JP4422236B2 - Photoelectric conversion element and manufacturing method thereof - Google Patents

Photoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP4422236B2
JP4422236B2 JP15929099A JP15929099A JP4422236B2 JP 4422236 B2 JP4422236 B2 JP 4422236B2 JP 15929099 A JP15929099 A JP 15929099A JP 15929099 A JP15929099 A JP 15929099A JP 4422236 B2 JP4422236 B2 JP 4422236B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
metal oxide
light
photoelectric conversion
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15929099A
Other languages
Japanese (ja)
Other versions
JP2000348784A (en
Inventor
匡浩 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15929099A priority Critical patent/JP4422236B2/en
Publication of JP2000348784A publication Critical patent/JP2000348784A/en
Application granted granted Critical
Publication of JP4422236B2 publication Critical patent/JP4422236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物半導体電極と、その表面に吸着された色素と、酸化還元対を有する電解質と、対向電極とからなる光電変換素子に関し、特に、高い光電変換効率を得ることのできる光電変換素子に関するものである。
【0002】
【従来の技術】
太陽電池にはいくつかの種類があるが、実用化されているものはシリコン半導体の接合を利用したダイオード型のものがほとんどである。これらの太陽電池は現状では製造コストが高く、このことが普及を妨げる要因となっている。低コスト化の可能性から色素増感型湿式太陽電池が古くから研究されているが、最近、Graetzelらがシリコン太陽電池に匹敵する性能を有するものを発表(J. Am. Chem. Soc. 115(1993)6382、及び特許第2664194号掲載公報)したことにより、実用化への期待が高まっている。色素増感型湿式太陽電池の基本構造は、金属酸化物半導体電極と、その表面に吸着した色素と、酸化還元対を有する電解質と、対向電極とからなる。Graetzelらは酸化チタン(TiO2)等の金属酸化物半導体電極を多孔質化して表面積を大きくしたこと及び色素としてルテニウム錯体を単分子吸着させたことにより光電変換効率を著しく向上させた。
【0003】
その後、さらに特性を向上させるべくいくつかの提案がなされている。例えば、特開平9−237641号公報では金属酸化物半導体として酸化ニオブ(Nb25)を用いることにより、開放電圧が大きくなるとされている。また、特開平8−81222号公報ではTiO2電極膜の表面をエッチング処理することにより、格子欠陥や不純物が除去され、変換効率が向上するとされている。
【0004】
ところが、色素増感型湿式太陽電池の光電変換効率を向上させるためには、いかに照射される光を多く吸収するかが最も重要となる。つまり、従来の色素増感型湿式太陽電池においては、吸収する光エネルギー量が少ないため、変換される電気エネルギーも少ないものであった。
【0005】
Graetzelらは上記の文献において、対向電極を白金のスパッタ膜とすることにより光反射性を持たせ、照射された光の反射光を再度利用することにより光電変換効率を上げることができるとしている。
【0006】
しかしながら、このときの光反射性の白金のスパッタ膜は対向電極を兼ねているために金属酸化物半導体電極と近接している。よって反射光は一度色素吸着酸化チタン層を透過した光であり、その光は色素の吸収域ではない波長域のものが大部分であることから、反射光による光電変換効率の向上の効果は極めて限定的である。
【0007】
【発明が解決しようとする課題】
本発明は、このような従来技術の問題点を解決し、照射される光エネルギーの吸収効率を上げることにより、同じ強度の光照射下において光電変換効率を向上させることのできる光電変換素子を提供することをその課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明によれば、金属酸化物半導体電極と、その表面に吸着された色素と、酸化還元対を有する電解液と、対向電極とからなる光電変換素子において、光が入射する方向から見て金属酸化物半導体電極、対向電極、光反射層の順に光反射層を設け、且つ、前記金属酸化物半導体電極の面積が、前記光反射層の面積よりも小さいことを特徴とする光電変換素子が提供される。また、本発明によれば、上記構成において、光散乱層を更に有し、金属酸化物半導体電極、対向電極、光散乱層、光反射層の順に設けられていることを特徴とする光電変換素子が提供される。また、本発明によれば、上記構成において、前記対向電極の支持基板を更に有し、前記光反射層が前記支持基板上に設けられ、かつ対向電極側と反対側の面に設けられていることを特徴とする光電変換素子が提供される。
さらに、本発明によれば、金属酸化物半導体電極と、その表面に吸着された色素と、酸化還元対を有する電解液と、対向電極とからなる前記構成の光電変換素子の製造方法において、色素吸着した金属酸化物半導体電極を有する支持基板と、対向電極を有する支持基板とを該金属酸化物半導体電極と該対向電極を向き合わせて貼り合わせ、更に該対向電極を有する支持基板の該対向電極と反対側の面に光反射層を有する支持基板とを貼り合わせることを特徴とする光電変換素子の製造方法が提供される。
【0009】
【発明の実施の形態】
以下、本発明における光電変換素子の構成を、図を用いて説明する。なお、本発明の実施の形態はこれらに限定されるものではない。
【0010】
まず、図1に従来の色素増感型湿式太陽電池の代表的な構成例を示す。
1はガラス等の透明基板、2はITO、SnO2:F、ZnO:Al等からなる透明導電膜、3は多孔質金属酸化物半導体層、4はルテニウムビピリジル錯体,亜鉛ポルフィリン、銅フタロシアニン、クロロフィル、ローズベンガル、エオシン等の色素、5はI-/I3 -、Br-/Br3 -等の酸化還元対を有する電解液、6はPt等からなる対向電極である。光は図の上方から入射する。
【0011】
次に、本発明の実施形態の一例を図2に基づいて以下に説明する。
1はガラス等の透明基板、2はITO、SnO2:F、ZnO:Al等からなる透明導電膜、3は多孔質金属酸化物半導体層、4はルテニウムビピリジル錯体、亜鉛ポルフィリン、銅フタロシアニン、クロロフィル、ローズベンガル、エオシン等の色素、5はI-/I3 -、Br-/Br3 -等の酸化還元対を有する電解液、6はPt等からなる対向電極、7は光反射層である。光は図の上方から入射する。
【0012】
本発明における光反射層7は対向電極としての機能を持っていない。そのため金属酸化物半導体層3と光反射層7の間隔は任意に設定することができる。したがって本セル構成は従来のセルと比較して、従来の上方からの光に加えて、光反射層7で反射される光(金属酸化物半導体層3を透過しない外部からの可視光)が増感色素4において吸収されるため発生電流も従来に比べて増大し、光電変換効率も向上する。
さらに金属酸化物半導体層3の面積を光反射層7の面積よりも小さくすることで、より多くの外部からの光が光反射層で反射するので光電変換効率は向上する。この場合、金属酸化物半導体層3の面積は光反射層7の面積の20〜95%、好ましくは50〜90%とすることが望ましい。
【0013】
また、本発明の別の実施形態の一例を図3に基づいて以下に説明する。
1はガラス等の透明基板、2はITO、SnO2:F、ZnO:Al等からなる透明導電膜、3は多孔質金属酸化物半導体層、4はルテニウムビピリジル錯体、亜鉛ポルフィリン、銅フタロシアニン、クロロフィル、ローズベンガル、エオシン等の色素、5はI-/I3 -、Br-/Br3 -等の酸化還元対を有する電解液、6はPt等からなる対向電極、7は光反射層、8は光散乱層である。光は図の上方から入射する。
【0014】
本セル構成は従来のセルと比較して、従来の上方からの光に加えて、光反射層7で反射される光(金属酸化物半導体層3を透過しない外部からの可視光)が増感色素4において吸収される、さらに反射光が光散乱層8において散乱されるため増感色素4において吸収される光は図2の実施形態よりも多いため発生電流が従来に比べてより一層増大し、光電変換効率も向上する。
【0015】
また、本発明の別の実施形態の一例を図4に基づいて以下に説明する。
1はガラス等の透明基板、2はITO、SnO2:F、ZnO:Al等からなる透明導電膜、3は多孔質金属酸化物半導体層、4はルテニウムビピリジル錯体,亜鉛ポルフィリン、銅フタロシアニン、クロロフィル、ローズベンガル、エオシン等の色素、5はI-/I3 -、Br-/Br3 -等の酸化還元対を有する電解液、6はPt等からなる対向電極、7は光反射層である。光は図の上方から入射する。
【0016】
本実施形態では支持基板と対向電極を共用する構成となっている。このため図2に示す実施形態による効果に加え、構成が簡素化されるという利点がある。
【0017】
なお、光反射層については金属酸化物半導体層、対向電極、光反射層の順でも、対向電極、金属酸化物半導体層、光反射層の順でもどちらでも効果があるが、金属酸化物半導体層、対向電極、光反射層の順がより好ましい。これは光電変換には反射光よりも直接照射される光の方が多く寄与するため、直接照射される光はなるべく対向電極や電解液による光吸収による損失をなくす方が好ましいからである。
【0018】
次に、上記太陽電池の製造方法の一例を図3の構成について説明する。
まず、ガラス基板1上にスパッタリング法、CVD法、ゾルゲル法等により例えばSnO2:F膜2を片面に形成したものを2枚用意する。SnO2:F膜は集電体として機能するためシート抵抗が50Ω/□以下、好ましくは10Ω/□以下とするのが望ましい。
基板には、加熱焼成温度に耐えうるセラミックス、ガラス、耐熱性のプラスチックなどが適用できる。
特に半導体電極を作製する際には金属あるいはITOやSnO2等の透明電極が適用できる。
透明導電膜を形成した基板上には前述の多孔質金属酸化物半導体薄膜3を形成したのち、増感色素、例えばルテニウムビピリジル錯体を吸着させる。酸化チタン薄膜の膜厚は1〜20μm程度が好ましい。これは膜厚を厚くすることにより光の吸収量が増加するが、一方で金属酸化物半導体層の膜厚を必要以上に厚くしてもセルの内部抵抗が増大するなど、得られる電流に限りがあるからである。
【0019】
基板上に金属酸化物半導体層を形成する塗布液を塗布するためには、例えば、ディッピング、スピンコート、スプレー塗布等の公知の方法が利用できる。
塗布液には基板に対する成膜性を上げるために界面活性剤を加えることができる。また、エチレングリコール等のグリコール類や水溶性高分子などを添加して塗布液の粘性を制御することもできる。
【0020】
金属酸化物半導体層に色素を吸着させるには金属酸化物半導体電極を、水、アルコール、トルエン等の溶媒に該色素を溶かした溶液中に浸漬すればよい。色素としては可視光領域の波長の光を吸収して励起し、金属酸化物に電子を注入することができるルテニウムビピリジル錯体、亜鉛ポルフィリン、銅フタロシアニン、クロロフィル、ローズベンガル、エオシン等の色素が使用できる。また色素の分子中にカルボキシル基、ヒドロキシル基、スルホン基等の官能基を有すると、金属酸化物表面に該色素が化学的に固定されるため好ましい。代表的なものとして[ルテニウム(4,4’−ジカルボキシ−2,2’−ビピリジン)2(イソチオシアナト)2]で表されるルテニウム錯体がある。
【0021】
前記のSnO2:F膜を形成した別の基板上にはスパッタリング法、蒸着法、電気化学的方法等により例えばPt(微粒子)層6を形成する。その膜厚は光透過性の1〜50nm程度のものが好ましい。
また、光反射層7としては光を全反射するよう表面加工された任意材料からなる金属板等が使用できる。
【0022】
本発明においては、光散乱層8は、金属酸化物半導体層3を透過せずに光反射層7に入射する光が反射した際に金属酸化物半導体層3全体に到達するようにするために設けるもので、光反射層7上に形成することができ、この層は金属酸化物や高分子の微粒子などによって形成したり、ガラス表面を微細に粗面加工したものを使用することができる。光散乱層8の膜厚は1〜100μm程度が好ましい。
【0023】
上記のように形成された3枚の基板をスペーサーを介して重ね合わせた後、例えばI-/I3 -を酸化還元対を有する電解質溶液5を注入し、シール剤で封止する。電解質溶液としてはエチレンカーボネートとアセトニトリルの混合溶媒にヨウ素とテトラプロピルアンモニウムアイオダイドを加えたもの等が好適に使用できる。
このようにして形成されたセルには紫外線を吸収する部材として、例えばCeO2等を含む鉛ガラス(市販のL−40、L−42等のシャープカットフィルターを用いてもよい)を光の入射側に貼り合わせてもよい。
【0024】
【実施例】
本発明を以下の実施例により説明する。ただし、本発明はこれら実施例に限定されるものではない。
【0025】
〔実施例1〕(図2の素子構成)
2枚のガラス基板1のそれぞれの片面にゾルゲル法によりSnO2:F膜2をシート抵抗が10Ω/□となるように形成した。このうち基板1枚についてはSnO2:F膜2上にヘキサクロロ白金酸の電気分解により光透過性のPt膜を形成した。
また、アナターゼ型酸化チタン粉末(石原テクノ社製)3gに水10mlとアセチルアセトン0.2mlを加え、乳鉢で酸化チタン粉末の凝集を解くようにして混合し、塗布液を調製した。この塗布液を上記ガラス基板1上に塗布し(面積0.5cm2)、30分間自然乾燥の後、450℃で30分間加熱焼成し、膜厚約10μmの酸化チタン半導体電極を得た。
この多孔質酸化チタン半導体電極を[ルテニウム(4,4’−ジカルボキシ−2,2’−ビピリジン)2(イソチオシアナト)2]で表されるルテニウム錯体のエタノール溶液中に浸漬し、10分間還流してTiO2電極表面にルテニウム錯体を吸着させた。
これらの両基板をビーズ又はロッド状の絶縁性スペーサーを介して、約10μmの間隙を保って重ね合わせ、エチレンカーボネートとアセトニトリルの混合溶媒にヨウ素とテトラプロピルアンモニウムアイオダイドを加えた酸化還元電解質溶液を注入した後、エポキシ系接着剤でシールした。
さらにガラス基板上に真空蒸着法によりPt膜(面積1cm2)を膜厚100nmに堆積したものを2cmのスペーサーを介して重ね合わせ、エポキシ系接着剤でシールし、光電変換素子を作製した。この光電変換素子の疑似太陽光照射下(AM1.5、100mW/cm2)における光電変換効率は7.5%であった。
【0026】
〔実施例2〕(図3の素子構成)
2枚のガラス基板の片面にゾルゲル法によりSnO2:F膜2をシート抵抗が10Ω/□となるように形成した。このうち基板1枚についてはSnO2:F膜2上にヘキサクロロ白金酸の電気分解により光透過性のPt膜を形成した。
また、アナターゼ型酸化チタン粉末(石原テクノ社製)3gに水10mlとアセチルアセトン0.2mlを加え、乳鉢で酸化チタン粉末の凝集を解くようにして混合し、塗布液を調製した。この塗布液をもう1枚のガラス基板に塗布し(面積0.5cm2)、30分間自然乾燥の後、450℃で30分間加熱焼成し、膜厚約10μmの酸化チタン半導体電極を得た。
この多孔質酸化チタン半導体電極を[ルテニウム(4,4’−ジカルボキシ−2,2’−ビピリジン)2(イソチオシアナト)2]で表されるルテニウム錯体のエタノール溶液中に浸漬し、10分間還流してTiO2電極表面にルテニウム錯体を吸着させた。
これら2枚の基板をビーズまたはロッド状の絶縁性スペーサーを介して、約10μmの間隙を保って重ね合わせ、エチレンカーボネートとアセトニトリルの混合溶媒にヨウ素とテトラプロピルアンモニウムアイオダイドを加えた酸化還元電解質溶液を注入した後、エポキシ系接着剤でシールした。
さらにガラス基板上に真空蒸着法によりPt膜(面積1cm2)を膜厚100nmに堆積し、反対側の面は微細な粗面加工したものを2cmのスペーサーを介して重ね合わせ、エポキシ系接着剤でシールし、光電変換素子を作製した。
この光電変換素子の疑似太陽光照射下(AM1.5、100mW/cm2)における光電変換効率は7.7%であった。
【0027】
〔実施例3〕(図4の素子構成)
2枚のガラス基板のそれぞれの片面にゾルゲル法によりSnO2:F膜2をシート抵抗が10Ω/□となるように形成した。このうち基板1枚についてはSnO2:F膜2上にヘキサクロロ白金酸の電気分解により光透過性のPt膜を形成し、反対側の面は真空蒸着法によりPt膜(面積1cm2)を膜厚100nmに堆積した。
また、アナターゼ型酸化チタン粉末(石原テクノ社製)3gに水10mlとアセチルアセトン0.2mlを加え、乳鉢で酸化チタン粉末の凝集を解くようにして混合し、塗布液を調製した。この塗布液を上記ガラス基板1上に塗布し(面積0.5cm2)、30分間自然乾燥の後、450℃で30分間加熱焼成し、膜厚約10μmの酸化チタン半導体電極を得た。
この多孔質酸化チタン半導体電極を[ルテニウム(4,4’−ジカルボキシ−2,2’−ビピリジン)2(イソチオシアナト)2]で表されるルテニウム錯体のエタノール溶液中に浸漬し、10分間還流してTiO2電極表面にルテニウム錯体を吸着させた。
これらの両基板をビーズまたはロッド状の絶縁性スペーサーを介して、約10μmの間隙を保って重ね合わせ、エチレンカーボネートとアセトニトリルの混合溶媒にヨウ素とテトラプロピルアンモニウムアイオダイドを加えた酸化還元電解質溶液を注入した後、エポキシ系接着剤でシールし、光電変換素子を作製した。
この光電変換素子の疑似太陽光照射下(AM1.5、100mW/cm2)における光電変換効率は7.3%であった。
【0028】
〔比較例1〕(図1の素子構成)
2枚のガラス基板1のそれぞれの片面にゾルゲル法によりSnO2:F膜2をシート抵抗が10Ω/□となるように形成した。このうち基板1枚についてはSnO2:F膜2上にヘキサクロロ白金酸の電気分解により光透過性のPt膜を形成した。
また、アナターゼ型酸化チタン粉末(石原テクノ社製)3gに水10mlとアセチルアセトン0.2mlを加え、乳鉢で酸化チタン粉末の凝集を解くようにして混合し、塗布液を調製した。この塗布液をもう一方の上記ガラス基板上に塗布し(面積0.5cm2)、30分間自然乾燥の後、450℃で30分間加熱焼成し、膜厚約10μmの酸化チタン半導体電極を得た。
この多孔質酸化チタン半導体電極を[ルテニウム(4,4’−ジカルボキシ−2,2’−ビピリジン)2(イソチオシアナト)2]で表されるルテニウム錯体のエタノール溶液中に浸漬し、10分間還流してTiO2電極表面にルテニウム錯体を吸着させた。
これらの両基板をビーズまたはロッド状の絶縁性スペーサーを介して、約10μmの間隙を保って重ね合わせ、エチレンカーボネートとアセトニトリルの混合溶媒にヨウ素とテトラプロピルアンモニウムアイオダイドを加えた酸化還元電解質溶液を注入した後、エポキシ系接着剤でシールし、光電変換素子を作製した。
この光電変換素子の疑似太陽光照射下(AM1.5、100mW/cm2)における光電変換効率は6.9%であった。
【0029】
【発明の効果】
本発明によれば、光反射層を設けることにより、光の吸収量が増え、光電変換効率が向上する。
また、金属酸化物半導体層の面積が光反射層の面積よりも小さくすることにより、外部からの光を反射するので、光吸収量が増え、光電変換効率が向上する。
また、散乱層を設けるとことにより、光吸収効率が向上し、光電変換効率がより一層向上する。
また、光反射層と金属酸化物半導体層の間に対向電極が配置された構造とすることにより、反射光強度をより大きくすることができ、光電変換効率がさらに向上する。
さらに、対向電極と同一基板上に光反射層を設けることにより、製造及び材料の低コスト化が可能となる。
【図面の簡単な説明】
【図1】従来の光電変換素子の一例を模式的に示す断面図である。
【図2】本発明による光電変換素子の一例を模式的に示す断面図である。
【図3】本発明による光電変換素子の別の一例を模式的に示す断面図である。
【図4】本発明による光電変換素子の別の一例を模式的に示す断面図である。
【符号の説明】
1 透明基板
2 透明導電膜
3 金属酸化物半導体層
4 増感色素
5 酸化還元対を有する電解液
6 対向電極
7 光反射層
8 光散乱層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion element comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolyte having a redox couple, and a counter electrode, and in particular, a photoelectric conversion element capable of obtaining high photoelectric conversion efficiency. The present invention relates to a conversion element.
[0002]
[Prior art]
There are several types of solar cells, but most of them are diode type using silicon semiconductor junctions. These solar cells are currently expensive to manufacture, which is a factor that hinders their spread. Dye-sensitized wet solar cells have been studied for a long time because of the possibility of cost reduction, but recently Graetzel et al. Announced that they have performance comparable to silicon solar cells (J. Am. Chem. Soc. 115 (1993) 6382 and Japanese Patent No. 2664194), the expectation for practical use is increasing. The basic structure of the dye-sensitized wet solar cell includes a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolyte having a redox pair, and a counter electrode. Graetzel et al. Significantly improved photoelectric conversion efficiency by making a metal oxide semiconductor electrode such as titanium oxide (TiO 2 ) porous to increase the surface area and adsorbing a ruthenium complex as a dye on a single molecule basis.
[0003]
Since then, several proposals have been made to further improve the characteristics. For example, Japanese Patent Laid-Open No. 9-237641 discloses that the open circuit voltage is increased by using niobium oxide (Nb 2 O 5 ) as the metal oxide semiconductor. Japanese Patent Laid-Open No. 8-81222 discloses that lattice defects and impurities are removed by etching the surface of the TiO 2 electrode film, thereby improving the conversion efficiency.
[0004]
However, in order to improve the photoelectric conversion efficiency of the dye-sensitized wet solar cell, it is most important how to absorb a lot of irradiated light. That is, in the conventional dye-sensitized wet solar cell, since the amount of light energy to be absorbed is small, the converted electric energy is also small.
[0005]
In the above-mentioned document, Graetzel et al. Say that the counter electrode is made of a sputtered platinum film to give light reflectivity, and the reflected light of the irradiated light can be reused to increase the photoelectric conversion efficiency.
[0006]
However, the light-reflective platinum sputtering film at this time also serves as a counter electrode, and thus is close to the metal oxide semiconductor electrode. Therefore, the reflected light is once transmitted through the dye-adsorbed titanium oxide layer, and most of the light is in a wavelength range that is not the absorption range of the dye, so the effect of improving the photoelectric conversion efficiency by reflected light is extremely high. Limited.
[0007]
[Problems to be solved by the invention]
The present invention provides a photoelectric conversion element capable of improving the photoelectric conversion efficiency under the same intensity of light irradiation by solving the problems of the prior art and increasing the absorption efficiency of the irradiated light energy. The task is to do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, a photoelectric conversion element comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolytic solution having a redox pair, and a counter electrode is viewed from the direction in which light enters. And a metal oxide semiconductor electrode, a counter electrode, and a light reflecting layer are provided in this order , and the area of the metal oxide semiconductor electrode is smaller than the area of the light reflecting layer. An element is provided. According to the invention, in the above configuration, the photoelectric conversion further includes a light scattering layer, and the metal oxide semiconductor electrode, the counter electrode, the light scattering layer, and the light reflection layer are provided in this order. An element is provided. Further, according to the present invention, in the above configuration, further comprising a supporting substrate of the counter electrode, the light reflecting layer is provided on a surface of the formed on a supporting substrate, and a counter electrode side opposite The photoelectric conversion element characterized by this is provided.
Furthermore, according to the present invention, in the method for producing a photoelectric conversion element having the above-described structure, comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolytic solution having a redox pair, and a counter electrode, A support substrate having an adsorbed metal oxide semiconductor electrode and a support substrate having a counter electrode are bonded together so that the metal oxide semiconductor electrode and the counter electrode face each other, and the counter electrode of the support substrate having the counter electrode And a support substrate having a light reflecting layer on the surface opposite to the substrate . A method for producing a photoelectric conversion element is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the structure of the photoelectric conversion element in this invention is demonstrated using figures. The embodiments of the present invention are not limited to these.
[0010]
First, FIG. 1 shows a typical configuration example of a conventional dye-sensitized wet solar cell.
1 is a transparent substrate such as glass, 2 is a transparent conductive film made of ITO, SnO 2 : F, ZnO: Al, 3 is a porous metal oxide semiconductor layer, 4 is a ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll Dye such as Rose Bengal and Eosin, 5 is an electrolytic solution having a redox pair such as I / I 3 and Br / Br 3 , and 6 is a counter electrode made of Pt or the like. Light is incident from above.
[0011]
Next, an example of an embodiment of the present invention will be described below with reference to FIG.
1 is a transparent substrate such as glass, 2 is a transparent conductive film made of ITO, SnO 2 : F, ZnO: Al, 3 is a porous metal oxide semiconductor layer, 4 is a ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll , Rose bengal, eosin, and the like, 5 is an electrolytic solution having a redox pair such as I / I 3 , Br / Br 3 , 6 is a counter electrode made of Pt, and 7 is a light reflecting layer. . Light is incident from above.
[0012]
The light reflecting layer 7 in the present invention does not have a function as a counter electrode. Therefore, the interval between the metal oxide semiconductor layer 3 and the light reflecting layer 7 can be set arbitrarily. Therefore, in this cell configuration, in addition to the conventional light from above, the light reflected by the light reflecting layer 7 (visible light from the outside that does not pass through the metal oxide semiconductor layer 3) is increased. Since it is absorbed in the dye-sensitive dye 4, the generated current is increased as compared with the prior art, and the photoelectric conversion efficiency is improved.
Furthermore, by making the area of the metal oxide semiconductor layer 3 smaller than the area of the light reflecting layer 7, more external light is reflected by the light reflecting layer, so that the photoelectric conversion efficiency is improved. In this case, the area of the metal oxide semiconductor layer 3 is 20 to 95%, preferably 50 to 90% of the area of the light reflecting layer 7.
[0013]
An example of another embodiment of the present invention will be described below with reference to FIG.
1 is a transparent substrate such as glass, 2 is a transparent conductive film made of ITO, SnO 2 : F, ZnO: Al, 3 is a porous metal oxide semiconductor layer, 4 is a ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll Dye such as rose bengal and eosin, 5 is an electrolytic solution having a redox couple such as I / I 3 , Br / Br 3 , 6 is a counter electrode made of Pt, 7 is a light reflecting layer, 8 Is a light scattering layer. Light is incident from above.
[0014]
Compared with the conventional cell, this cell configuration sensitizes light reflected from the light reflecting layer 7 (visible light from the outside not transmitted through the metal oxide semiconductor layer 3) in addition to conventional light from above. Since the light absorbed by the dye 4 and the reflected light is scattered by the light scattering layer 8, the amount of light absorbed by the sensitizing dye 4 is larger than that of the embodiment of FIG. The photoelectric conversion efficiency is also improved.
[0015]
An example of another embodiment of the present invention will be described below with reference to FIG.
1 is a transparent substrate such as glass, 2 is a transparent conductive film made of ITO, SnO 2 : F, ZnO: Al, 3 is a porous metal oxide semiconductor layer, 4 is a ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll , Rose bengal, eosin, and the like, 5 is an electrolytic solution having a redox pair such as I / I 3 , Br / Br 3 , 6 is a counter electrode made of Pt, and 7 is a light reflecting layer. . Light is incident from above.
[0016]
In this embodiment, the support substrate and the counter electrode are shared. For this reason, in addition to the effect by embodiment shown in FIG. 2, there exists an advantage that a structure is simplified.
[0017]
The light reflecting layer is effective in the order of the metal oxide semiconductor layer, the counter electrode, and the light reflecting layer, or in the order of the counter electrode, the metal oxide semiconductor layer, and the light reflecting layer. The order of the counter electrode and the light reflecting layer is more preferable. This is because light directly irradiated rather than reflected light contributes more to photoelectric conversion, and therefore it is preferable to eliminate loss due to light absorption by the counter electrode and the electrolyte as much as possible.
[0018]
Next, an example of a method for manufacturing the solar cell will be described with respect to the configuration of FIG.
First, two sheets of, for example, an SnO 2 : F film 2 formed on one side by a sputtering method, a CVD method, a sol-gel method or the like are prepared on a glass substrate 1. Since the SnO 2 : F film functions as a current collector, the sheet resistance is 50 Ω / □ or less, preferably 10 Ω / □ or less.
For the substrate, ceramics, glass, heat-resistant plastic, etc. that can withstand the heating and firing temperature can be applied.
In particular, when producing a semiconductor electrode, a metal or a transparent electrode such as ITO or SnO 2 can be applied.
After the porous metal oxide semiconductor thin film 3 is formed on the substrate on which the transparent conductive film is formed, a sensitizing dye such as a ruthenium bipyridyl complex is adsorbed. The thickness of the titanium oxide thin film is preferably about 1 to 20 μm. This increases the amount of light absorbed by increasing the film thickness. On the other hand, if the film thickness of the metal oxide semiconductor layer is increased more than necessary, the internal resistance of the cell increases. Because there is.
[0019]
In order to apply the coating solution for forming the metal oxide semiconductor layer on the substrate, a known method such as dipping, spin coating, spray coating, or the like can be used.
A surfactant can be added to the coating solution in order to improve the film-forming property on the substrate. In addition, the viscosity of the coating solution can be controlled by adding glycols such as ethylene glycol or water-soluble polymers.
[0020]
In order to adsorb the dye to the metal oxide semiconductor layer, the metal oxide semiconductor electrode may be immersed in a solution in which the dye is dissolved in a solvent such as water, alcohol, or toluene. As the dye, dyes such as ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll, rose bengal, and eosin that can absorb and excite light in the visible light region and inject electrons into the metal oxide can be used. . In addition, it is preferable to have a functional group such as a carboxyl group, a hydroxyl group, or a sulfone group in the dye molecule because the dye is chemically fixed on the surface of the metal oxide. A typical example is a ruthenium complex represented by [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2 (isothiocyanato) 2 ].
[0021]
For example, a Pt (fine particle) layer 6 is formed on another substrate on which the SnO 2 : F film is formed by sputtering, vapor deposition, electrochemical method, or the like. The film thickness is preferably about 1 to 50 nm which is light transmissive.
As the light reflecting layer 7, a metal plate made of an arbitrary material whose surface is processed so as to totally reflect light can be used.
[0022]
In the present invention, the light scattering layer 8 is used to reach the entire metal oxide semiconductor layer 3 when light incident on the light reflection layer 7 without being transmitted through the metal oxide semiconductor layer 3 is reflected. It is provided and can be formed on the light reflecting layer 7, and this layer can be formed of a metal oxide or polymer fine particles, or a glass surface finely roughened. The thickness of the light scattering layer 8 is preferably about 1 to 100 μm.
[0023]
After the three substrates formed as described above are overlapped via a spacer, for example, an electrolyte solution 5 having a redox couple is injected into I− / I 3 and sealed with a sealant. As the electrolyte solution, a solution obtained by adding iodine and tetrapropylammonium iodide to a mixed solvent of ethylene carbonate and acetonitrile can be suitably used.
The cell formed in this manner is made of, for example, lead glass containing CeO 2 or the like (a commercially available sharp cut filter such as L-40 or L-42 may be used) as a member that absorbs ultraviolet light. You may stick together.
[0024]
【Example】
The invention is illustrated by the following examples. However, the present invention is not limited to these examples.
[0025]
[Example 1] (Element structure of FIG. 2)
An SnO 2 : F film 2 was formed on one side of each of the two glass substrates 1 by a sol-gel method so that the sheet resistance was 10Ω / □. Among these, for one substrate, a light-transmitting Pt film was formed on the SnO 2 : F film 2 by electrolysis of hexachloroplatinic acid.
Moreover, 10 ml of water and 0.2 ml of acetylacetone were added to 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.) and mixed so as to break up the aggregation of the titanium oxide powder in a mortar to prepare a coating solution. This coating solution was applied onto the glass substrate 1 (area 0.5 cm 2 ), naturally dried for 30 minutes, and then heated and fired at 450 ° C. for 30 minutes to obtain a titanium oxide semiconductor electrode having a thickness of about 10 μm.
This porous titanium oxide semiconductor electrode is immersed in an ethanol solution of a ruthenium complex represented by [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2 (isothiocyanato) 2 ] and refluxed for 10 minutes. The ruthenium complex was adsorbed on the surface of the TiO 2 electrode.
These two substrates are overlapped with a bead or rod-like insulating spacer while maintaining a gap of about 10 μm, and a redox electrolyte solution in which iodine and tetrapropylammonium iodide are added to a mixed solvent of ethylene carbonate and acetonitrile is prepared. After the injection, it was sealed with an epoxy adhesive.
Further, a Pt film (area: 1 cm 2 ) deposited to a thickness of 100 nm on a glass substrate was stacked through a 2 cm spacer and sealed with an epoxy adhesive to produce a photoelectric conversion element. The photoelectric conversion efficiency of this photoelectric conversion element under pseudo-sunlight irradiation (AM1.5, 100 mW / cm 2 ) was 7.5%.
[0026]
[Example 2] (Element structure of FIG. 3)
An SnO 2 : F film 2 was formed on one side of two glass substrates by a sol-gel method so that the sheet resistance was 10Ω / □. Among these, for one substrate, a light-transmitting Pt film was formed on the SnO 2 : F film 2 by electrolysis of hexachloroplatinic acid.
Moreover, 10 ml of water and 0.2 ml of acetylacetone were added to 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.) and mixed so as to break up the aggregation of the titanium oxide powder in a mortar to prepare a coating solution. This coating solution was applied to another glass substrate (area 0.5 cm 2 ), naturally dried for 30 minutes, and then heated and fired at 450 ° C. for 30 minutes to obtain a titanium oxide semiconductor electrode having a thickness of about 10 μm.
This porous titanium oxide semiconductor electrode is immersed in an ethanol solution of a ruthenium complex represented by [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2 (isothiocyanato) 2 ] and refluxed for 10 minutes. The ruthenium complex was adsorbed on the surface of the TiO 2 electrode.
A redox electrolyte solution in which these two substrates are overlapped with a bead or rod-shaped insulating spacer while maintaining a gap of about 10 μm, and iodine and tetrapropylammonium iodide are added to a mixed solvent of ethylene carbonate and acetonitrile. Was injected and then sealed with an epoxy adhesive.
Further, a Pt film (area 1 cm 2 ) is deposited to a thickness of 100 nm on a glass substrate by a vacuum evaporation method, and the opposite surface is superposed with a fine rough surface processed through a 2 cm spacer, and an epoxy adhesive. Then, a photoelectric conversion element was manufactured.
The photoelectric conversion efficiency of this photoelectric conversion element under pseudo-sunlight irradiation (AM1.5, 100 mW / cm 2 ) was 7.7%.
[0027]
[Example 3] (Element structure of FIG. 4)
An SnO 2 : F film 2 was formed on one side of each of the two glass substrates so as to have a sheet resistance of 10Ω / □ by a sol-gel method. Among these, for one substrate, a light-transmitting Pt film is formed on the SnO 2 : F film 2 by electrolysis of hexachloroplatinic acid, and a Pt film (area 1 cm 2 ) is formed on the opposite surface by vacuum evaporation. Deposited to a thickness of 100 nm.
Moreover, 10 ml of water and 0.2 ml of acetylacetone were added to 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.) and mixed so as to break up the aggregation of the titanium oxide powder in a mortar to prepare a coating solution. This coating solution was applied onto the glass substrate 1 (area 0.5 cm 2 ), naturally dried for 30 minutes, and then heated and fired at 450 ° C. for 30 minutes to obtain a titanium oxide semiconductor electrode having a thickness of about 10 μm.
This porous titanium oxide semiconductor electrode is immersed in an ethanol solution of a ruthenium complex represented by [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2 (isothiocyanato) 2 ] and refluxed for 10 minutes. The ruthenium complex was adsorbed on the surface of the TiO 2 electrode.
These two substrates were overlapped with a bead or rod-shaped insulating spacer while maintaining a gap of about 10 μm, and an oxidation-reduction electrolyte solution in which iodine and tetrapropylammonium iodide were added to a mixed solvent of ethylene carbonate and acetonitrile. After the injection, it was sealed with an epoxy adhesive to produce a photoelectric conversion element.
The photoelectric conversion efficiency of this photoelectric conversion element under pseudo-sunlight irradiation (AM 1.5, 100 mW / cm 2 ) was 7.3%.
[0028]
[Comparative Example 1] (Element structure of FIG. 1)
An SnO 2 : F film 2 was formed on one side of each of the two glass substrates 1 by a sol-gel method so that the sheet resistance was 10Ω / □. Among these, for one substrate, a light-transmitting Pt film was formed on the SnO 2 : F film 2 by electrolysis of hexachloroplatinic acid.
Moreover, 10 ml of water and 0.2 ml of acetylacetone were added to 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.) and mixed so as to break up the aggregation of the titanium oxide powder in a mortar to prepare a coating solution. This coating solution was applied on the other glass substrate (area 0.5 cm 2 ), naturally dried for 30 minutes, and then heated and fired at 450 ° C. for 30 minutes to obtain a titanium oxide semiconductor electrode having a thickness of about 10 μm. .
This porous titanium oxide semiconductor electrode is immersed in an ethanol solution of a ruthenium complex represented by [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2 (isothiocyanato) 2 ] and refluxed for 10 minutes. The ruthenium complex was adsorbed on the surface of the TiO 2 electrode.
These two substrates were overlapped with a bead or rod-shaped insulating spacer while maintaining a gap of about 10 μm, and an oxidation-reduction electrolyte solution in which iodine and tetrapropylammonium iodide were added to a mixed solvent of ethylene carbonate and acetonitrile. After the injection, it was sealed with an epoxy adhesive to produce a photoelectric conversion element.
The photoelectric conversion efficiency of this photoelectric conversion element under simulated sunlight irradiation (AM1.5, 100 mW / cm 2 ) was 6.9%.
[0029]
【The invention's effect】
According to the present invention, by providing the light reflection layer, the amount of light absorption is increased, and the photoelectric conversion efficiency is improved.
In addition, when the area of the metal oxide semiconductor layer is smaller than the area of the light reflection layer, light from the outside is reflected, so that the amount of light absorption is increased and the photoelectric conversion efficiency is improved.
Further, by providing the scattering layer, the light absorption efficiency is improved, and the photoelectric conversion efficiency is further improved.
Further, by adopting a structure in which the counter electrode is disposed between the light reflecting layer and the metal oxide semiconductor layer, the reflected light intensity can be further increased, and the photoelectric conversion efficiency is further improved.
Furthermore, by providing a light reflecting layer on the same substrate as the counter electrode, manufacturing and material costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a conventional photoelectric conversion element.
FIG. 2 is a cross-sectional view schematically showing an example of a photoelectric conversion element according to the present invention.
FIG. 3 is a cross-sectional view schematically showing another example of the photoelectric conversion element according to the present invention.
FIG. 4 is a cross-sectional view schematically showing another example of the photoelectric conversion element according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent conductive film 3 Metal oxide semiconductor layer 4 Sensitizing dye 5 Electrolyte solution which has a redox pair Counter electrode 7 Light reflection layer 8 Light scattering layer

Claims (4)

金属酸化物半導体電極と、その表面に吸着された色素と、酸化還元対を有する電解液と、対向電極からなる光電変換素子において、光が入射する方向から見て金属酸化物半導体電極、対向電極、光反射層の順に光反射層を設け、
且つ、前記金属酸化物半導体電極の面積が、前記光反射層の面積よりも小さいことを特徴とする光電変換素子。
In a photoelectric conversion element comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolytic solution having a redox pair, and a counter electrode, the metal oxide semiconductor electrode and the counter electrode as viewed from the direction in which light enters , Provide a light reflection layer in the order of the light reflection layer,
And the area of the said metal oxide semiconductor electrode is smaller than the area of the said light reflection layer, The photoelectric conversion element characterized by the above-mentioned.
光散乱層を更に有し、金属酸化物半導体電極、対向電極、光散乱層、光反射層の順に設けられていることを特徴とする請求項1に記載の光電変換素子。  The photoelectric conversion element according to claim 1, further comprising a light scattering layer, which is provided in the order of a metal oxide semiconductor electrode, a counter electrode, a light scattering layer, and a light reflection layer. 前記対向電極の支持基板を更に有し、前記光反射層が前記支持基板上に設けられ、かつ対向電極側と反対側の面に設けられていることを特徴とする請求項1または2に記載の光電変換素子。  The support substrate for the counter electrode is further provided, and the light reflecting layer is provided on the support substrate and provided on a surface opposite to the counter electrode side. Photoelectric conversion element. 金属酸化物半導体電極と、その表面に吸着された色素と、酸化還元対を有する電解液と、対向電極とからなる請求項1〜3のいずれかに記載の光電変換素子の製造方法において、色素吸着した金属酸化物半導体電極を有する支持基板と、対向電極を有する支持基板とを該金属酸化物半導体電極と該対向電極を向き合わせて貼り合わせ、更に該対向電極を有する支持基板の該対向電極と反対側の面に前記金属酸化物半導体電極の面積よりも大きい面積の光反射層を有する支持基板とを貼り合わせることを特徴とする光電変換素子の製造方法。In the manufacturing method of the photoelectric conversion element in any one of Claims 1-3 which consists of a metal oxide semiconductor electrode, the pigment | dye adsorbed on the surface, the electrolyte solution which has a redox couple, and a counter electrode. A support substrate having an adsorbed metal oxide semiconductor electrode and a support substrate having a counter electrode are bonded together so that the metal oxide semiconductor electrode and the counter electrode face each other, and further the counter electrode of the support substrate having the counter electrode And a support substrate having a light reflecting layer having an area larger than the area of the metal oxide semiconductor electrode on the surface opposite to the surface of the metal oxide semiconductor electrode .
JP15929099A 1999-06-07 1999-06-07 Photoelectric conversion element and manufacturing method thereof Expired - Fee Related JP4422236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15929099A JP4422236B2 (en) 1999-06-07 1999-06-07 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15929099A JP4422236B2 (en) 1999-06-07 1999-06-07 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000348784A JP2000348784A (en) 2000-12-15
JP4422236B2 true JP4422236B2 (en) 2010-02-24

Family

ID=15690574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15929099A Expired - Fee Related JP4422236B2 (en) 1999-06-07 1999-06-07 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4422236B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617014B2 (en) * 2001-03-21 2011-01-19 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP4843899B2 (en) * 2003-11-25 2011-12-21 ソニー株式会社 Photoelectric conversion element and manufacturing method thereof
JP4792711B2 (en) * 2004-06-01 2011-10-12 凸版印刷株式会社 Dye-sensitized solar cell
JP4936648B2 (en) * 2004-07-08 2012-05-23 アイシン精機株式会社 Dye-sensitized solar cell and method of attaching dye-sensitized solar cell
JP4849844B2 (en) * 2005-08-22 2012-01-11 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell
JP2008084763A (en) * 2006-09-28 2008-04-10 Tdk Corp Photoelectric conversion element
JP5173201B2 (en) * 2007-01-23 2013-04-03 トヨタホーム株式会社 SOLAR CELL DEVICE AND BUILDING WITH SAME
EP2352201B1 (en) 2008-10-29 2018-10-17 FUJIFILM Corporation Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
CN101826400A (en) * 2009-03-03 2010-09-08 上海拓引数码技术有限公司 Dye-sensitized solar cell
JP2011054434A (en) 2009-09-02 2011-03-17 Nitto Denko Corp Dye-sensitized solar cell
CN101989500A (en) * 2009-07-30 2011-03-23 日东电工株式会社 Dye-sensitized solar cell
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5406800B2 (en) 2010-07-30 2014-02-05 日東電工株式会社 Wiring circuit board and manufacturing method thereof
US10916382B2 (en) 2011-06-08 2021-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
JP5118233B2 (en) * 2011-06-08 2013-01-16 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element module

Also Published As

Publication number Publication date
JP2000348784A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4422236B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4812956B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
EP2296216B1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
JP4046974B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP4097786B2 (en) Solar cell
JP4507306B2 (en) Oxide semiconductor electrode and dye-sensitized solar cell using the same
JP4063802B2 (en) Photoelectrode
JP2004220920A (en) Photoelectric conversion element
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2004311197A (en) Optical electrode and dye-sensitized solar cell using it
JP4596305B2 (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP2001196104A (en) Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP4155431B2 (en) Photoelectric conversion element
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4102054B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP2007073198A (en) Dye-sensitized solar battery
JP2004134298A (en) Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
JP2002280087A (en) Optical electrode and dye sensitized solar battery provided with the same
JP4314847B2 (en) Dye-sensitized solar cell module
JP4601582B2 (en) Photoelectrode, dye-sensitized solar cell and dye-sensitized solar cell module using the same
KR20060113132A (en) Plastic electrode and solar cells using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees