JP5592495B2 - 可燃性ガス検出装置 - Google Patents

可燃性ガス検出装置 Download PDF

Info

Publication number
JP5592495B2
JP5592495B2 JP2012535515A JP2012535515A JP5592495B2 JP 5592495 B2 JP5592495 B2 JP 5592495B2 JP 2012535515 A JP2012535515 A JP 2012535515A JP 2012535515 A JP2012535515 A JP 2012535515A JP 5592495 B2 JP5592495 B2 JP 5592495B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
heating resistor
combustible gas
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012535515A
Other languages
English (en)
Other versions
JPWO2012108500A1 (ja
Inventor
昌哉 渡辺
昇治 北野谷
大祐 市川
雅広 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012535515A priority Critical patent/JP5592495B2/ja
Publication of JPWO2012108500A1 publication Critical patent/JPWO2012108500A1/ja
Application granted granted Critical
Publication of JP5592495B2 publication Critical patent/JP5592495B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

関連出願の相互参照
本国際出願は、2011年2月9日に日本国特許庁に出願された日本国特許出願第2011−025754号に基づく優先権を主張し、2011年12月27日に日本国特許庁に出願された日本国特許出願第2011−286387号に基づく優先権を主張するものであり、日本国特許出願第2011−025754号の全内容および日本国特許出願第2011−286387号の全内容を参照により本国際出願に援用する。
本発明は、被検出雰囲気中に存在する可燃性ガスのガス濃度を検出する可燃性ガス検出装置に関する。
近年、環境・自然保護などの社会的要求から、高効率で、クリーンなエネルギー源として燃料電池の研究が活発に行われている。その中で、低温作動、高出力密度等の利点により、家庭用、車載用などのエネルギー源として固体高分子型燃料電池(PEFC)や水素内燃機関が期待されている。
これらのシステムでは、例えば、可燃性ガスである水素を燃料としているため、ガス漏れの検知が重要な課題の一つとして挙げられている。
この種の被検出雰囲気中に存在する可燃性ガスのガス濃度を検出する可燃性ガス検出装置では、被検出雰囲気内にガス検出素子を配置し、このガス検出素子に、自身の温度変化(発熱)により抵抗値が変化する発熱抵抗体と、環境温度の変化により抵抗値が変化する測温抵抗体とを実装するものが知られている。
具体的には、この可燃性ガス検出装置では、ガス検出素子における発熱抵抗体の抵抗値が、二つの設定温度(第1設定温度,第2設定温度)に対応した各抵抗値となるように、ブリッジ回路によって制御し、その時の制御電圧(発熱抵抗体の両端電圧)と、測温抵抗体の抵抗値が変化することによって生じる電圧差(温度電圧)とを用いて、ガス濃度を算出している。
なお、各設定温度(第1設定温度,第2設定温度)は、例えば、ブリッジ回路内に設置された互いに抵抗値の異なる固定抵抗の導通状態を、一定の周期時間毎に選択的に切り替えることによって変更される(例えば、特許文献1参照)。
特許第4302611号公報
ところで、近年の集積化技術の向上に伴い、ガス検出素子の小型化が進んでいる。これにより、可燃性ガス検出装置では、従来のガス検出素子と比べて、発熱抵抗体と測温抵抗体とがより近接配置される傾向にある。
これに対して、従来の可燃性ガス検出装置では、発熱抵抗体の発熱温度の変化(ひいては、第1設定温度と第2設定温度との温度差)が、測温抵抗体にもたらす影響について考慮されていなかったため、その影響により、測温抵抗体の温度電圧に基づく環境温度と実際の環境温度との間で誤差が生じ、ガス濃度の検出精度が低下してしまうという問題があった。
本発明は、上記問題点を解決するために、ガス濃度の検出精度の低下を抑制することが可能な可燃性ガス検出装置を提供することが望ましい。さらには、ガス濃度を精度よく検出することが可能な可燃性ガス検出装置を提供することが望ましい。
本発明の第1局面の可燃性ガス検出装置は、被検出雰囲気内に配置されて、自身の温度変化により抵抗値が変化する発熱抵抗体と、発熱抵抗体が予め設定された二つの設定温度にそれぞれ対応する各抵抗値となるように、発熱抵抗体の通電状態を一定の周期時間毎に連続的に切り替える制御を行う通電制御部と、発熱抵抗体と同一の基板上に配置されるとともに、前記発熱抵抗体と近接配置されて、被検出雰囲気内の温度である環境温度の変化により抵抗値が変化する測温抵抗体とを備える。
なお、通電制御部は、発熱抵抗体の通電状態を一定の周期時間毎に連続的に切り替えるにあたり、予め設定された二つの設定温度のうち一方の設定温度に対応する抵抗値となる発熱抵抗体の通電状態と、予め設定された二つの設定温度のうち他方の設定温度に対応する抵抗値となる発熱抵抗体の通電状態と、が連続するように切り替えている。
そして、可燃性ガス検出装置では、ガス濃度演算部が、通電制御部の制御による発熱抵抗体への通電時に検出される発熱抵抗体の両端間の電位差である両端電圧と、測温抵抗体の抵抗値が変化することにより生じる電圧差(温度電圧)に基づく環境温度とを用いて、被検出雰囲気内の可燃性ガスの濃度を演算するように構成されている。
本発明では、このような構成において、上記周期時間について、通電制御部が発熱抵抗体の通電状態を連続的に切り替えることによって生じる環境温度の変化分が0.5℃の範囲内となる時間に予め設定している。
また、本発明では、二つの設定温度は、当該設定温度のうち高温側を第1設定温度、低温側を第2設定温度とし、第1設定温度と第2設定温度との温度差が50℃以上となる温度に予め設定されている。
このように構成された可燃性ガス検出装置によれば、測温抵抗体の温度電圧に基づく環境温度と実際の環境温度との間で誤差が大きくなる前に、発熱抵抗体の発熱温度(設定温度)を切り替えることになり、その結果、ガス濃度の検出誤差を許容差の範囲内に収めることが可能となり、可燃性ガスのガス濃度の検出精度の低下を抑制することができる。
また、本発明の第2の局面の可燃性ガス検出装置では、ガス濃度演算部は、第1設定温度時に検出される発熱抵抗体の両端電圧を高温時電圧、第2設定温度時に検出される発熱抵抗体の両端電圧を低温時電圧とし、これら高温時電圧と低温時電圧との比に基づいて、被検出雰囲気内の湿度を算出し、その湿度を用いて可燃性ガスの濃度を補正している。
このように構成された可燃性ガス検出装置によれば、高温時電圧と低温時電圧との比における高分解能を確保することができるため、被検出雰囲気内の湿度を精度よく算出することができ、これを用いて補正する結果、可燃性ガスの濃度を精度よく検出することができる。
なお、本発明の可燃性ガス検出装置は、シリコン基板を用いたマイクロマシニング加工により形成されるとともに、前記発熱抵抗体及び前記測温抵抗体が同一の前記シリコン基板上に配置されたガス検出素子を備える構成に適用した場合に、上述した効果を有効にもたらすことができる。具体的には、シリコン基板を用いたマイクロマシニング加工により形成されるガス検出素子は非常に小型であり、このようなシリコン基板上に発熱抵抗体と測温抵抗体が配置される場合には、両者が近接することになる。このとき、本発明を適用すれば、測温抵抗体の温度電圧に基づく環境温度と実際の環境温度との間で誤差が大きくなる前に、発熱抵抗体の発熱温度(設定温度)を切り替えることになり、その結果、ガス濃度の検出誤差を許容差の範囲内に収める効果が良好にもたらされる。
また、本発明の第3局面の可燃性ガス検出装置は、通電制御部により切り替えられる各周期のうち連続する二つの周期のそれぞれにおいて、測温抵抗体の抵抗値に基づく環境温度を少なくとも一つずつ検出し、連続する二つの周期の期間中に検出した複数の環境温度の平均値を算出する平均値算出部を備える。そして、この可燃性ガス検出装置におけるガス濃度演算部は、平均値算出部で算出された環境温度の平均値を、被検出雰囲気内の可燃性ガスの濃度の演算に用いる。
このように構成された可燃性ガス検出装置は、連続する二つの周期のそれぞれで環境温度の検出を行うとともにそれらの平均値を算出するため、発熱抵抗体の二つの設定温度のいずれか一方に対応する周期のみで環境温度の検出を行う場合に比べて、通電状態の切り替えに伴う発熱抵抗体の発熱量の違いが測温抵抗体に与える影響が反映された状態で、環境温度を検出できるため、環境温度の検出精度を向上できる。
また、環境温度の平均値を算出することで、例えば、突発的なノイズなどの影響により測温抵抗体に基づく環境温度の数値が変動した場合でも、その変動に起因する可燃性ガス濃度の検出精度の低下を抑制することができる。
よって、本発明によれば、環境温度の検出精度を向上することができるとともに、可燃性ガスの検出精度の低下を抑制できる。
また、本発明の第4局面の可燃性ガス検出装置は、周期時間が25[mSec]〜1[Sec]の範囲内に設定されている。
つまり、周期時間が25[mSec]よりも短い場合には、発熱抵抗体の通電状態の切り替え時点から発熱抵抗体の温度が安定するまでの時間が経過する前に、次の周期に移行する(換言すれば、通電状態の切り替え時期が到来する)可能性があり、各設定温度に応じた発熱抵抗体の両端電圧を適切に検出できないおそれがある。
また、周期時間が1[Sec]よりも長い場合には、発熱抵抗体の通電状態の切り替え間隔が長くなり、2つの設定温度それぞれに対応する発熱抵抗体の両端電圧の検出間隔が大きくなるため、ガス濃度の変化に対する追従性が低下してしまい、ガス濃度の検出精度が低下するおそれがある。
よって、本発明の可燃性ガス検出装置によれば、発熱抵抗体の温度が安定した状態で発熱抵抗体の両端電圧を適切に検出できるとともに、ガス濃度の変化に対する追従性の低下を抑制できることから、ガス濃度の検出精度の低下を抑制できる。
また、本発明の第5局面の可燃性ガス検出装置では、基板が平面視四角形状(略四角形)に形成されており、この基板を平面視した状態において、発熱抵抗体が基板にて測温抵抗体よりも中央側に配置され、測温抵抗体が、基板の縁を形成する四辺のうち、少なくとも連接する二辺に沿った領域に配置されている。
このように構成された可燃性ガス検出装置によれば、測温抵抗体の配置領域を比較的広く確保することが可能になるため、測温抵抗体の長さを所望範囲の抵抗値が得られる長さに設計し易くなり、設計の自由度を向上することができる。そして、このように構成された可燃性ガス検出装置では、測温抵抗体の長さを大きく採る必要がある場合、基板の小型化の要請から、測温抵抗体において発熱抵抗体に近接する部分がより大きくなるため、測温抵抗体が発熱抵抗体の熱影響をより受け易くなる。このため、本発明の第1局面のガス濃度検出装置をより効果的に適用することができる。
さらに、本発明の第6の局面の可燃性ガス検出装置では、測温抵抗体が、基板の縁における三辺に沿った領域に配置されている。この場合、測温抵抗体の配置領域をより広く確保することが可能になるため、設計の自由度をより向上することができる。そして、測温抵抗体において発熱抵抗体に近接する部分がさらに大きくなり得ることから、測温抵抗体が発熱抵抗体の熱影響をさらに受け易くなり、ひいては、本発明の第1局面の可燃性ガス検出装置をさらに効果的に適用することができる。
なお、本発明の第7の局面の可燃性ガス検出装置は、発熱抵抗体の両端に接続された二つの電極を第1電極群、測温抵抗体の両端に接続された二つの電極を第2電極群として、これら第1電極群および第2電極群は、基板の縁における一辺に沿った領域に配置されている構成である。
このように構成された可燃性ガス検出装置によれば、発熱抵抗体および測温抵抗体と基板外部に設けられた入出力回路部との接続が容易になるため、配線構造を単純化することが可能となり、ひいては、装置全体の小型化を図ることができる。
可燃性ガス検出装置の全体構成図である。 図2Aは可燃性ガス検出装置の主要部となるガス検出素子の構成を示す平面図であり、図2Bは図2AにおけるIIB−IIB線に沿ったガス検出素子の断面図である。 ガス濃度演算処理の内容を示すフローチャートである。 図4Aは発熱抵抗体の両端電圧を示すタイムチャートであり、図4Bは発熱抵抗体の温度を示すタイムチャートである。 図5Aは発熱抵抗体の温度のタイムチャートであり、図5Bは測温抵抗体の温度出力のタイムチャートであり、図5Cは出力誤差のタイムチャートである。 ガス検出素子の各部の配置を例示する第1の概略図である。 図7Aはガス検出素子の各部の配置を例示する第2の概略図であり、図7Bはガス検出素子の各部の配置を例示する第3の概略図である。 第2実施形態における電圧検出処理の内容を示すフローチャートである。 第2実施形態におけるガス濃度演算処理の内容を示すフローチャートである。
1…可燃性ガス検出装置、3…ガス検出素子、5…制御回路、7…マイコン、8…記憶装置、9…起動スイッチ、34…発熱抵抗体、35…測温抵抗体、50…通電制御回路、51…ブリッジ回路、52…可変抵抗部、55…電流調整回路、57…スイッチング回路、80…温度調整回路、81…ブリッジ回路、87…スイッチング回路、521,522…固定抵抗、523…切替スイッチ、CH…第1設定温度、CL…第2設定温度、TW…周期時間。
以下に、本発明の実施形態を図面と共に説明する。
図1は、本発明が適用された可燃性ガス検出装置1の全体構成図である。図2Aは、可燃性ガス検出装置1の主要部となるガス検出素子3の構成を示す平面図(但し、内部構成も一部示す)であり、図2Bが図2AにおけるIIB−IIB線に沿ったガス検出素子の断面図である。
[全体構成]
可燃性ガス検出装置1は、熱伝導式のガス検出素子3を用いて、可燃性ガスの濃度を検出するものであり、例えば、燃料電池自動車の客室内に設置され、水素の漏れを検出する目的等に用いられる。
図1に示すように、可燃性ガス検出装置1は、ガス検出素子3(図2A、図2B参照)を駆動制御する制御回路5と、制御回路5の動作を制御する切替信号CG1を生成するとともに、制御回路5から得られる検出信号V1,SVTに基づいて、被検出ガス中に含まれる可燃性ガスのガス濃度を演算する処理(ガス濃度演算処理)を少なくとも含む各種処理を実行するマイクロコンピュータ(以下「マイコン」という)7と、直流電源Vccから可燃性ガス検出装置1への電源供給経路を導通,遮断することで制御回路5,マイコン7を起動,停止する起動スイッチ9とを備えている。
なお、制御回路5(但し、後述する発熱抵抗体34および測温抵抗体35を除く),マイコン7,起動スイッチ9は単一の回路基板上に構成され、この回路基板とは別体にガス検出素子3は構成されている。
[ガス検出素子]
次に、ガス検出素子3について説明する。
図2A,図2Bに示すように、ガス検出素子3は、平板形状(平面視四角形状)の基部30を備え、基部30の一方の面(以下「表面」という)には、複数の電極31が形成され、他方の面(以下「裏面」という)には、基部30の中心付近に、基部30の一方の方向に沿って一つの凹部301が形成されている。
なお、ガス検出素子3は、縦横ともに数mm(例えば3mm×3mm)程度の大きさであり、例えば、シリコン基板を用いたマイクロマシニング技術(マイクロマシニング加工)により製造される。
電極31は、基部30の一方の辺(図2A中では下方の辺)に沿って配置された二つの電極(電極パッド)311,312(以下「第1電極群」ともいう)と、他方の辺(図2A中では上方の辺)に沿って配置された二つの電極(電極パッド)314,315(以下「第2電極群」ともいう)とを備える。これらのうち、電極312,315を、以下ではグランド電極ともいう。また、電極31を構成する材料としては、例えば、アルミニウム(Al)又は金(Au)が用いられる。
基部30は、シリコン製の基板32と、基板32の一方の面に形成された絶縁層33とを備えており、絶縁層33が部分的(ここではほぼ正方形)に露出するように基板32の一部を除去することで凹部301が形成されたダイアフラム構造をなしている。つまり、基部30では、絶縁層33側(基板32が除去されていない方)が基部30の表面となり、基板32側(基板32の一部が除去されている方を含む)が基部30の裏面となる。
絶縁層33には、凹部301により基部30の裏面に露出した部位に、渦巻き状配線された線状の発熱抵抗体34が埋設されているとともに、第2電極群314,315が形成された側の基部30の長辺(一辺)に沿って、温度測定に用いる測温抵抗体35が埋設されている。つまり、発熱抵抗体34は、絶縁層33にて測温抵抗体35よりも中央側の領域に配置され、測温抵抗体35は、絶縁層33の縁を形成する四辺のうちの一辺に沿った領域に配置されている。
なお、絶縁層33は、単一の材料で形成されてもよいし、異なる材料を用いて複数層を成すように形成されてもよい。また、絶縁層33を構成する絶縁性材料としては、例えば、酸化ケイ素(SiO2)や窒化珪素(Si34)が用いられる。
発熱抵抗体34は、自身の温度変化により抵抗値が変化する温度抵抗係数が大きい導電性材料で構成され、また、測温抵抗体35は、電気抵抗が温度に比例して変化(本実施形態では、温度の上昇に伴って抵抗値が増大)する導電性材料で構成される。但し、発熱抵抗体34および測温抵抗体35は、いずれも同じ抵抗材料、本実施形態では白金(Pt)で形成されている。
そして、発熱抵抗体34は、発熱抵抗体34が形成された平面と同じ平面に埋設された配線36、および配線膜37を介して第1電極群311,312に接続され、測温抵抗体35は、測温抵抗体35が形成された平面と同じ平面に埋設された配線膜(図示せず)を介して第2電極群314,315に接続されている。
なお、配線36や配線膜37を構成する材料としては、発熱抵抗体34および測温抵抗体35と同じ抵抗材料が用いられている。また、基部30の表面に形成される電極31と基部30(絶縁層33)の内部に形成される配線膜37とはコンタクトホール(接続導体)によって接続される。
つまり、発熱抵抗体34は、一端が電極311、他端がグランド電極312と導通し、測温抵抗体35は、一端が電極314、他端がグランド電極315と導通するように接続されている。
このように構成されたガス検出素子3は、凹部301が形成された裏面を被検出雰囲気内に晒すように配置した状態で使用される。
[制御回路]
次に、制御回路5の構成について説明する。
図1に示すように、制御回路5は、発熱抵抗体34への通電制御を行い、発熱抵抗体34の両端電圧に対応する検出信号V1を出力する通電制御回路50と、測温抵抗体35への通電を行い、被検出雰囲気の温度を表す温度検出信号SVTを出力する温度調整回路80とを備えている。
[通電制御回路]
通電制御回路50は、発熱抵抗体34を含んで構成されたブリッジ回路(ホイートストンブリッジ回路)51と、ブリッジ回路51で検出される電位差を増幅する増幅回路53と、増幅回路53の出力に従って、ブリッジ回路51に流れる電流を増減調整する電流調整回路55とを備えている。
電流調整回路55は、ブリッジ回路51に直流電源Vccを供給する電源ラインに接続され、増幅回路53の出力である調整信号Cに従って通電状態(オン抵抗)が変化するトランジスタを備える。具体的には、調整信号Cが大きいほど、オン抵抗が大きくなって、ブリッジ回路51に流れる電流が減少し、逆に、調整信号が小さいほど、オン抵抗が小さくなって、ブリッジ回路51に流れる電流が増大するように構成されている。
増幅回路53は、演算増幅器531と、演算増幅器531の反転入力端子および非反転入力端子のそれぞれに接続された固定抵抗532,533と、演算増幅器531の反転入力端子と出力端子との間に並列接続された固定抵抗534,およびコンデンサ535とによって構成された周知の差動増幅回路を備える。
つまり、非反転入力端子の入力電圧が反転入力端子の入力電圧より大きい場合に、増幅回路53の出力である調整信号Cが大きくなり(ひいては、ブリッジ回路51に流れる電流が減少し)、逆に、非反転入力端子の入力電圧が反転入力端子の入力電圧より小さい場合に、調整信号Cが小さくなる(ひいては、ブリッジ回路51に流れる電流が増大する)ように構成されている。
ブリッジ回路51は、発熱抵抗体34および2個の固定抵抗511,512、抵抗値を切替可能な可変抵抗部52を備えており、固定抵抗511と発熱抵抗体34、固定抵抗512と可変抵抗部52をそれぞれ直列接続し、各直列回路のうち、発熱抵抗体34および可変抵抗部52側の各端部PGを接地し、固定抵抗511,512側の各端部を電源側(電流調整回路55)に接続することで構成されている。
そして、固定抵抗511と発熱抵抗体34との接続点P+は、固定抵抗532を介して演算増幅器531の非反転入力端子に接続され、固定抵抗512と可変抵抗部52との接続点P−は、固定抵抗533を介して演算増幅器531の反転入力端子に接続されている。さらに、接続点P+の電位を、検出信号V1としてマイコン7に供給するように構成されている。
また、可変抵抗部52は、抵抗値の異なる2個の固定抵抗521,522と、マイコン7からの切替信号CG1に従って、固定抵抗521,522のいずれか一方を有効に動作させる切替スイッチ523を備えており、切替スイッチ523により可変抵抗部52の抵抗値を切り替えることで、ブリッジ回路51のバランスを変化させることができるように構成されている。
なお、固定抵抗521は、発熱抵抗体34が第1設定温度CH(例えば、400℃)となる抵抗値を有し、固定抵抗522は、発熱抵抗体34が第1設定温度CHより低く設定された第2設定温度CL(例えば、300℃)となる抵抗値を有する。
このように構成された通電制御回路50では、直流電源Vccからブリッジ回路51への通電を開始すると、増幅回路53および電流調整回路55は、接続点P+,P−間に生じる電位差がゼロになるようにブリッジ回路51に流れる電流を調整する。これにより、発熱抵抗体34の抵抗値(ひいては温度)が、可変抵抗部52によって決まる一定値(ひいては第1設定温度CHまたは第2設定温度CL)に制御される。
具体的には、被検出雰囲気中の可燃性ガスの含有量が変化し、発熱抵抗体34が発生させる熱量より、可燃性ガスによって奪われる熱量が大きくなった場合には、発熱抵抗体34の温度が低下することによって、発熱抵抗体34の抵抗値が減少する。逆に、発熱抵抗体が発生させる熱量より、可燃性ガスによって奪われる熱量が小さくなった場合には、発熱抵抗体34の温度が上昇することによって、発熱抵抗体34の抵抗値が増大する。
これに対して、増幅回路53および電流調整回路55は、発熱抵抗体34の抵抗値が減少すると、ブリッジ回路51に流れる電流、ひいては発熱抵抗体34が発生させる熱量を増大させ、逆に、発熱抵抗体34の抵抗値が増大すると、ブリッジ回路51に流れる電流、ひいては発熱抵抗体34が発生させる熱量を減少させることで、発熱抵抗体34の抵抗値(ひいては温度)を一定の大きさに保つ。
つまり、接続点P+の電位を表す検出信号V1からは、発熱抵抗体34に流れる電流の大きさ、即ち、発熱抵抗体34の温度(抵抗値)を一定に保つために必要な熱量(さらには、可燃性ガスによって奪われる熱量)がわかり、その熱量はガス濃度に応じた大きさとなるため、検出信号V1から可燃性ガスのガス濃度がわかることになる。なお、詳細には、ガス濃度を算出する際に、被検出雰囲気内の湿度Hを用いて補正するが、これについては後述の「ガス濃度演算処理」にて説明する。
[温度測定回路]
次に、温度調整回路80は、測温抵抗体35を含んで構成されたブリッジ回路(ホイートストンブリッジ)81と、ブリッジ回路81から得られる電位差を増幅する増幅回路83とを備えている。
増幅回路83は、演算増幅器831と、演算増幅器831の反転入力端子および非反転入力端子のそれぞれに接続された固定抵抗832,833と、演算増幅器831の反転入力端子と出力端子との間に並列接続された固定抵抗834,コンデンサ835によって構成された周知の差動増幅回路を備える。
ブリッジ回路81は、測温抵抗体35および3個の固定抵抗811,812,813を備えており、固定抵抗811と測温抵抗体35、固定抵抗812と固定抵抗813をそれぞれ直列接続し、各直列回路のうち、測温抵抗体35および固定抵抗813側の各端部を接地し、固定抵抗811,812側の各端部を電源に接続することで構成されている。
そして、固定抵抗811と測温抵抗体35との接続点P−が固定抵抗833を介して演算増幅器531の反転入力端子に接続され、固定抵抗812と固定抵抗813との接続点P+が固定抵抗832を介して演算増幅器831の非反転入力端子に接続されている。また、演算増幅器831の出力を温度検出信号SVTとしてマイコンに供給するように構成されている。
測温抵抗体35は、ガス検出素子3が晒される被検出雰囲気の温度が、予め設定された基準温度の時に、温度検出信号SVTが基準値となるように設定される。
そして、被検出雰囲気の温度変化に伴って、測温抵抗体35の抵抗値が変化することにより電位差が生じ、この電位差を増幅したものが温度検出信号SVTとして出力される。
なお、ガス検出素子3と制御回路5との接続において、ガス検出素子3の各電極31(311,312,314,315)は、電極311が通電制御回路50の接続点P+に、電極314が温度調整回路80の接続点P−に、グランド電極312,315が制御回路5に共通のグランドラインに接続される。
[マイコン]
マイコン7は、ガス濃度演算処理等を実行するための各種のプログラムやデータを格納する記憶装置8(ROM,RAM等)、この記憶装置8に記憶されたプログラムを実行するCPU、各種信号を入出力するためのIOポート、計時用タイマー等を備えた周知のものである。
ここで、第1設定温度CH(400℃)の時に検出される検出信号V1の信号レベルを高温時電圧VH1、第2設定温度CL(300℃)時に検出される検出信号V1の信号レベルを低温時電圧VL1、温度調整回路80から読み込んだ温度検出信号SVTの信号レベルを温度電圧VTというものとする。
そして、記憶装置8には、被検出雰囲気内の環境温度Tと温度電圧VTとの相関関係を表す温度換算データ、被検出雰囲気内の湿度Hと高温時電圧VH1,低温時電圧VL1,温度電圧VTとの相関関係を表す湿度換算データ、高温時電圧VH1または低温時電圧VL1(本実施形態では高温時電圧VH1を使用)と可燃性ガスのガス濃度Xとの相関関係を表す濃度換算データが少なくとも記憶されている。なお、各換算データは、具体的には、換算用マップデータや換算用計算式等で構成されており、実験等により得られたデータに基づいて予め作成されたものである。
なお、湿度換算データには、環境温度T(ひいては温度電圧VT)と後述する電圧比VC(0)との相関関係を表す電圧比換算用マップデータ、後述する電圧比差ΔVCと湿度Hとの相関関係を表す湿度換算用マップデータが含まれている。さらに、濃度換算データには、温度電圧VTと後述する高温時電圧VH1(0)との相関関係を表す高温時電圧換算用マップデータ、高温時電圧VH1および湿度Hと後述する高温時電圧変化ΔVH1(H)との相関関係を表す湿度電圧変化換算用マップデータ、温度電圧VTおよび高温時電圧VH1と後述するガス感度G(VT)との相関関係を表すガス感度換算用マップデータが含まれている。
また、マイコン7は、起動スイッチ9がオンされることによって直流電源Vccから給電が開始されると起動して、マイコン7の各部を初期化後、ガス濃度演算処理を開始する。
[ガス濃度演算処理]
ここで、マイコン7のCPUが実行するガス濃度演算処理を、図3に示すフローチャートに沿って説明する。なお、ガス濃度Xを求める演算では、低温時電圧VL1または高温時電圧VH1のいずれかから濃度換算データを用いてガス濃度Xを求め、さらには、温度電圧VTから温度換算データを用いて環境温度Tを求め、演算結果であるガス濃度Xを、同じく演算結果である環境温度Tだけを用いて補正する方法もあるが、ここでは、環境温度Tに加えて湿度Hを用いてガス濃度Xを求めるものとする。
本処理(ガス濃度演算処理)が実行されると、まず、S110では、通電制御回路50から低温時電圧VL1,高温時電圧VH1を取得するとともに、温度調整回路80から温度電圧VTを取得する。
具体的には、切替信号CG1によりブリッジ回路51の抵抗値、即ち、発熱抵抗体34の設定温度を、一定の周期時間TWの間(以下「低温測定期間TWL」ともいう)、第2設定温度CLに保持した後、設定を切り替えて、再び一定の周期時間TWの間(以下「高温測定期間TWH」ともいう)、第1設定温度CHに保持する制御を行う(図4A−4B参照)。これと並行して、低温測定期間中に低温時電圧VL1、高温測定期間中に高温時電圧VH1、両期間のいずれかのタイミングで温度電圧VTを検出する。なお、図4Aは発熱抵抗体の両端電圧を示すタイムチャートであり、図4Bは発熱抵抗体の温度を示すタイムチャートである。
そして、S120では、S110にて取得した低温時電圧VL1,高温時電圧VH1を次式(1)の入力値として、電圧比VCを算出する。
VC=VH1/VL1…(1)
また、これと並行して、S130では、S110にて取得した温度電圧VTと、電圧比換算用マップデータとに基づいて、環境温度T(ひいては温度電圧VT)においてガス濃度X、及び、湿度Hがゼロのときの電圧比VC(0)を算出する。
そして、S140では、S120にて算出した電圧比VCと、S130にて算出したVC(0)とを次式(2)の入力値として、環境温度T(ひいては温度電圧VT)における電圧比差ΔVCを算出する。
ΔVC=VC−VC(0)…(2)
次に、S150では、S140にて算出した電圧比差ΔVCと、湿度換算用マップデータとに基づいて、電圧比差ΔVCのときの湿度Hを算出する。
また、これと並行して、S160では、S110にて取得した高温時電圧VH1,温度電圧VTと、高温時電圧換算用マップデータとに基づいて、環境温度T(ひいては温度電圧VT)においてガス濃度X、及び、湿度Hがゼロのときの高温時電圧VH1(0)を算出する。
続いて、S170では、S110にて取得した高温時電圧VH1、およびS150にて算出した湿度Hと、湿度電圧変化換算用マップデータとに基づいて、高温時電圧VH1のうち湿度Hによってもたらされた電圧変化分を表す高温時電圧変化ΔVH1(H)を算出する。
そして、S180では、S110にて取得した高温時電圧VH1と、S160にて算出した高温時電圧VH1(0)と、S170にて算出した高温時電圧変化ΔVH1(H)とを次式(3)の入力値として、高温時電圧VH1のうち可燃性ガスによってもたらされた電圧変化分を表す高温時電圧変化ΔVH1(G)を算出する。
ΔVH1(G)=VH1−VH1(0)−ΔVH1(H)…(3)
また、これと並行して、S190では、S110にて取得した高温時電圧VH1,温度電圧VTと、ガス感度換算用マップデータとに基づいて、高温時電圧VH1について環境温度T(ひいては温度電圧VT)毎に予め設定された可燃性ガスに対する感度(単位はガス濃度Xの逆数)を表すガス感度G(VT)を算出する。
最後に、S200では、S180にて算出した高温時電圧変化ΔVH1(G)と、S190にて算出したガス感度G(VT)とを次式(4)の入力値として、可燃性ガスのガス濃度Xを算出し、S110に戻る。
X=ΔVH1(G)/G(VT)…(4)
このように、本処理では、周期時間TW毎に切替信号CG1を切替スイッチ523に出力することにより、固定抵抗512と可変抵抗部52との接続点P−から端部PG(可変抵抗部52における接地側端部)への通電経路(可変抵抗部52における通電経路)を、固定抵抗521,522のいずれか一方側から他方側に切り替え、これにより高温時電圧VH1,低温時電圧VL1,温度電圧VTを取得する。そして、ガス濃度演算処理では、温度電圧VTに基づいて環境温度Tを演算し、さらには、高温時電圧VH1と低温時電圧VL1の比から被検出雰囲気内の湿度Hを演算し、これら環境温度Tと湿度Hとを用いてガス濃度Xを補正する。
ところで、本実施形態では、第1設定温度CHとして400℃、第2設定温度CLとして300℃を採用し、400℃に対応する発熱抵抗体34の両端電圧を高温時電圧VH1、300℃に対応する発熱抵抗体34の両端電圧を低温時電圧VL1としている。この第1設定温度CHと第2設定温度CLとの差(設定温度差)を100℃とする理由は、被検出雰囲気内の湿度Hを精度よく算出するためには設定温度差を50℃以上にし、高温時電圧VH1と低温時電圧VL1との比における高分解能を確保する必要があることに起因する。なお、上記設定温度差の上限については、ガス検出素子3の耐久性等を考慮して、200℃以下にすればよく、この設定温度差は好ましくは75℃以上150℃以下の範囲内に設定すればよい。
一方、被検出雰囲気内の環境温度Tを精度よく算出するためには、測温抵抗体35が、発熱抵抗体34による発熱温度の変化(ひいては設定温度差)の影響をなるべく受けないようにすることが好ましい。特に本実施形態のように、シリコン製の基板32を用いたマイクロマシニング加工により形成されるとともに、発熱抵抗体34および測温抵抗体35が基板32上の絶縁層33内に埋設(配置)されたダイアフラム構造のガス検出素子3を適用する場合には、ガス検出素子3が非常に小型であるが故に発熱抵抗体34および測温抵抗体35が近接配置されるため、上記したように、測温抵抗体35が発熱抵抗体34による発熱温度の変化の影響を受け易い構成といえ、測温抵抗体35がその影響を受けないようにすることが好ましい。
このため、第1及び第2設定温度(CH,CL)を保持する(切り替える)ための周期時間TWは、これらの設定温度を切り替えた後、検出信号V1の出力が十分に安定するのに要する時間以上である必要はあるものの、ガス濃度Xを検出する際の発熱抵抗体34の設定温度差に基づく検出誤差が予め設定された許容差の範囲内に収まるよう設定しなければならない。
そして、この検出誤差は、設定温度の切り替えによる発熱抵抗体34の設定温度差の影響を測温抵抗体35が受けないと仮定した場合、つまり、環境温度Tを一定の温度(基準温度)に固定した場合に算出されるガス濃度Xを基準濃度とし、環境温度Tの変動を考慮したガス濃度Xがこの基準濃度に対して±5%F.S.(フルスケール)以内であれば許容差の範囲内であると考えられる。
そこで、本処理(ガス濃度演算処理)のプログラムを用いて、周期時間TWを設定するためのシミュレーションを行うと、図5A、図5B,図5Cに示す結果が得られた。なお、図5A−5Cは、周期時間を設定するためのシミュレーション結果を示す説明図であり、このうち、図5Aは発熱抵抗体の温度のタイムチャートであり、図5Bは測温抵抗体の温度出力のタイムチャートであり、図5Cは出力誤差のタイムチャートである。
図5A、図5B,図5Cに示すように、本シミュレーションでは、発熱抵抗体34の設定温度が300℃である場合の環境温度T(基準温度)が25℃となる条件下において、周期時間TWを5sに仮設定し、上記プログラムを実行したときの測温抵抗体35の出力変化と、演算結果であるガス濃度Xの基準濃度に対する出力誤差(検出誤差)との相関関係を得た。
具体的には、周期時間TW(5s)毎に切替信号CG1を切替スイッチ523に出力することにより、高温時電圧VH1,低温時電圧VL1,温度電圧VTを取得し、温度電圧VTから環境温度Tを求め、高温時電圧VH1と低温時電圧VL1の比から被検出雰囲気内の湿度Hを求め、これら環境温度Tと湿度Hとを用いて補正することで、ガス濃度Xを算出した。そして、環境温度Tの時間変化、基準温度(25℃)に対応するガス濃度Xを基準濃度とし、算出結果であるガス濃度Xの基準濃度に対する出力誤差の時間変化をそれぞれシミュレーション結果として得た。
このシミュレーション結果から明らかなように、発熱抵抗体34の温度変化が100℃の範囲内で周期時間TWを5sに設定すると、測温抵抗体35の出力変化が0.5℃の範囲内で繰り返しなされ、さらには、この間のガス濃度Xの出力誤差が±5%F.S.に収まることが確認された。つまり、環境温度Tとガス濃度Xの検出誤差との相関関係について、測温抵抗体35の出力変化が0.5℃の範囲内(換言すれば、±0.5℃以内)であれば、検出誤差が許容差の範囲内に収まるガス濃度Xが得られる。
一方、このシミュレーションでは、発熱抵抗体34の設定温度差を100℃としているが、高温時電圧VH1と低温時電圧VL1との比における分解能をより上げる(換言すれば、被検出雰囲気内の湿度Hをより精度よく検出する)には、設定温度差をさらに大きくすればよいと考えられる。
この場合、測温抵抗体35は、発熱抵抗体34による発熱温度の変化の影響をさらに受けやすくなるので、周期時間TWをより短縮する必要があり、そのときには、測温抵抗体35の出力変化が0.5℃の範囲内となる周期時間TWに設定すればよい。ちなみに、本実施形態では、各種の基準温度に耐え得るように周期時間TWを200msに設定している。
[効果]
以上、説明したように、本実施形態の可燃性ガス検出装置1では、周期時間TWについて、発熱抵抗体34の発熱温度の変化(ひいては設定温度差)によって生じる環境温度Tの変化分が0.5℃の範囲内となる時間に予め設定しておくことにより、ガス濃度Xの出力誤差が±5%F.S.に収まることを可能とした。
したがって、本実施形態の可燃性ガス検出装置1によれば、測温抵抗体35の温度電圧VTに基づく環境温度Tと実際の環境温度との間で誤差が大きくなる前に、発熱抵抗体34の発熱温度(設定温度)を切り替えることにより、可燃性ガスのガス濃度Xの検出誤差を許容差の範囲内に収めることができ、ガス濃度Xの検出精度の低下を抑制することができる。
また、可燃性ガス検出装置1では、ガス濃度演算処理にて、高温時電圧VH1,低温時電圧VL1から湿度H、温度電圧VTから環境温度Tをそれぞれ算出し、これら湿度Hおよび環境温度Tを用いて、高温時電圧VH1に基づいて求められる被検出雰囲気内のガス濃度Xを算出(補正)しているので、精度よく可燃性ガスのガス濃度Xを求めることができる。
さらには、可燃性ガス検出装置1では、発熱抵抗体34の設定温度差が100℃となるように第1設定温度CHと第2設定温度CLとを予め設定しているので、高温時電圧VH1と低温時電圧VL1との比における高分解能を確保することができるため、被検出雰囲気内の湿度Hを精度よく算出することができ、これを用いて補正する結果、可燃性ガスのガス濃度Xをさらに精度よく検出することができる。
[特許請求の範囲との対応関係]
ここで、特許請求の範囲と本実施形態とにおける文言の対応関係について説明する。通電制御回路50および切替信号CG1を出力するマイコン7が通電制御部の一例に相当し、ガス濃度演算処理を実行するマイコン7がガス濃度演算部の一例に相当する。
[他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
例えば、上記実施形態の可燃性ガス検出装置1では、発熱抵抗体34の設定温度差が100℃となるように第1設定温度CHと第2設定温度CLとを予め設定しているが、これに限定されるものではなく、設定温度差は50℃以上であればよく、詳細には、設定温度差は50℃〜150℃の範囲内が望ましい。
また、上記実施形態の可燃性ガス検出装置1では、周期時間TWを200msに予め設定しているが、これに限らず、周期時間TWは、発熱抵抗体34の発熱温度の変化によって生じる環境温度Tの変化分が0.5℃の範囲内となる時間であればよい。
さらには、上記実施形態の可燃性ガス検出装置1では、被検出雰囲気内の湿度Hを用いてガス濃度Xを算出しているが、これに限定されるものではなく、少なくとも、発熱抵抗体34の両端電圧(VH1,VL1)と、測温抵抗体35の温度電圧VTとを用いてガス濃度Xを算出する構成でもよい。
ところで、上記実施形態の可燃性ガス検出装置1では、ガス検出素子3において、測温抵抗体35が絶縁層33の縁を形成する四辺のうちの一辺に沿った領域に配置されているが、これに限定されるものではなく、例えば図6に示すように、ガス検出素子3を平面視した状態で、測温抵抗体35が、絶縁層33の縁における三辺に沿った領域(発熱抵抗体34を囲う領域)に配置されてもよい。
また、上記実施形態の可燃性ガス検出装置1では、第1電極群311,312と第2電極群314,315とが基部30の表面上において互いに対向する辺に沿って配置されているが、これに限定されるものではなく、例えば図6に示すように、第1電極群311,312と第2電極群314,315とが基部30の表面の縁における同一辺に沿った領域に配置されてもよい。
つまり、図6に示すガス検出素子3における各部の配置構成では、上記実施形態と比較して、測温抵抗体35の配置領域をより広く確保することが可能になるため、測温抵抗体35の長さを所望範囲の抵抗値が得られる長さに設計し易くなり、設計の自由度をより向上することができ、また、温度の検出精度を高めることもできる。そして、測温抵抗体35において発熱抵抗体34(配線36)に近接する部分が、上記実施形態と比較してより大きくなり、測温抵抗体35が発熱抵抗体34の熱影響をさらに受け易くなる。このため、この配置構成によれば、上記実施形態においてマイコン7が実行するガス濃度演算処理において発熱抵抗体34の設定温度を切り替える周期時間TWを短縮することによる効果をより享受することができる。
また、図6に示すガス検出素子3における各部の配置構成では、第1電極群311,312および第2電極群314,315とガス検出素子3の外部に設けられた入出力回路部(例えば、回路基板)との接続が容易になるため、配線構造を単純化することが可能となり、ひいては、可燃性ガス検出装置1全体の小型化を図ることができる。
なお、ガス検出素子3における各部の配置構成は、図6に示す構成に限らず、例えば図7Aに示すように、第1電極群311,312と第2電極群314,315とが基部30上において互いに対向する辺に沿って配置され、且つ、測温抵抗体35が基部30上の縁における三辺に沿った領域(発熱抵抗体34および第1電極群311,312を囲う領域)に配置されてもよい。
また、ガス検出素子3における各部の配置構成は、例えば図7Bに示すように、測温抵抗体35が基部30上の縁において連接する二辺に沿った領域(発熱抵抗体34および第1電極群311,312を囲う領域)に配置されてもよい。
さらに、ガス検出素子3における各部の配置構成に関して、ガス検出素子3を平面視したときの発熱抵抗体34と測温抵抗体35との距離は、例えば、図2Aに示すガス検出素子3では0.6[mm]に設定されている。このような構成のガス検出素子3は、発熱抵抗体34の近傍温度を測温抵抗体35で適切に検出することが可能となる。
なお、発熱抵抗体34および測温抵抗体35は、いずれも絶縁層33の内部に備えられるが、絶縁層33の厚さ方向における配置位置は必ずしも同じではない場合がある。しかし、絶縁層33は薄膜であり、その厚さ寸法は小さいことから、発熱抵抗体34と測温抵抗体35との実際の距離は、ガス検出素子3を平面視したときの発熱抵抗体34と測温抵抗体35との距離と同等となる。
また、発熱抵抗体34と測温抵抗体35との距離は、発熱抵抗体34を構成する電熱線と測温抵抗体35を構成する電熱線との距離であり、それぞれの電熱線に繋がる配線(リード部)どうしの距離ではない。
さらに、ガス検出素子3を平面視したときの発熱抵抗体34と測温抵抗体35との距離は、0.6[mm]に限られることはなく、1.0[mm]以下であればよい。このような構成を採用することで、発熱抵抗体34の近傍温度を測温抵抗体35で適切に検出することができる。
また、上記実施形態では、低温測定期間TWL、高温測定期間TWHのいずれかのタイミングで温度電圧VTを検出する構成について説明したが、温度電圧VTの検出時期は低温測定期間および高温測定期間の両方であってもよい。
そこで、第2実施形態として、連続する二つの周期(低温測定期間および高温測定期間)のそれぞれで温度電圧VT(換言すれば、環境温度T)の検出を行うとともにそれらの平均値である温度電圧平均値VTavを算出する可燃性ガス検出装置について説明する。
なお、第2実施形態の可燃性ガス検出装置は、上記実施形態の可燃性ガス検出装置1と比べて、主にマイコン7で実行される処理の一部が相違するが、その他の構成については同様の構成である。そのため、以下の説明では、相違部分を中心に説明し、第1実施形態と同様な内容の説明は、省略又は簡略化する。
まず、第2実施形態の可燃性ガス検出装置に備えられるマイコン7は、起動スイッチ9がオンされることによって直流電源Vccから給電が開始されると起動して、マイコン7の各部を初期化後、電圧検出処理およびガス濃度演算処理を開始する。
ここで、マイコン7のCPUが実行する電圧検出処理を、図8に示すフローチャートに沿って説明する。
図8に示す電圧検出処理が実行されると、まず、S810では、発熱抵抗体34および測温抵抗体35への通電を開始する。
このとき、発熱抵抗体34への通電状態を低温側制御状態に設定しており、具体的には、切替信号CG1により可変抵抗部52の抵抗値を切り替えることで、ブリッジ回路51における発熱抵抗体34の設定温度を第2設定温度CL(300℃)に設定する。
次のS815では、発熱抵抗体34の低温測定時(換言すれば、第2設定温度CLの設定時)における温度電圧VT(以下、低温時温度電圧VTLともいう)を取得する。
続くS820では、発熱抵抗体34の低温測定時(換言すれば、第2設定温度CLの設定時)における発熱抵抗体34の両端電圧(以下、低温時電圧VL1ともいう)を取得する。
続くS825では、前回の発熱抵抗体34への通電状態の切り替え時期を起算点として、予め定められた周期時間TWが経過したか否かを判断しており、肯定判定の場合にはS830に移行し、否定判定の場合には同ステップを繰り返し実行することで肯定判定されるまで待機する。
S825で肯定判定されてS830に移行すると、S830では、発熱抵抗体34への通電状態を高温側制御状態に切り替える処理を行う。
具体的には、切替信号CG1により可変抵抗部52の抵抗値を切り替えることで、ブリッジ回路51における発熱抵抗体34の設定温度を第1設定温度CH(400℃)に設定する。
次のS835では、発熱抵抗体34の高温測定時(換言すれば、第1設定温度CHの設定時)における温度電圧VT(以下、高温時温度電圧VTHともいう)を取得する。
続くS840では、発熱抵抗体34の高温測定時(換言すれば、第1設定温度CHの設定時)における発熱抵抗体34の両端電圧(以下、高温時電圧VH1ともいう)を取得する。
続くS845では、前回の発熱抵抗体34への通電状態の切り替え時期を起算点として、予め定められた周期時間TWが経過したか否かを判断しており、肯定判定の場合にはS850に移行し、否定判定の場合には同ステップを繰り返し実行することで肯定判定されるまで待機する。
S845で肯定判定されてS850に移行すると、S850では、温度電圧VTの平均値(以下、温度電圧平均値VTavともいう)を算出する。
具体的には、S815で取得した低温時温度電圧VTLとS835で取得した高温時温度電圧VTHとの平均値を、温度電圧平均値VTav(=(VTL+VTH)/2)として算出する。
続くS855では、S820で取得した低温時電圧VL1、S840で取得した高温時電圧VH1、S845で算出した温度電圧平均値VTavの各値を、マイコン7の記憶装置8(メモリ、RAMなど)に保存する処理を行う。
次のS860では、発熱抵抗体34への通電状態を低温側制御状態に切り替える処理を行う。具体的には、切替信号CG1により可変抵抗部52の抵抗値を切り替えることで、ブリッジ回路51における発熱抵抗体34の設定温度を第2設定温度CL(300℃)に設定する。
S860での処理が終了すると、再びS815に移行し、このあと電圧検出処理が停止するまで、S815からS860までの処理が繰り返し実行される。
このようにして電圧検出処理を実行することで、まずは、一定の周期時間TWの間(以下「低温測定期間TWL」ともいう)は、ブリッジ回路51の発熱抵抗体34の設定温度を第2設定温度CLに保持し、低温測定期間TWLが終了した後、発熱抵抗体34の設定温度を第1設定温度CHに切り替える。その後、一定の周期時間TWの間(以下「高温測定期間TWH」ともいう)は、発熱抵抗体34の設定温度を第1設定温度CHに保持し、高温測定期間TWHが終了した後、発熱抵抗体34の設定温度を第2設定温度CLに切り替える制御を行う(図4A、図4B参照)。
これと並行して、温度電圧VTに関して、低温時温度電圧VTLおよび高温時温度電圧VTHを検出すると共に、これらの平均値である温度電圧平均値VTavを算出する処理を行う。
つまり、電圧検出処理を実行することで、一定の周期時間TWごとに発熱抵抗体の通電状態を切り替えるとともに、低温時電圧VL1、高温時電圧VH1、温度電圧平均値VTavの各値を、マイコン7の記憶装置8(メモリ、RAMなど)に保存する処理が実行される。
次に、第2実施形態におけるガス濃度演算処理について説明する。
図9は、第2実施形態におけるガス濃度演算処理の内容を示すフローチャートである。
第2実施形態のガス濃度演算処理は、図3に示す第1実施形態のガス濃度演算処理と比べて、少なくともS110,S130,S160,S190での処理内容が異なる。
まず、第2実施形態のS110では、マイコン7の記憶装置8(メモリ、RAMなど)に保存されている情報のうち「低温時電圧VL1、高温時電圧VH1、温度電圧平均値VTav」のそれぞれの最新の値を取得する。つまり、第2実施形態のS110では、通電制御回路50および温度調整回路80から各情報を直接取得するのではなく、記憶装置8に保存されている情報を取得する。
S110において、温度電圧VTではなく、温度電圧平均値VTavを取得することから、第2実施形態でのこの後のガス濃度演算処理では、第1実施形態とは異なり、温度電圧VTに代えて温度電圧平均値VTavを用いて各演算処理を実行する。つまり、第2実施形態のS130,S160,S190では、温度電圧平均値VTavを用いて各演算処理を実行する。
このように、第2実施形態のガス濃度演算処理では、まず、電圧検出処理によってマイコン7の記憶装置8(メモリ、RAMなど)に保存されている「低温時電圧VL1、高温時電圧VH1、温度電圧平均値VTav」のそれぞれの最新の値を取得する。そして、ガス濃度演算処理では、温度電圧平均値VTavに基づいて環境温度Tを演算し、さらには、高温時電圧VH1と低温時電圧VL1の比から被検出雰囲気内の湿度Hを演算し、これら環境温度Tと湿度Hとを用いてガス濃度Xを補正する。
以上説明したように、第2実施形態の可燃性ガス検出装置1では、マイコン7からの切替信号CG1に基づいて通電制御回路50の切替スイッチ523が切り替わることで、一定の測定期間TW毎に低温測定期間TWLに対応する周期と高温測定期間TWHに対応する周期とが切り替わる(S825,S830,S845,S860)。そして、低温測定期間TWLおよび高温測定期間TWHにそれぞれ対応する周期のうち、連続する二つの周期のそれぞれにおいて温度電圧VT(詳細には、低温時温度電圧VTLおよび高温時温度電圧VTH)を検出すると共に、これらの平均値である温度電圧平均値VTavを算出する(S825,S830,S845,S860)。このようにして算出した算出した温度電圧平均値VTavを、ガス濃度演算処理における可燃性ガスの濃度の演算に用いる。
このように構成された可燃性ガス検出装置1は、低温測定期間TWLに対応する周期または高温測定期間TWHに対応する周期のいずれか一方の周期のみで温度電圧VTを検出する場合に比べて、通電状態の切り替えに伴う発熱抵抗体34の発熱量の違いが測温抵抗体35に与える影響が反映された状態で、温度電圧VT(換言すれば、環境温度T)を検出できる。
つまり、発熱抵抗体34の設定温度を二つの設定温度(第1設定温度CH、第2設定温度CL)に切り替える場合、第1設定温度CH設定時に発熱抵抗体34の発熱量が測温抵抗体35に与える影響と、第2設定温度CL設定時に発熱抵抗体34の発熱量が測温抵抗体35に与える影響とは、異なる。すなわち、二つの設定温度のうち一方に対応する周期のみで温度電圧VT(換言すれば、環境温度T)の検出を行う場合には、他方の設定温度に対応する周期で発熱抵抗体34の発熱量が測温抵抗体35に与える影響に関しては反映されない状態で、温度電圧VT(換言すれば、環境温度T)を検出することとなる。
これに対して、本第2実施形態のように、連続する二つの周期のそれぞれで温度電圧VT(換言すれば、環境温度T)の検出を行うとともにそれらの平均値である温度電圧平均値VTavを算出することで、通電状態の切り替えに伴う発熱抵抗体34の発熱量の違いが測温抵抗体35に与える影響が反映された状態で温度電圧VT(換言すれば、環境温度T)を検出できるため、環境温度Tの検出精度を向上できる。
また、温度電圧VT(換言すれば、環境温度T)の平均値である温度電圧平均値VTav(環境温度平均値)を算出することで、例えば、突発的なノイズなどの影響により測温抵抗体35に基づく温度電圧VT(換言すれば、環境温度T)の数値が変動した場合でも、その変動に起因する可燃性ガス濃度の検出精度の低下を抑制することができる。
よって、本第2実施形態によれば、環境温度Tの検出精度を向上することができるとともに、可燃性ガスの検出精度の低下を抑制できる。
ここで、特許請求の範囲と本第2実施形態とにおける文言の対応関係について説明する。通電制御回路50および電圧検出処理のS810,S825,S830,S845,S860を実行するマイコン7が通電制御部の一例に相当し、電圧検出処理およびガス濃度演算処理を実行するマイコン7がガス濃度演算部の一例に相当し、電圧検出処理のS815,S835,S850を実行するマイコン7が平均値算出部の一例に相当する。
以上、本発明の第2実施形態について説明したが、本発明は上記第2実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
例えば、温度電圧VT(低温時温度電圧VTLまたは高温時温度電圧VTH)の検出頻度に関しては、上記第2実施形態のような1つの周期(周期時間TW)あたり1回に限られることはなく、1つの周期(周期時間TW)あたり2回以上であってもよい。そして、1つの周期(周期時間TW)あたり温度電圧VT(低温時温度電圧VTLまたは高温時温度電圧VTH)を2回以上検出する場合には、検出した全ての温度電圧VT(低温時温度電圧VTLまたは高温時温度電圧VTH)の平均値を温度電圧平均値VTav(環境温度平均値)として算出する。
さらに、周期時間TWについては、上記第1実施形態および第2実施形態の数値に限られることはなく、25[mSec]〜1[Sec]の範囲内に設定されているとよい。
つまり、周期時間TWが25[mSec]よりも短い場合には、発熱抵抗体34の通電状態の切り替え時点から発熱抵抗体34の温度が安定するまでの時間が経過する前に、次の周期に移行する(換言すれば、通電状態の切り替え時期が到来する)可能性がある。このような場合には、各設定温度(第1設定温度CH、第2設定温度CL)に応じた発熱抵抗体34の両端電圧(高温時電圧VH1,低温時電圧VL1)を適切に検出できないおそれがある。
また、周期時間が1[Sec]よりも長い場合には、発熱抵抗体34の通電状態の切り替え間隔が長くなり、2つの設定温度(第1設定温度CH、第2設定温度CL)それぞれに対応する発熱抵抗体34の両端電圧(高温時電圧VH1,低温時電圧VL1)の検出間隔が大きくなる。このような場合には、ガス濃度の変化に対する追従性が低下してしまい、ガス濃度の検出精度が低下するおそれがある。
よって、周期時間TWが25[mSec]〜1[Sec]の範囲内に設定されている可燃性ガス検出装置によれば、発熱抵抗体34の温度が安定した状態で発熱抵抗体34の両端電圧を適切に検出できるとともに、ガス濃度の変化に対する追従性の低下を抑制できることから、ガス濃度の検出精度の低下を抑制できる。
なお、図5A−5Cに示したシミュレーション結果から判るように、周期時間TWを5Secに仮設定した場合でもガス濃度Xの出力誤差が±5%F.S.に収まることから、周期時間を1[Sec]以下に設定した場合には、ガス濃度Xの出力誤差が十分に小さくなり、ガス検出精度の低下を抑制できる。
また、マイコン7における各処理を実行するための各種のプログラムやデータを記憶するための装置は、マイコン7の内部に備えられる記憶装置8に限られることはなく、マイコン7との間で情報伝達が可能なあらゆる形態の外部記憶装置や記録媒体でもよい。この場合、マイコン7は、外部記憶装置や記録媒体から読み込んだ各種のプログラムやデータを用いて各処理を実行する。記録媒体としては、例えば、持ち運び可能な半導体メモリ(例えば、USBメモリ、メモリカード(登録商標)など)、CD−ROMやDVDなどの光ディスク、磁気ディスク等が含まれる。

Claims (7)

  1. 可燃性ガス検出装置であって、
    被検出雰囲気内に配置されて、自身の温度変化により抵抗値が変化する発熱抵抗体と、
    前記発熱抵抗体が予め設定された二つの設定温度にそれぞれ対応する各抵抗値となるように、該発熱抵抗体の通電状態を一定の周期時間毎に連続的に切り替える制御を行う通電制御部と、
    前記発熱抵抗体と同一の基板上に配置されるとともに、前記発熱抵抗体と近接配置されて、前記被検出雰囲気内の温度である環境温度の変化により抵抗値が変化する測温抵抗体と、
    前記通電制御部の制御による前記発熱抵抗体への通電時に検出される該発熱抵抗体の両端間の電位差である両端電圧と、前記測温抵抗体の抵抗値が変化することにより生じる電圧変化に基づく環境温度とを用いて、前記被検出雰囲気内の可燃性ガスの濃度を演算するガス濃度演算部と、
    を備え、
    前記通電制御部は、前記発熱抵抗体の通電状態を一定の周期時間毎に連続的に切り替えるにあたり、予め設定された二つの設定温度のうち一方の設定温度に対応する抵抗値となる前記発熱抵抗体の通電状態と、予め設定された二つの設定温度のうち他方の設定温度に対応する抵抗値となる前記発熱抵抗体の通電状態と、が連続するように切り替えており、
    前記周期時間は、前記通電制御部が前記発熱抵抗体の通電状態を切り替えることによって生じる前記環境温度の変化分が0.5℃の範囲内となる時間に予め設定されており、
    前記二つの設定温度は、当該設定温度のうち高温側を第1設定温度、低温側を第2設定温度とし、前記第1設定温度と前記第2設定温度との温度差が50℃以上となる温度に予め設定されている、
    という可燃性ガス検出装置。
  2. 請求項1に記載の可燃性ガス検出装置であって、
    前記ガス濃度演算部は、前記第1設定温度時に検出される前記発熱抵抗体の両端電圧を高温時電圧、前記第2設定温度時に検出される前記発熱抵抗体の両端電圧を低温時電圧とし、該高温時電圧と該低温時電圧との比に基づいて、前記被検出雰囲気内の湿度を算出し、該湿度を用いて前記可燃性ガスの濃度を補正する、
    という可燃性ガス検出装置。
  3. 請求項1または請求項2に記載の可燃性ガス検出装置であって、
    前記通電制御部により切り替えられる各周期のうち連続する二つの周期のそれぞれにおいて、前記測温抵抗体の抵抗値に基づく前記環境温度を少なくとも一つずつ検出し、連続する二つの周期の期間中に検出した複数の前記環境温度の平均値を算出する平均値算出部を備え、
    前記ガス濃度演算部は、前記平均値算出部で算出された前記環境温度の平均値を、前記被検出雰囲気内の可燃性ガスの濃度の演算に用いる、
    という可燃性ガス検出装置。
  4. 請求項1から請求項3のいずれかに記載の可燃性ガス検出装置であって、
    前記周期時間は、25[mSec]〜1[Sec]の範囲内に設定されている、
    という可燃性ガス検出装置。
  5. 請求項1から請求項4のいずれかに記載の可燃性ガス検出装置であって、
    前記基板は、平面視四角形状に形成されており、
    前記基板を平面視した状態において、
    前記発熱抵抗体は、該基板にて前記測温抵抗体よりも中央側に配置され、
    前記測温抵抗体は、該基板の縁を形成する四辺のうち、少なくとも連接する二辺に沿った領域に配置されている、
    という可燃性ガス検出装置。
  6. 請求項5に記載の可燃性ガス検出装置であって、
    前記測温抵抗体は、前記基板の縁における三辺に沿った領域に配置されている、
    という可燃性ガス検出装置。
  7. 請求項6に記載の可燃性ガス検出装置であって、
    前記発熱抵抗体の両端に接続された二つの電極を第1電極群、前記測温抵抗体の両端に接続された二つの電極を第2電極群として、
    該第1電極群および第2電極群は、前記基板の縁における一辺に沿った領域に配置されている、
    という可燃性ガス検出装置。
JP2012535515A 2011-02-09 2012-02-09 可燃性ガス検出装置 Expired - Fee Related JP5592495B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012535515A JP5592495B2 (ja) 2011-02-09 2012-02-09 可燃性ガス検出装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011025754 2011-02-09
JP2011025754 2011-02-09
JP2011286387 2011-12-27
JP2011286387 2011-12-27
JP2012535515A JP5592495B2 (ja) 2011-02-09 2012-02-09 可燃性ガス検出装置
PCT/JP2012/052969 WO2012108500A1 (ja) 2011-02-09 2012-02-09 可燃性ガス検出装置

Publications (2)

Publication Number Publication Date
JPWO2012108500A1 JPWO2012108500A1 (ja) 2014-07-03
JP5592495B2 true JP5592495B2 (ja) 2014-09-17

Family

ID=46638712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012535515A Expired - Fee Related JP5592495B2 (ja) 2011-02-09 2012-02-09 可燃性ガス検出装置

Country Status (5)

Country Link
US (1) US9285333B2 (ja)
EP (1) EP2674750A4 (ja)
JP (1) JP5592495B2 (ja)
KR (1) KR101550118B1 (ja)
WO (1) WO2012108500A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041055A (ja) * 2012-08-22 2014-03-06 Ngk Spark Plug Co Ltd ガス検出装置及びガス検出方法
DE102013103388B3 (de) * 2013-04-05 2014-09-25 Chemec Gmbh Vorrichtung für die Messung der Wärmeleitfähigkeit von Gaskomponenten eines Gasgemisches
US9835574B2 (en) 2014-07-02 2017-12-05 Stmicroelectronics S.R.L. Gas measurement device and measurement method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063312A (ja) * 1992-06-19 1994-01-11 Glory Ltd 湿度センサ
JPH10197305A (ja) * 1997-01-16 1998-07-31 Hitachi Ltd 熱式空気流量計及び熱式空気流量計用の測定素子
JP2001264279A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd ガスセンサ
JP2004286492A (ja) * 2003-03-19 2004-10-14 Japan Science & Technology Agency 気体センシングシステムとこれに用いる温度センサ
JP2006010670A (ja) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd 可燃性ガス検出装置及び可燃性ガス検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479085A (en) * 1977-12-05 1979-06-23 Matsushita Electric Ind Co Ltd Temperature measuring apparatus
US5551283A (en) 1993-08-10 1996-09-03 Ricoh Seiki Company, Ltd. Atmosphere measuring device and flow sensor
JP2889909B2 (ja) * 1993-08-10 1999-05-10 リコーエレメックス株式会社 雰囲気計
JP4885748B2 (ja) * 2007-01-23 2012-02-29 日本特殊陶業株式会社 可燃性ガス検出装置
JP5091078B2 (ja) * 2008-10-03 2012-12-05 日本特殊陶業株式会社 可燃性ガス検出装置
JP2011237407A (ja) * 2010-04-15 2011-11-24 Ngk Spark Plug Co Ltd 可燃性ガス検出装置および可燃性ガス検出素子の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063312A (ja) * 1992-06-19 1994-01-11 Glory Ltd 湿度センサ
JPH10197305A (ja) * 1997-01-16 1998-07-31 Hitachi Ltd 熱式空気流量計及び熱式空気流量計用の測定素子
JP2001264279A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd ガスセンサ
JP2004286492A (ja) * 2003-03-19 2004-10-14 Japan Science & Technology Agency 気体センシングシステムとこれに用いる温度センサ
JP2006010670A (ja) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd 可燃性ガス検出装置及び可燃性ガス検出方法

Also Published As

Publication number Publication date
JPWO2012108500A1 (ja) 2014-07-03
EP2674750A4 (en) 2017-12-06
EP2674750A1 (en) 2013-12-18
KR101550118B1 (ko) 2015-09-03
US20130298638A1 (en) 2013-11-14
KR20130124563A (ko) 2013-11-14
WO2012108500A1 (ja) 2012-08-16
US9285333B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5563507B2 (ja) ガス検出装置
US20140053631A1 (en) Gas detection apparatus and gas detection method
JP4157034B2 (ja) 熱式流量計測装置
JP5986833B2 (ja) 可燃性ガス検出装置
JP2011237407A (ja) 可燃性ガス検出装置および可燃性ガス検出素子の制御方法
JP2009210450A (ja) NOxセンサ制御装置及び車両側制御装置
JP5592495B2 (ja) 可燃性ガス検出装置
US9606075B2 (en) Gas detector and program
US10024813B2 (en) Gas detection apparatus
JP6363553B2 (ja) 流体状態検出装置
JP6636797B2 (ja) ガス検出器およびプログラム
JP2012181184A (ja) 演算制御装置
JP5467775B2 (ja) ガスセンサの性能評価方法
JP6396757B2 (ja) 可燃性ガス検出装置
JP2013221862A (ja) ガス検出装置
JP6108516B2 (ja) ガス検出装置
JP2012208074A (ja) 温度制御装置及びガス検出装置並びに温度制御方法
JP5330159B2 (ja) ガス検出装置
JPH01172746A (ja) 酸素濃度センサのヒータ温度制御装置
JP6534849B2 (ja) 流体状態検出装置
JP2003194759A (ja) 可燃性ガス検出器
JP5303196B2 (ja) ガス検出装置及び経年変化補正方法
JP2013250130A (ja) ガス検出器
JP2003065991A (ja) ガス検知回路
JP2009068876A (ja) ガス検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees