JP5584711B2 - 空気分離装置 - Google Patents

空気分離装置 Download PDF

Info

Publication number
JP5584711B2
JP5584711B2 JP2012003583A JP2012003583A JP5584711B2 JP 5584711 B2 JP5584711 B2 JP 5584711B2 JP 2012003583 A JP2012003583 A JP 2012003583A JP 2012003583 A JP2012003583 A JP 2012003583A JP 5584711 B2 JP5584711 B2 JP 5584711B2
Authority
JP
Japan
Prior art keywords
gas
pressure column
nitrogen
outlet
booster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012003583A
Other languages
English (en)
Other versions
JP2013142509A (ja
Inventor
保 橋本
斉 浅岡
隆司 大山
Original Assignee
神鋼エア・ウォーター・クライオプラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼エア・ウォーター・クライオプラント株式会社 filed Critical 神鋼エア・ウォーター・クライオプラント株式会社
Priority to JP2012003583A priority Critical patent/JP5584711B2/ja
Publication of JP2013142509A publication Critical patent/JP2013142509A/ja
Application granted granted Critical
Publication of JP5584711B2 publication Critical patent/JP5584711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04066Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、原料空気から窒素や酸素を精留分離する空気分離装置に関するものである。
ガス化複合発電設備や製鉄所には大量の酸素や窒素が必要とされる。これらの用途には空気分離装置が多く設置される。
発電設備や製鉄所のように大量の酸素が消費される工場には、場内に酸素自給のための酸素製造設備を併設することが多く、従来、酸素製造設備として最も汎用されているのは、空気を原料として酸素を得ることができ、しかも副産物として窒素を得ることのできる空気分離装置である。
従来の空気分離装置として、図6に示す様な構成のものが知られている(例えば特許文献1参照)。
図6の空気分離装置100において、原料空気は空気圧縮機101で圧縮され、空気予冷装置102で予冷されて、モレキュラシーブ吸着塔(以下、MS吸着塔と称する)103で浄化された後、保冷箱104内に導入される。そして、保冷箱104内に導入された原料空気は、まず主熱交換器105で冷却された後、原料空気導入通路113により主精留塔106の下塔107内の底部に導入される。この下塔107内で窒素ガスと富酸素液体空気とに精製分離される。下塔107内の上記窒素ガス及び上記富酸素液体空気は、それぞれサブクーラー110を通る窒素移送通路116及び原料空気移送通路114を介して上塔108内に導入され、この上塔108内で高純度窒素ガスと液体酸素とに精製分離される。なお、原料空気移送通路114の下流側には上記富酸素液体空気の流量を調整するためのバルブ115が設けられており、窒素移送通路116の下流側にも上記窒素ガスの流量を調整するためのバルブ117が設けられている。上塔108内の底部には主凝縮器109が設けられている。
上塔108内の頂部からは、窒素導出通路118により高純度窒素ガス(製品窒素)が導出される。この製品窒素は、窒素導出通路118によりサブクーラー110及び主熱交換器105を通じて保冷箱104の外へ導出され、製品窒素圧縮機124で圧縮された後に回収される。
上塔108において窒素導出通路118による導出位置よりも下方の位置に接続された廃窒素導出通路119により廃窒素ガスが導出される。この廃窒素ガスは、サブクーラー110及び主熱交換器105を通った後、膨張タービン111に供給される。そして、廃窒素ガスは膨張タービン111により膨張されることによって寒冷が発生し、保冷箱104内の冷却に寄与した後、ガス排出通路120を通じて外部へ排出される。すなわち、上記廃窒素ガスのエネルギーは、膨張タービン111において保冷箱104内の寒冷のために利用されている。
また、上塔108内の底部からは、酸素導出通路121により製品酸素が導出される。この製品酸素は、主熱交換器105を通過後、膨張タービン111と連動して回転するブロア112により圧縮され、さらに酸素導出通路122を通じて製品酸素圧縮機123で圧縮された後に回収される。
この製品酸素に代わり、上塔108頂部から窒素導出通路118により取り出された製品窒素を主熱交換器105の通過後に製品酸素圧縮機123に導入するケースも実用化されている。
このように、従来の空気分離装置100では上塔108から導出される有圧の廃窒素ガスを膨張タービン111に導入して寒冷発生させ、残りの製品窒素及び酸素を有圧で主熱交換器105より取り出すようにしている。これにより、たとえ原料空気の圧力を高めに設定し、空気圧縮機101の動力を増やしても、有圧となった廃窒素ガスの圧力エネルギーを膨張タービン111での寒冷発生に有効に利用し、かつ製品窒素、酸素を有圧で主熱交換器105より取り出すことができるため、製品酸素圧縮機123及び製品窒素圧縮機124の必要動力を低減することができるか、又は用途によってはこれらの圧縮機123,124を設ける必要がなくなる。
特許第3384587号公報
上述したように、ブロア(昇圧機)に必要な動力は、当該ブロアに接続された膨張タービンで発生される。しかしながら、この膨張タービンで発生された動力(熱エネルギーから変換後の運動エネルギー)と保冷箱の寒冷のための熱エネルギーは同じであることから、昇圧機に必要とされる動力と保冷箱に必要とされる寒冷とが一致しない場合に問題となる。すなわち、上記必要とされる寒冷は、空気分離装置の運転状況によって大きく異なるので、上記必要な動力と上記必要な寒冷とが一致しない場合がほとんどであり、昇圧機の昇圧効率を維持するために、余剰寒冷を発生させてこの余剰寒冷を液として排出していた。
本発明はかかる事情に鑑みてなされたものであり、本発明の目的は、余剰寒冷を発生させることなく、製品ガスの昇圧に要する動力を低減しつつ、要求されるガス圧に応じた製品ガスを得ることができる空気分離装置を提供することである。
本発明に係る空気分離装置は、原料空気から窒素ガスを精留分離する高圧塔と、前記高圧塔から供給される酸素リッチな液体空気と液体窒素を酸素ガスと窒素ガスとに精留分離する低圧塔とが保冷箱に設けられている空気分離装置であって、
前記低圧塔で精留分離され常温に戻された前記窒素ガスを昇圧させる第1昇圧機と、
第1気体を膨張させ、第1膨張後気体導出路を通じて前記保冷箱内に寒冷を供給するとともに前記第1昇圧機への動力を発生させる第1膨張タービンと、
前記低圧塔で精留分離された低温の前記窒素ガス或いは前記酸素ガス、又は前記高圧塔で精留分離された低温の前記窒素ガスを昇圧させる第2昇圧機と、
第2気体を膨張させ、前記保冷箱内に設けられた熱交換器又は前記高圧塔に通じる第2膨張後気体導出路に供給するとともに前記第2昇圧機への動力を発生させる第2膨張タービンと、
前記第1膨張タービン及び前記第2膨張タービンの一方または双方への前記第1及び第2気体の流路を切り替える切り替え弁と、
前記低圧塔で精留分離された低温の前記窒素ガス或いは前記酸素ガス、又は前記高圧塔で精留分離された低温の前記窒素ガスを、前記第2昇圧機で昇圧した後、前記保冷箱内の前記熱交換器に供給する昇圧後気体導出路と、を備えることを要旨とする。
第2昇圧機で昇圧された窒素ガス又は酸素ガスが、昇圧後気体導出路により保冷箱内の熱交換器に供給される。つまり、第2昇圧機で昇圧されることにより昇温した窒素ガス又は酸素ガスが保冷箱内の熱交換器に戻されることによって、第2膨張タービンにより発生された寒冷を差し引く構成となっている。
本発明において、上記空気分離装置は、前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、前記低圧塔の頂部からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後前記第1昇圧機で更に昇圧された後、装置外部に供給されてもよい。
本発明において、上記空気分離装置は、前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、前記高圧塔から窒素ガスを導出する高圧塔窒素導出路と、前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、前記高圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後装置外部に供給されてもよい。
本発明において、上記空気分離装置は、前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、前記低圧塔の下部から酸素ガスを導出する低圧塔酸素導出路と、前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、前記低圧塔酸素導出路からの前記酸素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換に送られ、常温に昇温された後装置外部に供給されてもよい。
本発明において、上記空気分離装置は、前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、前記原料空気を圧縮する原料空気圧縮機と、圧縮された前記原料空気を更に圧縮する昇圧圧縮機と、前記第1気体として前記昇圧圧縮機で圧縮された圧縮空気を導出し、前記第1膨張タービンに供給する第1圧縮空気導出路と、前記第1圧縮空気導出路から分岐され、前記第2気体として前記圧縮空気を前記第2膨張タービンに導出する第2圧縮空気導出路と、を備え、前記低圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後前記第1昇圧機で更に昇圧された後、装置外部に供給されてもよい。
本発明において、上記空気分離装置は、前記高圧塔から窒素ガスを導出する高圧塔窒素導出路と、前記原料空気を圧縮する原料空気圧縮機と、圧縮された前記原料空気を更に圧縮する昇圧圧縮機と、前記第1気体として前記昇圧圧縮機で圧縮された圧縮空気を導出し、前記第1膨張タービンに供給する第1圧縮空気導出路と、前記第1圧縮空気導出路から分岐され、前記第2気体として前記圧縮空気を前記第2膨張タービンに導出する第2圧縮空気導出路と、を備え、前記高圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の熱交換器に送られ、常温に昇温された後装置外部に供給されてもよい。
本発明において、前記第1ガス導出路は前記低圧塔内から前記第1気体として廃窒素ガスを導出し、前記第2ガス導出路は前記低圧塔内から前記第2気体として廃窒素ガスを導出してもよい。
本発明に係る空気分離装置によれば、第2膨張タービンで膨張された第2気体は、寒冷発生には寄与することなく、第2昇圧機への動力を発生させ、窒素ガス又は酸素ガスの圧力を高めることのみに寄与するようになっている。したがって、保冷箱内に必要とされる寒冷と昇圧機に必要な動力とが一致しない場合、例えば第1及び第2昇圧機に必要とされる動力が大きい場合で必要寒冷量が少ない場合には、第1気体が第1膨張タービンに供給され、第2気体が第2膨張タービンに供給されるように、切り替え弁により気体流路を制御することによって、余剰寒冷を発生させることなく必要な寒冷を得ることができると共に、2つの昇圧機へ動力を提供することができる。よって、製品ガスの昇圧に要する動力を低減しつつ、要求されるガス圧に応じた製品ガスを得ることができる。
本発明の第1実施形態に係る空気分離装置の全体構成を示すブロック図である。 本発明の第2実施形態に係る空気分離装置の全体構成を示すブロック図である。 本発明の第3実施形態に係る空気分離装置の全体構成を示すブロック図である。 本発明の第4実施形態に係る空気分離装置の全体構成を示すブロック図である。 本発明の第5実施形態に係る空気分離装置の全体構成を示すブロック図である。 従来の空気分離装置の全体構成を示すブロック図である。
以下、本発明の実施形態に係る空気分離装置について図面を参照しつつ説明する。
1.第1実施形態
図1は本発明の第1実施形態に係る空気分離装置1の全体構成を示すブロック図である。
図1に示すように、本実施形態に係る空気分離装置1は、空気ろ過器2、原料空気圧縮機3、前処理冷却設備5、モレキュラシーブ(MS)吸着設備6、保冷箱7、この保冷箱7の外に各々設けられた第1膨張タービン8、第1昇圧機9、第2膨張タービン10、第2昇圧機11、及び窒素圧縮機12並びに酸素圧縮機13を主として備えている。
第1昇圧機9は第1膨張タービン8に接続されており、この第1膨張タービン8から動力(運動エネルギー)を受けることができるようになっており、第2昇圧機11は第2膨張タービン10に接続されており、この第2膨張タービン10から動力を受けることができるようになっている。
前処理冷却設備5は、水洗冷却塔5a、蒸発冷却塔5b、及び水ポンプ5c、及び冷水ポンプ5dで構成される。MS吸着設備6は、主に前処理用吸着塔6a,6b、再生ヒータ6c、及びサイレンサー6dで構成される。
保冷箱7内には、熱交換器としての主熱交換器14、下塔である高圧塔15、上塔である低圧塔16、及びサブクーラー17等が主に設けられている。高圧塔15及び低圧塔16は上下に連設されている。
高圧塔15は供給された原料空気を酸素リッチな液体空気と窒素ガスとに精製分離するものであり、運転圧力は約0.8MPa以上である。低圧塔16は供給される上記酸素リッチな液体空気及び液体窒素から酸素ガス及び窒素ガスを精留分離するものであり、運転圧力は約0.14MPaである。
高圧塔15の頂部における窒素ガスを液化し、低圧塔16の底部における液体酸素を気化させるために、低圧塔16内の底部には主凝縮器16aが配設されており、その熱交換に必要な窒素ガスと液体酸素との温度差を確保するために、高圧塔15及び低圧塔16の各運転圧力を上記のように設定する必要がある。
MS吸着設備6は、主熱交換器14を通る原料空気導入通路18により高圧塔15の底部に接続されている。
高圧塔15の底部は、サブクーラー17を通る液体空気移送通路19により低圧塔16の中間部に接続されている。液体空気移送通路19の下流側にはバルブ20が設けられている。一方、高圧塔15の上部は、サブクーラー17を通る窒素移送通路21により低圧塔16の上部に接続されている。窒素移送通路21の下流側にもバルブ22が設けられている。
低圧塔16の頂部は、低圧塔窒素導出路23により第2昇圧機11の入口に接続されている。第2昇圧機11の出口は、昇圧後気体導出路24により第1昇圧機9の入口に接続されている。第1昇圧機9の出口は、導出路25により窒素圧縮機12に接続されている。
低圧塔16において低圧塔窒素導出路23が接続されている位置よりも下方の位置に、この低圧塔16から第1気体として廃窒素ガスを導出するための第1ガス導出路26の一方端が接続されている。この第1ガス導出路26はサブクーラー17及び主熱交換器14を通って、その他方端は第1膨張タービン8の入口に接続されている。第1膨張タービン8の出口は、保冷箱7内の主熱交換器14を通る第1膨張後気体導出路27によりMS吸着設備6に接続されている。
ここで、第1ガス導出路26の、主熱交換器14よりも下流側の箇所において、第2気体として廃窒素ガスを第2膨張タービン10の入口に供給するための第2ガス導出路28が分岐されている。この分岐点には、上記第1気体及び第2気体の流路を切り替え、又は双方に送る切り替え弁29が介挿されている。
第2膨張タービン10の出口は、保冷箱7内に通じる第2膨張後気体導出路30により上記の第1膨張後気体導出路27に接続されている。
なお、低圧塔16には、主熱交換器14を通り、低圧塔16内で精留分離された酸素ガスを酸素圧縮機13に送り出す酸素導出路31が接続されている。酸素圧縮機13で必要圧力に圧縮された酸素ガスは、酸素導出路31により装置外部に供給される。
また、高圧塔15には、主熱交換器14を通り、高圧塔15内で精留分離された窒素ガスを製品窒素(中圧窒素)として装置外部に供給する窒素導出路32が接続されている。
次いで、本発明に係る空気分離装置1の動作を説明する。
空気分離装置1に導入された原料空気は、まず空気ろ過器2でろ過された後、原料空気圧縮機3で高圧精留に必要な圧力(約0.8MPa以上)に昇圧圧縮される。圧縮により昇温した原料空気は、前処理冷却設備5で冷却された後、MS吸着設備6に送られ、原料空気中の水分や二酸化炭素等の不純成分が除去された後、保冷箱7内に供給されるようになっている。
保冷箱7内に導入された原料空気は、原料空気導入通路18を介して主熱交換器14で冷却された後、高圧塔15内の底部に導入される。導入された原料空気は、高圧塔15内を上昇中に下降液である液体窒素と向流接触を行い、蒸留により低沸点成分が増加することで、窒素ガスと酸素リッチな液体空気とに精留分離される。
高圧塔15内で精留分離された窒素ガス及び酸素リッチな液体空気は、それぞれ窒素移送通路21及び液体空気移送通路19により低圧塔16内に導入され、導入された窒素ガスと酸素リッチな液体空気との向流接触が起こり、蒸留の結果、低圧塔16内で高純度窒素ガスと液体酸素とに精留分離される。
低圧塔16の頂部からは、低圧塔窒素導出路23により高純度で低温(約−190℃〜−150℃)の窒素ガス(製品窒素)が導出される。この窒素ガスは、低温の状態で第2昇圧機11により昇圧された後、昇圧後気体導出路24により第1昇圧機9に供給される。なお、第2昇圧機11は窒素ガスを低温の状態で昇圧することから、常温昇圧を行う第1昇圧機9に比べ、約30%の動力で同様の圧縮比を達成することができる。
第1昇圧機9で昇圧され常温に戻された窒素ガスは、導出路25により窒素圧縮機12で必要圧力に圧縮され装置外部に供給される。
一方、第1ガス導出路26により低圧塔16内から導出された廃窒素ガスは、サブクーラー17を通って主熱交換器14で昇温された後、この第1ガス導出路26により第1膨張タービン8に供給されると共に、第2ガス導出路28により第2膨張タービン10に供給される。
第1膨張タービン8では、供給された廃窒素ガスが膨張されて膨張後気体が生成される。この膨張後気体は、主熱交換器14による熱交換用気体として第1膨張後気体導出路27により主熱交換器14に供給され、装置の運転に必要な寒冷の発生に寄与するようになっている。なお、主熱交換器14で熱交換された廃窒素ガスはMS吸着設備6の再生や前処理冷却設備5の冷却源として使われる。
また、第2膨張タービン10でも、供給された廃窒素ガスが膨張されて膨張後気体が生成される。この膨張後気体は、第2膨張後気体導出路30を介して第1膨張後気体導出路27に合流する。
本実施形態の技術的特徴として、第2昇圧機11で昇圧された窒素ガスが、保冷箱7内に通じる昇圧後気体導出路24によって導出される。つまり、第2昇圧機11で昇圧されることにより昇温した窒素ガスが保冷箱7内の主熱交換器14に戻されることによって、第2膨張タービン10により発生された寒冷を差し引く構成となっている。このような構成により、第2膨張タービン10で生成された膨張後気体は、寒冷発生には寄与することなく、第2昇圧機11への動力を発生させることに寄与するようになっている。
ところで、上でも述べたように、保冷箱7に必要とされる寒冷は空気分離装置1の運転状況によって大きく異なることから、昇圧機9,11に必要とされる動力(動力に変換される熱エネルギー)と上記寒冷(寒冷の発生に利用される熱エネルギー)とが一致しない場合が多い。
そこで、本発明では、昇圧機9,11に必要とされる動力が小さい場合、窒素ガスが第1膨張タービン8のみに供給されるように、切り替え弁29により窒素ガスの流路が切り替えられる。
また、昇圧機9,11に必要とされる動力が大きい場合には、窒素ガスが第1膨張タービン8及び第2膨張タービン10に供給されるように切り替え弁29で窒素ガスの流路を制御できるようになっている。これにより、余剰寒冷を発生させることなく、2つの昇圧機9,11へ動力を提供することができるので、窒素ガスをこの2つの昇圧機9,11によって二重に昇圧できる。したがって、要求されるガス圧に応じた窒素ガスを容易に得ることができると共に、窒素圧縮機12の吸い込み圧を高めることが出来るので窒素圧縮機12における圧縮比を低減し、必要電力を低減すると同時に、圧縮機の大きさを低減することで、設備費用も低減できる。
2.第2実施形態
図2は本発明の第2実施形態に係る空気分離装置1aの全体構成を示すブロック図である。なお以下の図2〜図5において、上記図1と同じ符号の構成部については同じ符号を付しており、これらの説明を省略する。また、図2〜図5では、空気ろ過器2、原料空気圧縮機3、前処理冷却設備5、及びMS吸着設備6を簡略化して図示している。
本実施形態に係る空気分離装置1aの構成が第1実施形態に係る空気分離装置1の構成と異なるところは、以下の点である。
図2に示すように、空気分離装置1aにおいては、低圧塔16の頂部に一方端が接続された低圧塔窒素導出路33がサブクーラー17及び主熱交換器14を通って、その他方端が第1昇圧機9の入口に接続されている。
また、高圧塔15に一方端が接続された窒素導出路34が設けられ、その他方端が第2昇圧機11の入口に接続されている。
さらに、第2昇圧機11の出口に一方端が接続された昇圧後気体導出路35が設けられ、この昇圧後気体導出路35は、主熱交換器14を通り、昇圧後の窒素ガスを製品窒素として装置外部に供給する。
本実施形態において、第2昇圧機11に提供するための動力を発生させるために、第2膨張タービン10に供給される気体が低圧塔16内の廃窒素ガスであることは、第1実施形態と同じである。
上記のような構成により、本実施形態では、高圧塔15内で精留分離された窒素ガスを第2昇圧機11で昇圧した後、昇圧後気体導出路35により保冷箱7内に戻すようになっている。これにより、第2膨張タービン10により発生された寒冷を差し引く構成となっている。したがって、本実施形態でも、第2膨張タービン10で生成された膨張後気体は、寒冷発生には寄与することなく、第2昇圧機11への動力を発生させることに寄与するようになっている。第1膨張タービン8で膨張された廃窒素ガスが、保冷箱7のための寒冷発生と第1昇圧機9への動力提供に寄与していることは第1実施形態と同じである。
なお、第2実施形態に係る空気分離装置1aでは、高圧塔15内で精留分離される窒素ガスを取り出せば、窒素増加相当分、空気分離装置1aに導入すべき原料空気量を増加する必要があるので、設備の大型化と設備コストの上昇が生じる。
3.第3実施形態
図3は本発明の第3実施形態に係る空気分離装置1bの全体構成を示すブロック図である。
本実施形態に係る空気分離装置1bの構成が第1実施形態に係る空気分離装置1の構成と異なるところは、以下の点である。
図3に示すように、空気分離装置1bにおいては、低圧塔16の頂部に一方端が接続された低圧塔窒素導出路33がサブクーラー17及び主熱交換器14を通って、その他方端が第1昇圧機9の入口に接続されている。この点は、第2実施形態と同じである。
また、低圧塔16内で精留分離された酸素ガスを第2昇圧機11に送り出す酸素導出路36が設けられている。
さらに、第2昇圧機11の出口に一方端が接続された昇圧後気体導出路37が設けられている。この昇圧後気体導出路37は主熱交換器14を通り、その他方端は酸素圧縮機13に接続されている。
本実施形態でも、第2昇圧機11に提供するための動力を発生させるために、第2膨張タービン10に供給される気体が低圧塔16内の廃窒素ガスであることは、第1及び第2実施形態と同じである。
本実施形態において、低圧塔16内で精留分離された酸素ガスを第2昇圧機11で昇圧した後、昇圧後気体導出路37により保冷箱7内に戻すようになっている。これにより、第2膨張タービン10により発生された寒冷を差し引く構成となっている。したがって、本実施形態でも、第2膨張タービン10で生成された膨張後気体は、寒冷発生には寄与することなく、第2昇圧機11への動力を発生させることに寄与するようになっている。なお、第1膨張タービン8で膨張された廃窒素ガスが、保冷箱7のための寒冷発生と第1昇圧機9への動力提供に寄与していることは第1及び第2実施形態と同じである。
4.第4実施形態
図4は本発明の第4実施形態に係る空気分離装置1cの全体構成を示すブロック図である。
本実施形態に係る空気分離装置1cの構成が第1実施形態に係る空気分離装置1の構成と異なるところは、以下の点である。
図4に示すように、空気分離装置1cでは、第1圧縮空気導出路39が設けられている。この第1圧縮空気導出路39の一方端は、原料空気導入通路18の、主熱交換器14よりも上流側の分岐点に接続されており、その他方端は主熱交換器14を通り切り替え弁29を介して第1膨張タービン8の入口に接続されている。また、第1膨張後気体導出路40が設けられ、この一方端は第1膨張タービン8の出口に接続され、その他方端は原料空気導入通路18の、主熱交換器14よりも下流側の部分に合流するように接続されている。第1圧縮空気導出路39には昇圧圧縮機38が介挿されている。
このような構成において、原料空気は、原料空気圧縮機3で圧縮され、昇圧圧縮機38で更に圧縮された後、主熱交換器14で冷却され、第1圧縮空気導出路39により第1膨張タービン8に供給されると共に、第2圧縮空気導出路としての第2ガス導出路28により第2膨張タービン10に供給される。第1膨張タービン8で生成された膨張後気体は第1膨張後気体導出路40を通じて原料空気導入通路18内の原料空気と混合され、第2膨張タービン10で生成された膨張後気体は、第2膨張後気体導出路30及び第1膨張後気体導出路40を通じて原料空気導入通路18内の原料空気と混合されるようになっている。
また、保冷箱7内に気液分離器42が設けられている。上記の昇圧圧縮機38の一方の出口と上記の気液分離器42とを接続し、主熱交換器14を通る管路41が設けられている。さらに、気液分離器42の頂部と高圧塔15とを接続する管路43、及び気液分離器42の底部と高圧塔15とを接続する管路44が設けられている。このような構成において、原料空気は、昇圧圧縮機38で更に圧縮された後、主熱交換器14で冷却され、気液分離器42で気相と液相分離されて高圧塔15に導入される。
さらに、主熱交換器14を通る管路45が設けられ、この管路45の一方端は低圧塔16の底部に接続されており、その他方端は装置外部に導かれている。管路45には液酸ポンプ46が介挿されている。この液酸ポンプ46により、低圧塔16内の液体酸素が昇圧された後、主熱交換器14で昇温されて製品酸素ガス(高圧酸素)として装置外部に供給されるようになっている。
本実施形態では、上述した第1〜第3実施形態とは異なって、第2昇圧機11に提供するための動力を発生させるために、第2膨張タービン10に供給される気体を、昇圧圧縮機38で更に圧縮された圧縮空気としている。
本実施形態において、低圧塔16内で精留分離された窒素ガスを第2昇圧機11で昇圧した後、昇圧後気体導出路24により保冷箱7内に戻すようになっている。これにより、第2膨張タービン10により発生された寒冷を差し引く構成となっている。したがって、本実施形態でも、第2膨張タービン10で生成された膨張後気体は、寒冷発生には寄与することなく、第2昇圧機11への動力を発生させることに寄与するようになっている。なお、第1膨張タービン8で膨張された圧縮空気は、保冷箱7のための寒冷発生と第1昇圧機9への動力提供に寄与する構成となっている。
5.第5実施形態
図5は本発明の第5実施形態に係る空気分離装置1dの全体構成を示すブロック図である。
本実施形態に係る空気分離装置1dの構成が第4実施形態に係る空気分離装置1cの構成と異なるところは、以下の点である。
図5に示すように、空気分離装置1dでは、低圧塔16の頂部に一方端が接続された低圧塔窒素導出路33がサブクーラー17及び主熱交換器14を通って、その他方端が第1昇圧機9の入口に接続されている。
また、高圧塔15に一方端が接続された窒素導出路34が設けられ、その他方端が第2昇圧機11の入口に接続されている。
さらに、第2昇圧機11の出口に一方端が接続された昇圧後気体導出路35が設けられ、この昇圧後気体導出路35は、主熱交換器14を通り、昇圧後の窒素ガスを製品窒素として装置外部に供給するようになっている。
本実施形態でも、第4実施形態と同じように、第2昇圧機11に提供するための動力を発生させるために、第2膨張タービン10に供給される気体を、原料空気圧縮機3で圧縮され、昇圧圧縮機38で更に圧縮された圧縮空気としている。
本実施形態において、高圧塔15内で精留分離された窒素ガスを第2昇圧機11で昇圧した後、昇圧後気体導出路24により保冷箱7内に戻すようになっている。これにより、第2膨張タービン10により発生された寒冷を差し引く構成となっている。したがって、本実施形態でも、第2膨張タービン10で生成された膨張後気体は、寒冷発生には寄与することなく、第2昇圧機11への動力を発生させることに寄与するようになっている。なお、第4実施形態と同じように、第1膨張タービン8で膨張された圧縮空気は、保冷箱7のための寒冷発生と第1昇圧機9への動力提供に寄与する構成となっている。
以上が本発明を実施するための形態であるが、本発明はもとより上記各実施形態によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
1,1a,1b,1c,1d 空気分離装置
3 原料空気圧縮機
7 保冷箱
8 第1膨張タービン
9 第1昇圧機
10 第2膨張タービン
11 第2昇圧機
12 窒素圧縮機
13 酸素圧縮機
14 主熱交換器
15 高圧塔
16 低圧塔
17 サブクーラー
18 原料空気導入通路
19 液体空気移送通路
21 窒素移送通路
23,33 低圧塔窒素導出路
24,35,37 昇圧後気体導出路
26 第1ガス導出路
27,40 第1膨張後気体導出路
28 第2ガス導出路(第2圧縮空気導出路)
29 切り替え弁
30 第2膨張後気体導出路
38 昇圧圧縮機
39 第1圧縮空気導出路

Claims (7)

  1. 原料空気から窒素ガスを精留分離する高圧塔と、前記高圧塔から供給される酸素リッチな液体空気と液体窒素を酸素ガスと窒素ガスとに精留分離する低圧塔とが保冷箱に設けられている空気分離装置であって、
    前記低圧塔で精留分離され常温に戻された前記窒素ガスを昇圧させる第1昇圧機と、
    第1気体を膨張させ、第1膨張後気体導出路を通じて前記保冷箱内に寒冷を供給するとともに前記第1昇圧機への動力を発生させる第1膨張タービンと、
    前記低圧塔で精留分離された低温の前記窒素ガス或いは前記酸素ガス、又は前記高圧塔で精留分離された低温の前記窒素ガスを昇圧させる第2昇圧機と、
    第2気体を膨張させ、前記保冷箱内に設けられた熱交換器又は前記高圧塔に通じる第2膨張後気体導出路に供給するとともに前記第2昇圧機への動力を発生させる第2膨張タービンと、
    前記第1膨張タービン及び前記第2膨張タービンの一方または双方への前記第1及び第2気体の流路を切り替える切り替え弁と、
    前記低圧塔で精留分離された低温の前記窒素ガス或いは前記酸素ガス、又は前記高圧塔で精留分離された低温の前記窒素ガスを、前記第2昇圧機で昇圧した後、前記保冷箱内の前記熱交換器に供給する昇圧後気体導出路と、を備えることを特徴とする空気分離装置。
  2. 前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、
    前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、
    前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、
    前記低圧塔の頂部からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後前記第1昇圧機で更に昇圧された後、装置外部に供給される請求項1に記載の空気分離装置。
  3. 前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、
    前記高圧塔から窒素ガスを導出する高圧塔窒素導出路と、
    前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、
    前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、
    前記高圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後装置外部に供給される請求項1に記載の空気分離装置。
  4. 前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、
    前記低圧塔の下部から酸素ガスを導出する低圧塔酸素導出路と、
    前記低圧塔の上部から前記第1気体を導出し、前記第1膨張タービンに供給する第1ガス導出路と、
    前記第1ガス導出路から分岐され、前記第2膨張タービンに前記第2気体を導出する第2ガス導出路と、を備え、
    前記低圧塔酸素導出路からの前記酸素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換に送られ、常温に昇温された後装置外部に供給される請求項1に記載の空気分離装置。
  5. 前記低圧塔の頂部から窒素ガスを導出する低圧塔窒素導出路と、
    前記原料空気を圧縮する原料空気圧縮機と、圧縮された前記原料空気を更に圧縮する昇圧圧縮機と、
    前記第1気体として前記昇圧圧縮機で圧縮された圧縮空気を導出し、前記第1膨張タービンに供給する第1圧縮空気導出路と、
    前記第1圧縮空気導出路から分岐され、前記第2気体として前記圧縮空気を前記第2膨張タービンに導出する第2圧縮空気導出路と、を備え、
    前記低圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の前記熱交換器に送られ、常温に昇温された後前記第1昇圧機で更に昇圧された後、装置外部に供給される請求項1に記載の空気分離装置。
  6. 前記高圧塔から窒素ガスを導出する高圧塔窒素導出路と、
    前記原料空気を圧縮する原料空気圧縮機と、圧縮された前記原料空気を更に圧縮する昇圧圧縮機と、
    前記第1気体として前記昇圧圧縮機で圧縮された圧縮空気を導出し、前記第1膨張タービンに供給する第1圧縮空気導出路と、
    前記第1圧縮空気導出路から分岐され、前記第2気体として前記圧縮空気を前記第2膨張タービンに導出する第2圧縮空気導出路と、を備え、
    前記高圧塔窒素導出路からの前記窒素ガスは、前記第2昇圧機で昇圧された後、前記昇圧後気体導出路により前記保冷箱内の熱交換器に送られ、常温に昇温された後装置外部に供給される請求項1に記載の空気分離装置。
  7. 前記第1ガス導出路は前記低圧塔内から前記第1気体として廃窒素ガスを導出し、前記第2ガス導出路は前記低圧塔内から前記第2気体として廃窒素ガスを導出する請求項2〜4のいずれか1項に記載の空気分離装置。
JP2012003583A 2012-01-11 2012-01-11 空気分離装置 Active JP5584711B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003583A JP5584711B2 (ja) 2012-01-11 2012-01-11 空気分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003583A JP5584711B2 (ja) 2012-01-11 2012-01-11 空気分離装置

Publications (2)

Publication Number Publication Date
JP2013142509A JP2013142509A (ja) 2013-07-22
JP5584711B2 true JP5584711B2 (ja) 2014-09-03

Family

ID=49039167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003583A Active JP5584711B2 (ja) 2012-01-11 2012-01-11 空気分離装置

Country Status (1)

Country Link
JP (1) JP5584711B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021776A (ko) * 2018-08-21 2020-03-02 주식회사 포스코 공기분리장치의 운전방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812097B (zh) * 2022-04-22 2023-02-03 杭州特盈能源技术发展有限公司 一种跨流程高契合度耦合低能耗高氮制取工艺
CN115507620B (zh) * 2022-08-17 2023-07-28 中盐安徽红四方股份有限公司 应用水力透平驱动泵的空分装置预冷系统及其控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237892B2 (ja) * 1992-03-18 2001-12-10 株式会社日立製作所 加圧式空気分離装置
JP3384587B2 (ja) * 1993-06-28 2003-03-10 株式会社神戸製鋼所 空気分離装置
US5711167A (en) * 1995-03-02 1998-01-27 Air Liquide Process & Construction High efficiency nitrogen generator
JP2992750B2 (ja) * 1998-05-20 1999-12-20 日本酸素株式会社 窒素製造方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021776A (ko) * 2018-08-21 2020-03-02 주식회사 포스코 공기분리장치의 운전방법
KR102139990B1 (ko) 2018-08-21 2020-07-31 주식회사 포스코 공기분리장치의 운전방법

Also Published As

Publication number Publication date
JP2013142509A (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
JP6608525B2 (ja) 改良型ゴスワミサイクルに基づく、ガス処理プラント廃熱の電力及び冷却への変換
CN109690215A (zh) 工业气体场所与液氢生产的一体化
JP2018530691A (ja) カリーナサイクルに基づく、ガス処理プラント廃熱の電力への変換
TW201109602A (en) Air liquefaction and separation method and device
CN106595221B (zh) 制氧系统和制氧方法
US20200355429A1 (en) Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
JP4276520B2 (ja) 空気分離装置の運転方法
JP6092804B2 (ja) 空気液化分離方法及び装置
JP5584711B2 (ja) 空気分離装置
CN105378411B (zh) 生产至少一种空气产品的方法、空分设备、产生电能的方法和装置
JP5417054B2 (ja) 空気分離方法及び装置
JP2007147113A (ja) 窒素製造方法及び装置
CA2784877C (en) Process and apparatus for the separation of air by cryogenic distillation
JPH1163810A (ja) 低純度酸素の製造方法及び装置
JP2005221199A (ja) 空気分離装置
JP2009052807A (ja) 深冷空気液化分離装置およびその運転方法
KR100694376B1 (ko) 심냉 공기 분리 장치 및 그 운전 방법
JP6738126B2 (ja) 空気分離装置
JP4202971B2 (ja) 窒素製造方法および装置
JP5997105B2 (ja) 空気分離方法
JP3748677B2 (ja) 低純度酸素の製造方法及び装置
JP7458226B2 (ja) 空気分離装置及び酸素ガス製造方法
JP6130567B1 (ja) 酸素ガスの製造方法、およびその装置
JP4698989B2 (ja) 酸素製造装置
JP2003021457A (ja) 内部昇圧式深冷空気分離装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140718

R150 Certificate of patent or registration of utility model

Ref document number: 5584711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350