JP5577519B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP5577519B2
JP5577519B2 JP2011505855A JP2011505855A JP5577519B2 JP 5577519 B2 JP5577519 B2 JP 5577519B2 JP 2011505855 A JP2011505855 A JP 2011505855A JP 2011505855 A JP2011505855 A JP 2011505855A JP 5577519 B2 JP5577519 B2 JP 5577519B2
Authority
JP
Japan
Prior art keywords
core member
dye
transparent core
layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011505855A
Other languages
Japanese (ja)
Other versions
JPWO2010109821A1 (en
Inventor
修二 早瀬
充 河野
能弘 山口
尚哉 鍬崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Kyushu Institute of Technology NUC filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011505855A priority Critical patent/JP5577519B2/en
Publication of JPWO2010109821A1 publication Critical patent/JPWO2010109821A1/en
Application granted granted Critical
Publication of JP5577519B2 publication Critical patent/JP5577519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光電変換素子に関し、特に色素増感太陽電池セルとしての光電変換素子に関する。   The present invention relates to a photoelectric conversion element, and more particularly to a photoelectric conversion element as a dye-sensitized solar cell.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。例えば、透明な導電性ガラス板(透明導電膜を積層した透明基板)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)からなる対極の間に電解液としてヨウ素溶液等を配置した、簡易な構造を有する。   The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor. For example, a porous semiconductor layer such as a titania layer formed by baking a titanium dioxide powder or the like on a transparent conductive glass plate (transparent substrate on which a transparent conductive film is laminated) and adsorbing a dye to this, and a conductive glass plate (conductive A simple structure in which an iodine solution or the like is disposed as an electrolytic solution between counter electrodes made of a conductive substrate).

色素増感太陽電池では、受光面である透明な導電性ガラス板面から入射した光を、多孔質半導体層に吸着された色素が吸収し、電子励起を引き起こし、その励起した電子が半導体へと移動し、さらに導電性ガラスへ導かれる。導電性ガラスから負荷を介して対極に移動した電子はヨウ素等の電解液を介して色素へと導かれる。
色素増感太陽電池は、現在11%程度の太陽光の変換効率が報告されているが、効率のさらなる向上が求められており、種々の観点から検討がなされている。
In dye-sensitized solar cells, the light adsorbed from the transparent conductive glass plate surface, which is the light-receiving surface, is absorbed by the dye adsorbed on the porous semiconductor layer, causing electronic excitation, and the excited electrons are transferred to the semiconductor. It moves and is further guided to the conductive glass. Electrons that have moved from the conductive glass to the counter electrode via a load are guided to the dye via an electrolyte such as iodine.
Dye-sensitized solar cells are currently reported to have a solar conversion efficiency of about 11%. However, further improvement in efficiency is required, and studies have been made from various viewpoints.

そのうちの一つとして、光の吸収効率の改善がある。
例えば、色素を吸着した多孔質半導体層の光の吸収効率の改善を図るために、粒子径が0.1nm〜10μmの酸化物微粒子に光拡散能の高い微粒子が混合された混合微粒子を焼成してなる酸化物半導体膜を用いることで、内部実装面積を大きくするとともに光拡散能を高めて色素に吸収されずに透過する光の量を減らすことが検討されている(特許文献1参照)。
ところが、粒子径が例えば150nm程度の光拡散能の高い微粒子を含む酸化物半導体膜は、体積当たりの表面積(比表面積)が小さいため、色素の吸着量が減少し、効率低下を招くおそれがある。
また、光の吸収効率を改善するために、例えば、色素を吸着した多孔質半導体層の層厚みを厚くすることが考えられる。ところが、単に多孔質半導体層の厚みを増すだけでは効率が上がらないばかりか逆に効率が低下するおそれがある。
One of them is improvement of light absorption efficiency.
For example, in order to improve the light absorption efficiency of the porous semiconductor layer that adsorbs the dye, the mixed fine particles in which fine particles having a high light diffusing ability are mixed with oxide fine particles having a particle diameter of 0.1 nm to 10 μm are fired. By using an oxide semiconductor film formed as described above, it has been studied to increase the internal mounting area and increase the light diffusing ability to reduce the amount of light that is transmitted without being absorbed by the dye (see Patent Document 1).
However, an oxide semiconductor film including fine particles having a high light diffusing capacity with a particle size of, for example, about 150 nm has a small surface area per volume (specific surface area), and therefore, the amount of dye adsorbed may be reduced, leading to a reduction in efficiency. .
In order to improve the light absorption efficiency, for example, it is conceivable to increase the thickness of the porous semiconductor layer that has adsorbed the dye. However, simply increasing the thickness of the porous semiconductor layer not only increases the efficiency, but also reduces the efficiency.

一方、受光量を光学的に改善するために、例えば光学レンズや鏡などで集光して、光学密度の高い光が発電部分に導かれるようにすることが考えられる。ところが、太陽電池の大型化を図る場合には、これらの光学部材は設備費用上大きな負担となる。   On the other hand, in order to optically improve the amount of received light, it is conceivable that light having a high optical density is guided to the power generation part, for example, by condensing with an optical lens or a mirror. However, when the size of the solar cell is increased, these optical members are a heavy burden in terms of equipment costs.

光の吸収効率が低い原因の一つとして、400nmから近赤外以上の波長までの幅広い波長領域の光を高効率で吸収できる色素が今のところ得られていないことがある。このため、色素を吸着させた多孔質半導体層で吸収されなかった光はそのまま吸収ロスとなる。
この点に着目して、色素を担持する多孔質酸化物半導体層を入射する光の進行方向に対して直列に2段設ける、いわゆるタンデム型の色素増感太陽電池が種々検討されている(例えば特許文献2参照)。
ところが、タンデム型の色素増感太陽電池についても、光吸収効率のさらなる向上を要するものであったり、製造方法が煩雑であったり、あるいは電池を大型化する際に不都合を生じるおそれがある等、さらなる改善の余地が大きいと思われる。
One of the causes of the low light absorption efficiency is that a dye that can absorb light in a wide wavelength range from 400 nm to a wavelength of near infrared or higher with high efficiency has not been obtained so far. For this reason, light that has not been absorbed by the porous semiconductor layer on which the dye is adsorbed becomes an absorption loss as it is.
Focusing on this point, various so-called tandem dye-sensitized solar cells in which a porous oxide semiconductor layer carrying a dye is provided in two stages in series with respect to the traveling direction of incident light have been studied (for example, Patent Document 2).
However, even for tandem dye-sensitized solar cells, it may require further improvement in light absorption efficiency, the manufacturing method may be complicated, or there may be inconvenience when the battery is enlarged, There seems to be much room for further improvement.

また、太陽電池のエネルギソースである太陽光が時刻や季節によって光量や入射角度が変化するため発電量が安定しないことに鑑み、透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、管の中央部に対極が挿入された構造を有する色素増感光電変換素子が提案されている(特許文献3参照)。
この色素増感光電変換素子によれば、光の入射角度に対する発電量の変化を大幅に低減することができ、しかも耐久性が高い色素増感光電変換素子を提供できるとされている。
ところが、この色素増感光電変換素子は、高い光エネルギ密度の太陽光を受光することができるように受光面を地上の水平面から鉛直方向に向けて配置する従来のものの考え方とは相容れない面があるように思われる。特に、色素増感光電変換素子を多数配置して装置の大型化を図るうえでは、必ずしも好適ではないものと思われる。
In addition, in view of the fact that the amount of power generated is not stable because the amount of light and the incident angle of sunlight, which is the energy source of the solar cell, changes depending on the time and season, a transparent conductive layer and a dye-sensitized porous There has been proposed a dye-sensitized photoelectric conversion element having a structure in which a semiconductor layer and an electrolyte layer are sequentially provided, and a counter electrode is inserted at the center of the tube (see Patent Document 3).
According to this dye-sensitized photoelectric conversion element, it is said that a change in the amount of power generation with respect to the incident angle of light can be greatly reduced, and a dye-sensitized photoelectric conversion element having high durability can be provided.
However, this dye-sensitized photoelectric conversion element has a surface that is incompatible with the conventional idea of arranging the light receiving surface in the vertical direction from the horizontal surface on the ground so that sunlight with high light energy density can be received. Seems to be. In particular, it is not necessarily suitable for increasing the size of the apparatus by arranging a large number of dye-sensitized photoelectric conversion elements.

特開2002−93476号公報JP 2002-93476 A 特開2008−53042号公報JP 2008-53042 A 特開2008−53042号公報JP 2008-53042 A

解決しようとする課題は、従来の色素増感太陽電池が、いずれも、製造方法が煩雑で、また、装置の大型化に向けて改善の余地が大きいという問題点のうちの1つまたは双方を抱えていることである。   The problem to be solved is that all of the conventional dye-sensitized solar cells have one or both of the problems that the manufacturing method is complicated and there is a lot of room for improvement toward the enlargement of the apparatus. It is what you have.

本発明に係る光電変換素子は、柱状形状の透明コア部材の一端面または錘状形状の透明コア部材の底面を受光面とし、該透明コア部材の側面に、色素を含む多孔質半導体層、多孔質の導電性金属層、電解液層および触媒層を備えた導電層がこの順に配列されてなる色素増感太陽電池セルであることを特徴とする。 The photoelectric conversion device according to the present invention has a light-receiving surface on one end surface of a columnar transparent core member or a bottom surface of a weight-shaped transparent core member , and a porous semiconductor layer containing a dye on the side surface of the transparent core member, porous It is a dye-sensitized solar cell in which a conductive layer including a porous conductive metal layer, an electrolytic solution layer, and a catalyst layer is arranged in this order.

また、本発明に係る光電変換素子は、好ましくは、前記柱状形状または錘状形状の透明コア部材が、該透明コア部材の軸線と直交する方向に積層して配列される2以上の光屈折率の異なる透明コア部材部で構成され、該透明コア部材の軸心側から光屈折率の小さい透明コア部材部および光屈折率の大きい透明コア部材部の順に設けられてなることを特徴とする。   The photoelectric conversion element according to the present invention preferably has two or more optical refractive indexes in which the columnar or weight-shaped transparent core member is stacked and arranged in a direction perpendicular to the axis of the transparent core member. The transparent core member portion is provided in the order of the transparent core member portion having a small light refractive index and the transparent core member portion having a large light refractive index from the axial center side of the transparent core member.

また、本発明に係る光電変換素子は、好ましくは、前記柱状形状または錘状形状の透明コア部材の側面に、該透明コア部材の内部に向けて乱反射させる透光性乱反射粗面が設けられてなることを特徴とする。   Moreover, the photoelectric conversion element according to the present invention is preferably provided with a light-transmitting irregular reflection rough surface that irregularly reflects toward the inside of the transparent core member on the side surface of the columnar or weight-shaped transparent core member. It is characterized by becoming.

また、本発明に係る光電変換素子は、好ましくは、前記柱状形状または錘状形状の透明コア部材の内部に、光散乱材料が充填されてなることを特徴とする。 The photoelectric conversion element according to the present invention is preferably characterized in that a light scattering material is filled in the columnar or weight-shaped transparent core member.

また、本発明に係る光電変換素子は、好ましくは、前記色素を含む多孔質半導体層が、該透明コア部材の軸線方向または軸線と直交する方向に配列される2またはそれ以上の多孔質半導体部で構成され、該2またはそれ以上の多孔質半導体部に種類の異なる色素がそれぞれ吸着されてなることを特徴とする。   In the photoelectric conversion element according to the present invention, preferably, the porous semiconductor layer containing the dye is two or more porous semiconductor parts arranged in the axial direction of the transparent core member or in the direction perpendicular to the axial line. And different types of dyes are adsorbed to the two or more porous semiconductor portions.

また、本発明に係る光電変換素子は、好ましくは、前記2またはそれ以上の多孔質半導体部が相互に絶縁されるとともに、それぞれ独立した引き出し電極が設けられ、前記触媒層を備えた導電層と並列に電気的に接続されることを特徴とする。   In the photoelectric conversion element according to the present invention, preferably, the two or more porous semiconductor portions are insulated from each other and provided with independent lead electrodes, respectively, and a conductive layer including the catalyst layer; It is electrically connected in parallel.

本発明に係る光電変換素子は、柱状形状の透明コア部材の一端面または錘状形状の透明コア部材の底面を受光面とし、透明コア部材の側面に、光電変換セル構成部材が配列されるので、光が進入する透明コア部材の側面全体が実質的に受光部として機能する。これにより、簡易な製造法により、装置の大型化に適した光電変換素子を得ることができる。   In the photoelectric conversion element according to the present invention, the one end surface of the columnar transparent core member or the bottom surface of the weight-shaped transparent core member is the light receiving surface, and the photoelectric conversion cell constituent members are arranged on the side surface of the transparent core member. The entire side surface of the transparent core member into which light enters substantially functions as a light receiving portion. Thereby, the photoelectric conversion element suitable for the enlargement of an apparatus can be obtained with a simple manufacturing method.

本実施の形態の第一の例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized solar cell which concerns on the 1st example of this Embodiment from the longitudinal direction. 本実施の形態の第一の例に係る色素増感太陽電池セルを図1(A)中、紙面左側からみた正面図である。It is the front view which looked at the dye-sensitized solar cell which concerns on the 1st example of this Embodiment from the paper surface left side in FIG. 1 (A). 本実施の形態の第二の例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized solar cell which concerns on the 2nd example of this Embodiment from the longitudinal direction. 本実施の形態の第三の例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized solar cell which concerns on the 3rd example of this Embodiment from the longitudinal direction. 本実施の形態の第四の例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized photovoltaic cell which concerns on the 4th example of this Embodiment from the longitudinal direction. 実施例1の色素増感太陽電池セルの作製方法について、使用するセル部材を示す図である。It is a figure which shows the cell member to be used about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、チタニア層を形成するまでの工程を説明するための図である。It is a figure for demonstrating the process until it forms a titania layer about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、塗布層を形成するまでの工程を説明するための図である。It is a figure for demonstrating the process until it forms a coating layer about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、Ti膜を形成するまでの工程を説明するための図である。It is a figure for demonstrating the process until forming Ti film | membrane about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、ポーラスなTi層を得るまでの工程を説明するための図である。It is a figure for demonstrating the process until obtaining a porous Ti layer about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、ポーラスフィルムを巻きつけるまでの工程を説明するための図である。It is a figure for demonstrating the process until it winds a porous film about the preparation methods of the dye-sensitized photovoltaic cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、エポキシ樹脂で塞ぐまでの工程を説明するための図である。It is a figure for demonstrating the process until it plugs up with an epoxy resin about the preparation methods of the dye-sensitized photovoltaic cell of Example 1. FIG. 実施例1の色素増感太陽電池セルの作製方法について、完成した色素増感太陽電池セルを示す図である。It is a figure which shows the completed dye-sensitized solar cell about the preparation methods of the dye-sensitized solar cell of Example 1. FIG. 実施例3の色素増感太陽電池セルの作製方法を説明するための図である。6 is a view for explaining a method for producing a dye-sensitized solar cell of Example 3. FIG. 実施例4の色素増感太陽電池セルの作製方法を説明するための図である。6 is a diagram for explaining a method for producing a dye-sensitized solar cell of Example 4. FIG. 実施例5の色素増感太陽電池セルの作製方法を説明するための図である。6 is a view for explaining a method for producing a dye-sensitized solar cell of Example 5. FIG. 本実施の形態の第五の例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized solar cell which concerns on the 5th example of this Embodiment from the longitudinal direction. 本実施の形態の第一の例の変形例に係る色素増感太陽電池セルを長手方向からみた側面断面図である。It is side surface sectional drawing which looked at the dye-sensitized photovoltaic cell which concerns on the modification of the 1st example of this Embodiment from the longitudinal direction.

本発明の実施の形態(以下、本実施の形態例という。)について、図を参照して、以下に説明する。   Embodiments of the present invention (hereinafter referred to as embodiments of the present invention) will be described below with reference to the drawings.

本実施の形態に係る光電変換素子の基本構成原理は、柱状形状の透明コア部材の一端面または錘状形状の透明コア部材の底面を受光面とし、透明コア部材の側面に、光電変換セル構成部材が配列されたものである。
光電変換セル構成部材は、適宜の構成とすることができる。光電変換セル構成部材の光電変換部は、例えば、単結晶シリコン、多結晶シリコン、薄膜シリコン、各種薄膜および色素増感材料等を挙げることができる。
The basic configuration principle of the photoelectric conversion element according to the present embodiment is that the one end surface of the columnar transparent core member or the bottom surface of the weight-shaped transparent core member is the light receiving surface, and the photoelectric conversion cell configuration is formed on the side surface of the transparent core member. The members are arranged.
The photoelectric conversion cell constituent member can have an appropriate configuration. Examples of the photoelectric conversion part of the photoelectric conversion cell constituent member include single crystal silicon, polycrystalline silicon, thin film silicon, various thin films, and dye-sensitized materials.

透明コア部材の柱状形状は、円柱状であってもよく、また、多角柱状であってもよい。また、透明コア部材の錘状形状は、円錐状であってもよく、多角錐状であってもよい。
透明コア部材の材料は特に限定するものではない。ただし、透明コア部材の材料が、透明ガラス、特に光学ガラスであれば、高い光透過率と適宜の光屈折率を有するものを容易に選択することができ、これにより受光面から入射される光の軸線方向の進入程度を調整すること、言い換えれば、透明コア部材の側面における光の吸収度合いを軸線方向で調整することにより、例えば色素増感太陽電池において軸線方向に複数配列される異なる色素を吸着した多孔質半導体層との性能のマッチングを図ることができ、あるいはまた受光面から入射される光を軸線方向奥深くまで進入させて透明コア部材の側面全体を実質的な受光部として効率的に利用することができる。このような光学ガラスとしては、石英ガラス、アルカリガラス、ホウ珪酸ガラス等を挙げることができる。また、光学ガラスに限らないがガラスを透明コア部材の材料に用いることにより、光電変換素子の剛性を高めることができる。これに対して、透明コア部材の材料が透明樹脂であれば、フレキシブルな光電変換素子を得ることができる。このような透明樹脂としては、シリコーン樹脂、シロキサン樹脂等を挙げることができる。
The columnar shape of the transparent core member may be a columnar shape or may be a polygonal columnar shape. Further, the weight-like shape of the transparent core member may be a conical shape or a polygonal pyramid shape.
The material of the transparent core member is not particularly limited. However, if the material of the transparent core member is transparent glass, particularly optical glass, it is possible to easily select one having a high light transmittance and an appropriate light refractive index, whereby light incident from the light receiving surface can be selected. By adjusting the degree of approach in the axial direction of the transparent core member, in other words, by adjusting the degree of light absorption on the side surface of the transparent core member in the axial direction, for example, a plurality of different dyes arranged in the axial direction in a dye-sensitized solar cell It is possible to match the performance with the adsorbed porous semiconductor layer, or the light incident from the light receiving surface enters deep in the axial direction to efficiently use the entire side surface of the transparent core member as a substantial light receiving portion. Can be used. Examples of such optical glass include quartz glass, alkali glass, and borosilicate glass. Moreover, although not restricted to optical glass, the rigidity of a photoelectric conversion element can be improved by using glass for the material of a transparent core member. On the other hand, if the material of the transparent core member is a transparent resin, a flexible photoelectric conversion element can be obtained. Examples of such transparent resins include silicone resins and siloxane resins.

また、透明コア部材は、透明コア部材の軸線と直交する方向に積層して配列される2以上の光屈折率の異なる透明コア部材部で構成され、透明コア部材の軸心側から光屈折率の小さい透明コア部材部および光屈折率の大きい透明コア部材部の順に設けられることが好ましい。これにより、受光面から入射される光を軸線方向奥深くまで進入させて透明コア部材の側面全体を光量が均等に入射される実質的な受光部をすることができる。例えば、軸心側に配置される透明コア部材部の光屈折率を1.46程度、軸心から遠い側に配置される透明コア部材部の光屈折率を1.48程度とすることができる。
また、透明コア部材は、柱状形状または錘状形状の透明コア部材の側面に、透明コア部材の内部に向けて一部の光を乱反射(散乱)させる透光性を有する乱反射面(透光性乱反射面)が設けられることが好ましい。これにより、受光面から入射される光を透明コア部材の側面から光電変換セル構成部材に向けて均一に進入させることができる。このような透光性乱反射面は、例えば透明コア部材としてのガラスの側面をすりガラス状に加工して設けたものであってもよく、また、片面を粗面に形成した透明材料を透明コア部材の側面外周に設けたものであってもよい。
The transparent core member is composed of two or more transparent core member portions having different optical refractive indexes arranged in a direction orthogonal to the axis of the transparent core member, and the optical refractive index from the axial center side of the transparent core member. It is preferable that the transparent core member portion having a small refractive index and the transparent core member portion having a large optical refractive index are provided in this order. Thereby, the light incident from the light receiving surface can be made to enter deep in the axial direction, and a substantial light receiving portion can be formed in which the light amount is uniformly incident on the entire side surface of the transparent core member. For example, the optical refractive index of the transparent core member portion arranged on the axial center side can be about 1.46, and the optical refractive index of the transparent core member portion arranged on the side far from the axial center can be about 1.48. .
Further, the transparent core member has a translucent diffused surface (translucent property) that diffuses (scatters) a part of light toward the inside of the transparent core member on the side surface of the columnar or weight-shaped transparent core member. It is preferable that an irregular reflection surface is provided. Thereby, the light which injects from a light-receiving surface can be uniformly approached toward the photoelectric conversion cell structural member from the side surface of a transparent core member. Such a translucent irregular reflection surface may be provided by processing the side surface of the glass as a transparent core member into a ground glass shape, or a transparent material having a rough surface formed on one side. It may be provided on the outer periphery of the side surface.

また、透明コア部材は、その内部に、受光面から入射した光をコア部材側面に向けて乱反射させる光散乱材料が充填されることが好ましい。これにより、受光面から入射される光を透明コア部材の側面を介して光電変換セル構成部材へ効率よく導くことができる。   The transparent core member is preferably filled with a light scattering material that diffuses light incident from the light receiving surface toward the side surface of the core member. Thereby, the light which injects from a light-receiving surface can be efficiently guide | induced to a photoelectric conversion cell structural member via the side surface of a transparent core member.

以上説明した本実施の形態に係る光電変換素子の基本構成原理によれば、光電変換素子はいわばファイバー型あるいはチューブ型光電変換素子であるため、従来の平板型、言い換えればフラットパネル型の光電変換素子に比べて、大型化する場合の電極層等のセル構成部材の作製が容易でかつ電気的特性も有利である。また、実際の受光面(透明コア部材の一端面)に対して実質的な受光部(透明コア部材の側面)の面積を大きくすることができる。このため、簡易な製造法により、装置の大型化に適した光電変換素子を得ることができる。また、光を受光する面を光電変換素子を利用した装置の設置面に対して平行に位置決めして用いる場合において、設置面上に光電変換素子が高密度に集積された装置を得ることができる。   According to the basic configuration principle of the photoelectric conversion element according to the present embodiment described above, since the photoelectric conversion element is a fiber type or a tube type photoelectric conversion element, it is a conventional flat plate type, in other words, a flat panel type photoelectric conversion. Compared to an element, it is easy to produce cell constituent members such as electrode layers when the size is increased, and the electrical characteristics are also advantageous. Moreover, the area of the substantial light receiving part (side surface of the transparent core member) can be increased with respect to the actual light receiving surface (one end surface of the transparent core member). For this reason, the photoelectric conversion element suitable for the enlargement of an apparatus can be obtained with a simple manufacturing method. Further, in the case where the light receiving surface is positioned and used in parallel with the installation surface of the device using the photoelectric conversion element, it is possible to obtain a device in which the photoelectric conversion elements are integrated with high density on the installation surface. .

つぎに、光電変換素子として色素増感太陽電池セルを例にとって実施の形態を説明する。   Next, an embodiment will be described by taking a dye-sensitized solar cell as an example of the photoelectric conversion element.

図1(A)、(B)を参照して本実施の形態の第一の例に係る色素増感太陽電池セルについて説明する。図1(A)は色素増感太陽電池セルを長手方向(軸線側)からみた側面断面図を示し、図1(B)は色素増感太陽電池セルを図1(A)中、紙面左側からみた正面図を示す。   The dye-sensitized solar cell according to the first example of the present embodiment will be described with reference to FIGS. FIG. 1A shows a side cross-sectional view of a dye-sensitized solar cell as viewed from the longitudinal direction (axis side), and FIG. 1B shows the dye-sensitized solar cell from the left side of FIG. 1A. A front view is shown.

本実施の形態の第一の例に係る色素増感太陽電池セル10は、柱状形状の透明コア部材12と、透明コア部材12の側面に積層状態で配列される色素増感太陽電池セル構成部材で構成される。なお、透明コア部材は錘状形状であってもよい。
透明コア部材12は、上記本実施の形態に係る光電変換素子の基本構成原理で説明したものと同じであり、重複する説明は省くが、一端面12cを光が入射される受光面とする。他端面12bは、例えば多孔質の導電性金属層16によって閉塞される。ただし、このとき、樹脂等の適宜の部材で他端面12bを閉塞してもよい。また、図示しないが、透明コア部材12の側面12aは全周にわたってすりガラス状に加工されており、外部に向けて光を透過するとともに、透明コア部材12の内部に向けて一部の光を乱反射させる乱反射面となっている。ただし、このとき、乱反射面は、片面を乱反射面に形成した材料を透明コア部材12に巻く等の適宜のものとすることができる。
色素増感太陽電池セル10のセル構成部材は、透明コア部材12の側面12aに、色素を含む多孔質半導体層14、多孔質の導電性金属層16、電解液層18および触媒層を備えた導電層20がこの順に配列される。参照符号21は、セル部材を覆う筺体を示す。なお、色素増感太陽電池セル10はこれらのセル部材以外に、例えば集電層等の適宜の部材をさらに含むものであってもよい。
The dye-sensitized solar cell 10 according to the first example of the present embodiment includes a columnar transparent core member 12 and a dye-sensitized solar cell constituent member arranged in a stacked state on the side surface of the transparent core member 12. Consists of. The transparent core member may have a weight shape.
The transparent core member 12 is the same as that described in the basic configuration principle of the photoelectric conversion element according to the present embodiment, and a duplicate description is omitted, but the one end surface 12c is a light receiving surface on which light is incident. The other end surface 12 b is closed by, for example, a porous conductive metal layer 16. However, at this time, the other end surface 12b may be closed with an appropriate member such as resin. Further, although not shown, the side surface 12a of the transparent core member 12 is processed into a ground glass shape over the entire circumference, and transmits light toward the outside, and partly reflects light partially toward the inside of the transparent core member 12. It is a diffuse reflection surface. However, at this time, the irregular reflection surface may be an appropriate one such as a material in which one surface is formed as an irregular reflection surface and wound around the transparent core member 12.
The cell constituent member of the dye-sensitized solar cell 10 includes a porous semiconductor layer 14 containing a dye, a porous conductive metal layer 16, an electrolyte layer 18 and a catalyst layer on the side surface 12a of the transparent core member 12. The conductive layers 20 are arranged in this order. Reference numeral 21 denotes a casing that covers the cell member. The dye-sensitized solar cell 10 may further include an appropriate member such as a current collecting layer in addition to these cell members.

色素を含む多孔質半導体層14は、色素が吸着した多孔質半導体の層である。
色素は、400nm〜1000nmの範囲の少なくとも一部の領域の波長に吸収を持つものである。このような色素として、例えば、COOH基を有する、ルテニウム色素、フタロシアニン色素などの金属錯体、シアニン色素などの有機色素を挙げることができる。低波長側に吸収を持つものの代表例としてN719(ソラロニクス社製)を、高波長側に吸収を持つものの代表例としてブラックダイ(ソラロニクス社製)を、それぞれ挙げることができる。
The porous semiconductor layer 14 containing a dye is a porous semiconductor layer to which a dye is adsorbed.
The dye has absorption at a wavelength in at least a part of the range of 400 nm to 1000 nm. Examples of such a dye include a metal complex having a COOH group such as a ruthenium dye and a phthalocyanine dye, and an organic dye such as a cyanine dye. N719 (manufactured by Solaronics) can be cited as a representative example of those having absorption on the low wavelength side, and a black die (manufactured by Solaronics) can be cited as a representative example of those having absorption on the high wavelength side.

多孔質半導体層は、材料として、例えば、チタン、スズ、ジルコニウム、亜鉛、インジウム、タングステン、鉄、ニッケルあるいは銀等の金属の酸化物を用いることができるが、このうち、チタン酸化物(チタニア)がより好ましい。
多孔質半導体層は、半導体材料が300℃以上の温度で焼成されたものであり、より好ましくは450℃以上の温度で焼成されたものである。一方、焼成温度の上限は特にないが、多孔質半導体層の材料の融点よりは十分に低い温度とし、より好ましくは550℃以下の温度とする。また、多孔質半導体層の材料としてチタン酸化物(チタニア)を用いる場合、ルチル結晶に移行しない程度の温度で、チタン酸化物の導電性が高いアナターゼ結晶の状態で焼成することが好ましい。これにより、多孔質な半導体層が形成される。
多孔質半導体層は、その厚みを特に限定するものではないが、好ましくは、14μm以上の厚みとする。
For example, titanium, tin, zirconium, zinc, indium, tungsten, iron, nickel, silver, or other metal oxide can be used as the material of the porous semiconductor layer. Among these, titanium oxide (titania) can be used. Is more preferable.
The porous semiconductor layer is formed by baking a semiconductor material at a temperature of 300 ° C. or higher, more preferably 450 ° C. or higher. On the other hand, although there is no upper limit on the firing temperature, the temperature is sufficiently lower than the melting point of the material of the porous semiconductor layer, and more preferably 550 ° C. or lower. Further, when titanium oxide (titania) is used as the material of the porous semiconductor layer, it is preferably fired in a state of anatase crystals having high conductivity of titanium oxide at a temperature that does not shift to rutile crystals. Thereby, a porous semiconductor layer is formed.
The thickness of the porous semiconductor layer is not particularly limited, but is preferably 14 μm or more.

多孔質の導電性金属層16は、導電性金属をスパッタ法等により多孔質な膜を形成し、または機械加工により予め多くの孔を形成した導電性金属シートを用い、あるいは後述する実施例に記載するように積層した導電性金属層に孔を形成する等の適宜の方法で多孔質化することができる。
多孔質の導電性金属層16の材料は、例えば通常用いられるITO(スズをドープしたインジウム膜)、FTO(フッ素をドープした酸化スズ膜)、あるいはまたSnO膜等であってもよい。また、安価な金属を用いた金属メッシュ、予め無数の孔を形成した金属層または溶射や薄膜形成法等により形成した金属層等を用いることができる。これに対して、導電性を高める観点からは、例えば金属メッシュ付きガラス材料にFTO等の導電膜を形成してもよい。
The porous conductive metal layer 16 uses a conductive metal sheet in which a porous film is formed from a conductive metal by sputtering or the like, or a large number of holes are formed in advance by machining, or in an embodiment described later. As described, it can be made porous by an appropriate method such as forming a hole in the laminated conductive metal layer.
The material of the porous conductive metal layer 16 may be, for example, a commonly used ITO (indium film doped with tin), FTO (tin oxide film doped with fluorine), or a SnO 2 film. In addition, a metal mesh using an inexpensive metal, a metal layer in which an infinite number of holes are formed in advance, or a metal layer formed by thermal spraying or a thin film forming method can be used. On the other hand, from the viewpoint of increasing conductivity, a conductive film such as FTO may be formed on a glass material with a metal mesh, for example.

電解液層18は、ヨウ素、リチウムイオン、イオン液体、t-ブチルピリジン等を含むものであり、例えばヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからなる酸化還元体を用いることができる。酸化還元体は、これを溶解可能な適宜の溶媒を含む。
電解液層18は、例えば、細孔率が70体積%程度の多孔質膜に電解液を含浸したものを用いる。このとき、触媒層を備えた導電層20の下層に電解液層18を形成するには、多孔質膜を塗布法やスパッタ法等の適宜の膜形成法で形成し、または、予め適宜の方法で形成した多孔質膜を透明コア部材12に巻きつけた後に、多孔質膜に電解液を含浸させる。多孔質膜の材料は、樹脂であってもよく、また、金属であってもよく、あるいはまたこれらの材料以外の無機材料であってもよい。
また、上記多孔質膜に代えて、触媒層を備えた導電層20の下層に枠体状の、例えば樹脂スペーサを設け、樹脂スペーサ部分を含む透明コア部材12全体に予め形成した触媒層を備えた導電層20のシートを巻きつけた後に、スペーサによって画成される空間部に電解液を注入する等の方法で電解液層18を形成してもよい。
The electrolyte layer 18 contains iodine, lithium ions, ionic liquid, t-butylpyridine, and the like. For example, in the case of iodine, an oxidation-reduction body composed of a combination of iodide ions and iodine can be used. The redox form contains an appropriate solvent that can dissolve the redox form.
As the electrolytic solution layer 18, for example, a porous membrane having a porosity of about 70% by volume is impregnated with an electrolytic solution. At this time, in order to form the electrolyte layer 18 under the conductive layer 20 having the catalyst layer, the porous film is formed by an appropriate film forming method such as a coating method or a sputtering method, or an appropriate method in advance. After winding the porous film formed in (1) around the transparent core member 12, the porous film is impregnated with an electrolytic solution. The material of the porous membrane may be a resin, a metal, or an inorganic material other than these materials.
Further, instead of the porous membrane, a frame-like, for example, resin spacer is provided in the lower layer of the conductive layer 20 provided with the catalyst layer, and a catalyst layer formed in advance on the entire transparent core member 12 including the resin spacer portion is provided. After winding the sheet of the conductive layer 20, the electrolyte layer 18 may be formed by a method such as injecting an electrolyte into the space defined by the spacer.

触媒層を備えた導電層20は、例えば白金で形成される触媒層20bと例えばチタン膜で形成される導電性金属層20aで構成され、触媒層20bを透明コア部材12のある内側に向けて配置される。このとき、導電性金属層20aを安価な導電性金属で構成してもよい。   The conductive layer 20 including the catalyst layer is composed of, for example, a catalyst layer 20b formed of platinum and a conductive metal layer 20a formed of, for example, a titanium film, and the catalyst layer 20b faces the inner side where the transparent core member 12 is located. Be placed. At this time, the conductive metal layer 20a may be made of an inexpensive conductive metal.

以上説明した本実施の形態の第一の例に係る色素増感太陽電池セル10によれば、色素増感太陽電池セルを安価に製造することができ、また、装置を大型化するのに適する。また、透明コア部材12と色素を含む多孔質半導体層14の間には通常設けられる透明導電膜等が存在しないため、光を効率的に色素を含む多孔質半導体層14に導入することができる。また、これら以外の、上記本実施の形態に係る光電変換素子の基本構成原理で説明した他の利点を有する。
ここで、本実施の形態の第一の例の変形例について、図10を参照して説明する。
変形例に係る太陽色素増感電池セル10Aは、透明コア部材12の構成以外の部材については色素増感太陽電池セル10のものと同じである。このため、重複する説明は省略する。
透明コア部材12は、透明コア部材12の軸線と直交する方向に積層して配列される2以上の光屈折率の異なる透明コア部材部12A、12Bで構成される。透明コア部材部12Aは透明コア部材12の軸心側(内側)に設けられ光屈折率の小さい材料で形成される。透明コア部材部12Bは明コア部材部12Aの外側に設けられ、光屈折率の大きい材料で形成される。
これにより、受光面から入射される光を軸線方向奥深くまで進入させて透明コア部材12の側面全体を光量が均等に入射される実質的な受光部をすることができる。例えば、軸心側に配置される透明コア部材部12Aの光屈折率を1.46程度、軸心から遠い側に配置される透明コア部材部12Bの光屈折率を1.48程度とすることができる。
According to the dye-sensitized solar cell 10 according to the first example of the present embodiment described above, the dye-sensitized solar cell can be manufactured at a low cost and is suitable for increasing the size of the apparatus. . Moreover, since there is no normally provided transparent conductive film or the like between the transparent core member 12 and the porous semiconductor layer 14 containing the dye, light can be efficiently introduced into the porous semiconductor layer 14 containing the dye. . In addition to these, there are other advantages described in the basic configuration principle of the photoelectric conversion element according to the present embodiment.
Here, a modification of the first example of the present embodiment will be described with reference to FIG.
The solar dye-sensitized battery cell 10 </ b> A according to the modification is the same as that of the dye-sensitized solar battery cell 10 except for the configuration of the transparent core member 12. For this reason, the overlapping description is omitted.
The transparent core member 12 is composed of two or more transparent core member portions 12 </ b> A and 12 </ b> B having different optical refractive indexes that are stacked and arranged in a direction orthogonal to the axis of the transparent core member 12. The transparent core member portion 12A is provided on the axial center side (inner side) of the transparent core member 12 and is formed of a material having a small light refractive index. The transparent core member portion 12B is provided outside the bright core member portion 12A and is formed of a material having a high light refractive index.
Thereby, the light incident from the light receiving surface can be made to enter deep in the axial direction, so that a substantial light receiving portion where the light amount is uniformly incident on the entire side surface of the transparent core member 12 can be formed. For example, the optical refractive index of the transparent core member portion 12A disposed on the axial center side is approximately 1.46, and the optical refractive index of the transparent core member portion 12B disposed on the side far from the axial center is approximately 1.48. Can do.

つぎに、図2を参照して本実施の形態の第二の例に係る色素増感太陽電池セルについて説明する。図2は色素増感太陽電池セルを長手方向(軸線側)からみた側面断面図を示す。
なお、色素増感太陽電池セル構成部材について、色素増感太陽電池セル10と重複する説明は省略する。
Next, a dye-sensitized solar cell according to the second example of the present embodiment will be described with reference to FIG. FIG. 2 shows a side sectional view of the dye-sensitized solar cell as seen from the longitudinal direction (axis side).
In addition, about the dye-sensitized solar cell structural member, the description which overlaps with the dye-sensitized solar cell 10 is abbreviate | omitted.

本実施の形態の第二の例に係る色素増感太陽電池セル10aは、色素を含む多孔質半導体層14が、透明コア部材12の軸線方向に配列される2またはそれ以上の多孔質半導体部(ここでは、2つの多孔質半導体部14a、14bで構成される例を示す。)で構成され、2またはそれ以上の多孔質半導体部14a、14bに種類の異なる色素がそれぞれ吸着される。これ以外のセル構成部材は第一の例に係る色素増感太陽電池セル10のものと同様である。
多孔質半導体部14a、14bに吸着させる色素の種類は特に限定するものではないが、例えば受光面側の多孔質半導体部14aに短波長の光成分を吸収する例えばN719色素を用い、光の進入方向奥側の多孔質半導体部14bに長波長の光成分を吸収する例えばブラックダイ色素を用いることは好ましい態様である。
また、色素増感太陽電池セル10aの変形例として、色素を含む多孔質半導体層が、透明コア部材の軸線と直交する方向に配列される2またはそれ以上の多孔質半導体部で構成され、2またはそれ以上の多孔質半導体部に種類の異なる色素がそれぞれ吸着される構成としてもよい。
この場合、透明コア部材の軸心に近い側の多孔質半導体部に短波長の光成分を吸収する色素を用い、透明コア部材の軸心から遠い側に長波長の光成分を吸収する色素を用いることは好ましい態様である。このとき、透明コア部材の軸心に近い側の多孔質半導体部の外側および透明コア部材の軸心から遠い側の多孔質半導体部の外側にそれぞれ電解液層を設けるとともに、透明コア部材の軸心から遠い側の多孔質半導体部の内側、すなわち、透明コア部材の軸心に近い側の多孔質半導体部の外側に設けられる電解液層に接して、適宜の多孔質部材に担持される白金等のヨウ素レドックス触媒層を設けると、直列配列される2セルとして使用することができる。また、ヨウ素レドックス触媒層を担持する多孔質部材に代えて多孔質導体金属層を設けると、多孔質導体金属層をアノードとして並列配列される2セルとして使用することができる。
The dye-sensitized solar cell 10a according to the second example of the present embodiment includes two or more porous semiconductor portions in which the porous semiconductor layer 14 containing the dye is arranged in the axial direction of the transparent core member 12. (Here, an example composed of two porous semiconductor portions 14a and 14b is shown), and two or more porous semiconductor portions 14a and 14b are each adsorbed with different types of dyes. The other cell constituent members are the same as those of the dye-sensitized solar cell 10 according to the first example.
The type of dye adsorbed on the porous semiconductor portions 14a and 14b is not particularly limited. For example, N719 dye that absorbs a light component having a short wavelength is used in the porous semiconductor portion 14a on the light receiving surface side, and light enters. It is a preferable aspect to use, for example, a black dye that absorbs a light component having a long wavelength in the porous semiconductor portion 14b on the back side in the direction.
As a modification of the dye-sensitized solar cell 10a, a porous semiconductor layer containing a dye is composed of two or more porous semiconductor portions arranged in a direction orthogonal to the axis of the transparent core member. Or it is good also as a structure by which a different kind of pigment | dye is each adsorb | sucked to the porous semiconductor part more than that.
In this case, a dye that absorbs a short-wavelength light component is used in the porous semiconductor portion on the side close to the axis of the transparent core member, and a dye that absorbs a long-wavelength light component on the side far from the axis of the transparent core member. Use is a preferred embodiment. At this time, an electrolyte layer is provided on the outer side of the porous semiconductor part near the axis of the transparent core member and on the outer side of the porous semiconductor part far from the axis of the transparent core member, and the axis of the transparent core member Platinum carried on an appropriate porous member in contact with the electrolyte layer provided inside the porous semiconductor portion far from the center, that is, outside the porous semiconductor portion near the axis of the transparent core member If an iodine redox catalyst layer such as is provided, it can be used as two cells arranged in series. Further, when a porous conductor metal layer is provided instead of the porous member supporting the iodine redox catalyst layer, the porous conductor metal layer can be used as two cells arranged in parallel as an anode.

以上説明した本実施の形態の第二の例に係る色素増感太陽電池セル10aおよびその変形例の色素増感太陽電池セルによれば、第一の例に係る色素増感太陽電池セル10aと同様の効果を得ることができる。また、特に、透明コア部材12の軸線方向の側面12aが実質的な光受光部として機能するときに、透明コア部材12内部の光の透過状況および光吸収状況に応じて多孔質半導体部に吸着する色素を選択することで、より高い光利用効率を得ることができる。   According to the dye-sensitized solar cell 10a according to the second example of the present embodiment described above and the dye-sensitized solar cell of the modified example thereof, the dye-sensitized solar cell 10a according to the first example and Similar effects can be obtained. In particular, when the side surface 12a in the axial direction of the transparent core member 12 functions as a substantial light receiving portion, the transparent core member 12 is adsorbed to the porous semiconductor portion according to the light transmission state and light absorption state inside the transparent core member 12. By selecting the dye to be used, higher light utilization efficiency can be obtained.

つぎに、図3を参照して本実施の形態の第三の例に係る色素増感太陽電池セルについて説明する。図3は色素増感太陽電池セルを長手方向(軸線方向)からみた側面断面図を示す。
なお、色素増感太陽電池セル構成部材について、色素増感太陽電池セル10と重複する説明は省略する。
Next, a dye-sensitized solar cell according to a third example of the present embodiment will be described with reference to FIG. FIG. 3 is a side sectional view of the dye-sensitized solar cell as seen from the longitudinal direction (axial direction).
In addition, about the dye-sensitized solar cell structural member, the description which overlaps with the dye-sensitized solar cell 10 is abbreviate | omitted.

本実施の形態の第三の例に係る色素増感太陽電池セル10bは、透明コア部材12の外周に、まず、例えばFTO層からなる透明導電層17が設けられ、つぎに、色素を含む多孔質半導体層14が設けられ、以下、電解液層18および触媒層を備えた導電層20がこの順に配列される。なお、透明導電層17は、FTOに限らず、ITO等の適宜のものを用いることができる。   In the dye-sensitized solar cell 10b according to the third example of the present embodiment, a transparent conductive layer 17 made of, for example, an FTO layer is first provided on the outer periphery of the transparent core member 12, and then a porous containing a dye is provided. The conductive semiconductor layer 14 is provided, and the conductive layer 20 including the electrolytic solution layer 18 and the catalyst layer is arranged in this order. Note that the transparent conductive layer 17 is not limited to FTO, and an appropriate material such as ITO can be used.

本実施の形態の第三の例に係る色素増感太陽電池セル10bによれば、第一の例に係る色素増感太陽電池セル10と同様の効果を得ることができる。   According to the dye-sensitized solar cell 10b according to the third example of the present embodiment, the same effect as that of the dye-sensitized solar cell 10 according to the first example can be obtained.

つぎに、図4を参照して本実施の形態の第四の例に係る色素増感太陽電池セルについて説明する。図4は色素増感太陽電池セルを長手方向(軸線側)からみた側面断面図を示す。   Next, a dye-sensitized solar cell according to the fourth example of the present embodiment will be described with reference to FIG. FIG. 4 shows a side cross-sectional view of the dye-sensitized solar cell as viewed from the longitudinal direction (axis side).

本実施の形態の第四の例に係る色素増感太陽電池セルは、第二の例の色素増感太陽電池セル10aにおける電気的に絶縁される2つの多孔質半導体部14c、14dを相互に絶縁するとともに、これに対応して設けられる多孔質の導電性金属層または透明導電層をそれぞれ相互に絶縁し、2またはそれ以上のセル(独立セル、分割セル)に構成したものである。
図4に示す本実施の形態の第四の例に係る色素増感太陽電池セル10cは、第二の例の色素増感太陽電池セル10aにおける種類の異なる色素がそれぞれ吸着される多孔質半導体部14c、14dを電気的に絶縁するとともに、さらに、多孔質の導電性金属層についても導電性金属層部16a、16bの電気的に絶縁される2つの部材として構成される。この点を除くと、第二の例の色素増感太陽電池セル10aと同様の構成である。
なお、色素増感太陽電池セル10cに代えて、本実施の形態の第三の例に係る色素増感太陽電池セル10bにおいて、種類の異なる色素がそれぞれ吸着される2つの多孔質半導体部を設けるとともに、上記のように2つのセルを構成してもよい。
The dye-sensitized solar cell according to the fourth example of the present embodiment includes two porous semiconductor parts 14c and 14d that are electrically insulated from each other in the dye-sensitized solar cell 10a of the second example. In addition to insulating, a porous conductive metal layer or a transparent conductive layer provided corresponding to this is insulated from each other to constitute two or more cells (independent cells, divided cells).
The dye-sensitized solar cell 10c according to the fourth example of the present embodiment shown in FIG. 4 is a porous semiconductor part on which different types of dyes are adsorbed in the dye-sensitized solar cell 10a of the second example. In addition to electrically insulating 14c and 14d, the porous conductive metal layer is also configured as two members that are electrically insulated from the conductive metal layer portions 16a and 16b. Except this point, the configuration is the same as that of the dye-sensitized solar cell 10a of the second example.
In place of the dye-sensitized solar cell 10c, in the dye-sensitized solar cell 10b according to the third example of the present embodiment, two porous semiconductor portions to which different types of dyes are adsorbed are provided. In addition, two cells may be configured as described above.

本実施の形態の第四の例に係る色素増感太陽電池セル10cによれば、第二の例の色素増感太陽電池セル10aと同様の効果を得ることができる。また、図4に示すように2つのセルを電気的に並列に接続することにより、高電流を得ることができ、一方、2つのセルを電気的に直列に接続することにより、高電圧を得ることができる。   According to the dye-sensitized solar cell 10c according to the fourth example of the present embodiment, the same effect as that of the dye-sensitized solar cell 10a of the second example can be obtained. Further, as shown in FIG. 4, a high current can be obtained by electrically connecting two cells in parallel, while a high voltage can be obtained by electrically connecting two cells in series. be able to.

つぎに、図9を参照して本実施の形態の第五の例に係る色素増感太陽電池セルについて説明する。図9は色素増感太陽電池セルを長手方向(軸線側)からみた側面断面図を示す。   Next, a dye-sensitized solar cell according to a fifth example of the present embodiment will be described with reference to FIG. FIG. 9 shows a side sectional view of the dye-sensitized solar cell as seen from the longitudinal direction (axis side).

図9に示す本実施の形態の第五の例に係る色素増感太陽電池セル10dは、基本的な構成は図1(A)の本実施の形態の第一の例に係る色素増感太陽電池セル10と同様である。このため、重複する説明は省略する。
色素増感太陽電池セル10dは、透明コア部材12の内部に光散乱材料13が充填される点が色素増感太陽電池セル10と異なる。なお、透明コア部材12の受光面とは反対側の端部は、例えばシリコーンゴム材料で形成される栓12dによって閉塞される。
光散乱材料13は、表面反射性を有する固体粒子を適当な光透過性媒体に分散したものであってもよく、また、表面反射性を有する光透過性固体粒子の集合体であってもよい。
表面反射性を有する固体粒子は、特に限定するものではなく、例えばポリスチレンビーズ、ガラスビーズ、セラミック粉等を用いることができる。固体粒子の粒径は、特に限定するものではなく、例えば数百nm程度とすることができる。固体粒子を分散する媒体は、特に限定するものではなく、例えば水、樹脂、ガラス等を用いることができる。固体粒子の分散濃度は、特に限定するものではなく、例えば0.1vol%程度とすることができる。
なお、本実施の形態の第一の例に係る色素増感太陽電池セル10において側面12aに形成する乱反射面は、色素増感太陽電池セル10dにおいては、併用してもよく、また、省略してもよい。また、本実施の形態の第一の例に係る色素増感太陽電池セル10に限らず、他の実施の形態例において透明コア部材12の内部に光散乱材料13を充填してもよい。
The dye-sensitized solar cell 10d according to the fifth example of the present embodiment shown in FIG. 9 has a basic configuration of the dye-sensitized solar according to the first example of the present embodiment shown in FIG. Similar to the battery cell 10. For this reason, the overlapping description is omitted.
The dye-sensitized solar cell 10 d is different from the dye-sensitized solar cell 10 in that the light scattering material 13 is filled in the transparent core member 12. In addition, the edge part on the opposite side to the light-receiving surface of the transparent core member 12 is obstruct | occluded by the stopper 12d formed, for example with a silicone rubber material.
The light scattering material 13 may be obtained by dispersing solid particles having surface reflectivity in an appropriate light transmissive medium, or may be an aggregate of light transmissive solid particles having surface reflectivity. .
The solid particles having surface reflectivity are not particularly limited, and for example, polystyrene beads, glass beads, ceramic powder and the like can be used. The particle size of the solid particles is not particularly limited, and can be, for example, about several hundred nm. The medium in which the solid particles are dispersed is not particularly limited, and for example, water, resin, glass or the like can be used. The dispersion concentration of the solid particles is not particularly limited, and can be, for example, about 0.1 vol%.
In addition, the irregular reflection surface formed on the side surface 12a in the dye-sensitized solar cell 10 according to the first example of the present embodiment may be used together or omitted in the dye-sensitized solar cell 10d. May be. In addition to the dye-sensitized solar cell 10 according to the first example of the present embodiment, the light scattering material 13 may be filled in the transparent core member 12 in other embodiments.

本実施の形態の第五の例に係る色素増感太陽電池セル10dによれば、第一の例の色素増感太陽電池セル10と同様の効果を得ることができるとともに、光散乱材料が受光面から入射した光をコア部材側面に向けて乱反射させることにより、受光面から入射される光を透明コア部材の側面を介して光電変換セル構成部材へ効率よく導くことができる。   According to the dye-sensitized solar cell 10d according to the fifth example of the present embodiment, the same effect as that of the dye-sensitized solar cell 10 of the first example can be obtained, and the light scattering material receives light. By irregularly reflecting the light incident from the surface toward the side surface of the core member, the light incident from the light receiving surface can be efficiently guided to the photoelectric conversion cell constituent member via the side surface of the transparent core member.

実施例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   The present invention will be further described with reference to examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例1)
実施例1の太陽電池製造方法について、図5(A)〜(H)を参照して説明する。なお、以下の各図において、紙面右部には部材を長手方向(軸線側)からみた側面断面図を示し、紙面左部には部材を長手方向左側からみた正面図を示す。
一端面102cが平坦な直径(図5(A)中、D1で示す。)が8mm、長さ(図5(A)中、L1で示す。)が30mmの円柱状ガラスをコア部材102として用いた(図5(A)参照)。
コア部材102の側面102aの全体および他端面(底面)102bをサンドペーパーで粗く研磨してすりガラス状面とした。コア部材102の一端面102cを保護部材(テラオカ社製粘着テープ 図示せず)で保護したうえで側面の長さ(図5(B)中、L2で示す。)が20mmの範囲の全周に、チタニアペースト(Dペースト ソラロニクス社製)を塗布し、500℃で30分焼成して、厚み10μmのチタニア層(多孔質半導体層)104を形成した(図5(B)参照)。
Example 1
The solar cell manufacturing method of Example 1 will be described with reference to FIGS. In each of the following drawings, a side sectional view of the member as viewed from the longitudinal direction (axis side) is shown on the right side of the page, and a front view of the member as viewed from the left side in the longitudinal direction is shown at the left side of the page.
A cylindrical glass having a flat end surface 102c (indicated by D1 in FIG. 5A) of 8 mm and a length (indicated by L1 in FIG. 5A) of 30 mm is used as the core member 102. (See FIG. 5A).
The entire side surface 102a and the other end surface (bottom surface) 102b of the core member 102 were roughly polished with sandpaper to form a ground glass surface. After protecting one end surface 102c of the core member 102 with a protective member (adhesive tape not shown by Terraoka Co., Ltd.), the length of the side surface (indicated by L2 in FIG. 5B) is around the entire circumference of 20 mm. A titania paste (D paste manufactured by Solaronics) was applied and baked at 500 ° C. for 30 minutes to form a 10 μm-thick titania layer (porous semiconductor layer) 104 (see FIG. 5B).

次いで、コア部材102の露出部分(チタニア層104が形成されていない部分)に厚みが50μmのマスク(図5(C)中、参照符号Mで示す。テラオカ社製粘着テープ)を施した後、チタニア層104の表面に酸化亜鉛のテトラポット型結晶(商品名パナテトラ 最大寸法の範囲2〜20μm:松下電工)をエレクトロスプレイ法により分散塗布し、厚みが最大60μmの塗布層106を形成した(図5(C)参照)。
この後、マスクMを剥離し、コア部材102の一端面102cに新たにマスクMを施し、チタニア層104の表面を含むコア部材102の全面に、スパッタにより、厚みが300nmのTi膜(Ti層)108を形成した(図5(D)参照)。
次いで、希塩酸でリンスして塗布層106を溶解して取り除き、ポーラスなTi層108を得るとともに、マスクMを剥離した(図5(E)参照)。
次いで、0.05wt%の色素溶液(N719、ソラロニクス社製 アセトニトリル:tブチルアルコール=1:1)にポーラスなTi層108が形成されたコア部材102を20時間浸漬してチタニア層104にN719色素を吸着した。
Subsequently, after applying a mask having a thickness of 50 μm (indicated by reference symbol M in FIG. 5C, an adhesive tape manufactured by Terraoka Co., Ltd.) to the exposed portion of the core member 102 (portion where the titania layer 104 is not formed) On the surface of the titania layer 104, zinc oxide tetrapot crystal (trade name: Panatetra maximum size range: 2-20 μm: Matsushita Electric Works) was dispersed and applied by an electrospray method to form a coating layer 106 having a maximum thickness of 60 μm (FIG. 5 (C)).
Thereafter, the mask M is peeled off, a new mask M is applied to the one end face 102c of the core member 102, and a Ti film (Ti layer having a thickness of 300 nm is formed on the entire surface of the core member 102 including the surface of the titania layer 104 by sputtering. ) 108 was formed (see FIG. 5D).
Next, the coating layer 106 was dissolved and removed by rinsing with dilute hydrochloric acid to obtain a porous Ti layer 108 and the mask M was peeled off (see FIG. 5E).
Next, the core member 102 on which the porous Ti layer 108 is formed is immersed in a 0.05 wt% dye solution (N719, acetonitrile: tbutyl alcohol = 1: 1 manufactured by Solaronics) for 20 hours, and then the N719 dye is added to the titania layer 104. Adsorbed.

次いで、細孔率71体積%のポーラスフィルム(アドバンテック PTFEフィルム、膜厚10μm)を25mmの長さ(図5(F)中、L3)巻き付けてTi層108を覆って、ポーラスフィルム層110を形成し、さらに、ポーラスフィルム層110両端が露出するようにして、片面にPtスパッタしたTi箔(Pt膜112bの厚み50nm、Ti箔112a厚み100μm)112を、Pt膜112bを内側にして、23mmの長さ(図5(F)中、L4)巻きつけた(図5(F)参照)。このとき、Cu粘着テープを貼って、参照符号Aで示す引き出し電極を形成しておく。なお、図5(F)および以下の一部の図において、正面図は部材の表示を一部省略している。
コア部材102の一端面102cにマスクM(図示せず。)を施して端面処理した状態で、ポーラスフィルム層110の右端部を一部露出させてエポキシ樹脂を塗布し、硬化させて樹脂封止層114を形成した。ついで、コア部材102の左端面のマスクMを剥離した後、ヨウ素 40mM, LiI 500mM, t-Butylpyridine 580mM のアセトニトリル溶液からなる電解液をポーラスフィルム層110の露出部分から(図5(G)中、矢印X2の方向)注入してポーラスフィルム層110に含浸させた。最後に、ポーラスフィルム層110の露出部分をエポキシ樹脂114で塞ぎ、実施例1の太陽電池100を得た(図5(G)および図5(H)参照)。
Next, a porous film (Advantech PTFE film, film thickness 10 μm) with a porosity of 71% by volume is wound with a length of 25 mm (L3 in FIG. 5 (F)) to cover the Ti layer 108 to form a porous film layer 110. Further, the Pt-sputtered Ti foil (Pt film 112b thickness 50 nm, Ti foil 112a thickness 100 μm) 112 is formed on one side so that both ends of the porous film layer 110 are exposed, and the Pt film 112b is the inner side. The length (L4 in FIG. 5F) was wound (see FIG. 5F). At this time, a Cu adhesive tape is pasted to form a lead electrode indicated by reference symbol A. In FIG. 5F and some of the following figures, the front view partially omits the display of members.
With the mask M (not shown) applied to the one end surface 102c of the core member 102, the right end portion of the porous film layer 110 is partially exposed to be coated with an epoxy resin, cured, and resin-sealed. Layer 114 was formed. Next, after removing the mask M on the left end face of the core member 102, an electrolytic solution composed of acetonitrile solution of iodine 40mM, LiI 500mM, t-Butylpyridine 580mM is exposed from the exposed portion of the porous film layer 110 (in FIG. 5G, Injection (in the direction of arrow X2) to impregnate the porous film layer 110. Finally, the exposed portion of the porous film layer 110 was closed with an epoxy resin 114, whereby the solar cell 100 of Example 1 was obtained (see FIGS. 5G and 5H).

ソーラーシミュレータを用いAM1.5、100mW/cm2の擬似太陽光をコア部材102の左側端面(露出端面)から照射して、作製した太陽電池の特性を測定、評価した。得られた光電変換効率について、以下の各実施例との比較のための基準値として効率指数1.0と表示する。   A solar simulator was used to irradiate AM1.5, 100 mW / cm 2 pseudo sunlight from the left end face (exposed end face) of the core member 102, and the characteristics of the produced solar cell were measured and evaluated. About the obtained photoelectric conversion efficiency, efficiency index 1.0 is displayed as a reference value for comparison with each following example.

(実施例2)
直径(D1)が実施例1と同じで長さ(L1)が実施例1よりも長い50mmの円柱状ガラスをコア部材(102)に用い、長さ(L2)が40mmの範囲にチタニア層(104)を形成し、25mmの長さ(L3)のポーラスフィルム層(110)を形成し、23mmの長さ(L4)のPtスパッタしたTi箔(112)を形成したほかは実施例1と同様の条件で実施例2の太陽電池を作製した。
実施例1と同様の方法で測定した太陽電池の効率指数は1.2であった。
(Example 2)
A cylindrical glass having a diameter (D1) equal to that of Example 1 and a length (L1) of 50 mm longer than that of Example 1 is used for the core member (102), and the titania layer (L2) is within a range of 40 mm ( 104), a 25 mm long (L3) porous film layer (110), and a 23 mm long (L4) Pt-sputtered Ti foil (112). The solar cell of Example 2 was produced under the conditions described above.
The efficiency index of the solar cell measured by the same method as in Example 1 was 1.2.

(実施例3)
図6に示すように、チタニア層(104)を長さ(L2)10mmごとに2つの領域(参照符号104a、104b)に分けてチタニア層104aにはN719色素を吸着し、チタニア層104bにはブラックダイ(ソラロニクス社製 アセトニトリル:tブチルアルコール=1:1使用)を吸着したほかは実施例1と同様の条件で実施例3の太陽電池を作製した。
実施例1と同様の方法で測定した太陽電池の効率指数は1.3であった。
Example 3
As shown in FIG. 6, the titania layer (104) is divided into two regions (reference numerals 104a and 104b) every 10 mm in length (L2), the N719 dye is adsorbed to the titania layer 104a, and the titania layer 104b A solar cell of Example 3 was fabricated under the same conditions as in Example 1 except that black die (acetalonic acetonitrile: tbutyl alcohol = 1: 1 used) was adsorbed.
The solar cell efficiency index measured by the same method as in Example 1 was 1.3.

(実施例4)
図7に示すように、チタニア層104に代えて、塩化錫とふっ化アンモニウムを原料にしてスプレーパイロリシスの手法で厚みが200nm のFTO層116を形成するとともに、合わせてFTO層116からの引き出し電極を形成し、ついで、チタニア層104を形成し、塗布層(106)およびTi層(108)を形成することなくチタニア層104のうえにポーラスフィルム層110を形成したほかは実施例1と同様の条件で実施例4の太陽電池100aを作製した。
実施例1と同様の方法で測定した太陽電池の効率指数は0.8であった。
Example 4
As shown in FIG. 7, instead of the titania layer 104, an FTO layer 116 having a thickness of 200 nm is formed by a spray pyrolysis method using tin chloride and ammonium fluoride as raw materials. An electrode was formed, then a titania layer 104 was formed, and the porous film layer 110 was formed on the titania layer 104 without forming the coating layer (106) and the Ti layer (108). The solar cell 100a of Example 4 was produced under the conditions described above.
The efficiency index of the solar cell measured by the same method as in Example 1 was 0.8.

(実施例5)
図8に示すように、直径(D1)が実施例1と同じで長さ(L1)が実施例1よりも長い60mmの円柱状ガラスをコア部材(102)に用い、実施例3においてチタニア層(104)を長さ(L2)20mmの2つの領域(参照符号104c、104d)に分けて10mmの間隔をあけて形成し、ビアホールの内周面に絶縁膜を被覆した後に導電性材料を埋め込む方法により、絶縁部118によってチタニア層およびポーラスなTi層を、それぞれ2つのチタニア層104c、104dおよび2つのTi層108a、108bに電気的に絶縁するとともに、Ti層108aに電気的に接続される、絶縁部118に覆われた引き出し電極120を形成し、チタニア層104cにはN719色素を吸着し、チタニア層104dにはブラックダイ(ソラロニクス社製 アセトニトリル:tブチルアルコール=1:1使用)を吸着したほかは実施例3と同様の条件で実施例5の太陽電池を作製した。
チタニア層104dを含むセルについては、図5(H)のようにTi層108bをアノード極として、カソード極であるPtスパッタしたTi箔112と電気的に接続し、チタニア層104cを含むセルについては、Ti層108bをアノード極として、引き出し電極120をPtスパッタしたTi箔112と電気的に接続することで2つのセルを直列接続した(図4参照)。

実施例1と同様の方法で測定した太陽電池の効率指数は1.4であった。
(Example 5)
As shown in FIG. 8, a cylindrical glass having a diameter (D1) equal to that in Example 1 and a length (L1) that is 60 mm longer than that in Example 1 is used as a core member (102). (104) is divided into two regions (reference numerals 104c and 104d) having a length (L2) of 20 mm, spaced by 10 mm, and the inner peripheral surface of the via hole is covered with an insulating film and then embedded with a conductive material. By the method, the titania layer and the porous Ti layer are electrically insulated from the two titania layers 104c and 104d and the two Ti layers 108a and 108b, respectively, by the insulating portion 118, and are electrically connected to the Ti layer 108a. The extraction electrode 120 covered with the insulating portion 118 is formed, the N719 dye is adsorbed on the titania layer 104c, and the black die (Solaronics Corporation) is adsorbed on the titania layer 104d. Acetonitrile: t-butyl alcohol = 1: 1 used) addition to adsorbed was prepared a solar cell of Example 5 under the same conditions as in Example 3.
As for the cell including the titania layer 104c, the cell including the titania layer 104c is electrically connected to the Pt-sputtered Ti foil 112 as the cathode electrode with the Ti layer 108b as the anode as shown in FIG. Two cells were connected in series by electrically connecting the Ti layer 108b to the anode electrode and the lead electrode 120 to the Pt-sputtered Ti foil 112 (see FIG. 4).

The efficiency index of the solar cell measured by the same method as in Example 1 was 1.4.

(実施例6)

一端面が平坦で他端面は空洞な直径が8mm、長さが30mmの円筒状(コップ状)ガラスをコア部材として用いた他は、実施例1と同様に太陽電池を作製し、最後に光散乱材料となるポリスチレンビーズを水に分散した分散液をコア部材の内部に満たし、他端面にシリコーンゴム製の栓をした(図9参照)。ポリスチレンビーズを水に分散した分散液は、直径258nmポリスチレン10vol%分散液(Seradyn社製Uniform Microparticles)を水で200倍に希釈して作製した。実施例1と同様の方法で測定した太陽電池の効率指数は1.25であった。
(Example 6)

A solar cell was fabricated in the same manner as in Example 1 except that one end face was flat and the other end face was a cylindrical (copper) glass having a hollow diameter of 8 mm and a length of 30 mm as a core member. A dispersion of polystyrene beads as a scattering material dispersed in water was filled in the core member, and a plug made of silicone rubber was plugged on the other end surface (see FIG. 9). A dispersion in which polystyrene beads were dispersed in water was prepared by diluting a 258 nm polystyrene 10 vol% dispersion (Uniform Microparticles manufactured by Seradyn) 200 times with water. The efficiency index of the solar cell measured by the same method as in Example 1 was 1.25.

10、10A、10a、10b、10c、10d、100、100a 色素増感太陽電池セル
12 透明コア部材
12A、12B 透明コア部材部
12a、102a 側面
12b、102b 他端面
12c、102c 一端面
12d 栓
13 光散乱材料
14 色素を含む多孔質半導体層
14a、14b、14c、14d 多孔質半導体部
16 多孔質の導電性金属層
16a、16b 導電性金属層部
17 透明導電層
18 電解液層
20 触媒層を備えた導電層
21 筺体
102 コア部材
104、104a、104b、104c、104d チタニア層
106 塗布層
108 Ti膜
110 ポーラスフィルム層
112 片面にPtスパッタしたTi箔
112a Ti箔
112b Pt膜
114 エポキシ樹脂
116 FTO層
118 Ti層
120 引き出し電極
10, 10A, 10a, 10b, 10c, 10d, 100, 100a Dye-sensitized solar cell 12 Transparent core member 12A, 12B Transparent core member portion 12a, 102a Side surface 12b, 102b Other end surface 12c, 102c One end surface 12d Plug 13 Light Scattering material 14 Porous semiconductor layer 14a, 14b, 14c, 14d containing a pigment Porous semiconductor part 16 Porous conductive metal layer 16a, 16b Conductive metal layer part 17 Transparent conductive layer 18 Electrolyte layer 20 Provided with catalyst layer Conductive layer 21 housing 102 core member 104, 104a, 104b, 104c, 104d titania layer 106 coating layer 108 Ti film 110 porous film layer 112 Ti foil sputtered Pt on one side 112a Ti foil 112b Pt film 114 epoxy resin 116 FTO layer 118 Ti layer 120 Lead electrode

Claims (6)

柱状形状の透明コア部材の一端面または錘状形状の透明コア部材の底面を受光面とし、該透明コア部材の側面に、色素を含む多孔質半導体層、多孔質の導電性金属層、電解液層および触媒層を備えた導電層がこの順に配列されてなる色素増感太陽電池セルであることを特徴とする光電変換素子。 One end surface of the columnar transparent core member or the bottom surface of the weight-shaped transparent core member is a light receiving surface, and on the side surface of the transparent core member, a porous semiconductor layer containing a dye, a porous conductive metal layer, an electrolyte solution A photoelectric conversion element, which is a dye-sensitized solar cell in which a conductive layer including a layer and a catalyst layer is arranged in this order. 前記柱状形状または錘状形状の透明コア部材が、該透明コア部材の軸線と直交する方向に積層して配列される2以上の光屈折率の異なる透明コア部材部で構成され、該透明コア部材の軸心側から光屈折率の小さい透明コア部材部および光屈折率の大きい透明コア部材部の順に設けられてなることを特徴とする請求項1記載の光電変換素子 The transparent core member having a columnar shape or a weight-like shape is composed of two or more transparent core member portions having different optical refractive indexes arranged in a direction perpendicular to the axis of the transparent core member. 2. The photoelectric conversion element according to claim 1, wherein a transparent core member portion having a small light refractive index and a transparent core member portion having a large light refractive index are provided in this order from the axial center side . 前記柱状形状または錘状形状の透明コア部材の側面に、該透明コア部材の内部に向けて乱反射させる透光性乱反射粗面が設けられてなることを特徴とする請求項1記載の光電変換素子 2. The photoelectric conversion element according to claim 1, wherein a light-transmitting irregular reflection rough surface for irregularly reflecting toward the inside of the transparent core member is provided on a side surface of the columnar or weight-shaped transparent core member. . 前記柱状形状または錘状形状の透明コア部材の内部に、光散乱材料が充填されてなることを特徴とする請求項1記載の光電変換素子 The photoelectric conversion element according to claim 1, wherein a light scattering material is filled in the columnar or weight-shaped transparent core member . 前記色素を含む多孔質半導体層が、該透明コア部材の軸線方向または軸線と直交する方向に配列される2またはそれ以上の多孔質半導体部で構成され、該2またはそれ以上の多孔質半導体部に種類の異なる色素がそれぞれ吸着されてなることを特徴とする請求項1記載の光電変換素子 The porous semiconductor layer containing the dye is composed of two or more porous semiconductor portions arranged in the axial direction of the transparent core member or in a direction perpendicular to the axial line, and the two or more porous semiconductor portions The photoelectric conversion element according to claim 1, wherein different types of dyes are adsorbed on the photoelectric conversion element . 前記2またはそれ以上の多孔質半導体部およびこれに対応して設けられる多孔質の導電性金属層または透明導電層をそれぞれ相互に絶縁し、2またはそれ以上のセルに構成してなることを特徴とする請求項5記載の光電変換素子 The two or more porous semiconductor portions and the porous conductive metal layer or the transparent conductive layer provided corresponding to the two or more porous semiconductor portions are insulated from each other, and are formed into two or more cells. The photoelectric conversion element according to claim 5 .
JP2011505855A 2009-03-26 2010-03-18 Photoelectric conversion element Expired - Fee Related JP5577519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505855A JP5577519B2 (en) 2009-03-26 2010-03-18 Photoelectric conversion element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009075504 2009-03-26
JP2009075504 2009-03-26
JP2009196630 2009-08-27
JP2009196630 2009-08-27
JP2011505855A JP5577519B2 (en) 2009-03-26 2010-03-18 Photoelectric conversion element
PCT/JP2010/001927 WO2010109821A1 (en) 2009-03-26 2010-03-18 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPWO2010109821A1 JPWO2010109821A1 (en) 2012-09-27
JP5577519B2 true JP5577519B2 (en) 2014-08-27

Family

ID=42780520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505855A Expired - Fee Related JP5577519B2 (en) 2009-03-26 2010-03-18 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5577519B2 (en)
WO (1) WO2010109821A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699828B2 (en) * 2011-07-05 2015-04-15 国立大学法人九州工業大学 Method for producing anode for dye-sensitized solar cell
JP5840170B2 (en) * 2013-05-10 2016-01-06 株式会社昭和 Dye-sensitized solar cell with high durability and high conversion efficiency
JP2015026503A (en) * 2013-07-26 2015-02-05 ウシオ電機株式会社 Dye-sensitized solar cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022194A (en) * 1998-07-06 2000-01-21 Nippon Signal Co Ltd:The Solar cell power supply
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2003168496A (en) * 2001-12-03 2003-06-13 Big Technos Kk Photoelectric cell
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2004039471A (en) * 2002-07-04 2004-02-05 Sumitomo Osaka Cement Co Ltd Pigment-sensitized solar cell
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same
JP2008153013A (en) * 2006-12-15 2008-07-03 Shinko Electric Ind Co Ltd Dye-sensitized solar cell module and its manufacturing method
JP2009009851A (en) * 2007-06-28 2009-01-15 Kyocera Corp Photoelectric conversion device
JP2009037861A (en) * 2007-08-01 2009-02-19 Sharp Corp Dye-sensitized solar cell module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022194A (en) * 1998-07-06 2000-01-21 Nippon Signal Co Ltd:The Solar cell power supply
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
JP2003168496A (en) * 2001-12-03 2003-06-13 Big Technos Kk Photoelectric cell
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2004039471A (en) * 2002-07-04 2004-02-05 Sumitomo Osaka Cement Co Ltd Pigment-sensitized solar cell
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same
JP2008153013A (en) * 2006-12-15 2008-07-03 Shinko Electric Ind Co Ltd Dye-sensitized solar cell module and its manufacturing method
JP2009009851A (en) * 2007-06-28 2009-01-15 Kyocera Corp Photoelectric conversion device
JP2009037861A (en) * 2007-08-01 2009-02-19 Sharp Corp Dye-sensitized solar cell module

Also Published As

Publication number Publication date
JPWO2010109821A1 (en) 2012-09-27
WO2010109821A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US7118936B2 (en) Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
KR100995073B1 (en) Module of dye-sensitized solar cell and fabrication method thereof
US20040251508A1 (en) Sensitizing dye solar cell
JP5388209B2 (en) Method for producing dye-sensitized solar cell
US20120240975A1 (en) Photoelectric conversion device, photoelectric conversion device array, fabrication method for photoelectric conversion device and electronic apparatus
JP4422236B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4606777B2 (en) Wet solar cell
JP4696452B2 (en) Photoelectric conversion element
JP5160053B2 (en) Solar cell and solar cell module
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2013143334A (en) Photoelectric conversion element, photoelectric conversion element module, photoelectric conversion module manufacturing method, electronic apparatus and building
JP5577519B2 (en) Photoelectric conversion element
JP2004311197A (en) Optical electrode and dye-sensitized solar cell using it
JP2012064485A (en) Dye-sensitized photoelectric conversion device
WO2006130920A1 (en) Scattering elongate photovoltaic cell
JP4635455B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2009289571A (en) Photoelectric conversion module
JP2008123894A (en) Photoelectric conversion element module
US20120118377A1 (en) Dye-sensitized solar cell
JP4710291B2 (en) Photoelectric conversion element container, photoelectric conversion unit, and photoelectric conversion module
US20080078438A1 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
EP2340565B1 (en) Optical enhancement for solar devices
JP2012054079A (en) Photoelectric conversion element
CN112509815B (en) Double-sided light-receiving type dye-sensitized solar cell

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20110620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5577519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees