JP5586396B2 - 計器用指針 - Google Patents

計器用指針 Download PDF

Info

Publication number
JP5586396B2
JP5586396B2 JP2010214079A JP2010214079A JP5586396B2 JP 5586396 B2 JP5586396 B2 JP 5586396B2 JP 2010214079 A JP2010214079 A JP 2010214079A JP 2010214079 A JP2010214079 A JP 2010214079A JP 5586396 B2 JP5586396 B2 JP 5586396B2
Authority
JP
Japan
Prior art keywords
light
pointer
prism
instrument
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214079A
Other languages
English (en)
Other versions
JP2012068152A (ja
Inventor
武史 原田
正樹 斉藤
嘉之 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010214079A priority Critical patent/JP5586396B2/ja
Publication of JP2012068152A publication Critical patent/JP2012068152A/ja
Application granted granted Critical
Publication of JP5586396B2 publication Critical patent/JP5586396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Measuring Devices (AREA)
  • Instrument Panels (AREA)

Description

本発明は、導光体よりなる指針本体に光源からの光を入光させて光出射面から出射させる自発光型の計器用指針に関し、例えば車両の速度計やタコメータ、燃料残量計、温度計等に用いて好適なものである。
光の利用効率を上げてその出射輝度を高めるとともに、長手方向の輝度ムラを抑えて均一な輝度分布を得ることによって視認性を向上させることを目的とした計器用指針が知られている。例えば、特許文献1、特許文献2に開示される図14,図15に示す計器用指針501A,501Bは、光利用効率を上げ、高輝度を実現するため、指針裏面503に反射面505である微細凹凸プリズム507を形成し、効率良く光を反射させている。また、微細凹凸プリズム507を用いた場合、その反射光は凹凸パターン形状に応じて明暗が発生するため、光出射面509に一体の拡散面511をシボ加工やエンボス加工等によって形成し、光を拡散させることで明暗の発生を防いでいる。また、輝度ムラに関しては、微細凹凸プリズム507の深さやピッチをコントロールすることで、指針根元513から指針先端515までの各指針位置での反射効率を制御し、均一性を確保している。
特開2003−240612号公報 特開2004−309397号公報
しかしながら、従来技術のように微細凹凸プリズム507の深さやピッチで輝度ムラをコントロールする場合、指針内部517の光の伝播を利用する構成となる。図16に示すように、光出射面509は拡散面511であることから、指針内部517を伝播する際に光出射面509に入射した光は拡散され、次に微細凹凸プリズム507に向かう際には光の強度が低下する、又は光の角度分布が広くなる。すなわち、光出射面509が拡散面511であると、光出射面509に光量Xの光が入射する度に、透過散乱又は反射散乱を起こす。したがって、全反射面に比べ、指針先端に伝播する光量や微細凹凸プリズム507に入射する光量が減少し、例えば図中のポイントAに到達する光量はX’−αとなる(但し、αは拡散面511を透過、又は拡散面511で散乱しポイントAに到達しない光とする)。さらに、微細凹凸プリズム507に入射する光も散乱光となるため、全反射条件を満足できない光が増加することで、微細凹凸プリズム507から漏れる光量も増加する。結果、微細凹凸プリズム507で略垂直方向(視線方向)に反射する光量が減少する。このような理由により、従来構成では反射効率が低下し、光のロスが大きくなっていた。なお、反射効率とは、反射すべき光のうち減衰せずに反射する光の割合とする。
本発明は上記状況に鑑みてなされたもので、その目的は、光利用効率をより高め、高輝度化が実現できる計器用指針を提供し、もって、視認性のさらなる向上を図ることにある。
本発明に係る上記目的は、下記構成により達成される。
(1) 光源からの光を入光させる光入射面と、前記光入射面から入光させた光を反射させる反射面と、前記反射面で反射した光を反射させ光出射面から外部へ出射させる鋸歯形状の微細凹凸プリズムと、を指針本体に備え、前記反射面は、反射した光を前記微細凹凸プリズムに直接照射させ、前記微細凹凸プリズムは、前記反射面で反射した光密度に応じて前記反射面との相対角度が異なる分布面からなる指針本体裏面に形成されていることを特徴とする計器用指針。
この計器用指針によれば、光入射面から入光した光が、反射面から微細凹凸プリズム面に直接照射され、指針本体内で繰り返し伝播せず、微細凹凸プリズムによる1回の反射で出射される。また、反射面と指針本体裏面の相対角度が、反射面で反射した光密度に応じて設定されていることにより、指針根元から指針先端までの光密度が均一となる。
(2) (1)の計器用指針であって、前記微細凹凸プリズムの個々のプリズム反射面角度は、前記微細凹凸プリズムの延在方向で変化していることを特徴とする計器用指針。
この計器用指針によれば、微細凹凸プリズムの延在方向で、個々のプリズム反射面角度が適宜に設定されることで、反射面からの光がプリズム反射面によって、出射面側へ全反射可能となる。
(3) (1)又は(2)の計器用指針であって、前記反射面は、凹曲面に形成されていることを特徴とする計器用指針。
この計器用指針によれば、光源からある角度の広がりを持って光入射面から入光し、反射面によって反射しようとする光が、反射面が凹曲面となることで、反射面が平面の場合に比べ集束する方向に光偏向される。これにより、反射面で反射した後、直接拡散面に入射して拡散してしまっていた光や、反射面で反射した後、微細凹凸プリズムに入射しなかった光が、反射面から直接微細凹凸プリズムに入射するようになる。
(4) (1)又は(2)の計器用指針であって、前記光入射面は、凸曲面に形成されていることを特徴とする計器用指針。
この計器用指針によれば、光源からある角度の広がりを持って光入射面から入光し、反射面によって反射しようとする光が、光入射面が凸曲面となることで、光入射面が平面の場合に比べ集束する方向に光偏向される。これにより、反射面で反射した後、直接拡散面に入射して拡散してしまっていた光や、反射面で反射した後、微細凹凸プリズムに入射しなかった光が、反射面から直接微細凹凸プリズムに入射するようになる。
本発明に係る計器用指針によれば、光利用効率をより高め、高輝度化が実現できる。この結果、視認性をさらに向上させることができる。
本発明に係る計器用指針を概念的に表した模式図である。 指針本体裏面が平面の場合の光密度を説明する模式図である。 指針本体裏面が平面の場合の指針位置と指針輝度との相関を表すグラフである。 反射面に対する分布面の相対角度と光密度との関係を説明する模式図である。 分布面が船底形形状に形成された指針本体裏面の側面図である。 反射面が凹曲面に形成される変形例に係る指針本体の要部拡大側面図である。 図6に示した変形例に係る指針本体の平面図である。 光入射面が凸曲面に形成される変形例に係る指針本体の要部拡大側面図である。 光学設計シミュレーションにて得た光線により光密度を表した裏面が平坦な指針本体の側面図である。 図9に示した指針本体における照度と指針位置の相関を表したグラフである。 (a)は分布面を平行移動により反射面から離した場合の模式図、(b)は反射面と分布面の相対角度を大きくした場合の模式図、(c)は反射面と分布面の相対角度を小さくした場合の模式図である。 制御された分布面を有する指針本体の側面図である。 図12の分布面により照度の制御された指針本体の照度と指針位置の相関を表したグラフである。 従来の計器用指針の側面図である。 従来の他の計器用指針の側面図である。 従来の計器用指針における反射面での反射後の光線路を表す要部拡大側面図である。
以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る計器用指針を概念的に表した模式図である。
本実施の形態に係る計器用指針11は、光源13からの光を入光させる光入射面15と、光入射面15から入光させた光を反射させる反射面17と、反射面17で反射した光を反射させ光出射面19から外部21へ出射させる鋸歯形状の微細凹凸プリズム23と、を指針本体25に備える。反射面17は、反射した光を微細凹凸プリズム23に直接照射させる。微細凹凸プリズム23は、反射面17で反射した光密度に応じて反射面17との相対角度θ(図4参照)が異なる分布面29(図5参照)からなる指針本体裏面31に形成されている。
指針本体25は、光源13からの光を入光させ、内部での伝搬を可能とする透明な樹脂材からなる。樹脂材料としては、特に限定されないが、従来同様の透過率や成形性の面からPMMA(ポリメタクリ酸メチル)、PC(ポリカーボネート)、PS(ポリスチレン)、COP(環状オレフィンポリマー)などを用いることができる。
光源13としては、LEDが好ましく、各種の発光色が計器盤との色合わせで決定される。例えばRGB3原色の素子を一つのパッケージに封止した白色LEDを使うことにより、エンジンの回転数に応じて、白、赤、緑、青と発光させることができる。これにより、エンジン回転数の極度な変化をドライバーに促すことが可能となる。
計器用指針11は、光利用効率を上げ、高輝度な指針を実現するため、指針本体裏面31に微細凹凸プリズム23を形成している。微細凹凸プリズム23による反射光は、指向性又は方向性が高いため、そのままであると視野角が狭く、見る方向により大きく輝度が変化してしまう。また、微細凹凸プリズム23のパターンに起因する、明暗が発生することから、拡散面33によって光を拡散させることで、視野角特性の確保、明暗パターン発生を防止している。
拡散面33は、指針出射面に一体で形成し、例えば金型側をシボ加工、エンボス加工、ブラスト処理等によって加工し、形転写で形成される物や、マイクロレンズをハニカム状に配置した構成、光散乱粒子を分散させた透明樹脂からなる光拡散層を形成する等、から成る。また、拡散面33は拡散フィルム等を使う別体構成であってもよい。
ところで、従来技術では、光を指針本体25の中を伝播させ、微細凹凸プリズム23の深さやピッチで輝度ムラをコントロールしていた。しかし、この構成では上記の問題点で述べた通り、効率が悪化する。そのため、本構成では光入射面15から入光し、反射面17によって反射された光が微細凹凸プリズム23に直接照射し、指針本体25の内部で光を繰り返し伝播させず、微細凹凸プリズム23からの1回の反射で光を出射させるようになされている。
図2は指針本体裏面31が平面の場合の光密度を説明する模式図、図3は指針本体裏面31が平面の場合の指針位置と指針輝度との相関を表すグラフである。
このような制御を行う際、図2に示すように、指針本体裏面31が平面の場合、反射面17からの物理的な距離の違いにより、図3に示すように、指針根元35の光密度が高く、指針先端37の光密度が低い状態になり、指針根元35が非常に明るい状態となってしまう。指針中間はその間の光密度となる(A>B>C)。なお、ここで、光密度とは、照明範囲における単位面積あたりの光束の密度を言う。
図4は反射面17に対する分布面29の相対角度θと光密度との関係を説明する模式図である。
この問題を解消するためには、指針根元35から指針先端37までの光密度を均一にする必要があり、図4に示すように指針本体裏面31の形状をコントロールすることで、反射面17と指針本体裏面31の相対角度θにより、物理的な距離を制御する。このため、指針本体裏面31は、反射面17で反射した光密度に応じて反射面17との相対角度θが異なる分布面29として形成されている。分布面29は、曲面又は複数の連続平面とすることができる。曲面の場合には、反射面17との相対角度θは、曲面の接線で規定される。
図4に示すように、光密度を下げる場合、反射面17と分布面29の相対角度θを大きくすることで、光の到達距離Z2を従来到達していた距離Z1よりも長くする。光密度を上げる場合、反射面17と分布面29の相対角度θを小さくすることで、光の到達距離Z3を従来到達していた距離Z1よりも短くする。
この原理を利用し、指針本体裏面31の指針根元35から指針先端37までの各位置での光密度を制御することにより、指針本体裏面31に設けられる微細凹凸プリズム23への光密度を均一化にすることが可能となる。これにより、輝度ムラを低減できる。
図5は分布面29が船底形形状に形成された指針本体裏面31の側面図である。
指針本体裏面31に照射される光の均一性を制御するため、指針本体裏面31に形成される分布面29は曲面もしくは複数の平面から形成することができる。例えば、図5に示すように、指針先端37に向かって反射面17との相対角度θが徐々に小さくなる複数の平面を連続させることで、分布面29は船底形のような形状となる。
このような分布面29に微細凹凸プリズム23を連続配置する場合、個々の微細凹凸プリズム23は、出射面側に光を確実に全反射できるよう、各プリズム反射面角度θpを設定して反射角度を微調整しても良い。すなわち、微細凹凸プリズム23の個々のプリズム反射面角度θpは、微細凹凸プリズム23の延在方向(図5の左右方向)で変化することになってもよい。このような構成とすることで、反射面17からの光が全てのプリズム反射面によって、出射面側へ確実に全反射可能となり、拡散面33から外れる迷光が生じない。なお、光密度を均一化する制御は、基本的には同一のプリズム反射面角度θpを連続配置する分布面29によって可能となる。
このように、上記構成の計器用指針11では、光入射面15から入光した光が、反射面17から微細凹凸プリズム面に直接照射され、指針本体25内で繰り返し伝播せず、微細凹凸プリズム23による1回の反射で出射される。従来構成のよう反射面17から拡散面を経由させずに、直接微細凹凸プリズム23に入射させ、光出射面19へ反射させることで、光の伝播によるロスや指針本体裏面31からの漏れによるロスが抑えられる。つまり、微細凹凸プリズム23に多くの光を入射でき、結果多くの光が略垂直方向(視線方向)に反射される。また、反射面17と指針本体裏面31の相対角度θが、反射面17で反射した光密度に応じて設定されていることにより、指針根元35から指針先端37までの光密度が均一となる。すなわち、指針本体裏面31の形状を制御することで、指針根元35から指針先端37までの光密度が均一化となる。また、指針本体裏面31に入射した光が微細凹凸プリズム23で光出射面19に全反射で反射する。光出射面19ではこの光が拡散されるので、視野角の減少、明暗パターンの発生が防止される。以上の制御によって、均一性が高く、光利用効率の高い計器用指針11が実現される。
つぎに、上記実施の形態に係る計器用指針11の変形例を説明する。
図6は反射面17が凹曲面41に形成される変形例に係る指針本体25の要部拡大側面図、図7は図6に示した変形例に係る指針本体25の平面図である。なお、以下の各変形例において図1〜図5に示した部材と同一の部材には同一の符合を付し重複する説明は省略する。
この変形例に係る計器用指針11Aは、反射面17Aが、凹曲面41に形成されている。凹曲面41は、平面状の反射面17よりも反射された光が集束する側に偏向される反射面17Aとなる。本要件を満たせば、球面、非球面、回転楕円面の他、複数の微少面を連続させて凹面状とした分布型の反射面17Aであってもよい。他の構成は上記実施の形態と同様である。なお、本明細書中の凹曲面41、凸曲面43とは、光の進む方向を見て最初の屈折境界となる面形状を言う。
光源13から計器用指針11Aに入射する光は、ある角度の広がりを持っている。このことから、計器用指針11Aでは、反射面17から微細凹凸プリズム面に直接光を照射する方式を採っているため、全ての光が効率良く各微細凹凸プリズム23に入射しない場合が想定される(図中の破線の光線)。平面の反射面17にて反射してから光出射面19に沿う方向に進む光は、光出射面19での透過散乱又は反射散乱により、微細凹凸プリズム23での反射効率が低下し、効率良く光を利用できなくなる。また、反射面17にて反射してから微細凹凸プリズム23に進む光には、微細凹凸プリズム23に到達できないものもあり、微細凹凸プリズム23での反射効率が低下し、効率良く光を利用できなくなる。
なお、光出射面19に照射される光は、光出射面19と拡散面33との形態によってその後の光線路が異なる。すなわち、光出射面19が拡散面33と―体の場合(シボ加工、エンボス加工、ブラスト処理等による形転写の場合)、拡散面33に入射した光は、透過散乱又は反射散乱により拡散してしまうため、効率良く光を利用できない。また、光出射面19が拡散面別体の場合には、拡散フィルム等を用いる等する。拡散フィルム等は、フィルム又はシート状のものだけではなく、表面を拡散処理、又は散乱材入りの材料を用いた成形品でも良い、また、2色成形やフィルムインサートとしてもよい。別体の拡散フィルム等は、貼着してもよいし、完全な別体とし指針本体25の上方に配置してもよい。光出射面19が拡散面別体(拡散面33が指針本体25と離れている)の場合、光出射面19は全反射面となるため、散乱せず、入射角に応じた反射、又は入射角が臨界角より小さければ透過屈折する。例えば微細凹凸プリズム23の同じポイントに、反射面17から直接入射する場合と、全反射面となった光出射面19を経由して入射する場合とでは、ポイントへの入射角は光出射面19を経由して入射する場合の方が小さくなるため、臨界角より小さくなれば指針本体25から光が漏れる(入射角度が小さくなる程漏れ易くなる)。このため、微細凹凸プリズム23での反射効率が低下する。
この問題を解決するため、本変形例では、反射面17Aで光を集光する形状とし、例えば凹曲面41とする。その結果、光を絞る(集光する)ことで、反射面17Aによる反射後の光の広がり角度を小さくでき、従来は直接微細凹凸プリズムに入射しなかった角度の光を、反射面17Aから直接微細凹凸プリズムに入射させることができるようになる(図6中の実線の光線)。
このように、本変形例では、光源13からある角度の広がりを持って光入射面15から入光し、反射面17Aによって反射しようとする光は、反射面17Aが凹曲面41となることで、反射面17が平面の場合に比べ集束する方向に光偏向される。これにより、反射面17Aで反射した後、直接拡散面に入射して拡散してしまっていた光や、反射面17で反射した後、微細凹凸プリズム23に入射しなかった光が、反射面17から直接微細凹凸プリズムに入射するようになる。その結果、微細凹凸プリズム23に入射する光量が増加し、指針照明効率をさらに改善することができる。
また、図7に示すように、指針幅方向(図7の左右方向)も同様に凹曲面41とすることで、平面時は指針側面に入射していた光(図中、破線の光線)を、直接微細凹凸プリズムに入射させることで、微細凹凸プリズム23に入射する光量が増加し、指針照明効率をさらに改善することができる。
次に、上記実施の形態に係る計器用指針11の他の変形例を説明する。
図8は光入射面15Aが凸曲面43に形成される変形例に係る指針本体25の要部拡大側面図である。
この変形例に係る計器用指針11Bは、光入射面15が凸曲面43に形成されている。凸曲面43は、平面状の光入射面15よりも入光させた光が集束する側に偏向される光入射面15Aとなる。本要件を満たせば、球面、非球面、回転楕円面の他、複数の微少面を連続させて凸面状とした分布屈折率レンズ型の光入射面15Aであってもよい。他の構成は上記実施の形態と同様である。上述したように、計器用指針11に入射する光は、ある角度の広がりを持つため、反射面17にて反射してから光出射面19に沿う方向に進み、光出射面19での透過散乱又は反射散乱により、微細凹凸プリズム23での反射効率が低下する。また、微細凹凸プリズム23に進む光には、微細凹凸プリズム23に到達できないものもある(図8中、破線の光線)。
この問題を解決するため、本変形例では、光入射面15Aで光を集光する形状とし、例えば凸レンズ化する。その結果、光源13からある角度の広がりを持って光入射面15Aから入光し、反射面17によって反射しようとする光は、光入射面15Aが凸曲面43となることで、光入射面15が平面の場合に比べ集束する方向に光偏向される。これにより、反射面17で反射した後、直接拡散面に入射して拡散してしまっていた光や、反射面17で反射した後、微細凹凸プリズム23に到達しなかった光が、反射面17から直接微細凹凸プリズムに入射するようになる。
これにより、微細凹凸プリズム23に入射する光量が増加し、指針照明効率をさらに改善することができる。
したがって、本実施の形態による計器用指針11によれば、光利用効率をより高め、高輝度化が実現できる。この結果、視認性をさらに向上させることができる。また、従来同等の明るさを維持する場合、光源(LED)数の削減が実現でき、コスト低減を実現できる。また、従来同等の明るさを維持する場合、光源(LED)の電流値を下げることができ、消費電力を削減することができる。
次に、上記実施の形態に係る構成の光学設計シミュレーションを試行した結果について説明する。図9は光学設計シミュレーションにて得た光線により光密度を表した裏面が平坦な指針本体の側面図である。
微細凹凸プリズムの形成された指針本体裏面が平面である場合、指針本体の基端で光の密度が密となり、指針本体の先端で光の密度が疎となった。
図10は図9に示した指針本体における照度と指針位置の相関を表したグラフである。
指針本体の全長における各位置の照度を算出した。得られた照度分布線は、基端と中央部の間あたりで、狙いとする照度分布線と交差した。この交点より基端側では光の密度が密であり、先端側では光の密度が疎となる。この交点を境に、基端側の照度を下げて先端側の照度を上げる制御が必要となることが分かる。
図11(a)は分布面を平行移動により反射面から離した場合の模式図、(b)は反射面と分布面の相対角度を大きくした場合の模式図、(c)は反射面と分布面の相対角度を小さくした場合の模式図である。
図11(a)に示すように、反射面を平面で形成し、この反射面に平行光を照射したとき、分布面を、平行移動により反射面から離しても、基準密度ρaと変更後の密度ρbは同じであり(ρa=ρb)、密度制御はできなかった。図11(b)に示すように、反射面と分布面の相対角度を大きくすると、基準密度ρaに対して変更後の密度ρcは疎となった(ρa>ρc)。図11(c)に示すように、反射面と分布面の相対角度を小さくすると、基準密度ρaに対して変更後の密度ρdは密となった(ρa<ρd)。
図12は制御された分布面を有する指針本体の側面図、図13は図12の分布面により照度の制御された指針本体の照度と指針位置の相関を表したグラフである。
上記シミュレーション結果に基づき基端では反射面に対する分布面の相対角度を大きく設定し、先端に向かって徐々に相対角度を小さくするよう分布面を設定した。すなわち、交点から基端側は相対角度を大きく、先端側は相対角度を小さくする制御を行った。なお、微細凹凸プリズムの全てのプリズム角は同一とした。指針本体裏面は図12に示す船底の様な形状となった。この船底形状の分布面における照度をシミュレーションした結果、図13に示すように、指針本体の基端から先端までが、ほぼ狙いとする照度分布となった。
11 計器用指針
13 光源
15 光入射面
17 反射面
19 光出射面
21 外部
23 微細凹凸プリズム
25 指針本体
29 分布面
31 指針本体裏面
41 凹曲面
43 凸曲面
θ 相対角度
θp プリズム反射面角度

Claims (4)

  1. 光源からの光を入光させる光入射面と、前記光入射面から入光させた光を反射させる反射面と、前記反射面で反射した光を反射させ光出射面から外部へ出射させる鋸歯形状の微細凹凸プリズムと、を指針本体に備え、
    前記反射面は、反射した光を前記微細凹凸プリズムに直接照射させ、
    前記微細凹凸プリズムは、前記反射面で反射した光密度に応じて前記反射面との相対角度が異なる分布面からなる指針本体裏面に形成されていることを特徴とする計器用指針。
  2. 請求項1記載の計器用指針であって、
    前記微細凹凸プリズムの個々のプリズム反射面角度は、前記微細凹凸プリズムの延在方向で変化していることを特徴とする計器用指針。
  3. 請求項1又は請求項2記載の計器用指針であって、
    前記反射面は、凹曲面に形成されていることを特徴とする計器用指針。
  4. 請求項1又は請求項2記載の計器用指針であって、
    前記光入射面は、凸曲面に形成されていることを特徴とする計器用指針。
JP2010214079A 2010-09-24 2010-09-24 計器用指針 Active JP5586396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214079A JP5586396B2 (ja) 2010-09-24 2010-09-24 計器用指針

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214079A JP5586396B2 (ja) 2010-09-24 2010-09-24 計器用指針

Publications (2)

Publication Number Publication Date
JP2012068152A JP2012068152A (ja) 2012-04-05
JP5586396B2 true JP5586396B2 (ja) 2014-09-10

Family

ID=46165598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214079A Active JP5586396B2 (ja) 2010-09-24 2010-09-24 計器用指針

Country Status (1)

Country Link
JP (1) JP5586396B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836412B2 (ja) * 2017-02-09 2021-03-03 能美防災株式会社 火災感知器
JP2022100653A (ja) * 2020-12-24 2022-07-06 セイコーエプソン株式会社 指針または植字、指針、時計、および指針または植字の加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813693Y2 (ja) * 1978-06-26 1983-03-17 日産自動車株式会社 メ−タの指針
DE69414824T2 (de) * 1993-08-06 1999-04-29 Denso Corp., Kariya, Aichi Anzeigevorrichtung
JPH08219822A (ja) * 1995-02-09 1996-08-30 Nippondenso Co Ltd 計器用指針
JP2005037265A (ja) * 2003-07-16 2005-02-10 Calsonic Kansei Corp 車両用指示計器

Also Published As

Publication number Publication date
JP2012068152A (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
KR100977336B1 (ko) 발광 장치 및 이를 구비하는 조명 장치
RU2427754C1 (ru) Светоизлучающее устройство и содержащее его устройство освещения
JP5172592B2 (ja) 光学素子および発光装置
JP5336880B2 (ja) 発光装置
WO2011007733A1 (ja) 発光装置、光束制御部材および当該発光装置を備える照明装置
US20060187676A1 (en) Light guide plate, light guide device, lighting device, light guide system, and drive circuit
JP2004158452A (ja) バックライトユニット
JP2001035230A (ja) 面状照明装置
JP2006221922A (ja) Led面状光源装置
JP2004319482A (ja) 光偏向部材を備える導光板及び側面発光型バックライト装置
JP6223746B2 (ja) 片面発光タイプの透明な導光板、およびこの導光板を用いた面発光装置
JP5353353B2 (ja) 車両用信号灯具
JP5869017B2 (ja) 細長い照明装置
JP2004103503A (ja) 導光体及びこの導光体を有する車両用灯具
TW201414957A (zh) 照明裝置
JP5586396B2 (ja) 計器用指針
JP4047437B2 (ja) 線状光投射装置ならびに平面照明装置
JP5363884B2 (ja) 発光装置および光学素子
JP2012022943A (ja) 灯具ユニット
JPH08304607A (ja) バックライト
KR101474497B1 (ko) 디스플레이장치
JP2005135815A (ja) 面状光源装置およびその面状光源装置を用いた表示装置
JP2006147444A (ja) 導光体及び照明装置
JP6733317B2 (ja) 窓照明装置
JP2009258020A (ja) 表示装置及び前記表示装置に用いられる導光体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250