导航
CN105792876A (zh) * 2013-10-03 2016-07-20 本迪特技术有限公司 操控工具
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
CN110064123A (zh) * 2019-03-28 2019-07-30 暨南大学 一种专用于腹腔镜袖状胃切除术的胃管引导管
EP3524953A1 (en) * 2018-02-07 2019-08-14 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN111973864A (zh) * 2020-08-31 2020-11-24 尚华 一种光学功能导丝、探测系统及探测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768839B2 (en) * 2001-09-14 2004-07-27 E. I. Du Pont De Nemours And Company Tunable, polymeric core, fiber Bragg gratings
US7297154B2 (en) * 2003-02-24 2007-11-20 Maxwell Sensors Inc. Optical apparatus for detecting and treating vulnerable plaque
CN102202562B (zh) * 2008-09-11 2014-04-23 阿西斯特医疗系统有限公司 生理传感器传送装置和方法
US11801368B2 (en) * 2017-05-25 2023-10-31 C.R. Bard, Inc. Guidewire
CN107843901B (zh) * 2017-10-26 2019-11-26 清华大学 激光测距系统及方法
US10695578B1 (en) * 2019-08-09 2020-06-30 Hua Shang Vascular optical fiber guidewire with plug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328033A (zh) * 2010-11-09 2013-09-25 奥普森斯公司 具有内部压力传感器的导丝
CN104427927A (zh) * 2012-06-28 2015-03-18 皇家飞利浦有限公司 用于血管可视化和监测的由光纤传感器引导的导航
CN105792876A (zh) * 2013-10-03 2016-07-20 本迪特技术有限公司 操控工具
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
EP3524953A1 (en) * 2018-02-07 2019-08-14 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN110064123A (zh) * 2019-03-28 2019-07-30 暨南大学 一种专用于腹腔镜袖状胃切除术的胃管引导管
CN111973864A (zh) * 2020-08-31 2020-11-24 尚华 一种光学功能导丝、探测系统及探测方法

Also Published As

Publication number Publication date
CN111973864A (zh) 2020-11-24
CN111973864B (zh) 2021-07-23
US20220061763A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US10925672B2 (en) Ablation system
WO2022041557A1 (zh) 一种光纤导丝、光纤导丝探测系统及方法
JP2648324B2 (ja) 体内の管状器官における閉塞状態を軽減させるための方法および装置
JP3220165B2 (ja) 光学的生検鉗子及び組織の診断方法
JP4972639B2 (ja) 血管内デバイスを誘導し及び位置決めするための方法及び装置
US20120053419A1 (en) Highly Articulable Catheter
WO2022041559A1 (zh) 一种医用导丝
US20090160112A1 (en) Structure for use as part of a medical device
EP1605987A2 (en) Optically guided penetration catheters and their methods of use
JP2010528714A (ja) 医療デバイスにおける能動制御された屈曲
WO2022041558A1 (zh) 一种光学功能导丝、探测系统及探测方法
US20120130413A1 (en) Surgical cutting instrument
JP3780066B2 (ja) 医療用チューブ
US10463876B1 (en) Photodynamic therapy diagnostic device capable of optical fiber puncture
US10758742B2 (en) Optical fiber puncture needle tubing and use thereof
US20160317175A1 (en) Surgical cutting instrument
WO1990006087A1 (en) Single axis/angled beam laser catheter
US10632322B2 (en) Memory metal optical fiber puncture needle tubing
JP7336119B1 (ja) 光照射デバイスおよび光照射システム
WO1990005562A1 (en) Angioplasty catheter with off-axis angled beam delivery fiber
CN220757447U (zh) 一种用于介入手术的可调弯器械
JP7326020B2 (ja) 光照射システム、カテーテル、及び、光照射デバイス
US20240156526A1 (en) Negative pressure based imaging and therapeutic apparatus and system for well-confined abnormal mucosal tissue ablation and working method of the system
CN113180820A (zh) 径向激光消融导管
JPH0451946A (ja) 病変組織切除装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951226

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20951226

Country of ref document: EP

Kind code of ref document: A1