JP5579210B2 - 光ファイバ母材の製造方法 - Google Patents

光ファイバ母材の製造方法 Download PDF

Info

Publication number
JP5579210B2
JP5579210B2 JP2012041811A JP2012041811A JP5579210B2 JP 5579210 B2 JP5579210 B2 JP 5579210B2 JP 2012041811 A JP2012041811 A JP 2012041811A JP 2012041811 A JP2012041811 A JP 2012041811A JP 5579210 B2 JP5579210 B2 JP 5579210B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
core
glass
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041811A
Other languages
English (en)
Other versions
JP2013177269A (ja
Inventor
千里 深井
和秀 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012041811A priority Critical patent/JP5579210B2/ja
Publication of JP2013177269A publication Critical patent/JP2013177269A/ja
Application granted granted Critical
Publication of JP5579210B2 publication Critical patent/JP5579210B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、複数のコアを有するマルチコア光ファイバ用の光ファイバ母材の製造方法に関し、特に、光ファイバの製造において長尺化を容易とする技術に関する。
通信ネットワークにおける伝送容量は年々増加し、数年後には光ファイバ1芯において10Tbit/s以上の大容量伝送を可能とすることが必要不可欠となってくる。このため、波長分割多重、時分割多重、偏波分割多重、並びに符号分割多重などにより、通常のシングルモード光ファイバの伝送容量を拡大する研究が進められている。一方、伝送容量を拡大する技術の一つである空間多重技術として、光ファイバ断面に複数のコアを有するマルチコア光ファイバがある。
マルチコア光ファイバ母材の製造方法としては、クラッド部となる石英柱に複数個の空孔を開け、空孔内にあらかじめ形成されたコア母材を挿入し、加熱合体することにより光ファイバ母材を製造する方法(例えば、特許文献1参照)が知られている。また他の方法としては、複数個のコア母材を束ねてクラッド部となる石英管に挿入して光ファイバ母材を製造する方法(例えば、特許文献2参照)が知られている。
特開平9−090143号 特開平8−119656号
しかしながら、特許文献1に記載のマルチコア光ファイバ母材の製造方法では、石英ガラスが非常に硬いため、クラッド部となる石英柱に空孔を開ける際に超音波振動研削などの特殊な方法を用いる必要がある。しかし、孔を深く研削するために研削工具の長さを長くすると、高速回転に伴う軸ずれが生じ、研削できなくなってしまう。そのため、母材サイズの大型化、つまり光ファイバの長尺化が困難であるといった問題がある。
他方、特許文献2に記載のマルチコア光ファイバ母材の製造方法では、コア部の表面にOH基や不純物が付着するため、これら不純物による吸収損失が生じることにより低損失化が難しいという問題がある。また、光ファイバの軸心に直交する断面において複数個形成されるコア部間の距離などを精密に制御することが困難であるという問題もある。特に、コア部が光ファイバの軸心に直行する断面方向に積層される場合には、積層数の増加とともにコア部の配列の精度も劣化するという問題がある。さらに、コア部間の隙間にクラッド部となる石英柱を積層するため、コストの低減が困難であるという問題もある。
そこで、本発明は上記の事情に鑑み提案されたものであって、光ファイバ断面に複数のコアを有するマルチコア光ファイバを低損失かつ長尺に製造可能な光ファイバ母材を容易に得ることができる光ファイバ母材の製造方法を提供することを目的とする。
上記目的を達成するために本発明は、複数の柱体状の心棒や石英管又は柱体状の多孔質母材を光ファイバ母材の各コア部に対応するよう配置し、該心棒・石英管・多孔質母材にガラス粒子を堆積させることを特徴とする。より具体的には、VAD(Vapor phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法、PCVD(Plasma Chemical Vapor Deposition)法、これらの組合せをベースとして心棒・石英管・多孔質母材にガラス粒子を堆積させて光ファイバ母材を生成する。
すなわちVAD法をベースとする場合、クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、複数の柱体状の心棒を光ファイバ母材の各コア部に対応するよう長手方向が鉛直方向となるように配置する工程と、前記心棒の下方から光ファイバ母材のコア部となる第1のガラス粒子を堆積させるとともに、堆積させた第1のガラス粒子の周囲に光ファイバ母材のクラッド部となる第2のガラス粒子を堆積させる工程を、光ファイバ母材が下方に成長するよう前記第1及び第2のガラス微粒子の堆積量に応じて前記心棒或いは第1のガラス粒子堆積位置及び第2のガラス粒子堆積位置を相対的に移動させながら実施することを含むことを特徴とする。
またOVD法をベースとする場合、クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、複数の柱体状の心棒を光ファイバ母材の各コア部に対応するよう長手方向が水平方向となるように配置する工程と、前記心棒の径方向から光ファイバ母材のコア部となる第1のガラス粒子を心棒の周囲に堆積させる工程と、堆積させた第1のガラス粒子の周囲に光ファイバ母材のクラッド部となる第2のガラス粒子を堆積させる工程とを含むことを特徴とする。
またMCVD法又はPCVD法をベースとする場合、クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、光ファイバ母材の外形となる第1の石英管内に該第1の石英管の直径よりも小さい直径の複数の第2の石英管を光ファイバ母材の各コア部に対応するように配置する工程と、前記第1の石英管内面及び前記第2の石英管の外面に前記光ファイバ母材のクラッド部となる第2のガラス微粒子を堆積する工程と、前記第2のガラス微粒子が外面に堆積された第2の石英管の内面に前記光ファイバ母材のコア部となる第1のガラス微粒子を堆積する工程とを含むことを特徴とする。
なお、上記各光ファイバ母材の製造方法において、ガラス粒子の堆積工程では、光ファイバ母材のコア部に対応する複数の心棒、又は石英管を、互いの相対的位置を維持しながら光ファイバ母材の軸を中心としてガラス微粒子堆積位置に対して相対的に同期回転させると好適である。
本発明に係る光ファイバ母材の製造方法によれば、光ファイバ断面に複数のコアを有するマルチコア光ファイバを低損失かつ長尺に製造可能な光ファイバ母材を容易に得ることができる。
光ファイバ母材の断面の一例を示す図 第1の実施の形態に係る光ファイバ母材を適用した製造装置における心棒の配置の一例を示す概略図 第1の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第1の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第1の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第1の実施の形態に係る光ファイバ母材の製造工程の変形例を説明する概略図 第2の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第2の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第2の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第3の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第3の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第3の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第4の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第4の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第4の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第5の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図 第5の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図
本発明に係る光ファイバ母材の製造方法について図面を参照して説明する。まず、本発明において製造対象となるマルチコア光ファイバ用の光ファイバ母材について図1を参照して説明する。図1は光ファイバ母材の断面の一例を示す図である。
光ファイバ母材10は、図1に示すように、全体が断面円形となっており紙面を貫く方向に延在している。なお、光ファイバ母材の外形は、所望の光ファイバ外形を形成する形状であり、所望の光ファイバ外形を形成する形状であれば円形でなくてもよい。光ファイバ母材10は、複数(図1では7個)の任意の屈折率分布(図1では円形)を有するコア部11と、コア部11よりも小さい屈折率を有するクラッド部12からなる。クラッド部12は前記コア部11以外の部分を形成しており、したがって光ファイバ母材10の外形はクラッド部12の外形を形成する。複数のコア部11のうちの1つは、光ファイバ母材10の中心(軸心)に配置されている。他のコア部11は、軸心のコア部11の周囲に配置されている。図1では複数の周囲のコア部11は、それぞれ軸心から所定の距離をとるように配置されるとともに、隣り合うコア部11は互いに等間隔をとるように配置されている。換言すれば、7個のコア部11は、正六角形の各頂点及びその中心に設けられて光ファイバ母材10は対称構造となっている。なお、複数のコア部11のうちの1つを中心(軸心)に配置しなくてもよい。また、複数の周囲のコア部11は単に軸心を囲む位置に配置して、光ファイバ母材10を非対称構造としてもよい。また、7個のコア部11を有する光ファイバ母材10としたが、7個に限らず2個以上の複数個のコア部11を有する光ファイバ母材10であればよい。
石英を主成分として用いる光ファイバにおいては、コア部11及びクラッド部12の何れかにドーパントを添加することにより、光の導波構造を形成することが可能である。また、コア部11及びクラッド部12の両方にドーパントを添加してもよい。なお、代表的なドーパントとしては酸化ゲルマニウム(GeO2)やフッ素(F)が挙げられるが、これら以外の化学物質をドーパントとすることも可能である。
本発明はこのような光ファイバ母材10の製造方法に係るものである。以下にその実施形態を詳述する。
(第1の実施の形態)
本発明の第1の実施の形態に係る光ファイバ母材の製造方法について、図2〜図6を参照して説明する。図2は第1の実施の形態に係る光ファイバ母材を適用した製造装置における心棒の配置の一例を示す概略図、図3〜図6は第1の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図である。
本実施の形態に係る光ファイバ母材の製造方法は、VAD(Vapor phase Axial Deposition)法をベースとした光ファイバ母材の製造方法である。本実施の形態に係る光ファイバ母材の製造方法を適用した製造装置内には、図2に示すように、7本の柱体状の心棒21が、図1で示した光ファイバ母材10の各コア部11の形成位置に対応するよう、その長手方向が鉛直方向(上下方向)に配置される。具体的には、1本の心棒21は軸心C10の位置に配置され、他の6本の心棒21は軸心C10を囲むように配置されるとともに、軸心C10を中心とした正六角形の各頂点をなす箇所に配置される。心棒21は、軸心C10を中心として各心棒21の相対的な位置を維持しながら回転可能に、かつ上方へ引き上げ可能な支持具(図示せず)により支持される。心棒21は光ファイバ母材のコア部を形成するものである。複数の心棒21が軸心C10を囲むようにして対称に配置されるものに限らず、非対称に配置されたものでもよい。また、1本の心棒21が軸心C10の位置に配置されるものに限らず、心棒21は軸心10の周囲に配置されればよい。心棒21の数量は7本に限らず、2本以上であればよい。例えば、複数の心棒21を、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。また、複数の心棒21の太さは同一のものに限らず、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの各コア径に合うように、異なる太さの心棒21を用いてもよい。
次に、図2に示すように心棒を支持可能な製造装置を利用した光ファイバ母材の製造工程について図3〜図5を参照して説明する。
最初に、図3に示すように、7本の柱体状の心棒31の下方に第1の酸水素ガスバーナー(コア部原料供給手段)32がそれぞれ配置される。これにより、心棒31の下部に光ファイバ母材のコア部となる第1のガラス微粒子32aを堆積させることができる。心棒31の外側には第2の酸水素ガスバーナー(クラッド部原料供給手段)33が配置される。これにより、心棒31に堆積した第1のガラス微粒子32aの周りに光ファイバ母材のクラッド部となる第2のガラス微粒子33aを堆積させることができる。
続いて、図4に示すように、7本の心棒31を、軸心C1を中心として各心棒31の相対的位置を維持しながら軸心C1の周りに同期回転させつつ、第1の酸水素バーナー32により心棒31の下部に第1のガラス微粒子32aを堆積させて多孔質母材のコア部34を形成させるとともに、第2の酸水素バーナー33により心棒31に堆積した第1のガラス微粒子32aの外側に第2のガラス微粒子33aを堆積させて多孔質母材のクラッド部35を形成させる。
続いて、心棒31に第1のガラス微粒子32aが所定量堆積するとともに、心棒31に堆積した第1のガラス微粒子32aの周りに第2のガラス微粒子33aが所定量堆積すると、図5に示すように、心棒31が矢印D1で示す方向である上方へ徐々に移動させられる。クラッド部35はコア部34と接続されており、心棒31と一緒に上昇するコア部34と共に上昇する。このように心棒31を引き上げているときも、心棒31の同期回転、第1,第2の酸素水素バーナー32,33による第1,第2のガラス微粒子32a,33aの堆積が継続して行われる。そして、第1,第2のガラス微粒子32a,33aの堆積が行われて、コア部34、並びにクラッド部35を有する多孔質母材が作製される。
続いて、上述した多孔質母材は脱水・透明化処理される。これにより、複数のコア部を包含する光ファイバを製造するための光ファイバ母材(例えば、図1参照)が得られる。この光ファイバ母材を線引きすることにより、断面内に複数のコア部を包含する光ファイバを得ることができる。
このように本実施の形態に係る光ファイバ母材の製造方法によれば、コア部の形成を目的とした心棒31をあらかじめ配置して第1,第2のガラス微粒子32a,33aを堆積させることとしたため、複数個のコア母材を束ねてクラッド部となる石英管に挿入して光ファイバ母材を製造する方法におけるコア部が光ファイバの軸心に直交する断面方向に積層される場合の積層による加工精度の劣化、低損失化の困難性を低減できるといった効果を奏する。
また、孔開け作業が不要であるため、複数のコア部を包含する光ファイバを低損失かつ長尺に製造するための光ファイバ母材を母材サイズの制限を受けることなく製造することが可能になり、複数のコア部を包含する光ファイバの大量生産が可能となるといった効果を奏する。
なお、本実施の形態では長尺の光ファイバ母材を得るためにガラス微粒子の堆積量に応じて心棒31を徐々に上方に引き上げていたが、第1の酸水素バーナー32及び第2の酸水素バーナー33を下方に移動させることにより光ファイバ母材を成長させるようにしてもよい。
またなお、上記実施の形態では複数の心棒31を同期回転しながらガラス微粒子を堆積させていたが、所望のガラス微粒子の堆積状態が得られる範囲内で各バーナーの個数・配置や回転形態等は不問である。例えば、上記実施の形態では複数の心棒31を同期回転させていたが、第1の酸水素バーナー32及び第2の酸水素バーナー33を軸心C1を中心として回転させるようにしてもよい。また、複数の第1の酸水素バーナー32をそれぞれ相対的な位置を維持しながら心棒31の回転と同期させて軸心C1を中心として回転させるようにしてもよい。また、上記実施の形態では第2の酸水素バーナー33を1つだけ用いているが複数の第2の酸水素バーナー33を設けてもよい。特に多数の第2の酸水素バーナー33を軸心C1を中心として周囲に配置すれば心棒31や各バーナーを非回転とすることもできる。また、周囲に配置する第2の酸水素バーナー33を軸心C1を中心として3か所、または4か所、または6か所配置することにより、それぞれ三角形、または四角形、または六角形に近い外形の光ファイバ母材を製造することも可能であり、任意の位置に第2の酸水素バーナー33を配置することにより、任意の外形の光ファイバ母材を製造することが可能となる。
また、上記実施の形態ではクラッド部形成用の第2の酸水素バーナー33は心棒31に対して側方に配置していたが、該第2の酸水素バーナー33に加えて、心棒31の下方においてコア部形成用の第1の酸水素バーナー32と並設するようにしてもよい。このような例について図6を参照して説明する。図6は酸水素バーナーの配置状態を説明する上面図である。図6に示すように、第1の酸水素バーナー32はそれぞれ対応する心棒31の下方に配置されている(同図では心棒31の位置を点線で示している)。一方、第2の酸水素バーナー33は第1の酸水素バーナー32間の隙間を埋めるように等間隔に複数個配置されている。このような構成により、コア部とコア部の間における第2のガラス微粒子33aの堆積を確実に行うことができる。なお、心棒31に対して側方に配置する第2の酸水素バーナー33は、前述したように、心棒31の周囲に複数設けてもよい。そしてこの場合には心棒31や各バーナーを非回転とすることもできる。また、たとえば、複数の心棒31及び第1の酸水素バーナー32を、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。ここで、第2の酸水素バーナー33は第1の酸水素バーナー32間の隙間を埋めるように複数個配置されるとともに、該第1の酸水素バーナー32間の隙間に最適となる大きさの第2の酸水素バーナー33を用いることにより、コア部とコア部の間における第2のガラス微粒子33aの堆積を確実に行うことができる。
(第2の実施の形態)
本発明の第2の実施の形態に係る光ファイバ母材の製造方法について、図7〜図9を参照して説明する。図7〜図9は第2の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図である。
本実施の形態に係る光ファイバの製造方法は、OVD(Outside Vapor Deposition)法をベースとした光ファイバ母材の製造方法である。本実施の形態に係る光ファイバ母材の製造方法を適用した製造装置内には、図7に示すように、7本の柱体状の心棒51が、図1で示した光ファイバ母材10の各コア部11の形成位置に対応するよう、その長手方向が軸心C3と水平となるように配置される。具体的には、1本の心棒51は軸心C3の位置に配置され、他の6本の心棒51は軸心C3を囲むように配置されるとともに、軸心C3を中心とした正六角形の各頂点をなす箇所に配置される。複数の心棒51が軸心C3を囲むようにして対称に配置されるものに限らず、非対称に配置されたものでもよい。また、1本の心棒51が軸心C3の位置に配置されるものに限らず、心棒51は軸心C3の周囲に配置されればよい。心棒51の数量は7本に限らず、2本以上であればよい。例えば、複数の心棒51を、多孔質母材から心棒51が引き抜かれて、脱水・透明化・コア部54の中実化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。また心棒51は、軸心C3を中心として各心棒51の相対的位置を維持しながら軸心C3の周りに同期回転できるよう所定の支持具(図示省略)により支持される。
続いて、図8に示すように、心棒51の下方に、第1の酸水素バーナー(コア部原料供給手段)52を配置する。そして、7本の心棒51を、軸心C3を中心として各心棒51の相対的位置を維持しながら軸心C3の周りに同期回転させつつ、第1の酸水素バーナー52により光ファイバ母材のコア部となる第1のガラス微粒子52aを心棒51に堆積させる。ここで、第1の酸水素バーナー52を矢印L3の方向に移動させてもよい。これにより、多孔質母材のコア部54が作製される。
続いて、図9に示すように、多孔質母材のコア部54の下方に、第2の酸水素バーナー(クラッド部原料供給手段)53を配置する。そして、周囲にコア部54が形成された7本の心棒51を、軸心C3を中心として各心棒51の相対的位置を維持しながら軸心C3の周りに同期回転させつつ、第2の酸水素バーナー53により光ファイバ母材のクラッド部となる第2のガラス微粒子53aをコア部54の周囲に堆積させる。ここで、第2の酸水素バーナー53を矢印L3の方向に移動させてもよい。これにより、コア部54、クラッド部55を有する多孔質母材が作製される。
続いて、上述した多孔質母材から心棒51が引き抜かれて、脱水・透明化・コア部54の中実化処理される。これにより、光ファイバ断面に複数個のコアを包含する光ファイバを製造するための光ファイバ母材(例えば、図1参照)が得られる。この光ファイバ母材を線引きすることにより、断面内に複数個のコア部を包含する光ファイバを得ることができる。
このように本実施の形態に係る光ファイバ母材の製造方法によれば、上記第1の実施の形態に係る光ファイバ母材の製造方法と同様、複数個のコア部を包含する光ファイバを低損失、かつ長尺に製造可能な光ファイバ母材を容易に得ることができる。
なお、心棒51として、予めVAD法やOVD法などにより多孔質母材のコア部54が形成されたガラス微粒子からなる柱体状の心棒、またはガラス微粒子を脱水・加熱透明化処理して作製した円柱体状の心棒を用いることも可能である。この場合、多孔質母材の脱水・透明化処理において、心棒51を引き抜く作業は不要となる。なお、任意の屈折率分布(例えば、ステップ型、階段型、トレンチ型など)を有するコア部54を形成するガラス微粒子からなる柱体状の心棒、またはガラス微粒子を脱水・加熱透明化処理して作製した円柱体状の心棒を用いることにより、任意の屈折率分布(例えば、ステップ型、階段型、トレンチ型など)を有するコアを包含するマルチコア光ファイバを作製することが可能である。また、心棒51として用いるガラス微粒子からなる柱体状の心棒、またはガラス微粒子を脱水・加熱透明化処理して作製された円柱体状の心棒の太さは同一のものに限らず、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの各コア径に合うように、異なる太さの心棒を用いてもよい。また、例えば、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコアの屈折率分布がトレンチ型である場合、予めVAD法やOVD法などにより多孔質母材のコア部54が形成されたガラス微粒子からなる柱体状の心棒、またはガラス微粒子を脱水・加熱透明化処理して作製した円柱体状の心棒を、マルチコア光ファイバのコア間距離が38μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。
またなお、上記実施の形態では複数の心棒51を同期回転しながらガラス微粒子を堆積させていたが、所望のガラス微粒子の堆積状態が得られる範囲内で各バーナーの個数・配置や回転形態等は不問である。例えば、上記実施の形態では複数の心棒51を同期回転させていたが、第1の酸水素バーナー52及び第2の酸水素バーナー53を軸心C3を中心として回転させるようにしてもよい。さらに、上記実施の形態では第1の酸水素バーナー52及び第2の酸水素バーナー53をそれぞれ1つだけ用いているが複数の第1の酸水素バーナー52及び第2の酸水素バーナー53を設けてもよい。特に多数の第1の酸水素バーナー52及び第2の酸水素バーナー53を軸心C3を中心として周囲に配置すれば心棒51や各バーナーを非回転とすることもできる。
(第3の実施の形態)
本発明の第3の実施の形態に係る光ファイバ母材の製造方法について、図10〜図12を参照して説明する。図10〜図12は第3の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図である。
本実施の形態に係る光ファイバの製造方法は、MCVD(Modified Chemical Vapor Deposition)法をベースとした光ファイバ母材の製造方法である。まず最初に、光ファイバ母材とほぼ同じ大きさ(外径、長さ)である第1の石英管61を1本用意し、光ファイバ母材とほぼ同じ大きさ(長さ)であり、光ファイバ母材のコア部をなす第2の石英管62を7本用意する。第2の石英管62は、第1の石英管61の直径よりも小さい直径を有する。図10に示すように、第1の石英管61及び7本の第2の石英管62が、その長手方向が軸心C4と水平となるように配置される。具体的には、第2の石英管62は、図1で示した光ファイバ母材10の各コア部11の形成位置に対応するよう、1本の第2の石英管62が軸心C4の位置に配置され、第1の石英管61の軸心C4を囲むように他の6本の第2の石英管62が配置されるとともに、第1の石英管61の内部に第2の石英管62を中心とした正六角形の各頂点をなす箇所に配置される。複数の第2の石英管62が軸心C4を囲むようにして対称に配置されるものに限らず、非対称に配置されたものでもよい。また、1本の第2の石英管62が軸心C4の位置に配置されるものに限らず、第2の石英管62は軸心C4の周囲に配置されればよい。第2の石英管62の数量は7本に限らず、2本以上であればよい。例えば、複数の第2の石英管62を、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。また、複数の第2の石英管62の太さは同一のものに限らず、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの各コア径に合うように、異なる太さの第2の石英管62を用いてもよい。さらに、第1の石英管61の端部と第2の石英管62の端部とが略同一平面上に配置される。また、各石英管61及び62は、軸心C4を中心として石英管61及び62の相対的位置を維持しながら軸心C4の周りに同期回転できるよう所定の支持具(図示省略)により支持される。
また、第1の石英管61の下方には、酸水素バーナー(加熱手段)69が配置される。酸水素バーナー69により第1の石英管61に対して火炎研磨処理が行われる。ここで、酸水素バーナー69を矢印L4の方向に移動させてもよい。
続いて、図11に示すように、第1の石英管61の軸方向端部側近傍に第2の酸水素バーナー(クラッド部原料供給手段)64が配置される。続いて、第1の石英管61及び7本の第2の石英管62を第1の石英管61の軸心C4を中心として軸心C4周りに同期回転させる一方、第2の酸水素バーナー64により、第1の石英管61の内部、および7本の第2の石英管62の外部に光ファイバ母材のクラッド部となる第2のガラス微粒子64aを堆積させる。上述したように酸水素バーナー69により第1の石英管61が加熱されているため、熱酸化により光ファイバ母材のクラッド部67のガラス層が形成される。
そして、第1の石英管61内に第2のガラス微粒子64aが所定量堆積すると、図12に示すように、第2の酸水素バーナー64に代わって第1の酸水素バーナー(コア部原料供給手段)63が配置される。続いて、第1の石英管61及び7本の第2の石英管62を第1の石英管61の軸心C4を中心として軸心C4周りに同期回転させる一方、第1の酸水素バーナー63により、第1の石英管61の内部のクラッド部67の内側65(すなわち第2の石英管62の内側)に第1のガラス微粒子63aを堆積させる。上述したように酸水素バーナー69により第1の石英管61が加熱されているため、熱酸化により光ファイバ母材のコア部66のガラス層が形成される。なお、第1の酸水素バーナー63の原料ガス及び流量を調整することにより任意の屈折率分布(例えば、ステップ型、階段型、トレンチ型など)を有するコア部66を作製することが可能である。そして、第1の石英管61の内部のクラッド部67の内側65(すなわち第2の石英管62の内側)に第1のガラス微粒子63aを所定量堆積させて、クラッド部67のガラス層、コア部66のガラス層が形成された第1の石英管61を中実化処理することにより、複数個のコア部を包含する光ファイバを製造するための光ファイバ母材(例えば、図1参照)が得られる。この光ファイバ母材を線引きすることにより、断面内に複数個のコア部を包含する光ファイバを得ることができる。例えば、コア部66のガラス層が形成された第1の石英管61を中実化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコアの屈折率分布がトレンチ型である場合、複数の第2の石英管62を、マルチコア光ファイバのコア間距離が38μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。
このように本実施の形態に係る光ファイバ母材の製造方法によれば、第1〜第2の実施の形態に係る光ファイバ母材の製造方法と同様、複数個のコア部を包含する光ファイバを低損失、かつ長尺に製造可能な光ファイバ母材を容易に得ることができる。
なお、上記実施の形態では各石英管61及び62を同期回転しながらガラス微粒子を堆積させていたが、所望のガラス微粒子の堆積状態が得られる範囲内で各バーナーの個数・配置や回転形態等は不問である。例えば、上記実施の形態では複数の石英管61及び62を同期回転させていたが、第1の酸水素バーナー63及び第2の酸水素バーナー64並びに酸水素バーナー69を軸心C4を中心として回転させるようにしてもよい。さらに、上記実施の形態では第1の酸水素バーナー63及び第2の酸水素バーナー64をそれぞれ1つだけ用いているが複数の第1の酸水素バーナー63及び第2の酸水素バーナー64並びに酸水素バーナー69を設けてもよい。特に多数の第1の酸水素バーナー63及び第2の酸水素バーナー64並びに酸水素バーナー69を軸心C4を中心として周囲に配置すれば石英管や各バーナーを非回転とすることもできる。
(第4の実施の形態)
本発明の第4の実施の形態に係る光ファイバ母材の製造方法について、図13〜図15を参照して説明する。図13〜図15は第4の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図である。
本実施の形態に係る光ファイバの製造方法は、PCVD(Plasma Chemical Vapor Deposition)法をベースとした光ファイバ母材の製造方法である。まず最初に、上記第3の実施の形態と同様に、光ファイバ母材とほぼ同じ大きさ(外径、長さ)である第1の石英管71を1本用意し、光ファイバ母材とほぼ同じ大きさ(長さ)であり、光ファイバ母材のコア部をなす第2の石英管72を7本用意する。第2の石英管72は、第1の石英管71の直径よりも小さい直径を有する。石英管71の軸心C5が略水平となるように石英管71が配置される。図13に示すように、第1の石英管71及び7本の第2の石英管72が、その長手方向が軸心C5と水平となるように配置される。具体的には、第2の石英管72は、図1で示した光ファイバ母材10の各コア部11の形成位置に対応するよう、1本の第2の石英管72が軸心C5の位置に配置され、第1の石英管71の軸心C5を囲むように他の6本の第2の石英管72が配置されるとともに、石英管71の内部に軸心C5を中心とした正六角形の各頂点をなす箇所に配置される。複数の第2の石英管72が軸心C5を囲むようにして対称に配置されるものに限らず、非対称に配置されたものでもよい。また、1本の第2の石英管72が軸心C5の位置に配置されるものに限らず、第2の石英管72は軸心C5の周囲に配置されればよい。第2の石英管72の数量は7本に限らず、2本以上であればよい。例えば、複数の第2の石英管72を、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。また、複数の第2の石英管72の太さは同一のものに限らず、多孔質母材を脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの各コア径に合うように、異なる太さの第2の石英管72を用いてもよい。さらに、第1の石英管71の端部と第2の石英管72の端部とが略同一平面上に配置される。また、各石英管71及び72は、軸心C5を中心として石英管71及び72の相対的位置を維持しながら軸心C5の周りに同期回転できるよう所定の支持具(図示省略)により支持される。
第1の石英管71の外周部71aには、矢印L5の方向に移動可能に、マイクロ波プラズマを発生させるキャビティ(加熱手段)79bが取り付けられる。キャビティ79bと、マイクロ波プラズマの発生源79aとでマイクロ波プラズマの発生器79を構成している。第1の石英管71の軸方向端部近傍に第2の酸水素バーナー(クラッド部原料供給手段)74が配置される。そして、図14に示すように、第1の石英管71及び6本の第2の石英管72を第1の石英管71の軸心C5を中心にして軸心C5周りに同期回転させる一方、キャビティ79bを矢印L5の方向に移動させるとともに、第2の酸水素バーナー74により、第1の石英管71の内部、および7本の第2の石英管72の外部に光ファイバ母材のクラッド部となる第2のガラス微粒子74aを堆積させる。上述したようにキャビティ79bにより第1の石英管71が加熱されているため、熱酸化により光ファイバ母材のクラッド部77のガラス層が形成される。
そして、第1の石英管71内に第2のガラス微粒子74aが所定量堆積すると、図15に示すように、第2の酸水素バーナー74に代わって第1の酸水素バーナー(コア部原料供給手段)73が配置される。第1の石英管71及び7本の第2の石英管72を第1の石英管71の軸心C5を中心にして軸心C5周りに同期回転させる一方、第1の酸水素バーナー73により、第1の石英管71の内部のクラッド部77の内側75(すなわち第2の石英管72の内側)に光ファイバ母材のコア部となる第1のガラス微粒子73aを堆積させる。上述したようにキャビティ79bにより第1の石英管71が加熱されているため、熱酸化により光ファイバ母材のコア部76のガラス層が形成される。なお、第1の酸水素バーナー73の原料ガス及び流量を調整することにより任意の屈折率分布(例えば、ステップ型、階段型、トレンチ型など)を有するコア部76を作製することが可能である。そして、第1の石英管71の内部のクラッド部77の内側75(すなわち第2の石英管72の内側)に第1のガラス微粒子73aを所定量堆積させて、クラッド部77のガラス層、コア部76のガラス層が形成された第1の石英管71を中実化処理することにより、複数個のコア部を包含する光ファイバを製造するための光ファイバ母材(例えば、図1参照)が得られる。この光ファイバ母材を線引きすることにより、断面内に複数個のコア部を包含する光ファイバを得ることができる。例えば、コア部76のガラス層が形成された第1の石英管71を中実化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコアの屈折率分布がトレンチ型である場合、複数の第2の石英管72を、マルチコア光ファイバのコア間距離が38μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。
このように本実施の形態に係る光ファイバ母材の製造方法によれば、第1〜第3の実施の形態に係る光ファイバ母材の製造方法と同様、複数個のコア部を包含する光ファイバを低損失、かつ長尺に製造可能な光ファイバ母材を容易に得ることができる。
なお、上記実施の形態では各石英管71及び72を同期回転しながらガラス微粒子を堆積させていたが、所望のガラス微粒子の堆積状態が得られる範囲内で各バーナーの個数・配置や回転形態等は不問である。例えば、上記実施の形態では複数の石英管71及び72を同期回転させていたが、第1の酸水素バーナー73及び第2の酸水素バーナー74を軸心C5を中心として回転させるようにしてもよい。さらに、上記実施の形態では第1の酸水素バーナー73及び第2の酸水素バーナー74をそれぞれ1つだけ用いているが複数の第1の酸水素バーナー73及び第2の酸水素バーナー74を設けてもよい。特に多数の第1の酸水素バーナー73及び第2の酸水素バーナー74を軸心C5を中心として周囲に配置すれば石英管や各バーナーを非回転とすることもできる。
(第5の実施の形態)
本発明の第5の実施の形態に係る光ファイバ母材の製造方法について、図16〜図17を参照して説明する。図16〜図17は第5の実施の形態に係る光ファイバ母材の製造工程の一例を説明する概略図である。
本実施の形態に係る光ファイバの製造方法は、VAD法とOVD法を組み合わせた光ファイバ母材の製造方法である。まず、VAD法によりコア部81及びクラッド部82のガラス微粒子を堆積して作製された柱体状の多孔質母材83を7本用意する。
そして、図16に示すように、多孔質母材83の軸心C6が略水平となるように7本の多孔質母材83が配置される。具体的には、各多孔質母材83は、そのコア部81が図1で示した光ファイバ母材10の各コア部11の形成位置に対応するよう、中心に配置された多孔質母材83の周壁部83aに6本の多孔質母材83の周壁部83aを接触させて6本の多孔質母材83が配置される。複数の多孔質母材83が軸心C6を囲むようにして対称に配置されるものに限らず、非対称に配置されたものでもよい。また、1本の多孔質母材83が軸心C6の位置に配置されるものに限らず、多孔質母材83は軸心6の周囲に配置されればよい。また、多孔質母材83の数量は7本に限らず、2本以上であればよい。例えば、コア部81を包含する複数の多孔質母材83を、脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバのコア間距離が45μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることが可能となる。また、コア部81を包含する複数の多孔質母材83におけるコア部81及び多孔質母材83の太さは同一のものに限らず、脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの各コア径に合うように、異なる太さのコア部81及び多孔質母材83を用いてもよい。また、例えば、脱水・透明化処理後に得られる光ファイバ母材を線引きして最終的に得られるマルチコア光ファイバの屈折率分布がトレンチ型である場合、コア部81を包含する複数の多孔質母材83を、マルチコア光ファイバのコア間距離が38μm以上となるように配置することにより、該マルチコア光ファイバを100km伝送後の該コア間におけるクロストークを−30dB以下とすることも可能となる。さらに、周囲の多孔質母材83は、長手方向が中心の多孔質母材83の軸心C6と平行になるように配置される。さらに、7本の多孔質母材83は、それぞれの端部と端部とが略同一平面上に配置される。また、7本の多孔質母材83は、多孔質母材83の軸心C6を中心として軸心C6周りに同期回転可能に所定の支持具(図示省略)により支持される。
また、多孔質母材83の下方には、第2の酸水素バーナー(クラッド部原料供給手段)84が配置される。続いて、図17に示すように、7本の多孔質母材83を多孔質母材83の軸心C6を中心にして軸心C6周りに同期回転させる一方、第2の酸水素バーナー84により、多孔質母材83の外部に光ファイバ母材のクラッド部となる第2のガラス微粒子84aを堆積させる。ここで、第2の酸水素バーナー84を矢印L6の方向に移動させてもよい。そして、第2のガラス微粒子84aを所定量堆積させて、コア部81、並びにクラッド部82を有する多孔質母材が作製される。この多孔質母材を脱水・透明化処理することにより、複数個のコア部を包含する光ファイバを製造するための光ファイバ母材(例えば、図1参照)が得られる。この光ファイバ母材を線引きすることにより、断面内に複数個のコア部を包含する光ファイバを得ることができる。
このように本実施の形態に係る光ファイバ母材の製造方法によれば、第1〜第4の実施の形態に係る光ファイバ母材の製造方法と同様、複数個のコア部を包含する光ファイバを低損失、かつ長尺に製造可能な光ファイバ母材を容易に得ることができる。
なお、光ファイバの紡糸は、外径寸法やコア構造寸法を維持するため、紡糸前の光ファイバ母材に対し、断面形状が相似形となるよう行う。
以上本発明の実施の形態について詳述したが本発明はこれに限定されるものではない。例えば、上述した各実施の形態において、第1,第2の酸水素バーナーを用いた光ファイバ母材の製造方法について説明したが、これら第1,第2の酸水素バーナーをそれぞれ1つに限らず複数個用いた光ファイバ母材の製造方法とすることも可能である。また、上記実施の形態において、心棒、石英管、或いは多孔質母材を、軸心を中心として軸心周りに同期回転させつつ、第1,第2の酸水素バーナーにより、第1,第2のガラス微粒子を堆積させて多孔質母材のコア部及びクラッド部を形成させることとしたが、第1,第2の酸水素バーナーを軸心を中心とした軸心周りに同期回転可能な支持具により支持し、軸心を中心として軸心周りに同期回転させて、第1,第2のガラス微粒子を堆積させて多孔質母材のコア部及びクラッド部を形成することも可能である。
また、上述した各実施の形態において、7本の心棒、石英管、並びに多孔質母材を用いた光ファイバ母材の製造方法について説明したが、心棒、石英管、並びに多孔質母材の数量は7本に限らず2本以上とすることにより、複数個のコア部を包含する光ファイバ母材の製造方法とすることも可能である。
さらに、上述した第3及び第4の実施の形態において、中空の石英管の代わりに柱体状(中実型)の心棒を用いることも可能である。すなわち、クラッド部が形成された多孔質母材から全ての心棒を引き抜き、脱水・透明化処理を行い、空洞部の内径を長手方向に均一に保つように加熱温度や空洞部の中の圧力を調整し、空洞部に酸水素バーナーにてコア部を形成するガラス微粒子を堆積し、コア部の中実化処理することにより、複数個のコア部を包含する光ファイバを製造するための光ファイバ母材を得ることができる。
さらに、上述した第5の実施の形態において、予め作製されたコア部及びクラッド部を有する多孔質母材の代わりに、多孔質母材を脱水・加熱透明化処理して作製したコア部及びクラッド部を有する透明ガラスを用いることも可能である。
さらに、上述した第5の実施の形態において、中心に配置された多孔質母材と中心に配置された多孔質母材を囲むようにして配置される6本の多孔質母材との間隔を調整することも可能である。
さらに、上述した第5の実施の形態において、予め作製されたコア部及びクラッド部を有する多孔質母材の代わりに、コア部のみを形成する多孔質母材を、中心に配置された多孔質母材と中心に配置された多孔質母材を囲むようにして配置される6本の多孔質母材との間隔を調整して用いることも可能である。
本発明に係る光ファイバ母材の製造方法によれば、複数個のコア部を包含する光ファイバを低損失、かつ長尺に製造可能な光ファイバ母材を得ることができる。その結果、通信産業などで有益に利用することができる。
10…光ファイバ母材、11…コア部、12…クラッド部、21,31,51…心棒、32,52,63,73…第1の酸水素バーナー、33,53,64,74,84…第2の酸水素バーナー、34,54,66,76,81…コア部、35,55,67,77,82…クラッド部、61,71…第1の石英管、62,72…第2の石英管、65,75…空洞部、69…酸水素バーナー、79…マイクロ波プラズマの発生器、83…多孔質母材

Claims (6)

  1. クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、
    複数の柱体状の心棒を光ファイバ母材の各コア部に対応するよう長手方向が鉛直方向となるように配置する工程と、
    前記心棒の下方から光ファイバ母材のコア部となる第1のガラス粒子を堆積させるとともに、堆積させた第1のガラス粒子の周囲に光ファイバ母材のクラッド部となる第2のガラス粒子を堆積させる工程を、光ファイバ母材が下方に成長するよう前記第1及び第2のガラス微粒子の堆積量に応じて前記心棒或いは第1のガラス粒子堆積位置及び第2のガラス粒子堆積位置を相対的に移動させながら実施することを含む
    ことを特徴とする光ファイバ母材の製造方法。
  2. 前記第1及び第2のガラス粒子の堆積工程では、前記複数の心棒を、互いの相対的位置を維持しながら光ファイバ母材の軸を中心として少なくとも第2のガラス微粒子堆積位置に対して相対的に同期回転させる
    ことを特徴とする請求項1記載の光ファイバ母材の製造方法。
  3. クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、
    複数の柱体状の心棒を光ファイバ母材の各コア部に対応するよう長手方向が水平方向となるように配置する工程と、
    前記心棒の径方向から光ファイバ母材のコア部となる第1のガラス粒子を心棒の周囲に堆積させる工程と、
    堆積させた第1のガラス粒子の周囲に光ファイバ母材のクラッド部となる第2のガラス粒子を堆積させる工程とを含む
    ことを特徴とする光ファイバ母材の製造方法。
  4. 前記第1及び第2のガラス粒子の堆積工程では、前記複数の心棒を、互いの相対的位置を維持しながら光ファイバ母材の軸を中心として第1及び第2のガラス微粒子堆積位置に対して相対的に同期回転させる
    ことを特徴とする請求項3記載の光ファイバ母材の製造方法。
  5. クラッド内に複数のコアを包含したマルチコア光ファイバ用の光ファイバ母材の製造方法であって、
    光ファイバ母材の外形となる第1の石英管内に該第1の石英管の直径よりも小さい直径の複数の第2の石英管を光ファイバ母材の各コア部に対応するように配置する工程と、
    前記第1の石英管内面及び前記第2の石英管の外面に前記光ファイバ母材のクラッド部となる第2のガラス微粒子を堆積する工程と、
    前記第2のガラス微粒子が外面に堆積された第2の石英管の内面に前記光ファイバ母材のコア部となる第1のガラス微粒子を堆積する工程とを含む
    ことを特徴とする光ファイバ母材の製造方法。
  6. 前記第1及び第2のガラス粒子の堆積工程では、前記第1の石英管及び第2の石英管を、互いの相対的位置を維持しながら光ファイバ母材の軸を中心として第1及び第2のガラス微粒子堆積位置に対して相対的に同期回転させる
    ことを特徴とする請求項5記載の光ファイバ母材の製造方法。
JP2012041811A 2012-02-28 2012-02-28 光ファイバ母材の製造方法 Active JP5579210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041811A JP5579210B2 (ja) 2012-02-28 2012-02-28 光ファイバ母材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041811A JP5579210B2 (ja) 2012-02-28 2012-02-28 光ファイバ母材の製造方法

Publications (2)

Publication Number Publication Date
JP2013177269A JP2013177269A (ja) 2013-09-09
JP5579210B2 true JP5579210B2 (ja) 2014-08-27

Family

ID=49269359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041811A Active JP5579210B2 (ja) 2012-02-28 2012-02-28 光ファイバ母材の製造方法

Country Status (1)

Country Link
JP (1) JP5579210B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740065B2 (ja) * 2013-05-01 2015-06-24 古河電気工業株式会社 光ファイバ母材の製造方法、及び光ファイバの製造方法
JP6396821B2 (ja) * 2014-02-28 2018-09-26 株式会社フジクラ マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP6216263B2 (ja) * 2014-02-28 2017-10-18 株式会社フジクラ マルチコアファイバ用母材及びこれを用いたマルチコアファイバ、及び、マルチコアファイバ用母材の製造方法及びこれを用いたマルチコアファイバの製造方法
US10053386B2 (en) * 2014-04-25 2018-08-21 Corning Incorporated Method for forming optical fiber and preforms
JP6198225B2 (ja) * 2014-07-07 2017-09-20 日本電信電話株式会社 フォトニッククリスタル光ファイバ母材の製造方法
JP6308552B2 (ja) * 2014-07-07 2018-04-11 日本電信電話株式会社 空孔アシスト光ファイバ母材の製造方法
JP5835823B1 (ja) * 2014-07-09 2015-12-24 日本電信電話株式会社 マルチコア光ファイバ母材の製造方法
JP6010587B2 (ja) * 2014-07-11 2016-10-19 株式会社フジクラ マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP6615036B2 (ja) * 2016-03-30 2019-12-04 古河電気工業株式会社 光ファイバ母材の製造方法および光ファイバの製造方法
JP6681306B2 (ja) * 2016-10-04 2020-04-15 株式会社フジクラ マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
CN106746590A (zh) * 2016-12-19 2017-05-31 中国电子科技集团公司第四十六研究所 一种变径多芯光纤的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167109A (en) * 1980-05-28 1981-12-22 Furukawa Electric Co Ltd:The Manufacture of base material for optical transmission
JPS5782805A (en) * 1980-11-12 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Production of multicore preform rod
JPH08119656A (ja) * 1994-10-17 1996-05-14 Shin Etsu Chem Co Ltd マルチコアファイバ母材の製造方法
US8132429B2 (en) * 2004-04-27 2012-03-13 Silitec Fibers Sa Method for fabricating an optical fiber, preform for fabricating an optical fiber, optical fiber and apparatus

Also Published As

Publication number Publication date
JP2013177269A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5579210B2 (ja) 光ファイバ母材の製造方法
US20100104869A1 (en) Photonic Crystal Fibers and Methods for Manufacturing the Same
CN105060701B (zh) 一种大尺寸弯曲不敏感多模光纤预制棒的制备方法
CN103936276B (zh) 一种微结构光纤的制备方法
JP2009515217A (ja) 微細構造光ファイバとその製造方法
EP2938579B1 (en) Method of manufacturing preforms for optical fibres having low water peak
EP2150502B1 (en) Method to produce microstructured optical fibers comprising voids
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
KR20070090747A (ko) 디프레스드 굴절형 광섬유 제조방법
CN102757179A (zh) 一种大规格光纤预制棒的制备方法
JP5226623B2 (ja) 光ファイバ母材の製造方法
EP2938581B1 (en) Method of manufacturing preforms for optical fibres having low water peak
JP5744070B2 (ja) 光ファイバを製造するための方法並びに管状半製品
US7769263B1 (en) Optical fiber and a method for making such
JP5457089B2 (ja) フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
US20220402803A1 (en) Method for manufacturing a preform for a multi-core opitcal fiber and method for manufacturing multi-core optical fibers
JP6198225B2 (ja) フォトニッククリスタル光ファイバ母材の製造方法
JP5835823B1 (ja) マルチコア光ファイバ母材の製造方法
JP5644692B2 (ja) 光ファイバ母材製造方法
JP2016017006A (ja) 空孔アシスト光ファイバ母材の製造方法
JP6216263B2 (ja) マルチコアファイバ用母材及びこれを用いたマルチコアファイバ、及び、マルチコアファイバ用母材の製造方法及びこれを用いたマルチコアファイバの製造方法
CN113121104B (zh) 一种光纤预制棒及制备光纤预制棒和光纤的方法
WO2024015192A1 (en) Hollow core optical fibre drawing method with modified drawdown
JP6081534B2 (ja) 光ファイバ製造方法及び光ファイバ製造装置
CN100999382B (zh) 制造光纤预制棒的方法及用该光纤预制棒制造光纤的方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

RD02 Notification of acceptance of power of attorney

Effective date: 20140207

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218

RD04 Notification of resignation of power of attorney

Effective date: 20140306

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20140516

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5579210

Country of ref document: JP