JP2000022194A - Solar cell power supply - Google Patents

Solar cell power supply

Info

Publication number
JP2000022194A
JP2000022194A JP10190442A JP19044298A JP2000022194A JP 2000022194 A JP2000022194 A JP 2000022194A JP 10190442 A JP10190442 A JP 10190442A JP 19044298 A JP19044298 A JP 19044298A JP 2000022194 A JP2000022194 A JP 2000022194A
Authority
JP
Japan
Prior art keywords
light
solar cell
power supply
incident
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10190442A
Other languages
Japanese (ja)
Inventor
Masaki Okada
正樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP10190442A priority Critical patent/JP2000022194A/en
Publication of JP2000022194A publication Critical patent/JP2000022194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a small solar cell power supply in which high light receiving efficiency can be realized through simple arrangement. SOLUTION: The power supply comprises a plurality of solar cell units 11, 12,... arranged continuously wherein each solar cell unit 11, 12,... comprises a planar solar cell 10, a light guide path 20 arranged on the light receiving face of the solar cell 10, and a light incident part 30 provided at the light incident end of the light guide path 20. The light guide path 20 comprises a resin layer mixed with a reflective substance, and a light reflecting face formed on each face except the face being bonded to the light receiving face and the face abutting on the light incident part 30. The light incident part 30 has a semicylindrical light collecting face and solar light incident from the outside of the light collecting face is delivered through a focal point located in the light collecting face into the resin layer of the light guide path 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池を用いた
電源装置の構造に関し、特に、受光効率が高く小型の太
陽電池電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a power supply device using a solar cell, and more particularly, to a small power supply device having high light receiving efficiency.

【0002】[0002]

【従来の技術】従来の太陽電池電源装置では、受光効率
を向上させるために、例えば、太陽光の入射方向に対し
て太陽電池の受光面がなるべく垂直となるようにした
り、また、受光面での太陽光の反射を極力抑えるように
されてきた。さらに、例えば特開昭53−33592号
公報等に記載された太陽電池では、受光面上に透明物質
からなるモールド体を配置し、このモールド体内に畜光
体や蛍光体等の微粒子を点在混入させ、光の乱反射及び
残光現象により受光効率の向上が図られてきた。
2. Description of the Related Art In a conventional solar cell power supply device, in order to improve the light receiving efficiency, for example, the light receiving surface of the solar cell is made as perpendicular as possible to the incident direction of sunlight. The reflection of sunlight has been minimized. Furthermore, in a solar cell described in, for example, JP-A-53-33592, a molded body made of a transparent substance is arranged on a light receiving surface, and fine particles such as a phosphor and a phosphor are scattered and mixed in the molded body. The light receiving efficiency has been improved by the irregular reflection of light and the afterglow phenomenon.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
太陽電池電源装置では、太陽電池の受光面が太陽光に対
してほぼ垂直となるようにされるため、受光面を広くす
る程、太陽電池電源装置が大型なものとなり設置場所等
に制約が生じてしまうという欠点がある。また、受光面
を太陽光に常時直角に向けるためには、例えば、時間を
変数として太陽電池そのものを移動させて受光面の角度
を変更させる機構などを設ける必要が生じるので、装置
構成が複雑になってしまう。
However, in the conventional solar cell power supply device, the light receiving surface of the solar cell is made substantially perpendicular to the sunlight. There is a drawback that the device is large and the installation place is restricted. In addition, in order to always direct the light receiving surface at a right angle to sunlight, for example, it is necessary to provide a mechanism for moving the solar cell itself by using time as a variable to change the angle of the light receiving surface, which complicates the device configuration. turn into.

【0004】さらに、畜光体や蛍光体等を混入したモー
ルド体を配置した場合には、入射した太陽光が混入物質
に当たって乱反射したり残光が得られるようになるた
め、太陽電池への入射光が途絶えたときでも一定時間の
間はエネルギー変換ができることから、直ちに電気出力
が無くなることは防止できる。しかし、受光効率の向上
という面では、例えば混入物質に当たって乱反射した光
の一部は、受光面に照射されることなく外部に放射され
てしまう場合もあるため、上記のように樹脂層を受光面
上に単に設けただけでは、太陽電池の受光効率を飛躍的
に向上させることは難しいという問題がある。
Further, when a mold body containing a phosphor or a phosphor is arranged, incident sunlight impinges on the contaminant to cause irregular reflection or afterglow. Since the energy conversion can be performed for a certain period of time even when the power supply stops, it is possible to prevent the electrical output from immediately losing. However, in terms of improving the light receiving efficiency, for example, some of the light irregularly reflected upon the contaminant may be emitted to the outside without being irradiated on the light receiving surface. There is a problem that it is difficult to dramatically improve the light receiving efficiency of the solar cell simply by providing the light emitting element on the solar cell.

【0005】本発明は上記の問題点に着目してなされた
もので、簡略な構成により高い受光効率を実現できる小
型の太陽電池電源装置を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a small-sized solar battery power supply device capable of realizing high light receiving efficiency with a simple configuration.

【0006】[0006]

【課題を解決するための手段】このため本発明の太陽電
池電源装置は、受光面に照射された光エネルギーを電気
エネルギーに変換する少なくとも1つの太陽電池と、該
太陽電池の受光面上に、光を反射させる反射物質を内部
に点在させた透明な光誘導層を形成し、前記光誘導層の
前記受光面に対向する平面に、光を反射させる反射面を
形成した光誘導手段と、任意の方向から照射される太陽
光を集光して前記光誘導層の一側面から入射させる光入
射手段と、を備えて構成される。
For this purpose, a solar cell power supply of the present invention comprises at least one solar cell for converting light energy applied to a light receiving surface into electric energy, and on the light receiving surface of the solar cell, A light-guiding means in which a transparent light-guiding layer in which a reflective material that reflects light is scattered is formed, and a reflecting surface that reflects light is formed on a plane facing the light-receiving surface of the light-guiding layer, Light incident means for condensing sunlight irradiated from an arbitrary direction and entering the light from one side surface of the light guiding layer.

【0007】かかる構成によれば、地球の自転による太
陽の移動に伴って任意の方向から太陽電池電源装置に到
来した太陽光は、光入射手段で集光されて光誘導手段の
光誘導層の一側面に送られる。光誘導層内に入射された
太陽光は、光誘導層内に点在する反射物質に当たって乱
反射されたり、太陽電池の受光面に対向する平面に形成
された反射面で反射されたりしながら、太陽電池の受光
面にほぼ一様に照射され、その太陽電池において光エネ
ルギーから電気エネルギーへの変換が行われるようにな
る。
[0007] According to this configuration, sunlight arriving at the solar cell power supply from an arbitrary direction due to the movement of the sun due to the rotation of the earth is condensed by the light incident means and is condensed by the light guiding layer of the light guiding means. Sent to one side. The sunlight that has entered the light guiding layer scatters light when it hits reflective substances scattered in the light guiding layer, or is reflected by a reflecting surface formed on a flat surface facing the light receiving surface of the solar cell. The light is irradiated almost uniformly on the light receiving surface of the battery, so that the solar cell converts light energy into electric energy.

【0008】また、前記光入射手段の具体的な構成とし
ては、半円筒形状の集光面がその円周面を外側に突出さ
せて前記光誘導層の一側面に配置され、前記集光面の外
方から照射された太陽光が前記集光面の内方に位置する
焦点に集光されて前記光誘導層内に入射されるようにし
てもよい。このように半円筒形状の集光面を光誘導層の
一側面に設けることで、様々な方向から照射される太陽
光を比較的小さな面積の集光面により効果的に集光して
光誘導層内に入射させることができるようになる。
As a specific configuration of the light incidence means, a semi-cylindrical light-collecting surface is disposed on one side of the light-guiding layer with its circumferential surface protruding outward, and May be collected at a focal point located inside the light-collecting surface and incident on the light-guiding layer. By providing the semi-cylindrical condensing surface on one side of the light guiding layer in this way, sunlight irradiated from various directions can be effectively condensed by the condensing surface with a relatively small area to guide light. It can be made to enter the layer.

【0009】さらに、前記光誘導手段は、前記光入射手
段からの光が入射される前記光誘導層の一側面を除く他
の側面にも、前記反射面を形成するのが好ましい。光誘
導層について、太陽電池の受光面に接する平面及び太陽
光が入射される一側面を除いた、すべての面に反射面を
形成することによって、光誘導層に入射された太陽光が
光誘導層内に閉じ込められて、太陽電池の受光面に確実
に照射されるようになる。
Further, it is preferable that the light guiding means also form the reflection surface on another side surface except one side surface of the light guiding layer on which the light from the light incident means is incident. With respect to the light-guiding layer, reflecting light is formed on all surfaces except for the plane in contact with the light-receiving surface of the solar cell and one side on which sunlight enters, so that the sunlight incident on the light-guiding layer can be light-guided. It is confined in the layer and the light receiving surface of the solar cell is reliably irradiated.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本実施形態に係る太陽電池
電源装置の外観を示す斜視図である。図1において、本
装置は、複数の太陽電池ユニット11,12,・・・ が連設さ
れて構成される。各太陽電池ユニット11,12,・・・ は、
例えば図2に示すように、平板状の太陽電池10と、該
太陽電池10の受光面(図で左側面)上に設けられた光
誘導手段としての光誘導路20と、該光誘導路20の光
入射端(図で上端部)に設けられた光入射手段としての
光入射部30と、をそれぞれ備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view illustrating an appearance of a solar cell power supply device according to the present embodiment. In Figure 1, the apparatus includes a plurality of solar cell units 1 1, 1 2, and ... is continuously provided. Each of the solar cell units 1 1 , 1 2 ,.
For example, as shown in FIG. 2, a flat solar cell 10, a light guiding path 20 as light guiding means provided on a light receiving surface (left side in the figure) of the solar cell 10, And a light incident portion 30 as light incident means provided at the light incident end (upper end in the figure).

【0011】太陽電池10は、従来の太陽電池電源装置
でも用いられてきた、例えば、シリコン太陽電池やアモ
ルファスシリコン太陽電池などが使用され、光誘導路2
0側に位置する一側面が受光面となる。また、この太陽
電池10は、図示しないが発生した電圧を取り出す正負
の電極を有し、それぞれの太陽電池10の各電極間が直
列または並列に接続されている。
As the solar cell 10, for example, a silicon solar cell or an amorphous silicon solar cell, which has been used in a conventional solar cell power supply, is used.
One side surface located on the 0 side is a light receiving surface. The solar cell 10 has positive and negative electrodes (not shown) for extracting a generated voltage, and the electrodes of each solar cell 10 are connected in series or in parallel.

【0012】光誘導路20は、太陽電池10の受光面上
に形成された樹脂層21と、受光面との接合面及び光入
射部30に接する面を除く樹脂層21の各面に形成され
た光反射面22とから構成される。樹脂層21は、透明
な樹脂内に光を反射し易い物質(反射物質)が一様に混
入されたものである。反射物質としては、例えば銀やア
ルミニウムの微粒子などが用いられる。樹脂層21の厚
さは、後述する半円筒形をした光入射部30の半円直径
と略等しくなるようにする。光反射面22は、樹脂層2
1の該当する面に、例えば銀コーティングを施すことに
よって鏡面を形成したものである。なお、光反射面22
を形成する樹脂層21の各面を波形に成形しておき、そ
の上に銀コーティングを施すようにすれば、光反射面2
2に入射する光を様々な方向に反射させることも可能で
ある。
The light guide path 20 is formed on each surface of the resin layer 21 except for a resin layer 21 formed on the light receiving surface of the solar cell 10 and a surface that is in contact with the light receiving surface and the light incident portion 30. And a light reflecting surface 22. The resin layer 21 is a material in which a substance that easily reflects light (reflective substance) is uniformly mixed in a transparent resin. As the reflective material, for example, fine particles of silver or aluminum are used. The thickness of the resin layer 21 is set to be substantially equal to the semicircular diameter of a semi-cylindrical light incident portion 30 described later. The light reflecting surface 22 is formed of the resin layer 2
The mirror surface is formed by applying, for example, silver coating to the corresponding surface of No. 1. The light reflection surface 22
If the respective surfaces of the resin layer 21 forming the light reflecting surface 2 are formed in a corrugated shape and a silver coating is applied thereon,
2 can be reflected in various directions.

【0013】光入射部30は、半円筒形の集光面を有
し、この集光面の外方から入射された太陽光が、集光面
の内方に位置する焦点を経由して光誘導路20の樹脂層
21内に送られる。上記のような構成の太陽電池電源装
置は、例えば住宅用の発電装置等として屋外に固定して
使用されるような場合、地球の自転による太陽の移動が
集光面の円周に沿うように、即ち、半円筒形の光入射部
30の中心軸方向(図2で紙面垂直方向)が南北の方位
に略一致するように配置される。
The light incident portion 30 has a semi-cylindrical light-collecting surface, and sunlight incident from outside the light-collecting surface passes through a focal point located inside the light-collecting surface. It is sent into the resin layer 21 of the guideway 20. The solar cell power supply having the above-described configuration is, for example, when used fixedly outdoors as a power generator for a house or the like, so that the movement of the sun due to the rotation of the earth follows the circumference of the light-collecting surface. That is, the semi-cylindrical light incident portion 30 is disposed such that the central axis direction (the direction perpendicular to the paper surface in FIG. 2) substantially matches the north-south direction.

【0014】次に、本実施形態の作用について説明す
る。太陽電池電源装置上方の任意の方向から照射された
太陽光は、太陽電池ユニット11,12,・・・ の各光入射部
30にそれぞれ入射される。各光入射部30では、入射
光が半円筒形の集光面を通過することで集光され、集光
面内方の焦点を通過して光誘導路20の樹脂層21内部
に送られる。樹脂層21内に入射した太陽光は、反射物
質に当たって乱反射を繰り返すとともに、光反射面22
で反射されながら太陽電池10の受光面に照射される。
Next, the operation of the present embodiment will be described. The sunlight emitted from an arbitrary direction above the solar cell power supply device is incident on each of the light incident portions 30 of the solar cell units 1 1 , 1 2 ,. In each of the light incident portions 30, the incident light is condensed by passing through a semi-cylindrical condensing surface, passes through a focus inside the condensing surface, and is sent into the resin layer 21 of the light guide path 20. The sunlight that has entered the resin layer 21 strikes the reflective substance and repeats irregular reflection.
The light is reflected on the light receiving surface of the solar cell 10 while being reflected.

【0015】図2の矢印線で示した入射光の光路は、反
射物質で乱反射されることなく樹脂層21内を直進して
太陽電池10の受光面に到達するような場合を想定した
ものである。また、太陽電池10に到達した光の一部が
受光面で反射され、その反射光が樹脂層21内を直進
し、光反射面22で反射される様子も示してある。実際
には、図示した光路上に位置する反射物質により入射光
が乱反射されるため、上記の光路を進む入射光のエネル
ギーは、光誘導路20の奥(図2で下方)に行く程減少
する。反射物質により乱反射された光は、さらに乱反射
を繰り返したり光反射面22で反射されたりして、太陽
電池10の受光面に照射されるようになる。このため、
光誘導路20の奥の方に位置する受光面に到達する光
は、上記図示した光路以外の他の経路を通った光が多く
なり、結果として、光入射部30で集光された入射光
が、太陽電池10の受光面にほぼ一様に照射されるよう
になる。
The optical path of the incident light shown by the arrow line in FIG. 2 is for the case where the light travels straight through the resin layer 21 and reaches the light receiving surface of the solar cell 10 without being irregularly reflected by the reflective material. is there. Also, a state is shown in which a part of the light that has reached the solar cell 10 is reflected on the light receiving surface, the reflected light travels straight in the resin layer 21 and is reflected on the light reflecting surface 22. Actually, since the incident light is irregularly reflected by the reflecting material located on the illustrated optical path, the energy of the incident light traveling on the above optical path decreases as it goes deeper into the light guide path 20 (downward in FIG. 2). . The light irregularly reflected by the reflective material is further repeatedly irregularly reflected or reflected by the light reflecting surface 22 to be applied to the light receiving surface of the solar cell 10. For this reason,
As for the light reaching the light receiving surface located at the back of the light guide path 20, a large amount of light has passed through paths other than the above-described optical path, and as a result, the incident light condensed by the light incident section 30 Is almost uniformly irradiated on the light receiving surface of the solar cell 10.

【0016】このようにして、各太陽電池ユニット11,
2,・・・ に入射した太陽光が、それぞれの光入射部30
及び光誘導路20を介して太陽電池10の受光面に照射
されると、各太陽電池10で光エネルギーから電気エネ
ルギー(電圧)への変換が行われ、その電気エネルギー
が各々の電極から取り出されるようになる。上述したよ
うに本実施形態の太陽電池電源装置によれば、任意の方
向から照射される太陽光を光入射部30で集光して樹脂
層21の一側面に送り、樹脂層21内に入射された太陽
光を反射物質や反射面で反射させながら太陽電池の受光
面にほぼ一様に照射させるようにしたことで、従来のよ
うに太陽光の入射方向に対して太陽電池の受光面を垂直
に向けておかなくても、各方向からの太陽光を小さな面
積の光入射部30で効果的に光誘導路20に導き太陽電
池10の受光面に照射させることができるため、太陽光
の受光面積(光入射部30の面積)に対するエネルギー
変換効率(受光効率)を著しく向上させることができ、
かつ、小型の太陽電池電源装置を提供することができ
る。この結果、太陽電池電源装置の生産性が向上すると
ともに、装置の設置場所の確保や取り付け作業が容易と
なって工事費も安くできる。また、樹脂層21の受光面
に対向する平面及び光入射部30に面しない側面を反射
面としたことで、入射された太陽光が樹脂層21内に確
実に閉じ込められるようになるため、受光効率をより高
くすることが可能である。
Thus, each solar cell unit 1 1 ,
The sunlight incident on 12 ,...
When the light is irradiated on the light receiving surface of the solar cell 10 via the light guide path 20, the light energy is converted into electric energy (voltage) in each solar cell 10, and the electric energy is extracted from each electrode. Become like As described above, according to the solar cell power supply device of the present embodiment, sunlight emitted from an arbitrary direction is condensed by the light incident portion 30 and sent to one side surface of the resin layer 21 to be incident on the resin layer 21. The reflected light is reflected by a reflective substance or surface to irradiate the light-receiving surface of the solar cell almost uniformly. Even if the light is not directed vertically, the sunlight from each direction can be effectively guided to the light guide path 20 by the light incident portion 30 having a small area and irradiated on the light receiving surface of the solar cell 10. Energy conversion efficiency (light receiving efficiency) with respect to the light receiving area (the area of the light incident portion 30) can be significantly improved,
In addition, a small solar cell power supply can be provided. As a result, the productivity of the solar cell power supply device is improved, and the installation place of the device and the installation work are easy, and the construction cost can be reduced. In addition, since the flat surface facing the light receiving surface of the resin layer 21 and the side surface not facing the light incident portion 30 are formed as reflection surfaces, incident sunlight can be reliably confined in the resin layer 21. Higher efficiency can be achieved.

【0017】なお、上述した実施形態では、光誘導路2
0の樹脂層21内に光を反射する物質を混入する場合に
ついて説明したが、本発明はこれに限らず、例えば従来
の太陽電池と同様に、畜光体や蛍光体等を樹脂層内に混
入してもよい。畜光体や蛍光体等を混入すれば、入射光
が途絶えたときにでも一定時間の間は電気出力が継続さ
れるようになる。また、透明な樹脂を用いて光誘導層を
形成するようにしたが、光誘導層は樹脂以外にも、例え
ば透明なガラス等を用いても構わない。さらに、光入射
部30に半円筒形の集光面を用いるようにしたが、本発
明の光入射手段の構成はこれに限らず、任意の方向から
到来する太陽光を集光して光誘導層の一側面に入射させ
ることが可能な集光レンズなどの公知のデバイスを用い
る応用も可能である。加えて、複数の太陽電池ユニット
が連設される場合について説明したが、太陽電池電源装
置を1つの太陽電池ユニットで構成することも勿論可能
である。
In the above-described embodiment, the light guide path 2
The case where a substance that reflects light is mixed into the resin layer 21 of the first embodiment has been described. However, the present invention is not limited to this. For example, as in the case of a conventional solar cell, a phosphor or a phosphor is mixed into the resin layer. May be. If a light emitter, a fluorescent material, or the like is mixed, the electric output is continued for a certain period of time even when the incident light is cut off. Although the light guide layer is formed using a transparent resin, the light guide layer may be formed of, for example, a transparent glass or the like in addition to the resin. Further, the semi-cylindrical condensing surface is used for the light incident part 30, but the configuration of the light incident means of the present invention is not limited to this, An application using a known device such as a condenser lens that can be incident on one side of the layer is also possible. In addition, although the case where a plurality of solar cell units are connected in series has been described, it is of course possible to configure the solar cell power supply device with one solar cell unit.

【0018】[0018]

【発明の効果】以上説明したように、本発明の請求項1
または2に記載の太陽電池電源装置は、任意の方向から
照射される太陽光を光入射手段で集光して光誘導層の一
側面に送り、光誘導層内で反射させながら太陽電池の受
光面に照射させるようにしたことで、従来のように太陽
光の照射方向に受光面を垂直に向けておく必要がなくな
り、面積の小さな光入射手段で取り込んだ太陽光が光誘
導手段を介して太陽電池の受光面に効率的に照射される
ため、太陽電池電源装置の受光効率の向上及び小型化を
図ることができる。従って、本装置の生産性が向上し、
設置場所の確保や取り付け作業も容易となって工事費も
安くできる。
As described above, according to the first aspect of the present invention,
Or the solar cell power supply device according to 2, wherein sunlight irradiated from an arbitrary direction is condensed by light incident means, sent to one side of the light guiding layer, and received by the solar cell while being reflected in the light guiding layer. By irradiating the light to the surface, it is no longer necessary to keep the light receiving surface perpendicular to the direction of sunlight irradiation as in the past, and the sunlight taken in by the small area light incidence means is passed through the light guiding means. Since the light is efficiently irradiated to the light receiving surface of the solar cell, the light receiving efficiency of the solar cell power supply device can be improved and the size can be reduced. Therefore, the productivity of this device is improved,
The installation site can be secured and the installation work can be easily performed, and the construction cost can be reduced.

【0019】また、請求項3に記載の発明では、光誘導
層について、太陽電池の受光面に対向する平面に加え
て、光入射手段からの光が入射される光誘導層の一側面
を除く他の側面にも反射面を形成したことによって、太
陽光が光誘導層内に確実に閉じ込められるようになるた
め、受光効率をより高くすることが可能である。
According to the third aspect of the present invention, the light guide layer excludes one side of the light guide layer on which the light from the light incident means is incident, in addition to the plane facing the light receiving surface of the solar cell. By forming the reflection surface on the other side surface, sunlight can be reliably confined in the light guiding layer, so that the light receiving efficiency can be further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る太陽電池電源装置の外
観を示す斜視図である。
FIG. 1 is a perspective view illustrating an external appearance of a solar cell power supply device according to an embodiment of the present invention.

【図2】同上実施形態の太陽電池ユニットの断面図であ
る。
FIG. 2 is a cross-sectional view of the solar cell unit of the embodiment.

【符号の説明】[Explanation of symbols]

1,12,・・・ 太陽電池ユニット 10 太陽電池 20 光誘導路 21 樹脂層 22 光反射面 30 光入射部1 1 , 1 2 ,... Solar cell unit 10 Solar cell 20 Light guide path 21 Resin layer 22 Light reflecting surface 30 Light incidence part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】受光面に照射された光エネルギーを電気エ
ネルギーに変換する少なくとも1つの太陽電池と、 該太陽電池の受光面上に、光を反射させる反射物質を内
部に点在させた透明な光誘導層を形成し、前記光誘導層
の前記受光面に対向する平面に、光を反射させる反射面
を形成した光誘導手段と、 任意の方向から照射される太陽光を集光して前記光誘導
層の一側面から入射させる光入射手段と、 を備えて構成されたことを特徴とする太陽電池電源装
置。
At least one solar cell for converting light energy applied to a light receiving surface into electric energy, and a transparent material having a reflective material for reflecting light interspersed on the light receiving surface of the solar cell. Forming a light guiding layer, a light guiding means having a reflecting surface for reflecting light on a plane facing the light receiving surface of the light guiding layer, and condensing sunlight irradiated from any direction. 1. A solar cell power supply device, comprising: a light incidence unit that causes light to enter from one side surface of the light guiding layer.
【請求項2】前記光入射手段は、半円筒形状の集光面が
その円周面を外側に突出させて前記光誘導層の一側面に
配置され、前記集光面の外方から照射された太陽光が前
記集光面の内方に位置する焦点に集光されて前記光誘導
層内に入射されることを特徴とする請求項1記載の太陽
電池電源装置。
2. The light incident means is arranged on one side surface of the light guiding layer with a semi-cylindrical condensing surface projecting a circumferential surface thereof outward, and is irradiated from outside the condensing surface. 2. The solar cell power supply device according to claim 1, wherein the solar light is focused on a focus located inside the light-collecting surface and is incident on the light guiding layer. 3.
【請求項3】前記光誘導手段は、前記光入射手段からの
光が入射される前記光誘導層の一側面を除く他の側面に
も、前記反射面を形成したことを特徴とする請求項1ま
たは2記載の太陽電池電源装置。
3. The light guide unit according to claim 2, wherein the reflection surface is formed on another side surface except one side surface of the light guide layer on which the light from the light incident unit is incident. 3. The solar cell power supply device according to 1 or 2.
JP10190442A 1998-07-06 1998-07-06 Solar cell power supply Pending JP2000022194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10190442A JP2000022194A (en) 1998-07-06 1998-07-06 Solar cell power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10190442A JP2000022194A (en) 1998-07-06 1998-07-06 Solar cell power supply

Publications (1)

Publication Number Publication Date
JP2000022194A true JP2000022194A (en) 2000-01-21

Family

ID=16258212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10190442A Pending JP2000022194A (en) 1998-07-06 1998-07-06 Solar cell power supply

Country Status (1)

Country Link
JP (1) JP2000022194A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078156A (en) * 2001-09-06 2003-03-14 Sharp Corp Thin film solar battery and light converging/reflecting element
DE102006035965A1 (en) * 2006-08-02 2008-02-07 Kay Itzigehl Solar cell arrangement, has sandwich structures with inner solar cells and transparent mediums, where light is received from direction of surface normal of front side of outer solar cells and is guided into transparent mediums by mirror
DE202007002897U1 (en) * 2007-02-28 2008-07-10 SCHÜCO International KG Photovoltaic solar module
WO2010109821A1 (en) * 2009-03-26 2010-09-30 新日鐵化学株式会社 Photoelectric conversion element
KR101007649B1 (en) 2010-05-07 2011-01-20 정재헌 Light guider having multiple channels
KR101015806B1 (en) 2009-04-27 2011-02-22 정주완 Charging battery use side-light
JP2012507884A (en) * 2008-11-03 2012-03-29 コーニング インコーポレイテッド Thin film semiconductor photovoltaic device
JP2013229513A (en) * 2012-04-26 2013-11-07 Kyocera Corp Solar battery module system
KR101346087B1 (en) 2011-11-11 2013-12-31 (주)이이테크 Vertical photovoltaic power generator
KR101620406B1 (en) * 2009-06-29 2016-05-13 재단법인 포항산업과학연구원 High efficient solar module with solar cells arranged perpendicularly with parallel structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078156A (en) * 2001-09-06 2003-03-14 Sharp Corp Thin film solar battery and light converging/reflecting element
DE102006035965A1 (en) * 2006-08-02 2008-02-07 Kay Itzigehl Solar cell arrangement, has sandwich structures with inner solar cells and transparent mediums, where light is received from direction of surface normal of front side of outer solar cells and is guided into transparent mediums by mirror
DE202007002897U1 (en) * 2007-02-28 2008-07-10 SCHÜCO International KG Photovoltaic solar module
JP2012507884A (en) * 2008-11-03 2012-03-29 コーニング インコーポレイテッド Thin film semiconductor photovoltaic device
WO2010109821A1 (en) * 2009-03-26 2010-09-30 新日鐵化学株式会社 Photoelectric conversion element
JP5577519B2 (en) * 2009-03-26 2014-08-27 新日鉄住金化学株式会社 Photoelectric conversion element
KR101015806B1 (en) 2009-04-27 2011-02-22 정주완 Charging battery use side-light
KR101620406B1 (en) * 2009-06-29 2016-05-13 재단법인 포항산업과학연구원 High efficient solar module with solar cells arranged perpendicularly with parallel structure
KR101007649B1 (en) 2010-05-07 2011-01-20 정재헌 Light guider having multiple channels
KR101346087B1 (en) 2011-11-11 2013-12-31 (주)이이테크 Vertical photovoltaic power generator
JP2013229513A (en) * 2012-04-26 2013-11-07 Kyocera Corp Solar battery module system

Similar Documents

Publication Publication Date Title
US4162928A (en) Solar cell module
JP6416333B2 (en) Solar cell module
US4199376A (en) Luminescent solar collector
JP2008133716A (en) Photovoltaic roof tile system
JP2003336909A (en) Static type light condensing system
JP2011101013A (en) Linear concentrating solar collector
JP2000022194A (en) Solar cell power supply
KR20090005734A (en) Solar cell and method for manufacturing the same
JP3818651B2 (en) Solar power system
JPH10150215A (en) Power generating device utilizing sunlight
KR20190029176A (en) Solar photovoltaic power generator
JP2007073774A (en) Solar battery
JPS6477973A (en) Photovoltaic device
JP2003078156A (en) Thin film solar battery and light converging/reflecting element
JPH02213173A (en) Condensing-type solar cell
JP2012099681A (en) Light condensing structure and photovoltaics generator
JP2014022471A (en) Solar cell module and solar cell module assembly
JP2002280595A (en) Solar light condenser
CN114400265B (en) Photoelectric conversion device for solar photovoltaic power generation
JP2003086823A (en) Thin film solar battery
KR101499973B1 (en) Apparatus for solar power generation and device for concentrating light
JPH1127968A (en) Power generation system
JP2010141297A (en) Light guide, photoelectric converter, and flat surface photoelectric conversion device
RU2773716C1 (en) Concentrator photoelectric module with planar elements
JP3098835B2 (en) Solar cell coating