JP5581788B2 - データ検査装置及びプログラム - Google Patents

データ検査装置及びプログラム Download PDF

Info

Publication number
JP5581788B2
JP5581788B2 JP2010090179A JP2010090179A JP5581788B2 JP 5581788 B2 JP5581788 B2 JP 5581788B2 JP 2010090179 A JP2010090179 A JP 2010090179A JP 2010090179 A JP2010090179 A JP 2010090179A JP 5581788 B2 JP5581788 B2 JP 5581788B2
Authority
JP
Japan
Prior art keywords
analysis target
node
target model
unit
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010090179A
Other languages
English (en)
Other versions
JP2011221786A (ja
Inventor
淳一郎 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010090179A priority Critical patent/JP5581788B2/ja
Publication of JP2011221786A publication Critical patent/JP2011221786A/ja
Application granted granted Critical
Publication of JP5581788B2 publication Critical patent/JP5581788B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、解析対象のシミュレーションモデルがメッシュ状に分割された複数の要素の分割データを検査するデータ検査装置及びプログラムに関する。
従来、3次元や2次元の連続体を解析対象として、当該解析対象のシミュレーションモデル(解析対象モデル)の構造解析や音響解析等を有限要素法や境界要素法などの所定の解析手法を用いて行っている。
例えば、有限要素法では、CAD(Computer Aided Design)システムなどを利用して生成された解析対象のシミュレーションモデルを、メッシュ状に区分して複数の多角形や多面体の有限要素に分割し、これらの要素間の物理的関係を数値解析する(例えば、特許文献1参照)。
特開平7−55656号公報
ところで、生成された要素の分割データ自体に誤りがあると、数値解析における計算誤差を生じさせたり、数値解析自体を実行できなくなる虞があることから、解析対象モデル中に境界条件などを定義する必要がある。そこで、CADシステムにて解析対象の部品毎の接触面の定義を行った上で、接触面どうしの配置の整合性を考慮してシミュレーションモデルを生成するシステムが開発されている。
しかしながら、上記のシステムにあっては、解析対象における他の部品と接触しない部分などは考慮されていないため、シミュレーションモデルの表面の要素などは依然としてユーザの意図した通りには設定されない虞がある。また、生成されたシミュレーションモデルを有限要素法以外の他の解析手法に適用することができないといった問題もある。
このため、シミュレーションモデルの要素が適正に設定されているか否かを確認する作業は、手作業に因るところが多く、煩雑となっている。
そこで、本願発明の課題は、複数の表面要素の分割データの誤りを簡便に、且つ、適正に検査することができるデータ検査装置及びプログラムを提供することである。
上記課題を解決するため、本発明のデータ検査装置は、
3次元の解析対象のシミュレーションモデル(以下、「解析対象モデル」と言う)がメッシュ状に分割された所定形状の複数の要素のうち、少なくとも当該解析対象モデルの一部分の表面に対応する表面要素を複数取得する要素取得手段と、
この要素取得手段により取得された複数の表面要素の各節点の座標を取得する座標取得手段と、
前記解析対象モデルの一部分の表面形状を規定する所定の演算式を用いて、前記座標取得手段により取得された前記複数の表面要素の各節点の座標が、前記解析対象モデルの表面上に存在するか否かを判定する第1判定手段と、
前記要素取得手段により取得された前記複数の表面要素の各々における節点を頂点とする角度の総和を基準として、当該複数の表面要素の何れかに抜けが生じているか否かを判定する第2判定手段と、
前記第1判定手段による判定結果に基づいて、前記解析対象モデルの表面上に存在しない座標を有する節点を解析に不適正な節点として特定するとともに、前記第2判定手段による判定結果に基づいて、抜けが生じている表面要素を解析に不適正な表面要素として特定する特定手段と、を備えたことを特徴とする。
また、本発明のプログラムは、
データ検査装置のコンピュータを、
3次元の解析対象のシミュレーションモデル(以下、「解析対象モデル」と言う)がメッシュ状に分割された所定形状の複数の要素のうち、少なくとも当該解析対象モデルの一部分の表面に対応する表面要素を複数取得する要素取得手段、
この要素取得手段により取得された複数の表面要素の各節点の座標を取得する座標取得手段、
前記解析対象モデルの一部分の表面形状を規定する所定の演算式を用いて、前記座標取得手段により取得された前記複数の表面要素の各節点の座標が、前記解析対象モデルの表面上に存在するか否かを判定する第1判定手段、
前記要素取得手段により取得された前記複数の表面要素の各々における節点を頂点とする角度の総和を基準として、当該複数の表面要素の何れかに抜けが生じているか否かを判定する第2判定手段、
前記第1判定手段による判定結果に基づいて、前記解析対象モデルの表面上に存在しない座標を有する節点を解析に不適正な節点として特定するとともに、前記第2判定手段による判定結果に基づいて、抜けが生じている表面要素を解析に不適正な表面要素として特定する特定手段、として機能させることを特徴とする。
本発明によれば、複数の表面要素の分割データの誤りを簡便に、且つ、適正に検査することができる。
本発明を適用した一実施形態のデータ検査装置の概略構成を示すブロック図である。 図1のデータ検査装置によるデータ検査処理に係る動作の一例を示すフローチャートである。 図2のデータ検査処理に係る解析対象モデルの一例を模式的に示す図である。
以下に、本発明について、図面を用いて具体的な態様を説明する。ただし、発明の範囲は、図示例に限定されない。
本実施形態のデータ検査装置100は、3次元の解析対象モデルMがメッシュ状に分割された所定形状の複数の要素E、…のうち、少なくとも当該解析対象モデルMの一部分の表面に対応する表面要素E1を複数取得する。そして、データ検査装置100は、少なくとも当該解析対象モデルMの一部分に対応する複数の表面要素E1、…の各節点Pの座標を取得して、これら複数の表面要素E1、…の各節点Pの座標が、少なくとも解析対象モデルMの一部分の表面形状を基準とした第1条件を満たすか否かを判定する。また、データ検査装置100は、少なくとも当該解析対象モデルMの一部分の表面に対応する複数の表面要素E1、…の各々が、当該表面要素E1の各節点Pを頂点とする角度を基準とした第2条件を満たすか否かを判定する。そして、データ検査装置100は、第1条件を満たさない座標を有する節点Pを不適正な節点Pとして特定するとともに、第2条件を満たさない表面要素E1を不適正な表面要素E1として特定する。
図1は、本発明を適用した一実施形態のデータ検査装置100の概略構成を示すブロック図である。
データ検査装置100は、例えば、ワークステーションなどのコンピュータにより構成され、図1に示すように、中央制御部1と、メモリ2と、記憶部3と、操作入力部4と、データ取得部5と、データ検査部6と、表示部7と、表示制御部8と、外部通信部9とを備えている。
中央制御部1は、データ検査装置100の各部を制御するものである。具体的には、中央制御部1は、CPU(Central Processing Unit;図示略)を備え、データ検査装置100用の各種処理プログラム(図示略)に従って各種の制御動作を行う。
メモリ2は、例えば、DRAM(Dynamic Random Access Memory)等により構成され、中央制御部1、データ取得部5、データ検査部6等によって処理されるデータ等を一時記憶する。また、メモリ2は、外部機器200から当該データ検査装置100に対して送信されて、外部通信部9により受信された解析対象のシミュレーションモデル(解析対象モデル)Mのデータを一時記憶する。
記憶部3は、例えば、不揮発性メモリ(フラッシュメモリ)等により構成され、中央制御部1の動作に必要な各種プログラムやデータ(図示略)を記憶している。
操作入力部4は、例えば、数値、文字等を入力するためのデータ入力キーや、データの選択、送り操作等を行うための上下左右移動キーや各種機能キー等によって構成されるキーボードやマウス等の操作部を備え、これらの操作部の操作に応じて所定の操作信号を中央制御部1に出力する。
データ取得部5は、3次元の解析対象のシミュレーションモデル(解析対象モデル)Mがメッシュ状に分割された所定形状の複数の表面要素E1、…の分割データを取得する。
先ず、解析対象モデルMについて説明する。
解析対象モデルMとは、CADシステムを構成する外部機器200によって3次元の連続体を解析対象として生成された当該解析対象のシミュレーションモデル(解析対象モデル)Mのことである。
ここで、3次元の連続体である解析対象は、少なくとも一の演算式により規定される表面形状を具備している。即ち、解析対象は、当該解析対象全体の表面形状が少なくとも一の演算式により規定されるか、或いは、表面形状が少なくとも一の演算式により規定される構成部品を複数組み合わせて構成されている。従って、3次元の連続体である解析対象に基づいて生成されるシミュレーションモデル(解析対象モデル)Mも、少なくとも一の演算式により規定される表面形状を具備する。
なお、本実施形態のデータ検査装置100による検査対象を解析対象モデルMの一部分とした場合には、当該解析対象モデルMの少なくとも一部分の表面形状が所定の演算式を用いて規定されていれば良い。
具体的には、解析対象モデルMは、例えば、中身が詰まった中実の構造であっても良いし、中空の構造であっても良いし、当該中空の空間部自体の形状を具備するものであっても良い。例えば、解析対象モデルMとしては、球体、楕円体、立方体などの比較的単純な形状のものや、これらを組み合わせてなる形状などが挙げられる。
また、データ取得部5は、3次元の解析対象モデルMをメッシュ状に区分して所定形状の複数の要素E、…の分割データを生成するデータ生成部5aを具備している。
具体的には、データ生成部5aは、先ず、メモリ2から外部機器200により生成された3次元の解析対象モデルMを取得する。そして、データ生成部5aは、取得した当該解析対象モデルMを有限要素法によりメッシュ状に区分して所定の多角形や多面体からなる複数の有限要素Eに分割することにより、有限要素Eの分割データを生成する。そして、データ取得部5は、データ生成部5aにより生成された有限要素Eの分割データのうち、当該解析対象モデルMの外表面に対応して配置されている表面要素E1の分割データを取得する。
なお、データ生成部5aは、複数の要素E、…の分割データの生成に有限要素法を用いるようにしたが、解析対象モデルMの数値解析の手法として適用可能な他の解析手法、例えば、境界要素法などを用いても良い。また、有限要素法や境界要素法は、解析対象のシミュレーションモデル(解析対象モデル)Mの解析手法として公知の技術であるので、ここでの説明は省略する。
また、データ取得部5は、解析対象モデルM全体の表面要素E1の分割データを取得するようにしたが、解析対象モデルMにおける表面要素E1の分割データを取得する範囲はこれに限られるものではない。例えば、複数の構成部品から構成された連続体を解析対象として生成された解析対象モデルMの場合、データ取得部5は、各構成部品に対応する一部分の外表面の有限要素Eの分割データ、即ち、少なくとも解析対象モデルMの一部分の外表面に対応する表面要素E1を取得するようにしても良い。ここで、少なくとも解析対象モデルMの一部分に対応する表面要素E1は、同一の物性を属性情報として有する集合である。
さらに、データ取得部5は、3次元の解析対象モデルMをデータ生成部5aにより分割することで表面要素E1の分割データを取得するようにしたが、表面要素E1の分割データの取得方法はこれに限られるものではなく、当該データ検査装置100外の所定の分割データ生成装置(図示略)により生成された表面要素E1の分割データを外部通信部9や当該データ検査装置100本体に対して着脱自在な記録媒体(図示略)などを介して取得するようにしても良い。
このように、データ取得部5は、3次元の解析対象モデルMがメッシュ状に分割された所定形状の複数の要素E、…のうち、少なくとも当該解析対象モデルMの一部分の表面に対応する表面要素E1を複数取得する要素取得手段を構成している。
データ検査部6は、座標取得部6aと、第1判定部6bと、第2判定部6cと、誤りデータ特定部6dとを具備している。
座標取得部6aは、データ取得部5により取得された解析対象モデルMの複数の表面要素E1、…の各節点Pの座標(x,y,z)を取得する。具体的には、座標取得部6aは、解析対象モデルMの表面要素E1について、当該表面要素E1を構成する複数の節点Pのx軸、y軸及びz軸から構成された3次元空間における座標(x,y,z)を取得する。
ここで、座標取得部6aは、データ取得部5により取得された複数の表面要素E1、…の各節点Pの座標を取得する座標取得手段を構成している。
第1判定部6bは、座標取得部6aにより取得された解析対象モデルMの複数の表面要素E1、…の各節点Pの座標(x,y,z)が第1条件を満たすか否かを判定する。
第1条件は、少なくとも解析対象モデルMの検査対象となる一部分の表面形状を基準とした条件である。具体的には、第1条件は、当該解析対象モデルMの一部分の表面形状を規定する所定の演算式を基準とした条件である。例えば、解析対象モデルMを楕円体とした場合、第1条件は、楕円体の表面を規定する方程式である下記式(1)となる。
Figure 0005581788
なお、上記式(1)において、座標(x0,y0,z0)は当該楕円体の中心座標を表し、「a」,「b」,「c」の各々はそれぞれx軸、y軸及びz軸方向の主軸の半分の長さを表している。
そして、第1判定部6bは、座標取得部6aにより取得された解析対象モデルMの複数の表面要素E1、…の各節点Pの座標(例えば、節点P1(x1,y1,z1)等)が、少なくとも解析対象モデルMの一部分の表面形状を基準とした第1条件を満たすか否かを判定する。具体的には、例えば、解析対象モデルMを楕円体とした場合、第1判定部6bは、解析対象モデルMの複数の表面要素E1、…の各節点P1の座標(x1,y1,z1)を上記式(1)に代入して、当該式(1)を満たすか否かを判定する。これにより、第1判定部6bは、解析対象モデルMの複数の表面要素E1、…の各節点P1の座標(x1,y1,z1)が解析対象モデルMの表面上に存するか否かを判定する。
なお、第1条件の判定基準は、適宜任意に変更可能であり、例えば、第1条件として規定する所定の演算式を厳密に満たすか否かを判定しても良いし、所定の閾値を設定することで誤差範囲を確保するようにしても良い。
また、第1条件として例示した式(1)は、一例であってこれに限られるものではなく、適宜任意に変更可能である。また、解析対象モデルMの形状によっては、第1条件として複数の演算式を規定しても良い。
このように、第1判定部6bは、座標取得部6aにより取得された複数の表面要素E1、…の各節点Pの座標が、解析対象モデルMの一部分の表面形状を基準とした第1条件を満たすか否かを判定する第1判定手段を構成している。
第2判定部6cは、データ取得部5により取得された解析対象モデルMの複数の表面要素E1、…の各々が第2条件を満たすか否かを判定する。
第2条件は、解析対象モデルMの複数の表面要素E1、…の各節点Pを頂点とする角度(例えば、内角θi)を基準とした条件である。具体的には、第2条件は、判定対象となる表面要素E1の各節点P(例えば、節点P1等;図3(b)参照)を共有する複数の表面要素E1、…の各々における、当該節点Pを頂点とする角度の総和(例えば、内角θ;下記式(2)参照)を基準として規定されている。例えば、第2条件としては、角度(内角θ)の総和が所定の角度(例えば、2π(360°)等)となっていることが挙げられる。
ここで、判定対象となる表面要素E1の各節点P(例えば、節点P1等)を共有する複数の表面要素E1、…とは、当該判定対象となる表面要素E1を含む各節点Pの周辺に存する周辺要素E2のことである。そして、第2判定部6cは、これら周辺要素E2、…の各々について、各節点Pの座標から算出される処理対象の節点Pに向かう二つの辺のベクトル(例えば、ベクトルa、b等)及びその長さを下記式(3)に代入して、処理対象の節点Pを頂点とする内角θi(例えば、内角θ1〜θ6等;図3(b)参照)を算出する。その後、第2判定部6cは、これら周辺要素E2、…の各々における処理対象の節点Pを頂点とする内角θiを全て加算して、それらの総和(例えば、内角θ)を下記式(2)に従って算出する。
Figure 0005581788
Figure 0005581788
なお、上記式(2)において、「n」は周辺要素E2の個数を表している。また、上記式(3)にあっては、処理対象の節点Pに向かう二つの辺のベクトル(例えば、ベクトルa、b等)をボールド(太字)の書体で表すものとする。
そして、第2判定部6cは、データ取得部5により取得された解析対象モデルMの複数の表面要素E1、…の各々について、処理対象の節点P1を頂点とする内角θiの総和(例えば、内角θ)を基準とする第2条件を満たすか否かを判定する。
具体的には、例えば、図3(b)に示すように、処理対象の節点P1を共有する表面要素E1が当該節点P1の周辺に6つ存する場合、第2判定部6cは、これら6つの周辺要素E2における節点P1を頂点とする内角θ1〜θ6をそれぞれ式(3)に従って算出する。そして、第2判定部6cは、算出された内角θ1〜θ6を加算して節点P1を頂点とする内角θ1〜θ6の総和(内角θ)を式(2)に従って算出する。なお、図3(b)にあっては、内角θ1を構成する二つの辺のベクトルa、bのみを表し、ベクトルa、b以外の他の内角θ2〜θ6に係る辺のベクトルの図示は省略している。
その後、第2判定部6cは、解析対象モデルMの節点P1の周囲の所定範囲内は略平面であるとみなして、式(2)に従って算出された内角θiの総和(内角θ)が2π(360°)となるか否かを判定する。つまり、第2判定部6cによる判定によって、内角θiの総和(内角θ)が2πとなる場合には、処理対象の節点P1を共有する表面要素E1については抜けが生じていない。一方、内角θiの総和(内角θ)が2πとならない場合には、当該節点P1を共有する複数の表面要素E1(周辺要素E2)の何れかに抜けが生じている(表面要素E1が解析対象モデルMに存しない)。
また、第2判定部6cは、解析対象モデルMの各表面要素E1の全ての節点Pについて、上記と同様に、処理対象の節点Pを頂点とする内角θiの総和(例えば、内角θ)が2πとなるか否かを判定する。
なお、第2条件の判定基準は、適宜任意に変更可能であり、例えば、第2条件として規定する所定の演算式(例えば、内角θ=2π)を満たすか否かを厳密に判定しても良いし、所定の閾値を設定することで誤差範囲を確保するようにしても良い。
また、第2条件に係る式(2)及び式(3)は、一例であってこれらに限られるものではなく、適宜任意に変更可能である。
さらに、第2判定部6cによる判定処理にあっては、表面要素E1の各節点Pを頂点とする内角θiを基準とするようにしたが、これに限られるものではなく、例えば、外角を基準とするようにしても良い。
このように、第2判定部6cは、データ取得部5により取得された複数の表面要素E1、…の各々が、当該表面要素E1の各節点Pを頂点とする角度を基準とした第2条件を満たすか否かを判定する第2判定手段を構成している。
誤りデータ特定部6dは、第1判定部6b及び第2判定部6cによる判定結果に基づいて、数値解析に不適正な誤りデータを特定する。
具体的には、誤りデータ特定部6dは、第1判定部6bにより第1条件を満たさない座標、即ち、解析対象モデルMの表面上に存しない座標を有する節点Pを数値解析に不適正な節点Pとして特定する。
また、誤りデータ特定部6dは、第2判定部6cにより第2条件を満たさない表面要素E1、即ち、解析対象モデルMの複数の表面要素E1、…の中で抜けが生じている表面要素E1を数値解析に不適正な表面要素E1として特定する。
つまり、誤りデータ特定部6dは、第2判定部6cによる各表面要素E1の全ての節点Pについての判定結果に基づいて、解析対象モデルMの全ての表面要素E1の中で抜けが生じている表面要素E1を特定する。例えば、一の表面要素E1の各節点Pについての判定結果にて、内角θiの総和(例えば、内角θ)が全て2πとならなかった場合、誤りデータ特定部6dは、当該一の表面要素E1に抜けが生じていると特定する。また、誤りデータ特定部6dは、例えば、一の表面要素E1の全ての節点Pのうち、何れか一の節点Pを処理対象とした判定結果にて内角θiの総和(例えば、内角θ)が2πとならなかった場合には、各節点Pを共有する周辺要素E2との関係を考慮して抜けが生じている表面要素E1を特定しても良い。具体的には、内角θiの総和(例えば、内角θ)が2πとならなかった一の節点Pを共有する他の表面要素E1の各節点Pについての判定結果にて、内角θiの総和(例えば、内角θ)が全て2πとなった場合には、誤りデータ特定部6dは、当該一の表面要素E1に抜けが生じていると判定する。
なお、上記した複数の表面要素E1、…の中で抜けが生じている表面要素E1の特定方法は、一例であってこれらに限られるものではない。
このように、誤りデータ特定部6dは、解析対象モデルMの複数の要素E、…の分割データの中で、その後の解析装置による数値解析にて計算誤差を生じさせたり、当該数値解析自体を実行不可とするなど数値解析に悪影響を及ぼす虞がある節点Pや要素Eを数値解析に不適正な誤りデータとして特定する。
ここで、誤りデータ特定部6dは、第1判定部6bによる判定結果に基づいて、第1条件を満たさない座標を有する節点Pを解析に不適正な節点Pとして特定するとともに、第2判定部6cによる判定結果に基づいて、第2条件を満たさない表面要素E1を解析に不適正な表面要素E1として特定する特定手段を構成している。
表示部7は、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)等のディスプレイから構成され、表示制御部8の制御下にて各種情報を表示画面に表示する。
表示制御部8は、表示用データを生成して表示部7の表示画面に表示させる制御を行う。
具体的には、表示制御部8は、例えば、GPU(Graphics Processing Unit)やVRAM(Video Random Access Memory)等を具備するビデオカード(図示略)を備えている。そして、表示制御部8は、中央制御部1からの表示指示に従って、解析対象モデルMや当該解析対象モデルMの要素分割後の画像の表示用データをビデオカードによる描画処理によって生成し、表示部7に出力する。
また、表示制御部8は、誤りデータ特定部6dにより特定された第1条件を満たさない座標を有する節点P及び第2条件を満たさない表面要素E1を誤りデータとして表示部7の表示画面に表示させる。例えば、表示制御部8は、誤りデータ特定部6dにより特定された節点Pや表面要素E1の誤りデータを所定の順序で列記したリスト形式の表示用データを生成して、当該表示用データに基づいて誤りデータを表示部7の表示画面にリスト表示させても良い。また、例えば、表示制御部8は、表示画面に表示されている解析対象モデルMの要素分割後の画像中で、当該誤りデータに係る節点Pや表面要素E1の部分を他の節点Pや要素Eと識別可能な表示態様で表示させるようにしても良い。
さらに、表示制御部8は、ユーザによる操作入力部4の所定操作に基づいて、或いは、中央制御部1による制御下にて自動的に、誤りデータ特定部6dにより特定された誤りデータに係る節点P及び表面要素E1を交互に切り替えて表示部7の表示画面に表示させるようにしても良い。
なお、表示制御部8は、誤りデータ特定部6dにより特定された第1条件を満たさない座標を有する節点P及び第2条件を満たさない表面要素E1の両方を誤りデータとして表示部7に表示させるようにしたが、当該誤りデータに係る節点P及び表面要素E1のうち、何れか一方を表示部7に表示させるようにしても良い。
また、誤りデータに係る節点P及び表面要素E1の報知の態様は、人の五感、特に、視覚、聴覚、触覚等によって当該誤りデータを把握、認識させることができる方法であれば如何なる態様であっても良く、例えば、誤りデータが存する旨を音(音声など)や振動により報知するようにしても良い。
このように、表示制御部8は、誤りデータ特定部6dにより特定された第1条件を満たさない座標を有する節点P及び第2条件を満たさない表面要素E1のうち、少なくとも一方を報知手段(表示部7)から報知させる報知制御手段を構成している。
外部通信部9は、外部機器200と所定の通信回線(例えば、LAN(Local Area Network)等)を介して情報を送受信可能に接続される。具体的には、外部通信部9は、例えば、図示は省略するが、外部機器200との接続用の端子(例えば、LAN端子等)に装着された所定の通信ケーブル(例えば、LANケーブル)を介してデータの送受信を行う。例えば、外部通信部9は、外部機器200から送信された3次元の解析対象のシミュレーションモデル(解析対象モデル)Mを受信する。外部通信部9により受信された解析対象モデルMは、メモリ2に転送されて一時的に記憶される。
なお、外部機器200は、CADシステムを構成するワークステーションなどのコンピュータであって、解析対象モデルMを生成可能なものであれば如何なる構成であっても良く、その詳細な説明は省略する。
次に、データ検査装置100によるデータ検査方法について、図2並びに図3(a)及び図3(b)を参照して説明する。
図2は、データ検査処理に係る動作の一例を示すフローチャートである。また、図3(a)は、解析対象モデルMを複数の要素E、…に分割した状態を模式的に表す図であり、図3(b)は、図3(a)中の領域A内を拡大をして示す図である。
なお、以下の説明にあっては、解析対象モデルMとして楕円体を用いるものとする。また、当該解析対象モデルMは、外部機器200により生成された後、外部通信部9を介してメモリ2に一時記憶されているものとする。
図2に示すように、先ず、データ取得部5は、楕円体をなす3次元の解析対象のシミュレーションモデル(解析対象モデル)Mがメッシュ状に分割された複数の表面要素E1、…の分割データを取得する(ステップS1)。
具体的には、データ取得部5のデータ生成部5aは、メモリ2に一時記憶されている3次元の解析対象モデルMを取得する。そして。データ生成部5aは、当該解析対象モデルMを有限要素法によりメッシュ状に区分して所定形状の複数の有限要素Eに分割することによって、有限要素Eの分割データ(図3(a)参照)を生成する。そして、データ取得部5は、データ生成部5aにより生成された有限要素Eの分割データのうち、当該解析対象モデルMの外表面に対応する表面要素E1の分割データを取得する。
なお、データ取得部5による表面要素E1の分割データの取得は、ユーザによる操作入力部4の所定操作に基づいて開始されても良いし、外部機器200から送信された解析対象モデルMがメモリ2に一時記憶されたことを契機として自動的に開始されても良い。
次に、データ検査部6の座標取得部6aは、データ取得部5により取得された解析対象モデルMの複数の表面要素E1、…を構成する複数の節点Pの3次元空間における座標(x,y,z)を取得する(ステップS2)。
続けて、データ検査部6の第1判定部6bは、座標取得部6aにより取得された解析対象モデルMの複数の表面要素E1、…の各節点Pの座標(例えば、節点P1(x1,y1,z1)等)が、解析対象モデルMの表面形状を基準とした第1条件を満たすか否かを判定する(ステップS3)。具体的には、第1判定部6bは、解析対象モデルMの複数の表面要素E1、…の各節点P1の座標(x1,y1,z1)を下記式(1)に順次代入していき、各節点P1の座標(x1,y1,z1)が当該式(1)を満たすか否かを判定する。
Figure 0005581788
そして、データ検査部6の誤りデータ特定部6dは、第1判定部6bによる判定結果に基づいて、第1条件を満たさない座標、即ち、解析対象モデルMの表面上に存しない座標を有する節点Pを数値解析に不適正な誤りデータとして順次特定する(ステップS4)。
なお、ステップS3における第1判定部6bによる判定処理の完了後に、ステップS4における誤りデータ特定部6dによる節点Pの特定処理を行うようにしたが、処理の順序はこれに限られるものではない。例えば、複数の表面要素E1、…の節点Pの各々を所定の順序で処理対象としていき、第1判定部6bによる判定処理及び誤りデータ特定部6dによる節点Pの特定処理を順次行うようにしても良い。
次に、データ検査部6の第2判定部6cは、データ取得部5により取得された解析対象モデルMの複数の表面要素E1、…の各々が、各節点Pを頂点とする角度を基準とした第2条件を満たすか否かを判定する(ステップS5)。
具体的には、第2判定部6cは、判定対象となる要素Eの各節点P(例えば、節点P1等)の周辺要素E2の各々について、処理対象の節点Pに向かう二つの辺のベクトル(例えば、ベクトルa、b等)及びその長さから処理対象の節点Pを頂点とする内角θi(例えば、内角θ1〜θ6等;図3(b)参照)を下記式(3)に従って算出する。続けて、第2判定部6cは、これら周辺要素E2、…の各々における処理対象の節点Pを頂点とする内角θiを全て加算して、それらの総和(例えば、内角θ)を下記式(2)に従って算出する。
Figure 0005581788
Figure 0005581788
その後、第2判定部6cは、解析対象モデルMの節点P1の周囲の所定範囲内は略平面であるとみなして、式(2)に従って算出された内角θiの総和(内角θ)が2π(360°)となるか否かを判定する。
そして、データ検査部6の誤りデータ特定部6dは、第2判定部6cによる判定結果に基づいて、第2条件を満たさない表面要素E、即ち、解析対象モデルMの複数の表面要素E1、…の中で抜けが生じている表面要素E1を数値解析に不適正な誤りデータとして順次特定する(ステップS6)。具体的には、誤りデータ特定部6dは、第2判定部6cによる各表面要素E1の全ての節点Pについての判定結果に基づいて、解析対象モデルMの全ての表面要素E1の中で抜けが生じている表面要素E1を数値解析に不適正な誤りデータとして特定する。
なお、ステップS5における第2判定部6cによる判定処理の完了後に、ステップS6における誤りデータ特定部6dによる表面要素E1の特定処理を行うようにしたが、処理の順序はこれに限られるものではない。例えば、複数の表面要素E1、…の各々を所定の順序で処理対象としていき、第1判定部6bによる判定処理及び誤りデータ特定部6dによる表面要素E1の特定処理を順次行うようにしても良い。
また、数値解析に不適正な節点Pの特定(ステップS3、S4)後に、数値解析に不適正な表面要素E1を特定(ステップS5、S6)するようにしたが、処理の順序は逆であっても良く、数値解析に不適正な表面要素E1を特定後に、数値解析に不適正な節点Pを特定するようにしても良い。
その後、表示制御部8は、誤りデータ特定部6dにより特定された第1条件を満たさない座標を有する節点P及び第2条件を満たさない表面要素E1を誤りデータとして表示部7の表示画面に表示させる(ステップS7)。例えば、表示制御部8は、誤りデータ特定部6dにより特定された節点Pや表面要素E1をリスト形式で表示部7の表示画面に表示させたり、解析対象モデルMの要素分割後の表示画像中で、当該誤りデータに係る節点Pや表面要素E1の部分を他の節点Pや要素Eと識別可能な表示態様で表示させる。
これにより、データ検査処理を終了する。
以上のように、本実施形態のデータ検査装置100によれば、3次元の解析対象モデルMの少なくとも一部分の表面に対応する表面要素E1の各節点Pの中で、当該少なくとも一部分の表面形状を基準とした第1条件を満たさない座標を有する節点Pを、数値解析に不適正な節点Pとして特定することができる。また、解析対象モデルMの少なくとも一部分の表面に対応する複数の表面要素E1、…の中で、当該表面要素E1の各節点Pを頂点とする角度を基準とした第2条件を満たさない表面要素E1を、数値解析に不適正な表面要素E1として特定することができる。
これにより、3次元の解析対象モデルMの表面に表面要素E1が適正に設定されているか否かをユーザの手作業に因ることなく簡便に確認することができ、複数の表面要素E1、…の分割データの誤りを適正に検査することができる。
また、数値解析に不適正な節点Pの判定に係る第1条件は、解析対象モデルMの一部分の表面形状を規定する所定の演算式を基準として規定されているので、複数の表面要素E1、…の各節点P1の座標(x1,y1,z1)が解析対象モデルMの表面上に存するか否かの判定を適正に行うことができ、複数の表面要素E1、…の分割データの誤りを適正に検査することができる。
また、数値解析に不適正な表面要素E1の判定に係る第2条件は、判定対象となる表面要素E1の各節点Pを共有する複数の表面要素E1、…の各々における当該節点Pを頂点とする角度の総和を基準として規定されているので、表面要素E1の各節点Pを頂点とする角度を用いる処理負担の少ない比較的な簡単な方法によって、複数の表面要素E1、…の中で抜けが生じている表面要素E1の特定を行うことができ、複数の表面要素E1、…の分割データの誤りを適正に検査することができる。
また、第1条件を満たさない座標を有する節点P及び第2条件を満たさない表面要素E1のうち、少なくとも一方を表示部7に表示させて報知するので、ユーザに複数の表面要素E1、…の分割データの誤りを適正に把握させることができる。
なお、本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。
例えば、上記実施形態にあっては、数値解析に不適正な節点Pや表面要素E1の判定に係る第1条件や第2条件を所定の演算式を用いて規定するようにしたが、これに限られるものではなく、例えば、各種のパラメータとして設定するようにしても良い。
また、上記実施形態にあっては、解析対象モデルMの外側の面を表面として当該外側の面の表面要素Eを検査対象としたが、これに限られるものではなく、例えば、中空状の解析対象モデルMにあっては、当該解析対象モデルMの内側の面を表面として当該内側の面の表面要素を検査対象としても良い。
さらに、データ検査装置100の構成は、上記実施形態に例示したものは一例であり、これに限られるものではない。例えば、データ検査装置100として、ワークステーションなどのコンピュータを例示したが、これに限られるものではなく、一般的なパーソナルコンピュータなどにより構成しても良い。
また、データ検査装置100に、解析対象モデルMの複数の要素E、…間の物理的関係を数値解析する数値解析手段を具備するようにしても良く、これにより、複数の要素E、…の分割データの検査後に、当該データ検査装置100を用いて数値解析を即座に行うことができる。
加えて、上記実施形態にあっては、要素取得手段、座標取得手段、第1判定手段、第2判定手段及び特定手段としての機能を、中央制御部1の制御下にて、データ取得部5、座標取得部6a、第1判定部6b、第2判定部6c、誤りデータ特定部6dが駆動することにより実現される構成としたが、これに限られるものではなく、中央制御部1のCPUによって所定のプログラム等が実行されることにより実現される構成としても良い。
即ち、プログラムを記憶するプログラムメモリ(図示略)に、要素取得処理ルーチン、座標取得処理ルーチン、第1判定処理ルーチン、第2判定処理ルーチン及び特定処理ルーチンを含むプログラムを記憶しておく。そして、要素取得処理ルーチンにより中央制御部1のCPUを、3次元の解析対象モデルがメッシュ状に分割された所定形状の複数の要素E、…のうち、少なくとも当該解析対象モデルの一部分の表面に対応する表面要素E1を複数取得する要素取得手段として機能させるようにしても良い。また、座標取得処理ルーチンにより中央制御部1のCPUを、要素取得手段により取得された複数の表面要素E1、…の各節点Pの座標を取得する座標取得手段として機能させるようにしても良い。また、第1判定処理ルーチンにより中央制御部1のCPUを、座標取得手段により取得された複数の表面要素E1、…の各節点Pの座標が、解析対象モデルの一部分の表面形状を基準とした第1条件を満たすか否かを判定する第1判定手段として機能させるようにしても良い。また、第2判定処理ルーチンにより中央制御部1のCPUを、要素取得手段により取得された複数の表面要素E1、…の各々が、当該表面要素E1の各節点Pを頂点とする角度を基準とした第2条件を満たすか否かを判定する第2判定手段として機能させるようにしても良い。また、特定処理ルーチンにより中央制御部1のCPUを、第1判定手段による判定結果に基づいて、第1条件を満たさない座標を有する節点Pを解析に不適正な節点Pとして特定するとともに、第2判定手段による判定結果に基づいて、第2条件を満たさない表面要素E1を解析に不適正な表面要素E1として特定する特定手段として機能させるようにしても良い。
同様に、報知制御手段についても、中央制御部1のCPUによって報知制御処理ルーチンを含む所定のプログラム等が実行されることにより実現される構成としても良い。
さらに、上記の各処理を実行するためのプログラムを格納したコンピュータ読み取り可能な媒体として、ROMやハードディスク等の他、フラッシュメモリ等の不揮発性メモリ、CD−ROM等の可搬型画像記録部を適用することも可能である。また、プログラムのデータを所定の通信回線を介して提供する媒体としては、キャリアウェーブ(搬送波)も適用される。
100 データ検査装置
1 中央制御部
5 データ取得部
5a データ生成部
6 データ検査部
6a 座標取得部
6b 第1判定部
6c 第2判定部
6d 誤りデータ特定部
7 表示部
8 表示制御部

Claims (3)

  1. 3次元の解析対象のシミュレーションモデル(以下、「解析対象モデル」と言う)がメッシュ状に分割された所定形状の複数の要素のうち、少なくとも当該解析対象モデルの一部分の表面に対応する表面要素を複数取得する要素取得手段と、
    この要素取得手段により取得された複数の表面要素の各節点の座標を取得する座標取得手段と、
    前記解析対象モデルの一部分の表面形状を規定する所定の演算式を用いて、前記座標取得手段により取得された前記複数の表面要素の各節点の座標が、前記解析対象モデルの表面上に存在するか否かを判定する第1判定手段と、
    前記要素取得手段により取得された前記複数の表面要素の各々における節点を頂点とする角度の総和を基準として、当該複数の表面要素の何れかに抜けが生じているか否かを判定する第2判定手段と、
    前記第1判定手段による判定結果に基づいて、前記解析対象モデルの表面上に存在しない座標を有する節点を解析に不適正な節点として特定するとともに、前記第2判定手段による判定結果に基づいて、抜けが生じている表面要素を解析に不適正な表面要素として特定する特定手段と、
    を備えたことを特徴とするデータ検査装置。
  2. 前記特定手段により特定された、前記解析対象モデルの表面上に存在しない座標を有する節点及び抜けが生じている表面要素のうち、少なくとも一方を報知手段から報知させる報知制御手段を更に備えることを特徴とする請求項に記載のデータ検査装置。
  3. データ検査装置のコンピュータを、
    3次元の解析対象のシミュレーションモデル(以下、「解析対象モデル」と言う)がメッシュ状に分割された所定形状の複数の要素のうち、少なくとも当該解析対象モデルの一部分の表面に対応する表面要素を複数取得する要素取得手段、
    この要素取得手段により取得された複数の表面要素の各節点の座標を取得する座標取得手段、
    前記解析対象モデルの一部分の表面形状を規定する所定の演算式を用いて、前記座標取得手段により取得された前記複数の表面要素の各節点の座標が、前記解析対象モデルの表面上に存在するか否かを判定する第1判定手段、
    前記要素取得手段により取得された前記複数の表面要素の各々における節点を頂点とする角度の総和を基準として、当該複数の表面要素の何れかに抜けが生じているか否かを判定する第2判定手段、
    前記第1判定手段による判定結果に基づいて、前記解析対象モデルの表面上に存在しない座標を有する節点を解析に不適正な節点として特定するとともに、前記第2判定手段による判定結果に基づいて、抜けが生じている表面要素を解析に不適正な表面要素として特定する特定手段、
    として機能させることを特徴とするプログラム。
JP2010090179A 2010-04-09 2010-04-09 データ検査装置及びプログラム Expired - Fee Related JP5581788B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090179A JP5581788B2 (ja) 2010-04-09 2010-04-09 データ検査装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090179A JP5581788B2 (ja) 2010-04-09 2010-04-09 データ検査装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2011221786A JP2011221786A (ja) 2011-11-04
JP5581788B2 true JP5581788B2 (ja) 2014-09-03

Family

ID=45038701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090179A Expired - Fee Related JP5581788B2 (ja) 2010-04-09 2010-04-09 データ検査装置及びプログラム

Country Status (1)

Country Link
JP (1) JP5581788B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054386B2 (ja) * 1995-04-27 2008-02-27 キヤノン株式会社 有限要素分割データの誤り検出方法
JP3624016B2 (ja) * 1995-06-20 2005-02-23 キヤノン株式会社 有限要素分割モデルから輪郭線、頂点を抽出する方法及びその装置
JPH11185057A (ja) * 1997-12-25 1999-07-09 Nissan Motor Co Ltd プレス成形解析用モデルの検査方法およびこの検査方法を用いるプレス成形解析用モデルの検査装置
JP4185698B2 (ja) * 2002-03-25 2008-11-26 株式会社富士テクニカルリサーチ メッシュ生成方法
JP2011138297A (ja) * 2009-12-28 2011-07-14 Canon Software Inc 三次元形状適正化装置および三次元形状適正化方法およびプログラムおよびプログラムを記録した記録媒体

Also Published As

Publication number Publication date
JP2011221786A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
US10614590B2 (en) Apparatus for determination of interference between virtual objects, control method of the apparatus, and storage medium
WO2017088134A1 (en) System and method for modeling of parts with lattice structures
US10712473B2 (en) Weather data processing apparatus and method using weather radar
US20190176405A1 (en) Computer aided design with high resolution lattice structures using graphics processing units (gpu)
EP3282424B1 (en) Determination of free space in a product
JP5581788B2 (ja) データ検査装置及びプログラム
JP7246636B2 (ja) 情報処理装置、粒子シミュレータシステム、及び粒子シミュレータ方法
JP5314560B2 (ja) 加工シミュレーション装置、加工シミュレーション方法、プログラム、記録媒体
JPWO2009004675A1 (ja) 設計支援装置、設計支援プログラム、設計支援方法
KR20220150575A (ko) 유동해석 데이터 처리장치 및 그 장치에서 각 기능을 실행시키기 위해 매체에 저장된 컴퓨터 프로그램
US9864836B2 (en) Computer product, rendering apparatus, and rendering method
JP5510018B2 (ja) データ検査装置及びプログラム
US6856325B2 (en) Information processing method and apparatus
JP2009123000A (ja) 有限要素法解析における要素のグループ化方法及びプログラム
JP2010026859A (ja) 3次元モデルデータを生成する装置および方法
JP2007213437A (ja) 情報処理方法、情報処理装置
JP2010044440A (ja) 3次元形状処理装置及び処理方法
US20140104386A1 (en) Observation support device, observation support method and computer program product
JP2015170116A (ja) 情報処理装置、情報処理装置の制御方法およびプログラム
JP2020205005A (ja) 情報処理装置及びプログラム
JP5104298B2 (ja) 解析モデル作成装置及び方法並びにプログラム
JP2011209912A (ja) 応力歪解析装置及び応力歪の解析方法
JP6790526B2 (ja) ファセット化処理プログラム、ファセット抽出プログラム、ファセット化処理方法、ファセット抽出方法および情報処理装置
JP4707543B2 (ja) 立体形状データ変換方法、それを記述したコンピュータプログラムおよび立体形状データ変換装置
JP2018156145A (ja) 接触判定プログラム、接触判定方法、および接触判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees