JP5594380B2 - シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法 - Google Patents

シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法 Download PDF

Info

Publication number
JP5594380B2
JP5594380B2 JP2013012491A JP2013012491A JP5594380B2 JP 5594380 B2 JP5594380 B2 JP 5594380B2 JP 2013012491 A JP2013012491 A JP 2013012491A JP 2013012491 A JP2013012491 A JP 2013012491A JP 5594380 B2 JP5594380 B2 JP 5594380B2
Authority
JP
Japan
Prior art keywords
scintillator
zinc oxide
light emitting
radiation
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013012491A
Other languages
English (en)
Other versions
JP2014144992A (ja
Inventor
正孝 加納
一生 福井
信彦 猿倉
航平 山ノ井
達広 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2013012491A priority Critical patent/JP5594380B2/ja
Priority to PCT/JP2013/083236 priority patent/WO2014115440A1/ja
Publication of JP2014144992A publication Critical patent/JP2014144992A/ja
Application granted granted Critical
Publication of JP5594380B2 publication Critical patent/JP5594380B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、放射線の入射により発光するシンチレータ、このシンチレータを用いた放射線検出器、放射線検査装置、及びα線検出器、並びに、そのシンチレータの製造方法に関する。
X線、γ線、α線、及び中性子線等の放射線を検出するための検出器として、シンチレータを備え、放射線の入射によりシンチレータが発した光を光電子倍増管で増幅して検出する放射線検出器が知られている。
このような放射線検出器に使用されるシンチレータとしては、従来、酸化亜鉛を発光材料として用いてなるシンチレータ(以下、ZnOシンチレータという)が知られている。例えば、特許文献1には、酸化亜鉛の微粒子で構成された薄膜(ZnO薄膜)を基板上に有するシンチレータが開示されている。
この特許文献1に開示のシンチレータでは、ZnO薄膜に放射線が入射した時に、励起子による紫外発光が得られる。
特開2011−141134号公報
ところで、放射線検出器では、放射線のエネルギーを正確に測定できるように、エネルギー分解能の向上が求められている。放射線検出器のエネルギー分解能は、シンチレータが放射線の入射により発する発光量が多い程、向上すると考えられることから、シンチレータにおいて、前記発光量を向上させることが求められている。
特許文献1に開示のシンチレータは、上記の通り、ZnO薄膜に放射線が入射することにより、励起子による紫外発光が得られるものである。しかしながら、放射線の入射によりZnO薄膜が発した紫外光は、ZnO薄膜(酸化亜鉛)自体に吸収されてしまうおそれがあり、この結果、十分な発光量が得られないおそれがあった。
そこで、ZnOシンチレータでは、放射線の入射により、紫外光以外の光、具体的には、酸化亜鉛に吸収され難い可視光を発することが求められている。
本発明は、上記した状況に鑑みてなされたものであって、酸化亜鉛を発光材料に用いてなり、放射線の入射により可視光を発するシンチレータ及びこのシンチレータの製造方法、並びに、このシンチレータを備えた放射線検出器、放射線検査装置、及びα線検出器を提供することを目的とする。
本発明のシンチレータは、基板の少なくとも一主面上に、放射線の入射により発光する発光層を有するシンチレータであって、前記発光層が、M面を発光面とする酸化亜鉛の単結晶を含み、前記発光層を構成する酸化亜鉛の単結晶中に、硫黄元素がドーピングされ且つリチウム元素が含まれてないことを特徴とする。
このような本発明のシンチレータでは、発光層を構成する酸化亜鉛の単結晶中に、硫黄元素がドーピングされているため、放射線の入射により可視発光を得ることができ、これにより、高い発光量が得られる。このため、本発明のシンチレータは、放射線検出器に搭載された場合において、その放射線検出器に高いエネルギー分解能を与えることが可能である。
本発明のシンチレータにおいて、前記発光層は、放射線の入射により、紫外光及び可視光の両方を発してもよい。
この構成によれば、前記発光層は、可視光だけでなく、紫外光も発するため、本発明のシンチレータを備える放射線検出器の検出精度をより向上させることができる。例えば、トータルの発光量(即ち、可視発光量及び紫外発光量の合計量)が増加するので、放射線検出器において、可視発光量及び紫外発光量の合計量を用いて放射線の検出を行うことで放射線検出器の検出精度の向上を図ることができる。或いは、放射線検出器において、可視光による放射線の検出と、紫外光による放射線の検出とを行って、放射線の検出漏れを防ぐことで、検出精度の向上を図ることができる。
本発明のシンチレータにおいて、前記発光層を構成する酸化亜鉛の単結晶中に含まれる硫黄元素の濃度は、0超〜0.1atom%であってよい。
この構成によれば、発光層を構成する酸化亜鉛の単結晶の品質を確保しつつ、放射線が入射した時の可視発光を好適に高めることができる。
本発明のシンチレータにおいて、前記基板の少なくとも表面は、酸化亜鉛からなっていてもよい。
この構成によれば、シンチレータの品質の向上を図ることが可能となる。具体的に説明すると、本発明のシンチレータは、種結晶としての基板の上に、水熱合成法により、硫黄元素がドーピングされたM面を発光面とする酸化亜鉛の結晶(即ち、発光層を構成する結晶)を結晶成長させることで、大量生産が可能である。このような水熱合成法を用いたシンチレータの製造において、種結晶としての基板の表面に酸化亜鉛以外の成分が含まれていると、その成分が、発光層を構成する酸化亜鉛の結晶の成長を阻害したり、その発光層の中に取り込まれるおそれがあり、この結果として、得られるシンチレータの発光特性が低下してしまうおそれがある。そこで、前記基板として、少なくとも表面が酸化亜鉛からなるものを使用すると、上記した発光特性の低下を抑制することができ、本発明のシンチレータの品質の向上を図ることができる。
また、本発明のシンチレータにおいて、前記基板は、サファイアを含んでいてもよい。
この構成によれば、大面積化が容易な結晶であるサファイアを基板に含むため、シンチレータの大面積化が容易となる。
本発明の放射線検出器は、上記した本発明のシンチレータを備えることを特徴とする。
このような本発明の放射線検出器は、本発明のシンチレータを備えているため、高いエネルギー分解能を安定して得ることができ、放射線の検出精度に優れる。
本発明の放射線検査装置は、上記した本発明の放射線検出器を備えることを特徴とする。
このような本発明の放射線検査装置は、本発明の放射線検出器を備えているため、放射線の検出精度に優れる。
本発明のα線検出器は、上記した本発明のシンチレータを備えることを特徴とする。
このような本発明のα線検出器は、本発明のシンチレータを備えているため、高いエネルギー分解能を安定して得ることができ、α線の検出精度に優れる。
本発明のシンチレータの製造方法は、酸化亜鉛を含む育成用原料と、鉱化剤を含む育成用溶液と、種結晶基板とを収容した密閉容器内で、水熱合成法により、前記種結晶基板の少なくとも一主面上に、M面を発光面とする酸化亜鉛の結晶を育成する育成工程を含み、前記育成工程では、前記育成用原料及び前記育成用溶液の少なくとも一方に、硫黄又は硫黄の化合物を含ませて、硫黄元素がドーピングされ且つリチウム元素が含まれてない前記M面を発光面とする酸化亜鉛の結晶を結晶成長させることを特徴とする。
この製造方法によれば、上記した本発明のシンチレータを大量に生産することが可能である。
本発明によれば、酸化亜鉛を発光材料に用いてなり、放射線の入射により可視光を発するシンチレータ及びこのシンチレータの製造方法、並びに、このシンチレータを備えた放射線検出器、放射線検査装置、及びα線検出器を提供することができる。
図1は、本発明の実施の形態に係るシンチレータの概略構成を模式的に示す断面図である。 図2は、本発明の実施の形態に係るシンチレータを備える放射線検出器の構成例を示す概略図である。 図3は、図2に示す放射線検出器を備える放射線検査装置の構成例を示すブロック図である。 図4は、本発明の実施の形態に係るシンチレータの製造方法で用いる結晶育成炉の内部構成を示す断面図である。 図5は、実施例に係るシンチレータの蛍光スペクトルを示す図である。
〔シンチレータ〕
本発明の実施の形態に係るシンチレータ1は、図1に示すように、基板11の両主面111,112(表側の一主面111と裏側の他主面112)上に、放射線の入射により発光する発光層12を有している。
発光層12は、M面を発光面(放射線の入射により発光する面)とする酸化亜鉛の単結晶を含んでいる。このような発光層12の具体的構成としては、発光面としてのM面を主面とする酸化亜鉛の単結晶からなる構成、及び、M面を発光面とする酸化亜鉛の単結晶の集合体(即ち、多結晶)からなる構成を挙げることができる。なお、単結晶からなる発光層12を有するシンチレータ1は、多結晶からなる発光層12を有するシンチレータ1と比べて、放射線が入射した時の発光強度(蛍光強度)にムラを生じる可能性が低く、優れた空間分解能を有すると考えられる。このため、発光層12は、M面を主面とする酸化亜鉛の単結晶からなることがより好ましい。
また、発光層12を構成する酸化亜鉛の単結晶中には、硫黄元素がドーピングされており、これにより、発光層12に放射線が入射した時に可視光を発することが可能とされている。
発光層12の発光原理について、以下に説明する。
発光層12を構成する酸化亜鉛の結晶において電子が存在し得るエネルギー帯は、主に、価電子帯と、伝導帯の2つに分けられる。価電子帯の電子は、結晶格子上の位置に束縛されている。一方、伝導帯の電子は、結晶内を自由に移動できる十分なエネルギーを持っている。これら価電子帯と伝導帯との間には、バンドギャップ(禁制帯ともいう)と呼ばれるエネルギーギャップがあり、純粋な酸化亜鉛の結晶では、バンドギャップ中に電子は存在し得ない。酸化亜鉛の結晶に放射線が入射すると、価電子帯にある電子が、エネルギーを吸収し、バンドギャップを超えて伝導帯へ励起する。その後、伝導帯に励起した電子が価電子帯に遷移するときに、エネルギーが光子として放出され、発光が起こる。
純粋な酸化亜鉛の結晶のバンドギャップは、直接遷移型であり、その幅は、紫外波長領域(370nm付近)の光のエネルギーに相当する。このため、純粋な酸化亜鉛の結晶では、伝導帯に励起した電子が価電子帯に遷移する時に、紫外波長領域(370nm付近)の光のエネルギーに相当するエネルギーを光子として放出し、励起子による紫外発光が生じる。言い換えれば、純粋な酸化亜鉛の結晶では、バンドギャップの幅が広すぎて、伝導帯に励起した電子が価電子帯に遷移する時に放出されるエネルギーが大きすぎるため、可視発光が生じ得ない。
一方、酸化亜鉛の結晶において硫黄元素をドーピングすると、バンドギャップ内に、価電子帯への電子の遷移が可能な新たなエネルギー準位が形成される。また、新たに形成されたエネルギー準位と価電子帯との間のエネルギーギャップの幅は、バンドギャップの幅よりも小さい。このため、硫黄元素がドーピングされた酸化亜鉛の結晶では、新たに形成されたエネルギー準位から価電子帯への電子遷移があり、この電子遷移によって、可視発光が得られると考えられる。
励起子による紫外発光は、発光層12を構成する酸化亜鉛によって吸収される可能性がある。このため、発光層12が紫外光のみしか発しない場合には、十分な発光量が得られない可能性がある。これに対して、可視光は、発光層12を構成する酸化亜鉛に吸収され難いため、発光層12が可視光を発する本実施の形態に係るシンチレータ1では、高い発光量が得られる。
また、発光層12は、放射線の入射により、可視光と共に紫外光を発してもよい。紫外発光は、上記したように、伝導帯から価電子帯への電子の直接遷移により起こり得ると考えられる。このように、発光層12が、可視光だけでなく、紫外光も発する場合には、シンチレータ1を備える放射線検出器10(図2参照)の検出精度を向上させることができる。例えば、トータルの発光量(即ち、可視発光量及び紫外発光量の合計量)が増加するので、放射線検出器10において、可視発光量及び紫外発光量の合計量を用いて放射線の検出を行うことで放射線検出器10の検出精度の向上を図ることができる。或いは、放射線検出器10において、可視光による放射線の検出と、紫外光による放射線の検出とを行って、放射線の検出漏れを防ぐことで、検出精度の向上を図ることができる。
発光層12を構成する酸化亜鉛の単結晶中に含まれる硫黄元素の濃度は、特に限定されないが、0超〜0.1atom%とすると、より好ましくは、0.0005〜0.1atom%とすると、発光層12を構成する酸化亜鉛の単結晶の品質を確保しつつ、放射線が入射した時の可視発光量を好適に高めることができる。具体的には、発光層12を構成する酸化亜鉛の単結晶中に含まれる硫黄元素の濃度が、0atom%であると、可視発光を得ることができない。一方、発光層12を構成する酸化亜鉛の単結晶中に含まれる硫黄元素の濃度が、0.1atom%を超えると、発光層12を構成する酸化亜鉛の単結晶の品質が低下し、発光層12が放射線の連続照射により劣化し易いものとなるおそれがある。
発光層12を構成する酸化亜鉛の単結晶中には、上記した硫黄元素のドーピングによりもたらされる可視発光に影響を与えない限り、硫黄元素以外の他の元素が含まれていてもよいが、リチウム元素は、放射線が発光層12に入射した時の可視発光を微弱化させるおそれがあることから、発光層12を構成する酸化亜鉛の単結晶中に含まれていないことが好ましい。
発光層12の厚みLは、特に限定されないが、発光層12における放射線の侵入深さ以上、具体的には、5〜100μmであることが好ましく、5〜50μmであることがより好ましい。発光層12の厚みが5〜100μmであると、発光層12に入射した放射線は、確実に、発光層12内で全てのエネルギーを失うため、その放射線が持つエネルギー量に比例した発光量を得ることができる。この結果、放射線検出器10(図2参照)にシンチレータ1を搭載した場合において、放射線検出の精度を高めることができる。
基板11は、M面を発光面(放射線の入射により発光する面)とする酸化亜鉛の結晶(発光層12を構成する結晶)が結晶成長し得るものであれば特に限定されるものではないが、放射線の入射により発光層12が発した光が透過し得る透明な基板であることが好ましく、具体例としては、酸化亜鉛の単結晶からなる基板、サファイアからなる基板、酸化亜鉛とサファイアとからなる基板等が好ましい。
また、本実施の形態に係るシンチレータ1において、基板11として、少なくとも表面が酸化亜鉛からなるものを用いると、シンチレータ1の品質の向上を図ることが可能となる。具体的に説明すると、本実施の形態のシンチレータ1は、後述する通り、シンチレータ1の基板11となる種結晶基板8(図4参照)の上に、水熱合成法により、硫黄元素がドーピングされたM面を発光面とする酸化亜鉛の結晶(即ち、発光層12を構成する結晶)を結晶成長させることで、大量生産が可能である。このような水熱合成法を用いたシンチレータ1の製造において、種結晶基板8の表面に酸化亜鉛以外の成分が含まれていると、その成分が、発光層12を構成する酸化亜鉛の結晶の成長を阻害したり、その発光層12の中に取り込まれるおそれがあり、この結果として、得られるシンチレータ1の発光特性が低下してしまうおそれがある。そこで、シンチレータ1の基板11となる種結晶基板8として、少なくとも表面が酸化亜鉛からなるものを使用すると、上記した発光特性の低下を抑制することができ、シンチレータ1の品質の向上を図ることができる。
本実施の形態に係るシンチレータ1では、発光層12を構成する酸化亜鉛の単結晶中に、硫黄元素がドーピングされているため、上記した通り、放射線の入射により可視発光を得ることができ、これにより、高い発光量が得られる。このため、本実施の形態に係るシンチレータ1は、放射線検出器10(図2参照)に搭載された場合において、その放射線検出器10に十分なエネルギー分解能を与えることができる。
なお、本実施の形態に係るシンチレータ1は、基板11の両主面111,112の上に発光層12を有するものであるが、本発明のシンチレータは、基板11の一主面111及び他主面112の一方にのみ発光層12を有する構成であってもよい。
〔放射線検出器及び放射線検査装置〕
本実施の形態に係るシンチレータ1は、放射線の入射により発光することから、図2に示すような、放射線検出器10のシンチレータ1として用いることができる。特に、本実施の形態に係るシンチレータ1は、γ線や中性子線に比べて、α線の入射により発光し易いことから、α線を選択的に検出する放射線検出器10、即ち、α線検出器のシンチレータとしての使用に適している。このような放射線検出器10の構成例としては、光検出部101(例えば、光電子倍増管)の受光面102の外側にシンチレータ1を備え、放射線の入射によりシンチレータ1が発した光を、光検出部101で電気信号に変えて検出する構成を挙げることができる。このよう放射線検出器10は、公知の放射線検査装置に組み込んで使用することができる。例えば、放射線検査装置30の構成例としては、図3に示すような、放射線検出器10と、この放射線検出器10から出力された電気信号を処理する制御部20とを有する構成を挙げることができる。
〔シンチレータの製造方法〕
上記した本実施の形態に係るシンチレータ1は、図4に示す結晶育成炉(以下、単に育成炉2と呼ぶ)の育成容器35(本発明でいう密閉容器)に、種結晶基板8と、酸化亜鉛を含む育成用原料7と、鉱化剤を含む育成用溶液とを収容し、内部空間を密閉した育成容器35内にて、水熱合成法により、種結晶基板8の上に、M面を発光面とする酸化亜鉛の結晶を育成すること(育成工程)により、製造することができる。このような本実施の形態に係るシンチレータ1の製造方法について、以下に詳述する。
−育成炉2の構成−
育成炉2は、図4に示すように、炉本体3の外周囲に、炉本体3を加熱及び加圧する電気炉4が配設された構成とされている。
炉本体3は、上部が開放された有底円筒状であり、上端開口部31には、炉本体3の内部を密閉するための蓋体32が装着されている。この蓋体32には、炉本体3の内部圧力を計測するための圧力計33が取り付けられている。更に、炉本体3の内部には、育成容器35が収められる。
育成容器35は、上部が開放された有底円筒状の容器本体351と、蓋体352とから構成されている。これら容器本体351及び蓋体352は、白金からなる。
また、容器本体351の内部空間5の上下方向中間位置には対流制御板34が配設されている。この対流制御板34によって、容器本体351の内部空間5は、下側の原料室51と上側の育成室52とに仕切られている。
上記原料室51は、育成用原料7を収容する空間とされている。また、育成室52は、育成棚81に支持された複数枚の種結晶基板8を収容する空間とされている。
このような容器本体351の内部空間5は、育成用溶液が充填され、原料室51に育成用原料7が収容され、育成室52に種結晶基板8が収容された状態で、容器本体351の上端開口に蓋体352が溶接により接着されることにより密閉される。なお、本実施の形態において、容器本体351の内部空間5は、前述の通り、容器本体351に蓋体352を溶接することにより密閉されるが、容器本体351の内部空間5は、容器本体351と蓋体352とを、パッキン又はガスケット等のシール材を介して接合することにより密閉されてもよい。
−育成用原料7−
育成用原料7には、酸化亜鉛を含む焼結体(多結晶)を使用する。酸化亜鉛を含む焼結体としては、例えば、直径1〜10μmの酸化亜鉛を含む粉末を加圧プレス機によって成型し、1000〜1300℃の酸素雰囲気あるいは大気雰囲気で焼成した焼結体を使用することができる。
−種結晶基板8−
種結晶基板8は、シンチレータ1において基板11となるものであり、種結晶基板8としては、M面を発光面とする酸化亜鉛の結晶(即ち、発光層12を構成する結晶)が結晶成長し得るもの、例えば、酸化亜鉛の単結晶からなる基板、サファイアからなる基板、又は酸化亜鉛とサファイアとからなる基板等を使用する。
また、種結晶基板8として、少なくとも表面が酸化亜鉛からなるものを用いると、種結晶基板8の表面に含まれる酸化亜鉛以外の成分が、育成用溶液中に溶け出して、種結晶基板8上への酸化亜鉛の結晶(即ち、発光層12を構成する結晶)の結晶成長を阻害したり、或いは、種結晶基板8上に育成される酸化亜鉛の結晶中に取り込まれて、得られるシンチレータ1の発光特性に影響を与えるおそれを低減させることができる。
−育成用溶液−
また、育成用溶液には、鉱化剤を含む水溶液を使用する。鉱化剤の具体例としては、水酸化カリウム、及び水酸化ナトリウム等のアルカリ金属の水酸化物、並びに、炭酸カリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩を挙げることができる。
育成用溶液中における鉱化剤の濃度は、特に限定されないが、1.0〜7.0mol/l、より好ましくは、3.0〜6.0mol/lとすると、種結晶基板8上への酸化亜鉛の結晶の成長を良好に促進することができる。
なお、育成用溶液には、得られるシンチレータの発光特性に影響を与えない限り、種結晶基板8上への酸化亜鉛の結晶の成長を促進する目的で、鉱化剤以外の成分が含有されていてよい。
−硫黄元素のドーピング−
本実施の形態に係るシンチレータ1の製造では、上述した育成用溶液に、硫黄又は硫黄の化合物を添加する。育成用溶液に添加できる硫黄の化合物の具体例としては、硫化亜鉛、並びに、チオ硫酸及びチオ尿素等のチオ化合物等を挙げることができる。
育成用溶液中に添加する硫黄又は硫黄の化合物の量は、当該育成用溶液に溶解し得る量であることが好ましい。育成用溶液中に添加する硫黄又は硫黄の化合物の量が多い程、得られるシンチレータ1の放射線入射による可視発光量が向上する傾向があるが、育成用溶液に溶解し得ない過剰量の硫黄又は硫黄の化合物を添加すると、その添加量に見合った上記可視発光量の向上効果が得られないおそれがあり、また、雑晶が多く発生するおそれがある。
例えば、鉱化剤を含む育成用溶液中に硫化亜鉛を添加する場合、その育成用溶液中における硫化亜鉛の濃度(重量%)を、その育成用溶液における硫化亜鉛の溶解度(重量%)の1/10〜1倍に設定すると、得られるシンチレータ1において十分な可視発光量を確保できる。
なお、本実施の形態に係るシンチレータ1の製造では、育成用溶液に、硫黄又は硫黄の化合物を含ませているが、育成用原料7に、硫黄又は硫黄の化合物を含ませてもよい。すなわち、育成用原料7は、酸化亜鉛と、硫黄又は硫黄の化合物とを含む焼結体であってもよい。また、育成用原料7に、硫黄又は硫黄の化合物を含ませる場合には、育成用溶液に硫黄又は硫黄の化合物を添加しなくてもよい。
−育成方法−
次に、上記した育成用原料7、種結晶基板8、及び育成用溶液を用い、育成炉2(図4参照)により、種結晶基板8の上に、硫黄元素がドーピングされた酸化亜鉛の結晶を育成する方法について、以下に説明する。
容器本体351の原料室51に上記した育成用原料7を収容し、育成室52に、育成棚81に支持された複数枚の種結晶基板8を収容する。さらに、容器本体351に育成用溶液を充填する。
そして、容器本体351の上端開口に蓋体352を装着し、育成容器35の内部空間5を密閉する。
育成容器35の内部空間5を密閉後、炉本体3の内部に育成容器35を収める。そして、炉本体3と育成容器35との間の空間6に水を充填する。その後、炉本体3の上端開口部31に蓋体32を装着し、炉本体3の内部を密閉する。
そして、電気炉4によって、炉本体3を加熱及び加圧する。この際、原料室51の温度(溶解域温度)T1が育成室52の温度(成長域温度)T2よりも高温となるように、炉本体3を加熱及び加圧する。具体例としては、育成容器35の内部空間5の圧力が70〜100MPaで、原料室51の温度T1が370〜400℃、育成室52の温度T2が360〜380℃、原料室51と育成室52の温度差ΔT(=T1−T2)が10〜40℃となるように、炉本体3を加熱及び加圧し、この原料室51と育成室52の温度差ΔTにより、高温高圧下で、原料室51と育成室52との間に育成用溶液を自然対流させる。
このような自然対流により、育成用原料7が溶解した育成用溶液が、原料室51から育成室52に移動し、そして、育成室52において冷却されて、過飽和状態となる。これにより、育成用原料7が種結晶基板8上に析出し、成長する。この動作を所定期間連続して行うことにより、種結晶基板8上に、硫黄元素がドーピングされたM面を発光面とする酸化亜鉛の結晶が結晶成長し、図1に示すような基板11の両主面111,112上に発光層12を有するシンチレータ1が得られる。
上記した水熱合成法を用いたシンチレータの製造方法によれば、硫黄元素がドーピングされた酸化亜鉛の単結晶を含む発光層12を有するシンチレータ1を大量に生産することが可能である。また、水熱合成法を用いて製造されたシンチレータ1は、発光層12を構成する酸化亜鉛の単結晶のM面におけるX線ロッキングカーブの半値幅(FWHM)が、18〜22arcsec程度であり、品質が良い。
また、水熱合成法を用いて製造されたシンチレータ1では、図1に示すように、基板11の発光層12との界面が、平滑面ではなく、凹凸面となる。このような凹凸面は、シンチレータ1の基板11となる種結晶基板8の表面が育成炉2中で溶けることにより形成される。具体的には、電気炉4による炉本体3の加熱及び加圧を開始してから育成用溶液が過飽和状態に達するまでの間は、原料室51にある育成用原料だけでなく、育成室52にある種結晶基板8も育成用溶液中に溶け出すため、これにより、育成室52にある種結晶基板8の表面は凹凸な面となる。そして、育成用溶液が過飽和状態に達した後は、種結晶基板8の凹凸な表面上に、酸化亜鉛が結晶成長していくこととなるため、最終的に得られるシンチレータ1において、基板11の発光層12との界面は、凹凸面となる。
例えば、使用する種結晶基板8の表面に研磨等による加工が加えられている場合、種結晶基板8の表面に直接、酸化亜鉛の結晶を育成しても、品質の良い結晶は得られ難い。これに対して、上記したように種結晶基板8の表面を溶かして、種結晶基板8を構成する結晶本来の面(バルク面)を露出させ、この露出させた面に酸化亜鉛の結晶を育成すると、品質の良い結晶を得ることが可能となる。このため、種結晶基板8の表面が溶けて形成された凹凸な面に酸化亜鉛の結晶を育成して得られるシンチレータ1、すなわち、基板11の発光層12との界面が凹凸面であるシンチレータ1は、発光層12を構成する結晶の品質がよいものとなり得る。
上記した本実施の形態に係るシンチレータ1の発光特性を、実施例を挙げて、具体的に説明する。
本実施例では、種結晶基板8としてM面を主面とする板状の酸化亜鉛の単結晶を用い、育成用原料7として酸化亜鉛の焼結体を用い、育成用溶液として、水酸化カリウム(鉱化剤)と硫化亜鉛とを含む水溶液を用いて、上記した製造方法により、シンチレータ1を製造した。なお、本実施例では、育成用溶液における水酸化カリウムの濃度を5mol/lとした。また、成長域温度Tを360℃、溶解域温度Tを370℃、及び圧力を80MPaとして、種結晶基板8上への結晶の育成を行った。また、育成用溶液における硫化亜鉛の濃度を0.1重量%とした。この濃度は、上記の成長域温度T、溶解域温度T、及び圧力の条件下での水酸化カリウム5mol/l水溶液(育成用溶液)における硫化亜鉛の溶解度1.0重量%の1/10倍に相当する。
この方法により得られたシンチレータ1は、図1に示すような、基板11の両主面111,112の上に、発光面としてのM面を主面とする酸化亜鉛の単結晶からなる発光層12を有するものであった。本実施例で製造されたシンチレータ1の基板11は、M面を主面とする板状の酸化亜鉛の単結晶からなる。また、発光層12は、シンチレータ1の基板11となる種結晶基板8を構成する酸化亜鉛の単結晶のM面上に、育成用原料7に含まれる酸化亜鉛が析出して成長してなるもの、すなわち、種結晶基板8を構成する酸化亜鉛の単結晶のM軸に沿って、酸化亜鉛の単結晶が成長してなるものである。
本実施例のシンチレータ1の蛍光スペクトルを、CHROMEX社製の分光計「250IS」と浜松ホトニクス株式会社製のストリークカメラ「C5680」を用いて測定した。励起光としてはチタンサファイアレーザーの3倍波(波長290nm)を用い、シンチレータ1の一主面111の発光層12に励起光を照射した。図5に、本実施例のシンチレータ1の蛍光スペクトルを示す。なお、図5に示す蛍光スペクトルにおいては、縦軸の蛍光強度を、可視波長領域での蛍光強度の最大値を1とした時の相対値で表している。
図5に示す蛍光スペクトルより、紫外波長領域(約360〜400nm)及び可視波長領域(約420nm〜560nm)での発光が認められた。また、可視波長領域での蛍光強度は、紫外波長領域での蛍光強度よりも強いことが認められ、紫外光よりも可視光を多く発することが認められた。つまり、本実施例のシンチレータ1は、放射線の入射により、可視光及び紫外光の両方を発するものであり、可視発光量の多いものであることが認められた。なお、上記蛍光スペクトルの測定では、紫外線(具体的には、チタンサファイアレーザーの3倍波(波長290nm))を励起光として適用しているが、α線等の放射線は、紫外線よりもエネルギーが大きいため、紫外線の入射により発光するシンチレータ1は、放射線の入射によっても発光し得る。
上記実施例のシンチレータ1は、発光量が多いものであることから、本実施例1のシンチレータ1を備えるα線検出器等の放射線検出器10(図2参照)では、高いエネルギー分解能を得ることができる。
なお、上記実施例のシンチレータ1は、育成用溶液における硫化亜鉛の濃度(重量%)を、上記の成長域温度T、溶解域温度T、及び圧力の条件下での水酸化カリウム5mol/l水溶液(育成用溶液)における硫化亜鉛の溶解度の1/10倍の濃度に設定して得られるものであるが、育成用溶液における硫化亜鉛の濃度(重量%)を、前記溶解度と同じ濃度に設定して製造したシンチレータ1においても、上記実施例のシンチレータ1と同様に、可視光及び紫外光を発することが認められた。また、育成用溶液における硫化亜鉛の濃度(重量%)が前記溶解度の1/10〜1倍の範囲内では、育成用溶液における硫化亜鉛の濃度が高い程、可視発光量が高い傾向があることが認められた。
また、上記実施例のシンチレータ1は、M面を主面とする酸化亜鉛の単結晶からなる発光層12を有するものであるが、M面を発光面とする酸化亜鉛の単結晶の集合体(多結晶)からなる発光層12を有するシンチレータ1、例えば、サファイアを含む基板11の上に、M面を発光面とする酸化亜鉛の多結晶からなる発光層12を有するシンチレータ1においても、上記実施例のシンチレータ1と同様の可視発光が得られる。
本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
1 シンチレータ
11 基板
111 一主面
112 他主面
12 発光層
2 育成炉
3 炉本体
31 上端開口部
32 蓋体
33 圧力計
34 対流制御板
35 育成容器
351 容器本体
352 蓋体
4 電気炉
5 内部空間
51 原料室
52 育成室
6 空間
7 育成用原料
8 種結晶基板
81 育成棚
10 放射線検出器
101 光検出部
102 受光面
20 制御部
30 放射線検査装置

Claims (9)

  1. 基板の少なくとも一主面上に、放射線の入射により発光する発光層を有するシンチレータであって、
    前記発光層が、M面を発光面とする酸化亜鉛の単結晶を含み、
    前記発光層を構成する酸化亜鉛の単結晶中に、硫黄元素がドーピングされ且つリチウム元素が含まれてないことを特徴とするシンチレータ。
  2. 請求項1に記載のシンチレータであって、
    前記発光層が、放射線の入射により、可視光及び紫外光の両方を発することを特徴とするシンチレータ。
  3. 請求項1又は2に記載のシンチレータであって、
    前記発光層を構成する酸化亜鉛の単結晶中に含まれる硫黄元素の濃度が、0超〜0.1atom%であることを特徴とするシンチレータ。
  4. 請求項1〜3のいずれか1つに記載のシンチレータであって、
    前記基板の少なくとも表面が、酸化亜鉛からなることを特徴とするシンチレータ。
  5. 請求項1〜4のいずれか1つに記載のシンチレータであって、
    前記基板が、サファイアを含むことを特徴とするシンチレータ。
  6. 請求項1〜5のいずれか1つに記載のシンチレータを備えることを特徴とする放射線検出器。
  7. 請求項6に記載の放射線検出器を備えることを特徴とする放射線検査装置。
  8. 請求項1〜5のいずれか1つに記載のシンチレータを備えることを特徴とするα線検出器。
  9. シンチレータの製造方法であって、
    酸化亜鉛を含む育成用原料と、鉱化剤を含む育成用溶液と、種結晶基板とを収容した密閉容器内で、水熱合成法により、前記種結晶基板の少なくとも一主面上に、M面を発光面とする酸化亜鉛の結晶を育成する育成工程を含み、
    前記育成工程では、前記育成用原料及び前記育成用溶液の少なくとも一方に、硫黄又は硫黄の化合物を含ませて、硫黄元素がドーピングされ且つリチウム元素が含まれてない前記M面を発光面とする酸化亜鉛の結晶を結晶成長させる
    ことを特徴とするシンチレータの製造方法。
JP2013012491A 2013-01-25 2013-01-25 シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法 Expired - Fee Related JP5594380B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013012491A JP5594380B2 (ja) 2013-01-25 2013-01-25 シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法
PCT/JP2013/083236 WO2014115440A1 (ja) 2013-01-25 2013-12-11 シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012491A JP5594380B2 (ja) 2013-01-25 2013-01-25 シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法

Publications (2)

Publication Number Publication Date
JP2014144992A JP2014144992A (ja) 2014-08-14
JP5594380B2 true JP5594380B2 (ja) 2014-09-24

Family

ID=51227242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012491A Expired - Fee Related JP5594380B2 (ja) 2013-01-25 2013-01-25 シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法

Country Status (2)

Country Link
JP (1) JP5594380B2 (ja)
WO (1) WO2014115440A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676372B2 (ja) * 2015-12-28 2020-04-08 株式会社S−Nanotech Co−Creation シンチレータ及び電子検出器
JP6948675B2 (ja) * 2015-12-28 2021-10-13 株式会社S−Nanotech Co−Creation シンチレータの形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044697A2 (en) * 2005-04-14 2010-02-25 Duke University Bright visible wavelength luminescent nanostructures and methods of making and devices for using the same
JP5370679B2 (ja) * 2010-01-05 2013-12-18 株式会社村田製作所 シンチレータ
JP5609327B2 (ja) * 2010-07-01 2014-10-22 株式会社大真空 シンチレータ材料、及びシンチレーション検出器

Also Published As

Publication number Publication date
JP2014144992A (ja) 2014-08-14
WO2014115440A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
US9678223B2 (en) Scintillator
JP6058030B2 (ja) 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器
WO2005114256A1 (ja) 超高速シンチレータとしてのZnO単結晶およびその製造方法
JP5609327B2 (ja) シンチレータ材料、及びシンチレーション検出器
JP5594380B2 (ja) シンチレータ、放射線検出器、放射線検査装置、α線検出器、及びシンチレータの製造方法
WO2010140426A1 (ja) 積層型ZnO系単結晶シンチレータおよびその製造方法
JP6011835B1 (ja) シンチレータ
WO2004086089A1 (ja) 熱蛍光線量計用フッ化物単結晶材料及び熱蛍光線量計
Rutstrom et al. Improved light yield and growth of large-volume ultrafast single crystal scintillators Cs2ZnCl4 and Cs3ZnCl5
JP5566218B2 (ja) フッ化物単結晶、真空紫外発光素子、シンチレーター及びフッ化物単結晶の製造方法
WO2012060382A1 (ja) 金属フッ化物結晶及び発光素子
CN115506007A (zh) 一种近红外发光金属卤化物闪烁晶体及其制备方法和应用
JP6032590B2 (ja) 酸化亜鉛単結晶の製造方法
JP2014189411A (ja) 半導体パッケージカバー用人工水晶基板とその製造方法
JP5905956B2 (ja) 金属フッ化物結晶、発光素子、シンチレーター、中性子の検出方法及び金属フッ化物結晶の製造方法
JP2011157457A (ja) 中性子線検出材料とその製造方法、および中性子線検出器
JP2010280533A (ja) 液相エピタキシャル成長法による励起子発光型ZnOシンチレータの製造方法
JP6623412B2 (ja) 酸化亜鉛結晶の製造方法、酸化亜鉛結晶、シンチレータ材料及びシンチレータ検出器
JP2005343753A (ja) タングステン酸亜鉛単結晶及びその製造方法
JP5713810B2 (ja) 金属フッ化物結晶、発光素子及びシンチレーター
JP2005263621A (ja) タングステン酸亜鉛単結晶及びその製造方法
JP2017132689A (ja) 結晶材料、結晶製造方法、放射線検出器、非破壊検査装置および撮像装置
KUDDUS SHEIKH et al. Optical and Scintillation Properties of 2d-Ba2pbbr4 Needle-Shaped Crystals
JP2005263515A (ja) タングステン酸亜鉛単結晶及びその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees