WO2022041557A1 - 一种光纤导丝、光纤导丝探测系统及方法 - Google Patents

一种光纤导丝、光纤导丝探测系统及方法 Download PDF

Info

Publication number
WO2022041557A1
WO2022041557A1 PCT/CN2020/134571 CN2020134571W WO2022041557A1 WO 2022041557 A1 WO2022041557 A1 WO 2022041557A1 CN 2020134571 W CN2020134571 W CN 2020134571W WO 2022041557 A1 WO2022041557 A1 WO 2022041557A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
guide wire
fiber guide
sleeve
laser
Prior art date
Application number
PCT/CN2020/134571
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Priority to US17/396,884 priority Critical patent/US11298007B2/en
Publication of WO2022041557A1 publication Critical patent/WO2022041557A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • A61B1/0056Constructional details of insertion parts, e.g. vertebral elements the insertion parts being asymmetric, e.g. for unilateral bending mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09016Guide wires with mandrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6886Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0152Tip steering devices with pre-shaped mechanisms, e.g. pre-shaped stylets or pre-shaped outer tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09075Basic structures of guide wires having a core without a coil possibly combined with a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09116Design of handles or shafts or gripping surfaces thereof for manipulating guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • A61M2025/09183Guide wires having specific characteristics at the distal tip having tools at the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0604Lungs and/or airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0606Mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0607Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to an optical fiber guide wire, and an optical fiber guide wire detection system and method.
  • Minimally invasive interventional therapy is a medical technology that uses specific puncture needles, guide wires or catheters and other instruments under the guidance of images to accurately reach the lesion site for diagnosis and treatment without opening the human tissue.
  • Minimally invasive interventional therapy is increasingly favored by patients due to its definite curative effect, fast recovery, strong targeting, anti-recurrence, no side effects, less trauma, safety and reliability, and low cost.
  • guide wires are used very frequently in clinical practice, such as assisting the installation of cardiac stents, thrombus ablation, and tumor embolization.
  • interventional surgery the safety of the guide wire is the first priority. Therefore, a soft tip, good compliance, non-invasiveness, easy plasticity, and low to moderate support are all necessary characteristics of a guide wire.
  • the medical guide wires on the market are usually composed of a core stainless steel wire with multiple sections of different diameters, and the wire is wound at the top. in blood vessels.
  • a guide wire with a head that can be actively bent is usually used at present, so that the shape of the head can be changed according to the direction of the cavity, so that it is easy to enter the relatively small branch cavity.
  • the guide wire is guided to travel along a predetermined route in the lumen by means of multiple tendon driving, magnetic field driving, and memory metal driving, but the above-mentioned methods have great operational limitations. Therefore, how to improve the operating performance, driving performance and detection performance of the guide wire has become an urgent problem to be solved.
  • the embodiments of the present application provide an optical fiber guide wire, and an optical fiber guide wire detection system and method, so as to solve the technical defects existing in the prior art.
  • the application provides an optical fiber guide wire
  • the optical fiber guide wire includes at least one optical fiber and a sleeve surrounding the optical fiber
  • the sleeve includes a functional section capable of assisting the optical fiber to emit and collect laser light
  • a bendable guide segment and a support segment capable of supporting the advancement of the functional segment and the guide segment, the functional segment, the guide segment, and the support segment are connected in sequence, and the optical fiber guide wire is also provided with a directional bendable device.
  • the optical fiber sequentially includes a core capable of transmitting laser light, a cladding layer capable of constraining laser light transmission, and an outer skin capable of protecting the core and the cladding layer from the inside to the outside, and the functional section of the sleeve is far away from all parts.
  • One end of the guide segment is provided with a lens capable of transmitting laser light.
  • the optical fiber guide wire further includes a developing ring, the developing ring is located between the optical fiber and the sleeve, the inner wall of the developing ring is fixedly connected with the optical fiber, and the developing ring is The outer wall is fixedly connected with the sleeve.
  • the optical fiber guide wire further includes a power fiber, the power fiber and the optical fiber are both located in the sleeve, and the length direction of the power fiber and the length direction of the optical fiber are the same as the length of the power fiber.
  • the tube length direction of the casing is parallel.
  • the optical fiber is a detection fiber, or the optical fiber is formed by combining a detection fiber and a treatment fiber.
  • a cavity is formed between the optical fiber and the sleeve, an outer surface of the sleeve is provided with a polymer layer, and a hydrophilic coating or a hydrophobic coating is also provided outside the polymer layer.
  • the sleeve is a metal tube or a combination of a metal tube and a transparent tube.
  • the guide section and the support section of the sleeve are both metal tubes
  • the functional section is a metal tube or a transparent tube
  • one outer surface of the functional section is provided with a metal reflective film for reflecting laser light.
  • the asymmetric structure is an asymmetric wall structure of the sleeve.
  • the asymmetric tube wall structure is an asymmetric slit opened on the casing guide section;
  • the asymmetric slits are spiral slits, and the widths of the asymmetric slits on both sides of the sleeve are not equal;
  • the asymmetric slits are rectangular slits, and the depths of the asymmetric slits on both sides of the sleeve are not equal.
  • the asymmetric pipe wall structure is the asymmetric pipe wall thickness of the sleeve, and the thickness of the pipe walls on both sides of the sleeve is not equal.
  • the thickness of one side of the sleeve is smaller than the thickness of the other side of the sleeve to form an asymmetric pipe wall structure.
  • the asymmetric tube wall structure is in the shape of a sleeve, the sleeve is composed of a convex side and a flat side, or a convex side and a concave side, wherein the convex side is arched structure.
  • the outer casing of the optical fiber guide wire is provided with a guide tube, one end of the guide tube close to the functional section is connected with a guide rod, and a protective wing is also sleeved on the outside of the guide tube.
  • the sleeve is a hypotube
  • the outer diameter of the sleeve is 0.9-1.2 mm
  • the inner diameter of the sleeve is 0.6-0.8 mm.
  • the application also provides an optical fiber guide wire detection system, including:
  • optical fiber guide wire is the above-mentioned optical fiber guide wire
  • control center sends control signals to the attitude controller, the pulse detection laser, the waveform collector, and the treatment laser to control the opening, operation or closing of the attitude controller, the pulse detection laser, the waveform collector, and the treatment laser;
  • the attitude controller receives the signal and distance information sent by the control center, and drives the optical fiber guide wire into and out of the cavity or moves in the cavity;
  • the pulse detection laser receives the signal sent by the control center, and sends out a pulse laser that is guided to the cavity through the optical fiber guide wire and forms laser scattering in the cavity;
  • a waveform collector which receives the signal sent by the control center, collects and analyzes the scattered laser delay waveform in the cavity, obtains the distance information between the cavity wall and the optical fiber guide wire, and feeds the distance information back to the control center.
  • the optical fiber guide wire detection system further includes:
  • a treatment laser receives a signal from the control center, emits a laser for treatment, and irradiates the diseased part through the optical fiber guide wire.
  • the optical fiber in the optical fiber guide wire is connected to the pulse detection laser, the waveform collector, and the treatment laser through an optical fiber combiner.
  • the present application also provides an optical fiber guide wire detection method, which is characterized in that it is used in the optical fiber guide wire detection system as described above, and the method includes:
  • the control center accepts control instructions, and sends control signals to the attitude controller and the pulse detection laser based on the control instructions;
  • the attitude controller receives the control signal sent by the control center, and drives the optical fiber guide wire into the lumen based on the control signal;
  • the pulse detector receives the control signal sent by the control center, emits pulsed laser light, and scatters the pulsed laser light into the cavity via the optical fiber guide wire;
  • the optical fiber guide wire receives the reflected pulsed laser light and sends it to a waveform collector, and the waveform collector determines the position of the optical fiber guide wire in the cavity based on the reflected pulsed laser light;
  • the attitude controller controls the next movement of the optical fiber guide wire based on the position of the optical fiber guide wire in the lumen until the optical fiber guide wire exits the lumen after reaching the target area and completing detection.
  • the method further includes:
  • the control center sends a control signal to the treatment laser, and the treatment laser emits the treatment laser and scatters the treatment laser to the target area through the optical fiber guide wire to treat the target area.
  • the optical fiber guide wire provided by the present application includes at least one optical fiber and a sleeve surrounding the optical fiber.
  • the optical fiber has the function of emitting and collecting detection laser light, and can obtain the relationship between the cavity wall and the optical fiber by detecting the flight time of the laser light.
  • the distance between the optical fiber guide wire can guide the change of shape and posture of the optical fiber guide wire at any time, so as to realize the self-guidance, detection and treatment of the optical fiber guide wire in the lumen.
  • the sleeve itself or around the sleeve is provided with an asymmetric structure along the optical fiber to improve the bending performance and operability of the optical fiber guide wire, making the optical fiber guide wire easy to handle and easy to enter the cavity with a large opening angle, and use the laser to conduct the guide wire. Accurate detection and treatment in the cavity can improve the effect of minimally invasive interventional treatment.
  • the optical fiber guide wire detection system provided by the present application includes an optical fiber guide wire, a control center, an attitude controller, a pulse detection laser, and a waveform collector, wherein the control center can send control signals to other components to coordinately control the communication between the components.
  • the attitude controller can control the optical fiber guide wire to move in and out of the cavity or move in the cavity, which improves the flexibility of the optical fiber guide wire. Determine the relative position of the optical fiber guide wire and the cavity wall, and then accurately judge the next step posture and traveling direction of the optical fiber guide wire.
  • the optical fiber guide wire detection system provided by the present application innovatively guides the travel of the guide wire with light, and has high detection efficiency and good detection effect.
  • the optical fiber guide wire detection system provided by the present application further includes a treatment laser, and the treatment laser can emit treatment laser light through the optical fiber guide wire to irradiate the lesion site, thereby improving the flexibility and efficiency of treatment.
  • the optical fiber guide wire detection method provided by the present application realizes the intelligent and automatic guidance of the optical fiber guide wire in the lumen through the cooperation of the control center, the attitude controller, the pulse detector, the optical fiber guide wire and the waveform collector, and the operation is simple and convenient.
  • the detection efficiency and detection effect of the optical fiber guide wire are greatly improved.
  • the laser irradiation treatment can be performed on the diseased part of the patient through the cooperation of the control center, the optical fiber guide wire and the treatment laser.
  • the treatment efficiency is high and the effect is good, which improves the flexibility and application scope of the optical fiber guide wire.
  • FIG. 1 is a schematic diagram of the overall structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 3 is a schematic view of a side cross-sectional structure of an optical fiber guide wire according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a bending state of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a bending state of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an asymmetric structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an asymmetric structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an asymmetric structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional structure diagram of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 11 is a schematic side cross-sectional structural diagram of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 12 is a schematic cross-sectional structural diagram of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the overall structure of an optical fiber guide wire according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the use of the optical fiber guide wire according to an embodiment of the present application.
  • 15 is a schematic diagram of a partial structure of an optical fiber guide wire according to an embodiment of the present application.
  • 16 is a working principle diagram of an optical fiber guide wire detection system according to an embodiment of the present application.
  • FIG. 17 is a waveform diagram of a laser pulse superposition delay according to an embodiment of the present application.
  • a hypotube refers to a long metal tube with micro-engineered properties throughout its conduit. It is an important component of minimally invasive treatment catheters and is used in conjunction with balloons and stents to open blocked arteries.
  • the balloon portion of the catheter is attached to the distal end of the hypotube.
  • the hypotube enters the human body and pushes the balloon along the tortuous and complex long blood vessel to the blocked artery. During this process, the hypotube needs to avoid kinking while being able to travel (propulsion, tracking and turning) smoothly through the anatomy.
  • the optical fiber guide wire includes at least one optical fiber 1 and a sleeve 2 surrounding the optical fiber 1.
  • the sleeve 2 includes sequentially connected A functional segment 3 capable of assisting the optical fiber 1 to emit and collect laser light, a guide segment 4 capable of bending, and a support segment 5 capable of supporting the advancement of the functional segment 3 and the guide segment 4, the functional segment 3, guide segment 4
  • the segment 4 and the support segment 5 are connected in sequence, and the optical fiber guide wire is also provided with an asymmetric structure capable of directional bending of the optical fiber guide wire.
  • the optical fiber 1 in this embodiment is a man-made fiber for transmitting light, which is located at the axial center of the optical fiber guide wire, and the number can be one, two or more, depending on the specific situation, this application No restrictions.
  • the sleeve 2 is a tubular structure sleeved outside the optical fiber 1. It can be an equal-diameter sleeve 2 or a variable-diameter sleeve 2. In the case of the equal-diameter sleeve 2, the functional section 3, the guide sleeve 2 The diameters of the guide section 4 and the support section 5 are equal.
  • the outer diameters of the functional section 3, the guide section 4 and the support section 5 increase in turn, and the smallest diameter of the functional section 3 can make Compared with the guide segment 4 and the support segment 5, it is easier to bend, so that in practical applications, the functional segment 3 can be urged to guide the moving guide wire to advance along the bent blood vessel as a whole.
  • the diameter of the support segment 5 is larger than that of the guide segment 4 and the functional segment.
  • the diameter of 3 can make it have sufficient rigidity to provide forward driving force for the guide section 4 and the functional section 3.
  • the optical fiber guide wire is also provided with an asymmetric structure that can make it directionally bent to one side. thickness, shape, etc.
  • the arrangement of the asymmetric structure can make the optical fiber guide wire easier to bend to one side, improve the bending performance and maneuverability of the optical fiber guide wire, and it is easy to control the optical fiber guide wire to enter into smaller blood vessels and branch vessels with larger opening angles for detection and treatment .
  • the sleeve 2 may be a metal tube or a combination of a metal tube and a transparent tube. More specifically, the guide section 4 and the support section 5 of the sleeve 2 are both metal tubes, and the functional section 3 is a metal tube or a transparent tube.
  • the metal tube is preferably a hypotube, and the transparent tube is preferably made of a transparent polymer.
  • the total length of the optical fiber guide wire is preferably 2m, the diameter is preferably 1.2mm, the outer diameter of the sleeve 2 is 0.9-1.2mm, preferably 1mm, the inner diameter of the sleeve 2 is 0.6-0.8mm, preferably 0.8mm, wherein the support
  • the length of the segment 5 is preferably 1.9 m
  • the length of the guide segment 4 is preferably 0.1 m
  • the outer diameter of the optical fiber 1 is preferably 0.4 mm. It can be seen that the diameter of the optical fiber guide wire provided in this embodiment reaches the millimeter level, so that it can safely enter into a relatively thin blood vessel for detection or treatment, avoid damage to the blood vessel wall caused by the guide wire, and has a wide range of applications.
  • the optical fiber 1 in the optical fiber guide wire can be connected to the pulse detection laser and the waveform collector through the fiber combiner.
  • the end of the optical fiber guide wire close to the support section 5 can be connected to the attitude controller.
  • the pulse detection laser, waveform Both the collector and the attitude controller are controlled by the control center.
  • the control center sends a control signal to the attitude controller, the attitude controller controls the optical fiber guide wire to enter, exit the cavity or move in the cavity according to the above control signal, the control center sends a control signal to the pulse detection laser, and the pulse detection laser sends out according to the above control signal.
  • the pulsed laser is guided into the cavity through the optical fiber guide wire and forms laser scattering in the cavity.
  • the control center sends a control signal to the waveform collector.
  • the waveform collector collects the time delay waveform of the scattered laser according to the above control signal, and then determines the cavity wall by calculation.
  • the distance information from the optical fiber guide wire including the relative position of the two, whether there is a branch lumen in front of the optical fiber guide wire, etc. posture and the next direction of travel to avoid damage to the lumen wall during the guide wire travel.
  • the optical fiber guide wire provided in this embodiment has strong bending performance and operability, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the self-guidance and operation of the optical fiber guide wire in the cavity can be realized. Flexible detection, thereby improving the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, the cross-sectional structure of which is shown in FIG. 2 .
  • the number of optical fibers 1 in the optical fiber guide wire is one
  • a cavity 9 is provided between the optical fiber 1 and the sleeve 2
  • the optical fiber 1 sequentially includes a core 6 capable of transmitting laser light from the inside and the outside.
  • It is preferably made of polymer material to protect the optical fiber, wherein the diameter of the core 6 is preferably 0.2 mm.
  • the outer surface of the sleeve 2 is also provided with a polymer layer 10 to protect the sleeve 2 .
  • a hydrophilic coating or a hydrophobic coating is provided outside the polymer layer 10.
  • the hydrophilic coating can attract water molecules to form a "gel-like" surface on the surface of the guide wire, thereby reducing the passing resistance of the guide wire. It can resist water molecules to form a "waxy" surface, reduce friction and enhance the tracking of the guide wire.
  • this embodiment provides an optical fiber guide wire, and the side cross-sectional structures of the guiding segment 4 and the functional segment 3 are shown in FIG. 3 .
  • the asymmetric pipe wall structure is an asymmetric slit 13 opened on the sleeve 2 , wherein the asymmetric slit 13 is a spiral slit, and the asymmetric slits 13 on both sides of the sleeve 2
  • the widths are not equal, and the asymmetric slit 13 is preferably opened on the guide section 4 of the sleeve 2.
  • the slit width on one side is smaller, and the slit width on the other side is larger, so that the The guide section 4 is bent to the side of the larger slit when it is stressed, and the flexibility of the optical fiber guide wire is improved.
  • the optical fiber guide wire also includes a developing ring 11.
  • the inner wall of the developing ring 11 is fixedly connected to the optical fiber 1, preferably by gluing, and the outer wall of the developing ring 11 is fixedly connected to the sleeve 2, also preferably by gluing.
  • the developing ring 11 is made of heavy metals, such as gold, platinum, etc., which can present a clear image under the irradiation of X-rays, thereby assisting in detection and treatment.
  • the end of the functional section 3 of the optical fiber guide wire sleeve 2 away from the guide section 4 is provided with a lens 12, preferably a spherical light-emitting lens 12, which can be made of glass, gemstone or polymer, and the light in the optical fiber 1 can pass through the lens 12. After exiting, the external light can also be collected and returned to the optical fiber 1 through the lens 12, thereby assisting in judging the position of the optical fiber guide wire, improving the self-guiding function of the optical fiber guide wire, and improving its detection efficiency.
  • a lens 12 preferably a spherical light-emitting lens 12
  • the external light can also be collected and returned to the optical fiber 1 through the lens 12, thereby assisting in judging the position of the optical fiber guide wire, improving the self-guiding function of the optical fiber guide wire, and improving its detection efficiency.
  • the width of the slit of the support section 5 is preferably 0.1mm
  • the pitch of the thread is preferably 10mm
  • the pitch of the guide section 4 is preferably 2mm
  • the width of the slit on one side of the guide section 4 is preferably 1mm
  • the width of the slit on the other side is preferably 1mm.
  • the length of the developing ring 11 is preferably 5 mm
  • the outer diameter is preferably 0.8 mm
  • the inner diameter is preferably 0.4 mm.
  • the optical fiber guide wire provided in this embodiment further improves the bending performance and operation performance of the optical fiber guide wire through the arrangement of the helical asymmetric slits 13, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, which can realize
  • the self-guidance and flexible detection of the optical fiber guide wire in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, and the side cross-sectional structures of the guiding section 4 and the supporting section 5 are shown in FIG. 6 .
  • the asymmetric pipe wall structure is an asymmetric slit 13 opened on the sleeve 2
  • the asymmetric slit 13 is a rectangular slit
  • the asymmetric slits on both sides of the sleeve 2 The depths of the slits 13 are not equal.
  • the asymmetric slit 13 is preferably opened on the guide section 4 of the sleeve 2.
  • the asymmetric slit 13 on the guide section 4 can make it have asymmetric mechanical properties, and the slit will be deeper when it is stressed.
  • One side of the slit is bent, so that the optical fiber guide wire can enter the cavity with a large opening angle conveniently and quickly, and the rectangular slit has a simple manufacturing process, easy control of the use process, strong maneuverability and wide application range.
  • the optical fiber guide wire may also include a developing ring 11 and a lens 12, and the contents of this part belong to the same concept as Embodiment 3.
  • Embodiment 3 please refer to Embodiment 3, which will not be repeated here.
  • the bending performance and operation performance of the optical fiber guide wire are further improved by the setting of the rectangular asymmetric slit 13, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the optical fiber guide wire can be realized.
  • the self-guided and flexible detection of the guide wire in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, and the side cross-sectional structure of the guide section 4 is shown in FIG. 7 .
  • the asymmetric pipe wall structure is the asymmetric pipe wall thickness of the sleeve 2 , and the thicknesses of the two sides of the sleeve 2 are not equal.
  • the thickness of one side of the casing 2 is smaller than the thickness of the other side of the pipe wall to form an asymmetric pipe wall structure.
  • the casing 2 is divided into two semi-cylindrical casings 2 according to the diameter of the cross-section, as shown in FIG. 7 , where A represents the thinner side of the casing
  • the thickness of the wall is preferably 0.1mm-0.3mm
  • B represents the thicker side of the pipe wall, and its thickness is preferably 0.3mm-0.5mm.
  • one side of the sleeve 2 has a smaller wall thickness, and the other layer has a larger wall thickness.
  • the guide wire When the guide wire is stressed, it can bend to the side with the thinner tube wall. , so as to continue to advance into the cavity with a larger opening angle.
  • the optical fiber guide wire may also include a developing ring 11 and a lens 12, and the contents of this part belong to the same concept as Embodiment 3.
  • Embodiment 3 please refer to Embodiment 3, which will not be repeated here.
  • the bending performance and operation performance of the optical fiber guide wire are further improved by the arrangement of the asymmetric tube wall, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the optical fiber guide wire can be realized.
  • Self-guided and flexible detection in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, the cross-sectional structure of which is shown in FIG. 8 .
  • the asymmetric pipe wall structure is in the shape of a sleeve 2
  • the sleeve 2 is composed of a convex side 14 and a flat side 15, or a convex side 14 and a concave side, wherein the convex side 14 has an arched structure.
  • the convex side 14 since the convex side 14 has an arched structure and its rigidity is relatively strong, when the optical fiber guide wire is subjected to a force, it will bend to the concave side or the flat side 15 opposite to the convex side 14, so that the optical fiber guide wire is bent. It is more smoothly advanced into the curved lumen.
  • the optical fiber guide wire may also include a developing ring 11 and a lens 12, and the contents of this part belong to the same concept as Embodiment 3.
  • Embodiment 3 please refer to Embodiment 3, which will not be repeated here.
  • the optical fiber guide wire provided in this embodiment further improves the bending performance and operation performance of the optical fiber guide wire through the arrangement of the asymmetric tubular structure, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the optical fiber guide wire can be realized.
  • Self-guided and flexible detection in the lumen can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, the cross-sectional structure of which is shown in FIG. 9 .
  • the number of optical fibers 1 in the optical fiber guide wire is one, and the optical fiber guide wire further includes a power fiber 16 .
  • Both the power fiber 16 and the optical fiber 1 are located in the sleeve 2 , and the power fiber 16 is The length direction and the length direction of the optical fiber 1 are parallel to the length direction of the sleeve 2, the power fiber 16 is fixedly connected to one side of the sleeve 2, and the asymmetric tube wall structure is the asymmetric slit 13. At the bottom, the power fiber 16 is fixedly connected to the side with the larger slit. In the case of the asymmetric pipe wall structure with an asymmetric pipe wall thickness, the power fiber 16 is fixedly connected to the thinner side of the pipe wall.
  • the dynamic fibers 16 are fixedly connected to the concave or flat side 15 .
  • C represents the larger side of the incision
  • D represents the side of the small incision.
  • the power fiber 16 is preferably a metal wire, which can be fixedly connected to the sleeve 2 by gluing, welding or the like.
  • the power fiber 16 can provide tension for the optical fiber guide wire, and by tightening the power fiber 16, the tension is transmitted to the larger slit, thinner tube wall or concave, flat side 15, so that the side is contracted, so that the guide section 4 is bent, Improve the bending flexibility and bending amplitude of the fiber guide wire.
  • the optical fiber guide wire provided in this embodiment further improves the bending performance and operation performance of the optical fiber guide wire through the arrangement of the power fiber 16, so that the optical fiber guide wire is easy to be manipulated and easy to enter the cavity with a large opening angle, and the optical fiber guide wire can be Self-guidance and flexible detection in the cavity can improve the therapeutic effect of minimally invasive interventional therapy.
  • this embodiment provides an optical fiber guide wire, the cross-sectional structure of which is shown in FIG. 10 , where C represents the larger side of the slit, and D represents the smaller side of the slit.
  • the number of optical fibers 1 in the optical fiber guide wire is two, which are respectively a detection fiber 17 and a treatment fiber 18.
  • the detection fiber 17 is used for providing pulse detection laser light
  • the treatment fiber 18 is used for providing treatment laser light.
  • the detection fiber 17 can be connected with the pulse detection laser, and the pulse detection laser can send out the pulse detection laser through the detection fiber 17 to assist in judging the position and the advancing route of the fiber guide wire.
  • the distance between the top of the detection fiber 17 and the lens 12 is the focal length of the lens 12.
  • the diameter of the functional section 3 of the sleeve 2 is 1mm
  • the exit angle of the fiber is ⁇ 15 degrees
  • the spot diameter is 2mm away from the exit end face of the fiber.
  • the focal length of the lens 12 is 2mm.
  • the treatment fiber 18 can be connected with the treatment laser, and the treatment laser can emit treatment laser through the treatment fiber 18 to perform laser irradiation treatment on the lesion area.
  • the therapeutic optical fiber 18 has the function of lateral light emission, so the functional section 3 of the optical fiber guide wire sleeve 2 is preferably a transparent tube, as shown in FIG. 11 and FIG. 12 , wherein E represents the detection laser, F represents the therapeutic laser, and G represents the therapeutic optical fiber
  • E represents the detection laser
  • F represents the therapeutic laser
  • G represents the therapeutic optical fiber
  • the front end face of 18 , H denotes the rear end face of the treatment fiber 18 .
  • the rear face of the treatment fiber 18 is larger than the front face, and the treatment laser enters from the rear face of the treatment fiber 18.
  • the treatment fiber 18 Due to the tapering of the core diameter of the treatment fiber 18, the restriction on the laser transmitted in the core diameter is reduced, and the treatment laser is emitted from the core diameter.
  • the treatment fiber 18 is coated with a metal reflective film 19 on one side, which can reflect the laser light scattered in the direction of the detection fiber 17 and exit from the treatment side.
  • the optical fiber guide wire provided in this embodiment can further enhance the detection performance and treatment performance of the optical fiber guide wire from different angles and aspects through the setting of the detection optical fiber 17 and the treatment optical fiber 18, expand the applicable scope of the optical fiber guide wire, and improve the optical fiber guide wire. Flexibility of wire usage.
  • this embodiment provides an optical fiber guide wire, the structure of which is shown in FIG. 13 .
  • a guide tube 20 is provided on the outer sleeve of the optical fiber guide wire, and one end of the guide tube 20 close to the functional section 3 is connected with the guide rod 21 , and the guide tube 20 is also covered with a protective wing 22 , the guide rod 21 and the guide tube 20 It is made of flexible materials such as medical polymers, plastics, and rubber, and has certain deformability.
  • the guide rod 21 can be inserted into the human body cavity, the guide tube 20 can be inserted into the human body cavity along the guide rod 21, the guide rod 21 can be pulled out, and the optical fiber guide wire can be inserted into the human body cavity along the guide tube 20 to avoid The movement of the guide wire in the lumen causes irritation and damage to the lumen mucosa.
  • the guide rod 21 is inserted through the nasal cavity or the oral cavity (in this figure, the nasal cavity), and enters the trachea through the throat. Insert the guide tube 20 along the guide rod 21, and the end of the guide tube 20 enters the trachea. The guide rod 21 is pulled out, and a channel is formed by the guide tube 20 . At this time, the optical fiber guide wire is inserted into the guide tube 20, and the guide tube 20 enters the trachea. When the optical fiber guide wire moves, the guide tube 20 is fixed, thereby avoiding the repeated stimulation of the pharynx by the movement of the guide wire.
  • the optical fiber guide wire can enter the bronchus through the trachea under the control of the attitude controller (it can be guided independently or with a small amount of X-ray guidance), guided by the head detection laser, and adjusted into the lower bronchus through the head attitude adjustment, until it reaches the vicinity of the tissue to be treated .
  • the detection laser is turned off, and the treatment laser (for example, 660 nm red light or 400 nm blue light) is turned on, and photodynamic therapy is performed on the lung tissue.
  • the optical fiber guide wire and the guide tube 20 are pulled out.
  • the optical fiber guide wire provided in this embodiment can effectively avoid damage to the human body cavity caused by the optical fiber guide wire through the arrangement of the guide tube 20, the guide rod 21, and the protective wings 22, and improve the patient's use experience.
  • this embodiment provides an optical fiber guide wire.
  • the functional section 3 of the optical fiber 1 may also be provided with at least one grating component 23, and the grating component 23 is sleeved at intervals in on the optical fiber 1 and arranged along the longitudinal direction of the optical fiber 1 .
  • the optical fiber 1 includes a core 6 located at an axial center position and a cladding 7 wrapped around the core 6 , the grating components 23 are sleeved outside the cladding 7 at intervals, and each grating component 23 are all in the shape of a hollow prism, and the grating assembly 23 includes a plurality of gratings with different periods, and each grating constitutes a side surface of the grating assembly.
  • the multi-wavelength pulsed laser is transmitted into the optical fiber, and the pulse wavelengths emitted from different grating couplings are different.
  • the number of gratings in the grating assembly is the same as the number of sides of the prism.
  • the grating assembly in the shape of a hollow hexagonal prism, it consists of six gratings with different periods.
  • the number of grating components is preferably three, and the number of gratings in each grating component is preferably six.
  • a grating is a fixed optical device for emitting and collecting laser light, which consists of a large number of parallel slits of equal width and spacing.
  • the laser light guided by the optical fiber guide wire can be scattered into the cavity via the grating component 23, and the retroreflected laser light can also be collected via the grating component 23, so as to determine the optical fiber guide wire in the cavity. position, and accurately determine the next travel direction of the fiber guide wire.
  • a and b represent two gratings in opposite directions.
  • the laser light emitted by grating a is scattered by the cavity wall, and then coupled into the fiber through grating a, and the laser light emitted by grating b is scattered by the cavity wall Then, it is coupled into the optical fiber through the grating b.
  • the distance between the grating a and the cavity wall is greater than the distance between the grating b and the cavity wall, and the scattered pulse collected by the grating a The time lags behind the grating b.
  • the distance between the grating b and the channel wall is greater than the distance between the grating a and the channel wall.
  • the branch shape of the channel can be obtained, so as to guide the guide segment 4 to bend into the branch channel, and through the analysis of the echo waveforms of the gratings in different directions, each grating can be judged.
  • the branch of the lumen at the location can provide more detailed judgment data for lumen passages with complex shapes, so as to improve the efficiency of the guide wire.
  • This embodiment provides an optical fiber guide wire detection system, including:
  • optical fiber guide wire is the optical fiber guide wire described in any one of Embodiments 1-10;
  • control center sends control signals to the attitude controller, the pulse detection laser, the waveform collector, and the treatment laser to control the opening, operation or closing of the attitude controller, the pulse detection laser, the waveform collector, and the treatment laser;
  • the attitude controller receives the signal and distance information sent by the control center, and drives the optical fiber guide wire into and out of the cavity or moves in the cavity;
  • the pulse detection laser receives the signal sent by the control center, and sends out a pulse laser that is guided to the cavity through the optical fiber guide wire and forms laser scattering in the cavity;
  • a waveform collector which receives the signal sent by the control center, collects and analyzes the scattered laser delay waveform in the cavity, obtains the distance information between the cavity wall and the optical fiber guide wire, and feeds back the distance information to the control center.
  • the optical fiber 1 in the optical fiber guide wire can be connected to the pulse detection laser and the waveform collector through the optical fiber combiner.
  • the end of the optical fiber guide wire close to the support section 5 can be connected to the attitude controller.
  • the pulse detection laser, Both the waveform collector and the attitude controller are controlled by the control center.
  • the control center sends a control signal to the attitude controller, and the attitude controller controls the optical fiber guide wire to enter and exit the lumen or move in the lumen according to the above control signal.
  • the rotation of the motor, the steering gear, etc. drives the guide wire to rotate, and the optical fiber is pulled by the linear stepping motor, which drives the guide section 4 to bend toward the larger side of the slit, etc.
  • the control center sends a control signal to the pulse detection laser, and the pulse detection laser sends out a pulsed laser according to the above control signal, which is conducted into the cavity through the optical fiber guide wire and forms laser scattering in the cavity, and the control center sends a control signal to the waveform collector.
  • the above control signal collects the time delay waveform of the scattered laser, and then calculates and determines the distance information between the cavity wall and the optical fiber guide wire, including the relative position of the two, whether there is a branch cavity in front of the optical fiber guide wire, etc.
  • the detection laser emits a pulse sequence with a wavelength of 1064 nm, a repetition frequency of 100 Hz, and a pulse length of 1 ps. After being transmitted through the optical fiber guide wire, it exits through the top of the guide wire, scatters on the cavity wall, and is collected by the optical fiber to return the waveform collector.
  • the waveform collector has a high-speed electro-optical detector, which collects the waveform of the echo, analyzes the time length of the waveform, and determines the length of the guide wire tip from the cavity wall.
  • the scattered echo is Signal 1; when the top of the guide section 4 faces the empty space of the branch
  • the scattered echo is Signal 2 with a longer waveform due to the far distance of the scattering wall.
  • the optical fiber guide wire detection system may also include a treatment laser, which receives the control signal sent by the control center, and sends out the treatment laser according to the control signal, which is scattered to the lesion area to be treated by the optical fiber 1, and treats the lesion area.
  • a treatment laser which receives the control signal sent by the control center, and sends out the treatment laser according to the control signal, which is scattered to the lesion area to be treated by the optical fiber 1, and treats the lesion area.
  • the control center can send control signals to other components to coordinate and control the mutual cooperation between the components, and the attitude controller can control the optical fiber guide wire to enter and exit the lumen or move in the lumen. , to improve the flexibility of the use of the optical fiber guide wire.
  • the cooperation of the pulse detection laser, the waveform collector and the optical fiber guide wire can determine the relative position of the optical fiber guide wire and the cavity wall through the delay of the laser, and then accurately judge the next step of the optical fiber guide wire.
  • the attitude and direction of travel can improve the detection efficiency.
  • the treatment laser can emit treatment laser through the fiber guide wire to irradiate the lesion site, which improves the flexibility and efficiency of treatment.
  • This embodiment provides an optical fiber guide wire detection method, which is used in the optical fiber guide wire detection system described in Embodiment 11, including steps S1 to S5.
  • the control center accepts the control instruction, and sends a control signal to the attitude controller and the pulse detection laser based on the control instruction.
  • the attitude controller receives the control signal sent by the control center, and drives the optical fiber guide wire into the lumen based on the control signal.
  • the pulse detector receives the control signal sent by the control center, emits pulsed laser light, and scatters the pulsed laser light into the cavity via the optical fiber guide wire.
  • the optical fiber guide wire receives the reflected pulsed laser light and sends it to a waveform collector, and the waveform collector determines the position of the optical fiber guide wire in the cavity based on the reflected pulsed laser light.
  • the attitude controller controls the next movement of the optical fiber guide wire based on the position of the optical fiber guide wire in the lumen, until the optical fiber guide wire exits the lumen after reaching the target area and completing detection.
  • control center can also send a control signal to the treatment laser, and the treatment laser emits treatment laser light and scatters to the target area through the optical fiber guide wire to treat the target area.
  • the optical fiber guide wire detection method provided in this embodiment realizes the intelligent and automatic guidance of the optical fiber guide wire in the lumen through the cooperation of the control center, the attitude controller, the pulse detector, the optical fiber guide wire and the waveform collector, and the operation is simple and convenient. , greatly improving the detection efficiency and detection effect of the optical fiber guide wire.
  • the laser irradiation treatment can be performed on the diseased part of the patient through the cooperation of the control center, the optical fiber guide wire and the treatment laser. The treatment efficiency is high and the effect is good, which improves the flexibility and application scope of the optical fiber guide wire.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种光纤导丝,包括至少一个光学纤维(1)和围绕于光学纤维(1)外的套管(2),套管(2)包括依次相连的功能段(3)、导引段(4)和支撑段(5),并且套管(2)自身或套管(2)周围沿光学纤维(1)设置有非对称结构。该光纤导丝的弯曲性能和可操作性强,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。

Description

一种光纤导丝、光纤导丝探测系统及方法 技术领域
本申请涉及医疗器械技术领域,特别涉及一种光纤导丝、光纤导丝探测系统及方法。
背景技术
微创介入治疗是在影像导引下,利用特定的穿刺针、导丝或导管等器械,不用打开人体组织即可准确到达病变部位进行诊断和治疗的医学技术。微创介入治疗以其疗效确切、康复快、靶向性强、防复发、无副作用、创伤少、安全可靠、费用少等的特点越来越受到患者的青睐。
其中,导丝在临床上使用十分频繁,比如辅助心脏支架的安装、血栓消融、肿瘤栓塞治疗等都会用到导丝。在介入手术中,导丝的安全性是第一位的。因此,头端柔软、顺应性好、无损伤性、易塑性、可提供低至中度支撑等均为导丝所必需的特性。
目前,市场上所售医用导丝通常是一根具有多段不同直径的核心不锈钢丝构成,并在顶端进行绕丝制成的,但是上述方案均会导致导丝直径较粗,难以进入较细的血管中。
同时,为了实现在人体腔道内的良好的操纵性能,目前通常采用头部可主动弯曲的导丝,如此可按照腔道的走向改变头部形态,从而易于进入较为细小的分支腔道,目前主要通过多根肌腱驱动、磁场驱动、记忆金属驱动的方式引导导丝在腔道内按照既定路线行进,但上述的方式具有很大的操作局限性。所以,如何提高导丝的操作性能、驱动性能、探测性能成为了亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种光纤导丝、光纤导丝探测系统及方法,以解决现有技术中存在的技术缺陷。
本申请提供一种光纤导丝,所述光纤导丝包括至少一个光学纤维和围绕于所述光学纤维外的套管,所述套管包括能够辅助所述光学纤维发射和收集激光的功能段、能够弯曲的导引段以及能够支持所述功能段和导引段前进的支撑段,所述功能段、导引段、支撑段依次相连,所述光纤导丝还设置有能够使其定向弯曲的非对称结构。
可选地,所述光学纤维由内及外依次包括能够传输激光的纤芯、能够约束激光传输的包层以及能够保护所述线芯和包层的外皮,所述套管的功能段远离所述导引段的一端设置有能够透过激光的透镜。
可选地,所述光纤导丝还包括显影环,所述显影环位于所述光学纤维与所述套管之间,所述显影环的内壁与所述光学纤维固定连接,所述显影环的外壁与所述套管固定连接。
可选地,所述光纤导丝还包括动力纤维,所述动力纤维与所述光学纤维均位于所述套管内,且所述动力纤维的长度方向和所述光学纤维的长度方向均与所述套管的管长方向平行。
可选地,所述光学纤维为探测光纤,或者所述光学纤维为探测光纤与治疗光纤合束形成。
可选地,所述光学纤维与所述套管之间形成空腔,所述套管的外表面设置有聚合物层,所述聚合物层外还设置有亲水涂层或疏水涂层。
可选地,所述套管为金属管或金属管与透明管的组合。
可选地,所述套管的导引段和支撑段均为金属管,所述功能段为金属管或透明管,所述功能段的其中一侧外表面设置有用于反射激光的金属反射膜。
可选地,所述非对称结构为所述套管的非对称管壁结构。
可选地,所述非对称管壁结构为开设在所述套管导引段上的非对称切缝;
所述非对称切缝为螺旋形切缝,所述套管两侧的非对称切缝的宽度不相等;
或者所述非对称切缝为矩形切缝,所述套管两侧的非对称切缝的深度不相等。
可选地,所述非对称管壁结构为所述套管的非对称管壁厚度,所述套管的两侧管壁厚度不相等。所述套管的其中一侧管壁厚度小于另一侧管壁厚度形成非对称管壁结构。
可选地,所述非对称管壁结构为套管的形状,所述套管由凸起侧和平面侧构成,或由凸起侧和凹面侧构成,其中,所述凸起侧呈拱形结构。
可选地,所述光纤导丝外套设有引导管,所述引导管靠近所述功能段的一端与引导棒相连,所述引导管外还套设有护翼。
可选地,所述套管为海波管,所述套管的外径为0.9-1.2mm,所述套管的内径为0.6-0.8mm。
本申请还提供一种光纤导丝探测系统,包括:
光纤导丝,所述光纤导丝为如上所述的光纤导丝;
控制中心,所述控制中心向姿态控制器、脉冲探测激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、脉冲探测激光器、波形采集器、治疗激光器的开启、运作或关闭;
姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光纤导丝进出腔道或在腔道内移动;
脉冲探测激光器,所述脉冲探测激光器接收控制中心发出的信号,发出脉冲激光经所述光纤导丝传导至腔道并在腔道内形成激光散射;
波形采集器,所述波形采集器接收控制中心发出的信号,采集并分析腔道内散射激光延时波形,获得腔道壁与光纤导丝之间的距离信息,并将距离信息反馈至控制中心。
可选地,所述光纤导丝探测系统,还包括:
治疗激光器,所述治疗激光器接收控制中心发出的信号,发出治疗用激光,经所述光纤导丝照射病变部位。
可选地,所述光纤导丝中的光学纤维通过光纤合束器与所述脉冲探测激光器、波形采集器、治疗激光器相连。
本申请还提供一种光纤导丝探测方法,其特征在于,用于如上所述的光纤导丝探测系统,所述方法,包括:
控制中心接受控制指令,并基于所述控制指令向姿态控制器和脉冲探测激光器发送控制信号;
所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光纤导丝进入腔道;
所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光纤导丝将脉冲激光散射至腔道内;
所述光纤导丝接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光纤导丝在腔道内的位置;
所述姿态控制器基于所述光纤导丝在腔道内的位置控制所述光纤导丝的下一步移动,直至所述光纤导丝到达目标区域完成探测后退出腔道。
可选地,在所述光纤导丝到达目标区域后,所述方法还包括:
控制中心向治疗激光器发送控制信号,所述治疗激光器发出治疗激光并经由所述光纤导丝散射至目标区域,对目标区域进行治疗。
本申请提供的光纤导丝,包括至少一个光学纤维和围绕于光学纤维外的套管,光学纤维具有发射和收集探测激光的功能,其可以通过探测激光的飞行时间获取腔道壁与光学纤维之间的距离,以指导光纤导丝随时进行形状和姿态的改变,进而实现光纤导丝在腔道内的自引导、探测和治疗,套管包括依次相连的功能段、导引段和支撑段,并且套管自身或套管周围沿光学纤维设置有非对称结构,以提高光纤导丝的弯曲性能和可操作性,使光纤导丝易于操控易于进入张角较大的腔道,并利用激光传导在腔道内进行精确探测和治疗,从而提高微创介入治疗的效果。
本申请提供的光纤导丝探测系统,包括光纤导丝、控制中心、姿态控制器、脉冲探测激光器和波形采集器,其中,控制中心可以向其他组件发送控制信号,以协调控制各组件之间的相互配合运作,姿态控制器可以控制光纤导丝进出腔道或在腔道内移动,提高光纤导丝的使用灵活性,脉冲探测激光器、波形采集器和光纤导丝的配合,可以通过激光的延时确定光纤导丝与腔道壁的相对位置,进而准确判断光纤导丝下一步的姿态以及行进方向。本申请提供的光纤导丝探测系统创新的以光来引导导丝的行进,探测效率高,探测效果好。此外,本申请提供的光纤导丝探测系统还包括治疗激光器,治疗激光器可以通过光纤导丝发射治疗激光照射病变部位,提高治疗灵活性和效率。
本申请提供的光纤导丝探测方法,通过控制中心、姿态控制器、脉冲探测器、光纤导丝以及波形采集器的相互配合实现光纤导丝在腔道内的智能化和自动化导引,操作简便,大大提高了光纤导丝的探测效率和探测效果。此外,还可以通过控制中心、光纤导丝与治疗激光器的配合对患者的病变部位进行激光照射治疗,治疗效率高效果好,提高了光纤导丝的使用灵活性和适用范围。
附图说明
图1是本申请一实施例所述的光纤导丝的整体结构示意图;
图2是本申请一实施例所述的光纤导丝的横截面结构示意图;
图3是本申请一实施例所述的光纤导丝的侧截面结构示意图;
图4是本申请一实施例所述的光纤导丝的弯曲状态示意图;
图5是本申请一实施例所述的光纤导丝的弯曲状态示意图;
图6是本申请一实施例所述的光纤导丝的非对称结构示意图;
图7是本申请一实施例所述的光纤导丝的非对称结构示意图;
图8是本申请一实施例所述的光纤导丝的非对称结构示意图;
图9是本申请一实施例所述的光纤导丝的横截面结构示意图;
图10是本申请一实施例所述的光纤导丝的横截面结构示意图;
图11是本申请一实施例所述的光纤导丝的侧截面结构示意图;
图12是本申请一实施例所述的光纤导丝的横截面结构示意图;
图13是本申请一实施例所述的光纤导丝的整体结构示意图;
图14是本申请一实施例所述的光纤导丝的使用示意图;
图15是本申请一实施例所述的光纤导丝的局部结构示意图;
图16是本申请一实施例所述的光纤导丝探测系统的工作原理图;
图17是本申请一实施例所述的激光脉冲叠加延时波形图。
其中,1-光学纤维,2-套管,3-功能段,4-导引段,5-支撑段,6-纤芯,7-包层,8-外皮,9-空腔,10-聚合物层,11-显影环,12-透镜,13-非对称切缝,14-凸起侧,15-平面侧,16-动力纤维,17-探测光纤,18-治疗光纤,19-金属反射膜,20-引导管,21-引导棒,22-护翼,23-光栅组件。
具体实施方式
下面结合附图对本申请的具体实施方式进行描述。
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的试剂、材料和操作步骤均为相应领域内广泛使用的试剂、材料和常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
在本申请中,海波管是指一种长金属管,在其整个管道上具有微工程特性。它是微创治疗用导管的重要组件,需与球囊和支架配合使用来打开动脉阻塞。导管的球囊部分附着于海波管远端。海波管进入人体,将球囊沿着曲折复杂的长血管向动脉阻塞处推去。在这个过程中,海波管需避免扭结,同时能够顺畅地在人体结构中行进(推进、追踪和转动)。
实施例1
本实施例提供一种光纤导丝,如图1所示,所述光纤导丝包括至少一个光学纤维1和围绕于所述光学纤维1外的套管2,所述套管2包括依次相连的能够辅助所述光学纤维1发射和收集激光的功能段3、能够弯曲的导引段4以及能够支持所述功能段3和导引段4前进的支撑段5,所述功能段3、导引段4、支撑段5依次相连,所述光纤导丝还设置有能够使所述光纤导丝定向弯曲的非对称结构。
本实施例中的光学纤维1为用于传导光的人造纤维,其位于光纤导丝的轴心位置处,数量可以为一个、两个或多个,可视具体情况而定,本申请对此不做限制。
套管2是套设于光学纤维1外的管状结构,其可以为等径套管2,也可以为变径套管2,在其为等径套管2的情况下,功能段3、导引段4和支撑段5的直径相等,在其为变径套管2的情况下,功能段3、导引段4和支撑段5的外径依次增加,其中功能段3的直径最小可以使其相比于导引段4、支撑段5易于弯曲,从而在实际应用中可以促使功能段3引导移动导丝整体沿弯折的血管前进,支撑段5的直径大于导引段4和功能段3的直径,可以使其具有足够的刚性,为导引段4、功能段3提供前进驱动力。
在本实施例中,光纤导丝还设置有能够使其向一侧定向弯曲的非对称结构,非对称结构优选为套管2的非对称管壁结构,比如非对称切缝、非对称管壁厚度、形状等。非对称 结构的设置可以使光纤导丝更易于向一侧弯曲,提高光纤导丝的弯曲性能和可操作性,易于操控光纤导丝进入较细血管以及张角较大的分支血管进行探测和治疗。
具体地,套管2可以为金属管或金属管与透明管的组合。更为具体地,套管2的导引段4和支撑段5均为金属管,功能段3为金属管或透明管。金属管优选为海波管,透明管优选通过透明聚合物制成。
光纤导丝的总长度优选为2m,直径优选为1.2mm,套管2的外径为0.9-1.2mm,优选为1mm,套管2的内径为0.6-0.8mm,优选为0.8mm,其中支撑段5的长度优选为1.9m,导引段4的长度优选为0.1m,光学纤维1的外径优选为0.4mm。可见本实施例提供的光纤导丝,直径达到了毫米级别,如此可以安全地进入较细的血管内进行探测或治疗,避免导丝对血管壁造成的损伤,适用范围广。
在实际应用中,光纤导丝中的光学纤维1可以通过光纤合束器与脉冲探测激光器、波形采集器相连,光纤导丝靠近支撑段5的一端可以与姿态控制器相连,脉冲探测激光器、波形采集器和姿态控制器均接受控制中心的控制。控制中心向姿态控制器发送控制信号,姿态控制器根据上述控制信号控制光纤导丝进入、退出腔道或在腔道内移动,控制中心向脉冲探测激光器发送控制信号,脉冲探测激光器根据上述控制信号发出脉冲激光经光纤导丝传导至腔道内并在腔道内形成激光散射,控制中心向波形采集器发送控制信号,波形采集器根据上述控制信号采集散射激光的时延波形,进而通过计算确定腔道壁与光纤导丝之间的距离信息,包括二者的相对位置、光纤导丝前方是否存在分支腔道等,波形采集器将上述距离信息反馈至控制中心以及姿态控制器,进而控制调整导丝的姿态和下一步行进方向,以避免导丝行进过程中对腔道壁造成的损伤。
所以本实施例提供的光纤导丝,光纤导丝的弯曲性能和可操作性强,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例2
在实施例1的基础上,本实施例提供一种光纤导丝,其横截面结构如图2所示。
在本实施例中,光纤导丝中光学纤维1的数量为一个,光学纤维1与套管2之间设置有空腔9,光学纤维1由内及外依次包括能够传输激光的纤芯6、能够约束激光传输的包层7以及能够保护线芯6和包层7的外皮8,纤芯6与包层7之间存在折射率差异,以使光被约束在纤芯6中传输,外皮8优选采用聚合物材料制成,以起到保护光纤的作用,其中纤芯6直径优选为0.2mm。套管2的外表面还设置有聚合物层10,以起到保护套管2的作用。此外,在聚合物层10外还设置有亲水涂层或疏水涂层,亲水涂层可以吸引水分子在导丝表 面形成“凝胶状”表面,降低导丝的通过阻力,疏水涂层可以抵制水分子形成“蜡状”表面,减少摩擦,增强导丝的跟踪性。
实施例3
在实施例1或2的基础上,本实施例提供一种光纤导丝,其导引段4和功能段3侧截面结构如图3所示。
在本实施例中,所述非对称管壁结构为开设在套管2上的非对称切缝13,其中非对称切缝13为螺旋形切缝,套管2两侧非对称切缝13的宽度不相等,其中,非对称切缝13优选开设在套管2的导引段4上,如图4、图5所示,一侧切缝宽度较小,另一侧切缝宽度较大,从而可以使得导引段4在受力时产生偏向较大切缝侧的弯曲,提高光纤导丝的灵活性。
光纤导丝内还包括显影环11,显影环11的内壁与光学纤维1固定连接,优选通过胶粘方式固定,显影环11的外壁与套管2固定连接,同样优选通过胶粘方式固定。显影环11由重金属构成,例如黄金、白金等,其在X光的照射下能够呈现清晰影像,进而辅助探测与治疗。
光纤导丝套管2的功能段3远离导引段4的一端设置有透镜12,优选为球形出光透镜12,可通过玻璃、宝石或聚合物制成,光学纤维1中的光可以经过透镜12出射,外部的光也可经由透镜12收集返回光学纤维1中,进而辅助进行光纤导丝位置的判断,提高光纤导丝的自引导功能,提高其探测效率。
在实际应用中,支撑段5的切缝宽度优选为0.1mm,螺距优选为10mm,导引段4的螺距优选为2mm,导引段4一侧切缝宽度优选为1mm,另一侧切缝宽度优选为0.1mm。显影环11的长度优选为5mm,外径优选为0.8mm,内径优选为0.4mm。
所以本实施例提供的光纤导丝,通过螺旋形非对称切缝13的设置进一步提高光纤导丝的弯曲性能和操作性能,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例4
在实施例1或2的基础上,本实施例提供一种光纤导丝,其导引段4和支撑段5侧截面结构如图6所示。
在本实施例中,所述非对称管壁结构为开设在套管2上的非对称切缝13,所述非对称切缝13为矩形切缝,所述套管2两侧的非对称切缝13的深度不相等。其中,非对称切缝13优选开设在套管2的导引段4上,导引段4上的非对称切缝13可以使其具有非对称的 力学性质,在受力时向切缝较深的一侧弯曲,进而可以使光纤导丝方便快捷的进入张角较大的腔道,并且,矩形切缝制作工艺简单,使用过程易于控制,可操控性强,适用范围广。
此外,光纤导丝中还可以包括显影环11与透镜12,此部分内容与实施例3属于同一构思,具体可参见实施例3,在此不再赘述。
所以本实施例提供的光纤导丝,通过矩形非对称切缝13的设置进一步提高光纤导丝的弯曲性能和操作性能,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例5
在实施例1或2的基础上,本实施例提供一种光纤导丝,其导引段4的侧截面结构如图7所示。在本实施例中,非对称管壁结构为套管2的非对称管壁厚度,套管2的两侧管壁厚度不相等。
所述套管2的其中一侧管壁厚度小于另一侧管壁厚度形成非对称管壁结构。具体地,以套管2为圆柱形套管2为例,将其按横截面直径一分为二,成为两个半圆柱形套管2,参见图7,其中A表示较薄一侧的管壁,其厚度优选为0.1mm-0.3mm,B表示较厚一侧的管壁,其厚度优选为0.3mm-0.5mm。
在本实施例所述的光纤导丝中,套管2的一侧管壁厚度较小,另一层管壁厚度较大,导丝在受力时,可以向管壁较薄的一侧弯曲,从而向张角较大的腔道中继续推进。
此外,光纤导丝中还可以包括显影环11与透镜12,此部分内容与实施例3属于同一构思,具体可参见实施例3,在此不再赘述。
所以本实施例提供的光纤导丝,通过非对称管壁的设置进一步提高光纤导丝的弯曲性能和操作性能,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例6
在实施例1或2的基础上,本实施例提供一种光纤导丝,其横截面结构如图8所示。在本实施例中,非对称管壁结构为套管2的形状,套管2由凸起侧14和平面侧15构成,或由凸起侧14和凹面侧构成,其中,所述凸起侧14呈拱形结构。
具体地,由于凸起侧14呈拱形结构,其刚性较强,所以光纤导丝在受力时,其会向与凸起侧14相对的凹面侧或平面侧15弯曲,从而使光纤导丝更为顺利的向弯曲的腔道中推进。
此外,光纤导丝中还可以包括显影环11与透镜12,此部分内容与实施例3属于同一构思,具体可参见实施例3,在此不再赘述。
所以本实施例提供的光纤导丝,通过非对称管状结构的设置进一步提高光纤导丝的弯曲性能和操作性能,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例7
在实施例3-6任意一项的基础上,本实施例提供一种光纤导丝,其横截面结构如图9所示。
在本实施例中,光纤导丝中光学纤维1的数量为一个,光纤导丝还包括动力纤维16,动力纤维16与光学纤维1均位于所述套管2内,且所述动力纤维16的长度方向和所述光学纤维1的长度方向与所述套管2的管长方向平行,动力纤维16固定连接于套管2的一侧,在非对称管壁结构为非对称切缝13的情况下,动力纤维16固定连接于切缝较大的一侧,在非对称管壁结构为非对称管壁厚度的情况下,动力纤维16固定连接于管壁较薄的一侧,在非对称管壁结构为套管2的形状的情况下,动力纤维16固定连接于凹面侧或平面侧15。在图9中,C表示切缝较大侧,D表示切缝较小侧。动力纤维16优选为金属丝,可以通过胶粘、焊接等方式与套管2实现固定连接。
动力纤维16可以为光纤导丝提供拉力,通过拉紧动力纤维16将拉力传导至切缝较大、管壁较薄或凹面、平面侧15,使得该侧收缩,从而使导引段4弯曲,提高光纤导丝的弯曲灵活性与弯曲幅度。
所以本实施例提供的光纤导丝,通过动力纤维16的设置进一步提高光纤导丝的弯曲性能和操作性能,使光纤导丝易于操控易于进入张角较大的腔道,可以实现光纤导丝在腔道内的自引导和灵活探测,从而提高微创介入治疗的治疗效果。
实施例8
在实施例7的基础上,本实施例提供一种光纤导丝,其横截面结构如图10所示,其中,C表示切缝较大侧,D表示切缝较小侧。
在本实施例中,光纤导丝中光学纤维1的数量为两个,分别为探测光纤17和治疗光纤18,探测光纤17用于提供脉冲探测激光,治疗光纤18用于提供治疗激光。
探测光纤17可以与脉冲探测激光器相连,脉冲探测激光器可以经探测光纤17发出脉冲探测激光,以辅助判断光纤导丝的所在位置和前进路线,优选地,探测光纤17出射的激光经过透镜12进行准直发射,射探测光纤17顶端与透镜12之间的距离为透镜12焦距,比如套管2的功能段3直径为1mm,光纤的出射角度为±15度,在距离光纤出射端面2mm处光斑直径为1mm,透镜12焦距为2mm。
治疗光纤18可以与治疗激光器相连,治疗激光器可以经治疗光纤18发出治疗激光,以对病灶区域进行激光照射治疗。治疗光纤18具有侧向发光的功能,故光纤导丝套管2的功能段3优选为透明管,如图11和图12所示,其中E表示探测激光,F表示治疗激光,G表示治疗光纤18的前端面,H表示治疗光纤18的后端面。治疗光纤18的后端面大于前端面,治疗激光由治疗光纤18后端面进入,由于治疗光纤18的芯径的逐渐变细,对芯径内传输的激光的约束减小,治疗激光从芯径中逸出,并且治疗光纤18的一侧镀有金属反射膜19,可以将散射向探测光纤17方向的激光反射,从治疗侧出射。
所以本实施例提供的光纤导丝,通过探测光纤17与治疗光纤18的设置,从不同的角度与方面进一步加强光纤导丝的探测性能与治疗性能,扩大光纤导丝的适用范围,提高光纤导丝的使用灵活性。
实施例9
在实施例1-8任意一项的基础上,本实施例提供一种光纤导丝,其结构如图13所示。
在本实施例中,光纤导丝外套设有引导管20,引导管20靠近功能段3的一端与引导棒21相连,引导管20外还套设有护翼22,引导棒21和引导管20采用医用聚合物、塑料、橡胶等柔性材料制成,具有一定的形变能力。
在实际应用中,可以将引导棒21插入人体腔道,将引导管20沿引导棒21插入人体腔道,再抽出引导棒21,沿引导管20将光纤导丝置入人体腔道,以避免导丝在腔道中运动对腔道粘膜造成刺激和损伤。
以肺部光动力治疗为例,如图14所示,在进行肺部光动力治疗时,将引导棒21经鼻腔或口腔(本图中为鼻腔)插入,经咽喉进入气管。将引导管20顺引导棒21插入,引导管20末端进入气管。抽出引导棒21,由引导管20构成通道。此时将光纤导丝插入引导管20中,并由引导管20进入气管。当光纤导丝运动时,引导管20固定不动,从而避免了导丝运动对咽喉部的反复刺激。
光纤导丝可以在姿态控制器的控制下经气管进入支气管(可独立引导或辅助少量的X光引导),通过头部探测激光指引,经头部姿态调整进入下级支气管,直至抵达需治疗组织附近。此时关闭探测激光,打开治疗激光(例如660nm红光或400nm蓝光),对肺部组织进行光动力治疗。治疗结束后,抽出光纤导丝及引导管20。
所以本实施例提供的光纤导丝,通过引导管20、引导棒21、护翼22的设置可以有效避免光纤导丝对人体腔道造成的损伤,提高患者的使用体验感。
实施例10
在实施例1或2的基础上,本实施例提供一种光纤导丝,如图15所示,光学纤维1的功能段3还可以设置有至少一个光栅组件23,光栅组件23间隔套设于所述光学纤维1上,且沿光学纤维1纵向排列。
具体地,所述光学纤维1包括位于轴心位置处的纤芯6和包裹于所述纤芯6外的包层7,所述光栅组件23间隔套设于包层7外,每个光栅组件23均呈空心棱柱状,光栅组件23包括周期不同的多个光栅,每一个光栅构成光栅组件的一个侧面。将多波长的脉冲激光传输至光纤中,从不同光栅耦合发出的脉冲波长不同。光栅组件中光栅的数量与棱柱的侧面数量相同,比如在光栅组件呈空心六棱柱状的情况下,其由6个周期不同的光栅组成。在实际应用中,光栅组件的数量优选为3个,每个光栅组件中光栅的数量优选为6个。
光栅是固定用于发射和收集激光的光学器件,其由大量等宽等间距的平行狭缝构成。在本实施例所述的光纤导丝中,光纤导丝传导的激光可以经由光栅组件23散射至腔道内,回射的激光也可以经由光栅组件23收集,以此确定光纤导丝在腔道中的位置,并精确判断光纤导丝下一步的行进方向。
参见图15,a和b表示处于相反方向的两个光栅,在实际应用中,光栅a发出的激光经腔道壁散射后,经光栅a耦合入光纤,光栅b发出的激光经腔道壁散射后,经光栅b耦合入光纤,在光栅a处具有一个分支腔道的情况下,光栅a与腔道壁之间的距离大于光栅b与腔道壁之间的距离,光栅a收集的散射脉冲时间相对于光栅b较为滞后,在光栅b处具有一个分支腔道的情况下,光栅b与腔道壁之间的距离大于光栅a与腔道壁之间的距离,光栅b收集的散射脉冲时间相对于光栅a较为滞后。如此通过对散射回波的波形进行分析,即可得到腔道的分支形貌,从而指引导引段4弯曲进入该分支腔道,通过位于不同方向的光栅回波波形分析,可以判断每一个光栅所处位置的腔道分支情况,能够为形状较为复杂的腔道通路提供更为详细的判断数据,以提高导丝行进的效率。
实施例11
本实施例提供一种光纤导丝探测系统,包括:
光纤导丝,所述光纤导丝为实施例1-10任意一项所述的光纤导丝;
控制中心,所述控制中心向姿态控制器、脉冲探测激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、脉冲探测激光器、波形采集器、治疗激光器的开启、运作或关闭;
姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光纤导丝进出腔道或在腔道内移动;
脉冲探测激光器,所述脉冲探测激光器接收控制中心发出的信号,发出脉冲激光经所述光纤导丝传导至腔道并在腔道内形成激光散射;
波形采集器,所述波形采集器接收控制中心发出的信号,采集并分析腔道内散射激光延时波形,获得腔道壁与光纤导丝之间的距离信息,并将距离信息反馈至控制中心。
如图16所示,光纤导丝中的光学纤维1可以通过光纤合束器与脉冲探测激光器、波形采集器相连,光纤导丝靠近支撑段5的一端可以与姿态控制器相连,脉冲探测激光器、波形采集器和姿态控制器均接受控制中心的控制。
控制中心向姿态控制器发送控制信号,姿态控制器根据上述控制信号控制光纤导丝进入、退出腔道或在腔道内移动,例如通过通过直线步进电机提供导丝前进、后退动力,通过步进电机、舵机等旋转带动导丝旋转,通过直线步进电机拉动光纤,带动导引段4向切缝较大一侧弯曲等。
控制中心向脉冲探测激光器发送控制信号,脉冲探测激光器根据上述控制信号发出脉冲激光经光纤导丝传导至腔道内并在腔道内形成激光散射,控制中心向波形采集器发送控制信号,波形采集器根据上述控制信号采集散射激光的时延波形,进而通过计算确定腔道壁与光纤导丝之间的距离信息,包括二者的相对位置、光纤导丝前方是否存在分支腔道等。
具体地,探测激光器发出波长为1064nm,重复频率为100Hz,脉冲长度为1ps的脉冲序列,经光纤导丝传输后,通过导丝顶端出射,在腔道壁上散射,经光纤收集后传回波形采集器。波形采集器内具有高速电光探测器,采集回波的波形,并对波形的时间长度进行分析,判断导丝顶端距离腔道壁的长度。
如图17所示,采用皮秒脉冲激光,例如1皮秒脉冲激光,当导引段4顶端前面为腔道壁时,散射回波为Signal 1;当导引段4顶端面对分支的空腔9(例如下级支气管)时,由于散射壁距离较远,散射回波为波形较长的Signal 2。通过分析散射回波的时间长度,可获得导引段4顶端距离腔道壁的长度,波形采集器将上述长度信息反馈至控制中心以及姿态控制器,进而控制调整导丝的姿态和下一步行进方向。
此外,光纤导丝探测系统还可以包括治疗激光器,治疗激光器接收控制中心发送的控制信号,并根据控制信号发出治疗激光经光学纤维1散射至待治疗的病灶区域,对病灶区域进行治疗。
所以本实施例提供的光纤导丝探测系统,控制中心可以向其他组件发送控制信号,以协调控制各组件之间的相互配合运作,姿态控制器可以控制光纤导丝进出腔道或在腔道内移动,提高光纤导丝的使用灵活性,脉冲探测激光器、波形采集器和光纤导丝的配合,可以通过激光的延时确定光纤导丝与腔道壁的相对位置,进而准确判断光纤导丝下一步的姿 态以及行进方向,提高探测的效率。治疗激光器可以通过光纤导丝发射治疗激光照射病变部位,提高治疗灵活性和效率。
实施例12
本实施例提供一种光纤导丝探测方法,用于如实施例11所述的光纤导丝探测系统,包括步骤S1至步骤S5。
S1、控制中心接受控制指令,并基于所述控制指令向姿态控制器和脉冲探测激光器发送控制信号。
S2、所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光纤导丝进入腔道。
S3、所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光纤导丝将脉冲激光散射至腔道内。
S4、所述光纤导丝接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光纤导丝在腔道内的位置。
S5、所述姿态控制器基于所述光纤导丝在腔道内的位置控制所述光纤导丝的下一步移动,直至所述光纤导丝到达目标区域完成探测后退出腔道。
此外,在所述光纤导丝到达目标区域后,控制中心还可以向治疗激光器发送控制信号,所述治疗激光器发出治疗激光并经由所述光纤导丝散射至目标区域,对目标区域进行治疗。
本实施例提供的光纤导丝探测方法,通过控制中心、姿态控制器、脉冲探测器、光纤导丝以及波形采集器的相互配合实现光纤导丝在腔道内的智能化和自动化导引,操作简便,大大提高了光纤导丝的探测效率和探测效果。此外,还可以通过控制中心、光纤导丝与治疗激光器的配合对患者的病变部位进行激光照射治疗,治疗效率高效果好,提高了光纤导丝的使用灵活性和适用范围。
在本文中,“相等”、“相同”等并非严格的数学和/或几何学意义上的限制,还包含本领域技术人员可以理解的且制造或使用等允许的误差。
除非另有说明,本文中的数值范围不仅包括其两个端点内的整个范围,也包括含于其中的若干子范围。
上面结合附图对本申请优选的具体实施方式和实施例作了详细说明,但是本申请并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本申请构思的前提下做出各种变化。

Claims (10)

  1. 一种光纤导丝,其特征在于,所述光纤导丝包括至少一个光学纤维(1)和围绕于所述光学纤维(1)外的套管(2),所述套管(2)包括能够辅助所述光学纤维(1)发射和收集激光的功能段(3)、能够弯曲的导引段(4)以及能够支持所述功能段(3)和导引段(4)前进的支撑段(5),所述功能段(3)、导引段(4)、支撑段(5)依次相连,所述光纤导丝还设置有能够使其定向弯曲的非对称结构。
  2. 根据权利要求1所述的光纤导丝,其特征在于,所述光学纤维(1)由内及外依次包括能够传输激光的纤芯(6)、能够约束激光传输的包层(7)以及能够保护所述线芯(6)和包层(7)的外皮(8),所述套管(2)的功能段(3)远离所述导引段(4)的一端设置有能够透过激光的透镜(12)。
  3. 根据权利要求1所述的光纤导丝,其特征在于,所述光纤导丝还包括显影环(11),所述显影环(11)位于所述光学纤维(1)与所述套管(2)之间,所述显影环(11)的内壁与所述光学纤维(1)固定连接,所述显影环(11)的外壁与所述套管(2)固定连接。
  4. 根据权利要求1所述的光纤导丝,其特征在于,所述光纤导丝还包括动力纤维(16),所述动力纤维(16)与所述光学纤维(1)均位于所述套管(2)内,且所述动力纤维(16)的长度方向和所述光学纤维(1)的长度方向均与所述套管(2)的管长方向平行。
  5. 根据权利要求1所述的光纤导丝,其特征在于,所述光学纤维(1)为探测光纤(17),或者所述光学纤维(1)为探测光纤(17)与治疗光纤(18)合束形成。
  6. 根据权利要求1所述的光纤导丝,其特征在于,所述套管(2)为金属管或金属管与透明管的组合;
    优选地,所述套管(2)的导引段(4)和支撑段(5)均为金属管,所述功能段(3)为金属管或透明管,所述功能段(3)的其中一侧外表面设置有用于反射激光的金属反射膜(19)。
  7. 根据权利要求1所述的光纤导丝,其特征在于,所述非对称结构为所述套管(2)的非对称管壁结构;
    优选地,所述非对称管壁结构为开设在所述套管(2)导引段(4)上的非对称切缝(13)、所述套管(2)的非对称管壁厚度、或所述套管(2)的形状。
  8. 根据权利要求1所述的光纤导丝,其特征在于,所述光纤导丝外套设有引导管(20),所述引导管(20)靠近所述功能段(3)的一端与引导棒(21)相连,所述引导管(20)外还套设有护翼(22)。
  9. 一种光纤导丝探测系统,其特征在于,包括:
    光纤导丝,所述光纤导丝为权利要求1-8任意一项所述的光纤导丝;
    控制中心,所述控制中心向姿态控制器、脉冲探测激光器、波形采集器、治疗激光器发送控制信号,以控制姿态控制器、脉冲探测激光器、波形采集器、治疗激光器的开启、运作或关闭;
    姿态控制器,所述姿态控制器接收控制中心发出的信号和距离信息,驱动所述光纤导丝进出腔道或在腔道内移动;
    脉冲探测激光器,所述脉冲探测激光器接收控制中心发出的信号,发出脉冲激光经所述光纤导丝传导至腔道并在腔道内形成激光散射;
    波形采集器,所述波形采集器接收控制中心发出的信号,采集并分析腔道内散射激光延时波形,获得腔道壁与光纤导丝之间的距离信息,并将距离信息反馈至控制中心。
  10. 一种光纤导丝探测方法,其特征在于,用于权利要求9所述的光纤导丝探测系统,所述方法,包括:
    控制中心接受控制指令,并基于所述控制指令向姿态控制器和脉冲探测激光器发送控制信号;
    所述姿态控制器接收所述控制中心发送的控制信号,并基于所述控制信号驱动光纤导丝进入腔道;
    所述脉冲探测器接收所述控制中心发送的控制信号,发出脉冲激光并经由所述光纤导丝将脉冲激光散射至腔道内;
    所述光纤导丝接收反射的脉冲激光并发送至波形采集器,所述波形采集器基于所述反射的脉冲激光确定所述光纤导丝在腔道内的位置;
    所述姿态控制器基于所述光纤导丝在腔道内的位置控制所述光纤导丝的下一步移动,直至所述光纤导丝到达目标区域完成探测后退出腔道。
PCT/CN2020/134571 2020-08-31 2020-12-08 一种光纤导丝、光纤导丝探测系统及方法 WO2022041557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/396,884 US11298007B2 (en) 2020-08-31 2021-08-09 Optical fiber guidewire, detection system with optical fiber guidewire and detection method using optical fiber guidewire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010894817.3 2020-08-31
CN202010894817.3A CN111973865A (zh) 2020-08-31 2020-08-31 一种光纤导丝、光纤导丝探测系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/396,884 Continuation US11298007B2 (en) 2020-08-31 2021-08-09 Optical fiber guidewire, detection system with optical fiber guidewire and detection method using optical fiber guidewire

Publications (1)

Publication Number Publication Date
WO2022041557A1 true WO2022041557A1 (zh) 2022-03-03

Family

ID=73440826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134571 WO2022041557A1 (zh) 2020-08-31 2020-12-08 一种光纤导丝、光纤导丝探测系统及方法

Country Status (3)

Country Link
US (1) US11298007B2 (zh)
CN (1) CN111973865A (zh)
WO (1) WO2022041557A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973865A (zh) * 2020-08-31 2020-11-24 尚华 一种光纤导丝、光纤导丝探测系统及方法
CN115025367A (zh) * 2022-04-29 2022-09-09 南京航空航天大学 基于ipmc的自适应微导管导向装置
CN115032738B (zh) * 2022-06-27 2023-10-20 上海昊量光电设备有限公司 一种空心光纤束、光纤束激光装置及其加工制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328033A (zh) * 2010-11-09 2013-09-25 奥普森斯公司 具有内部压力传感器的导丝
CN104427927A (zh) * 2012-06-28 2015-03-18 皇家飞利浦有限公司 用于血管可视化和监测的由光纤传感器引导的导航
CN105792876A (zh) * 2013-10-03 2016-07-20 本迪特技术有限公司 操控工具
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
CN110064123A (zh) * 2019-03-28 2019-07-30 暨南大学 一种专用于腹腔镜袖状胃切除术的胃管引导管
EP3524953A1 (en) * 2018-02-07 2019-08-14 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN111973865A (zh) * 2020-08-31 2020-11-24 尚华 一种光纤导丝、光纤导丝探测系统及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591049B2 (en) * 1997-07-02 2003-07-08 Lumitex, Inc. Light delivery systems and applications thereof
CN100509076C (zh) * 2007-03-14 2009-07-08 南京大学医学院附属鼓楼医院 尖端方向可控的造影导管
CN202128806U (zh) * 2011-05-16 2012-02-01 吴卫兵 全腔镜下发光引导鼻饲营养管置入装置
US10149720B2 (en) * 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
WO2016022757A1 (en) * 2014-08-06 2016-02-11 University Of Massachusetts Single channel terahertz endoscopy
US10518066B2 (en) * 2015-01-09 2019-12-31 Mivi Neuroscience, Inc. Medical guidewires for tortuous vessels
US10064555B2 (en) * 2015-03-31 2018-09-04 Acclarent, Inc. Illuminating guidewire with optical sensing
WO2017100902A1 (en) * 2015-12-17 2017-06-22 Kardium Inc. Medical system
KR102416089B1 (ko) * 2016-02-10 2022-07-04 마이크로벤션, 인코포레이티드 혈관 내 치료 부위 접근법
CN206414602U (zh) * 2016-07-07 2017-08-18 刘娜 一种内置光纤传感器的导丝
JP2019107094A (ja) * 2017-12-15 2019-07-04 株式会社日立製作所 光音響ガイド支援システム及び光音響ガイド支援方法
US11693229B2 (en) * 2018-03-23 2023-07-04 The Johns Hopkins University Shortwave infrared imaging system
US11918423B2 (en) * 2018-10-30 2024-03-05 Corindus, Inc. System and method for navigating a device through a path to a target location
US10849510B1 (en) * 2019-12-02 2020-12-01 Razack Intellectual Properties, LLC Methods of arterial pressure monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328033A (zh) * 2010-11-09 2013-09-25 奥普森斯公司 具有内部压力传感器的导丝
CN104427927A (zh) * 2012-06-28 2015-03-18 皇家飞利浦有限公司 用于血管可视化和监测的由光纤传感器引导的导航
CN105792876A (zh) * 2013-10-03 2016-07-20 本迪特技术有限公司 操控工具
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
EP3524953A1 (en) * 2018-02-07 2019-08-14 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN110064123A (zh) * 2019-03-28 2019-07-30 暨南大学 一种专用于腹腔镜袖状胃切除术的胃管引导管
CN111973865A (zh) * 2020-08-31 2020-11-24 尚华 一种光纤导丝、光纤导丝探测系统及方法

Also Published As

Publication number Publication date
US20220061633A1 (en) 2022-03-03
US11298007B2 (en) 2022-04-12
CN111973865A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2022041557A1 (zh) 一种光纤导丝、光纤导丝探测系统及方法
US10856727B2 (en) Endoscopic methods and devices for transnasal procedures
JP2648324B2 (ja) 体内の管状器官における閉塞状態を軽減させるための方法および装置
US5318526A (en) Flexible endoscope with hypotube activating wire support
US9107574B2 (en) Endoscopic methods and devices for transnasal procedures
JP5065052B2 (ja) 可撓性シースカテーテル
US5573531A (en) Fluid core laser angioscope
US8146400B2 (en) Endoscopic methods and devices for transnasal procedures
US9089258B2 (en) Endoscopic methods and devices for transnasal procedures
US20120265094A1 (en) Endoscopic Methods and Devices for Transnasal Procedures
CN111956934B (zh) 一种医用导丝
JP3780066B2 (ja) 医療用チューブ
WO2022041558A1 (zh) 一种光学功能导丝、探测系统及探测方法
US10758742B2 (en) Optical fiber puncture needle tubing and use thereof
US10463876B1 (en) Photodynamic therapy diagnostic device capable of optical fiber puncture
WO1990006087A1 (en) Single axis/angled beam laser catheter
US20200030624A1 (en) Memory metal optical fiber puncture needle tubing
WO1990005562A1 (en) Angioplasty catheter with off-axis angled beam delivery fiber
JPH0511878Y2 (zh)
JP7336119B1 (ja) 光照射デバイスおよび光照射システム
JP7466653B2 (ja) 光照射デバイス、及び、光照射システム
JP7326020B2 (ja) 光照射システム、カテーテル、及び、光照射デバイス
CN113180820A (zh) 径向激光消融导管
JPH0451946A (ja) 病変組織切除装置
JPH06169929A (ja) 医療用レーザー光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951225

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20951225

Country of ref document: EP

Kind code of ref document: A1