JP4936648B2 - Dye-sensitized solar cell and method of attaching dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell and method of attaching dye-sensitized solar cell Download PDF

Info

Publication number
JP4936648B2
JP4936648B2 JP2004202385A JP2004202385A JP4936648B2 JP 4936648 B2 JP4936648 B2 JP 4936648B2 JP 2004202385 A JP2004202385 A JP 2004202385A JP 2004202385 A JP2004202385 A JP 2004202385A JP 4936648 B2 JP4936648 B2 JP 4936648B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
cell body
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004202385A
Other languages
Japanese (ja)
Other versions
JP2006024477A (en
Inventor
竜生 豊田
淳二 中島
将一 土井
秀年 鈴木
健 坂村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Housing Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Housing Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004202385A priority Critical patent/JP4936648B2/en
Publication of JP2006024477A publication Critical patent/JP2006024477A/en
Application granted granted Critical
Publication of JP4936648B2 publication Critical patent/JP4936648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、色素増感型太陽電池及び色素増感型太陽電池の取付け方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for attaching a dye-sensitized solar cell.

近年、地球の環境問題や化石エネルギー資源問題等を解決するため、太陽光発電に対する期待が大きい。そのため、太陽光発電に光電変換素子を用いた太陽電池の研究が広く行われている。
従来、この太陽電池として、例えば単結晶及び多結晶シリコン光電変換素子を使用するシリコン太陽電池、及び、増感色素を含有する半導体を光電変換素子に使用する色素増感型太陽電池等が知られていた。
In recent years, there is a great expectation for photovoltaic power generation in order to solve global environmental problems and fossil energy resource problems. Therefore, research on solar cells using photoelectric conversion elements for photovoltaic power generation has been widely performed.
Conventionally, as this solar cell, for example, a silicon solar cell using single crystal and polycrystalline silicon photoelectric conversion elements, a dye-sensitized solar cell using a semiconductor containing a sensitizing dye as a photoelectric conversion element, and the like are known. It was.

シリコン太陽電池は発電効率を良くするため、発電に寄与する入射光をできるだけ損失することなく内部に取り入れる構造となっている。そのため、一般に、シリコン太陽電池の表面に連続する斜面よりなる凹凸構造を設ける、或いは、当該表面を反射防止膜で覆う等により、入射光の表面反射を抑えている。従って、シリコン太陽電池の表面は青から紫にかけての暗い単色に認識される。   In order to improve the power generation efficiency, the silicon solar cell has a structure in which incident light contributing to power generation is taken into the inside without losing as much as possible. For this reason, in general, the surface reflection of incident light is suppressed by providing a concave-convex structure made of a continuous slope on the surface of the silicon solar cell, or by covering the surface with an antireflection film. Therefore, the surface of the silicon solar cell is recognized as a dark single color from blue to purple.

一方、例えば特許文献1に開示の色素増感型太陽電池は、ルテニウム錯体色素を金属錯体色素(増感色素)として含む二酸化チタン多孔質薄膜を有する光電極(作用電極)を備えているため、増感色素の色が認識される。金属錯体色素としては、例えば、ルテニウム(Ru3+イオン,Ru2+イオン)を配位中心とし、チオシアン酸イオン・1,10−フェナントロリン・1,10−フェナントロリン誘導体・2,2’−ビピリジル及び2,2’−ビピリジル誘導体等を配位子とするイソチオシアネート錯体、チオシアネート錯体、ポルフィリン系色素、及び、フタロシアニン系色素等が知られている。
また、増感色素としては金属錯体色素の他に有機色素が適用され、例えば、キサンテン系色素・シアニン系色素・メロシアニン系色素・フェニルキサンテン系色素・トリフェニルメタン系色素・ロダシアニン系色素等が知られている。
そのため、色素増感型太陽電池には、増感色素に応じた種々の色を付することができる。
On the other hand, for example, the dye-sensitized solar cell disclosed in Patent Document 1 includes a photoelectrode (working electrode) having a titanium dioxide porous thin film containing a ruthenium complex dye as a metal complex dye (sensitizing dye). The color of the sensitizing dye is recognized. Examples of the metal complex dye include ruthenium (Ru 3+ ion, Ru 2+ ion) as a coordination center, thiocyanate ion, 1,10-phenanthroline, 1,10-phenanthroline derivative, 2,2′-bipyridyl, and 2, Known isothiocyanate complexes, thiocyanate complexes, porphyrin-based dyes, phthalocyanine-based dyes, and the like having a 2′-bipyridyl derivative as a ligand.
In addition to metal complex dyes, organic dyes are used as sensitizing dyes. Examples include xanthene dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, and rhodacyanine dyes. It has been.
Therefore, the dye-sensitized solar cell can be given various colors according to the sensitizing dye.

米国特許4927721号公報US Pat. No. 4,927,721

上述したシリコン太陽電池は、暗い単色に認識されるため、目視的な特徴を持つものではない。そのため、見た目の悪さから、例えばビルや家屋等の建築構造物に対する設置場所は屋上や屋根等に限られてしまうという問題点があった。   Since the above-described silicon solar cell is recognized as a dark single color, it does not have a visual feature. For this reason, there is a problem that the installation location for a building structure such as a building or a house is limited to the roof or the roof because of the poor appearance.

一方、色素増感型太陽電池は、増感色素の色を変化させることにより色の自由度は高いため、シリコン太陽電池に比べて視覚的付加価値は高い。しかし、単に色の変化を持たせるだけでは、質感・意匠等のデザイン性に乏しいという問題点があった。   On the other hand, the dye-sensitized solar cell has a higher degree of freedom in color by changing the color of the sensitizing dye, and thus has a higher visual added value than the silicon solar cell. However, there is a problem that the design properties such as the texture and design are not sufficient simply by changing the color.

従って、本発明の目的は、視覚的付加価値を高めてデザイン的に優れた色素増感型太陽電池を提供することにある。   Accordingly, an object of the present invention is to provide a dye-sensitized solar cell that has high visual added value and is excellent in design.

上記目的を達成するための本発明に係る色素増感型太陽電池の第一特徴構成は、受光面を有すると共に色素を含有する半導体電極と前記受光面上に隣接配置された透明電極とを有する光電極、及び、電解質を介して前記半導体電極と対向配置してある対極を有する色素増感型太陽電池本体と、前記色素増感型太陽電池本体を透過した光を反射する反射手段とを有し、前記色素増感型太陽電池本体および前記反射手段は所定距離だけ離間配置してあり、前記反射手段は前記色素増感型太陽電池本体に対して前記対極の側に配設し、前記色素増感型太陽電池本体を前記反射手段に対して取付け角度を変更可能に取り付け、前記受光面から入射して前記色素増感型太陽電池本体を透過した光が前記反射手段で反射し、この反射した光が、前記色素増感型太陽電池本体の前記対極側から入射して前記色素増感型太陽電池本体を透過する点にある。 In order to achieve the above object, a first characteristic configuration of a dye-sensitized solar cell according to the present invention includes a light-receiving surface and a semiconductor electrode containing a dye and a transparent electrode disposed adjacent to the light-receiving surface. A dye-sensitized solar cell main body having a photoelectrode and a counter electrode disposed opposite to the semiconductor electrode via an electrolyte; and a reflecting means for reflecting light transmitted through the dye-sensitized solar cell main body. The dye-sensitized solar cell main body and the reflecting means are spaced apart from each other by a predetermined distance, and the reflecting means is disposed on the counter electrode side with respect to the dye-sensitized solar cell main body, The sensitized solar cell body is attached to the reflecting means so that the mounting angle can be changed, and the light incident from the light receiving surface and transmitted through the dye-sensitized solar cell body is reflected by the reflecting means. The light Incident from the counter electrode side of the mold solar cell body in that it passes through the dye-sensitized solar cell body.

このように色素増感型太陽電池本体を透過した光を反射する反射手段を有する本発明の色素増感型太陽電池に光が入射して色素増感型太陽電池本体を透過すると、透過した光が反射手段によって反射され、光の入射側に出射される。その結果、色素増感型太陽電池本体自身の色相が、例えば明度や彩度が増す等して変化する。
また、色素増感型太陽電池本体を透過した光を受けた反射手段の表面の模様は、光の入射側で認識されるため、例えば、反射手段の表面に模様を施すことにより、所望の模様を認識でき、質感・意匠等のデザイン性に優れた色素増感型太陽電池となる。
従って、本発明の第一特徴構成に記載の色素増感型太陽電池であれば、視覚的付加価値が向上してデザイン的に優れた色素増感型太陽電池となる。そのため、仮に建築構造物の人目につきやすい壁面等に設置したとしても、デザイン的に優れた色素増感型太陽電池であるため、設置位置が限定されることはなく、設置の自由度を高めることが可能となる。
In this way, when light enters the dye-sensitized solar cell of the present invention having a reflecting means for reflecting the light transmitted through the dye-sensitized solar cell body and passes through the dye-sensitized solar cell body, the transmitted light Is reflected by the reflecting means and emitted to the light incident side. As a result, the hue of the dye-sensitized solar cell body itself changes, for example, by increasing lightness or saturation.
In addition, since the pattern on the surface of the reflecting means that has received the light transmitted through the dye-sensitized solar cell body is recognized on the light incident side, for example, by applying a pattern on the surface of the reflecting means, a desired pattern can be obtained. The dye-sensitized solar cell is excellent in design such as texture and design.
Therefore, the dye-sensitized solar cell described in the first characteristic configuration of the present invention is a dye-sensitized solar cell with improved visual added value and excellent design. Therefore, even if it is installed on a wall of a building structure that is easily visible, it is a dye-sensitized solar cell with excellent design, so the installation position is not limited and the degree of freedom in installation is increased. Is possible.

さらに、入射光のみを増感色素が感応して光発電に利用する色素増感型太陽電池に比べて、反射手段で光を反射させることにより、色素増感型太陽電池本体内において往復の光、つまり、入射光と反射光とを増感色素が感応して光発電に利用することができるため、光電変換効率が向上する。   Furthermore, in comparison with a dye-sensitized solar cell in which only a sensitizing dye is sensitive to incident light and used for photovoltaic power generation, light is reflected back and forth within the main body of the dye-sensitized solar cell by reflecting the light with a reflecting means. That is, since the sensitizing dye can react with incident light and reflected light and can be used for photovoltaic power generation, the photoelectric conversion efficiency is improved.

前記所定距離は、色素増感型太陽電池本体を透過して反射手段によって反射した光が、光の入射側に充分出射できる距離であればよい。このとき、反射手段表面に付された模様等が確実に認識できる。
また、反射手段を色素増感型太陽電池本体に対して対極の側に配設し、色素増感型太陽電池本体を反射手段に対して取付け角度を変更可能に取り付けることで、色素増感型太陽電池の観察者が、色素増感型太陽電池の反射手段に付された模様が好ましく認識できるように、屋外において太陽光の反射角度を調整することができる。
さらに、本構成であれば、受光面から入射後、色素増感型太陽電池本体を透過して構造物によって反射した光が、色素増感型太陽電池本体の前記対極側、つまり、色素増感型太陽電池本体の裏面から色素増感型太陽電池本体に再入射して色素増感型太陽電池本体を透過するように配設することができる。このとき、反射手段の表面に付された模様等が確実に認識できるため、視覚的付加価値を高めることができる。
The predetermined distance may be a distance that allows the light transmitted through the dye-sensitized solar cell body and reflected by the reflecting means to be sufficiently emitted to the light incident side. At this time, it is possible to reliably recognize the pattern or the like attached to the reflecting means surface.
Also, the reflection means is disposed on the side opposite to the dye-sensitized solar cell body, and the dye-sensitized solar cell body is attached to the reflection means so that the mounting angle can be changed. The solar cell reflection angle can be adjusted outdoors so that the observer of the solar cell can preferably recognize the pattern attached to the reflecting means of the dye-sensitized solar cell.
Furthermore, with this configuration, after entering from the light-receiving surface, the light transmitted through the dye-sensitized solar cell body and reflected by the structure is the counter electrode side of the dye-sensitized solar cell body, that is, dye-sensitized. It can arrange | position so that it may re-enter into a dye-sensitized solar cell main body from the back surface of a type | mold solar cell main body, and permeate | transmits a dye-sensitized solar cell main body. At this time, since the pattern or the like attached to the surface of the reflecting means can be reliably recognized, the visual added value can be increased.

本発明に係る色素増感型太陽電池の第二特徴構成は、前記反射手段が、前記色素増感型太陽電池本体側の表面に模様を形成する凹凸を有する点にある。
従って、本発明の第二特徴構成に記載の色素増感型太陽電池であれば、これにより、色素増感型太陽電池本体を透過して反射手段によって反射され、光の入射側に出射した光は、立体感のある模様として認識される。
The 2nd characteristic structure of the dye-sensitized solar cell which concerns on this invention exists in the point in which the said reflection means has the unevenness | corrugation which forms a pattern in the surface at the side of the said dye-sensitized solar cell main body.
Therefore, in the dye-sensitized solar cell described in the second characteristic configuration of the present invention, the light transmitted through the dye-sensitized solar cell body and reflected by the reflecting means, and emitted to the light incident side. Is recognized as a three-dimensional pattern.

本発明に係る色素増感型太陽電池の第三特徴構成は、前記反射手段が、前記色素増感型太陽電池本体側の表面に幾何学的な模様を付してある点にある。
従って、本発明の第三特徴構成に記載の色素増感型太陽電池であれば、幾何学的な模様を例えば格子模様とすれば、装飾タイル調の質感を付与できるため、視覚的付加価値が向上してデザイン的に優れた色素増感型太陽電池となる。
A third characteristic configuration of the dye-sensitized solar cell according to the present invention is that the reflecting means has a geometric pattern on the surface of the dye-sensitized solar cell main body.
Therefore, in the dye-sensitized solar cell according to the third characteristic configuration of the present invention, if the geometric pattern is, for example, a lattice pattern, a decorative tile-like texture can be imparted, so that a visual added value is obtained. As a result, the dye-sensitized solar cell is improved in design.

本発明に係る色素増感型太陽電池の第四特徴構成は、前記反射手段が、前記色素増感型太陽電池本体に対する相対位置を変更可能に取付けてある点にある。
ここで、「相対位置を変更可能」との文言は、反射手段と色素増感型太陽電池本体との取付け角度・取付け位置・取付け方向等を変更可能に構成してあることを指す。
従って、本発明の第四特徴構成に記載の色素増感型太陽電池であれば、反射手段と色素増感型太陽電池本体との取付け状態を種々変更できるため、例えば入射光の反射角度を所望の角度に調節できる。そのため、観察者にバラエティーに富んだ目視効果を与えることができる。
The 4th characteristic structure of the dye-sensitized solar cell which concerns on this invention exists in the point to which the said reflection means is attached so that a relative position with respect to the said dye-sensitized solar cell main body can be changed.
Here, the phrase “relative position can be changed” indicates that the mounting angle, mounting position, mounting direction, and the like between the reflecting means and the dye-sensitized solar cell body can be changed.
Therefore, in the dye-sensitized solar cell described in the fourth feature configuration of the present invention, the attachment state between the reflecting means and the dye-sensitized solar cell body can be variously changed. Can be adjusted to any angle. Therefore, a variety of visual effects can be given to the observer.

本発明に係る色素増感型太陽電池の第五特徴構成は、前記反射手段は、前記色素増感型太陽電池本体と別個に設けられ、前記色素増感型太陽電池本体を回転させ、前記色素増感型太陽電池本体に対する前記相対位置を変更可能に取り付けられる点にある。
本構成では、光の入射方向の変動に伴い、色素増感型太陽電池本体を回転させて色素増感型太陽電池本体と反射手段との取付け方向を変更すれば、目視効果を変化させることができる。
According to a fifth characteristic configuration of the dye-sensitized solar cell according to the present invention, the reflecting means is provided separately from the dye-sensitized solar cell main body, the dye-sensitized solar cell main body is rotated, and the dye is rotated. This is in that the relative position with respect to the sensitized solar cell body can be changed.
In this configuration, as the incident direction of light changes, the visual effect can be changed by rotating the dye-sensitized solar cell body and changing the mounting direction of the dye-sensitized solar cell body and the reflecting means. it can.

本発明の色素増感型太陽電池の取付け方法は、受光面を有すると共に色素を含有する半導体電極と前記受光面上に隣接配置された透明電極とを有する光電極、及び、電解質を介して前記半導体電極と対向配置してある対極を有する色素増感型太陽電池本体を、室内の壁面であり光反射性を有する構造物に取り付けるに際し、前記色素増感型太陽電池本体および前記構造物を所定距離だけ離間配置し、前記構造物を前記色素増感型太陽電池本体に対して前記対極の側になるように配設し、前記色素増感型太陽電池本体を前記構造物に対して取付け角度を変更可能に取り付け、前記受光面から入射して前記色素増感型太陽電池本体を透過した光が前記構造物で反射し、この反射した光が、前記色素増感型太陽電池本体の前記対極側から入射して前記色素増感型太陽電池本体を透過するように取付ける点にある。 The method of attaching the dye-sensitized solar cell of the present invention includes a photoelectrode having a light-receiving surface and a semiconductor electrode containing a dye and a transparent electrode adjacently disposed on the light-receiving surface, and the electrolyte through the electrolyte. When attaching a dye-sensitized solar cell body having a counter electrode facing a semiconductor electrode to a structure that is a wall surface and has light reflectivity, the dye-sensitized solar cell body and the structure are predetermined. The structure is arranged so as to be separated by a distance, and the structure is disposed so as to be on the side of the counter electrode with respect to the dye-sensitized solar cell body, and the attachment angle of the dye-sensitized solar cell body with respect to the structure The light incident on the light receiving surface and transmitted through the dye-sensitized solar cell body is reflected by the structure, and the reflected light is reflected by the counter electrode of the dye-sensitized solar cell body. Before entering from the side It lies in mounting so as to transmit a dye-sensitized solar cell body.

従って、本発明の色素増感型太陽電池の取付け方法であれば、受光面から入射後、色素増感型太陽電池本体を透過して構造物によって反射した光が、色素増感型太陽電池本体の前記対極側、つまり、色素増感型太陽電池本体の裏面から色素増感型太陽電池本体に再入射して色素増感型太陽電池本体を透過するように配設することができる。
また、構造物を色素増感型太陽電池本体に対して対極の側に配設し、色素増感型太陽電池本体を構造物に対して取付け角度を変更可能に取り付けることで、色素増感型太陽電池の観察者が、色素増感型太陽電池の構造物に付された模様が好ましく認識できるように、屋外において太陽光の反射角度を調整することができる。
前記所定距離は、色素増感型太陽電池本体を透過して光反射性を有する構造物によって反射した光が、光の入射側に充分出射できる距離であればよい。このとき、前記構造物表面に付された模様等が確実に認識できるため、視覚的付加価値を高めることができる。これにより、構造物表面に付された模様を覆い隠してしまうことなく色素増感型太陽電池を構造物に付設できるため、色素増感型太陽電池設置の自由度が高まる取付け方法となる。
Therefore, according to the method for mounting the dye-sensitized solar cell of the present invention, the light transmitted through the dye-sensitized solar cell after being incident from the light receiving surface and reflected by the structure is the dye-sensitized solar cell main body. The dye-sensitized solar cell body can be re-incident from the counter electrode side, that is, the back surface of the dye-sensitized solar cell body, and can pass through the dye-sensitized solar cell body.
In addition, by disposing the structure on the side opposite to the dye-sensitized solar cell body and attaching the dye-sensitized solar cell body to the structure so that the mounting angle can be changed, the dye-sensitized type The solar cell reflection angle can be adjusted outdoors so that the observer of the solar cell can preferably recognize the pattern attached to the structure of the dye-sensitized solar cell.
The predetermined distance may be a distance that allows the light that has passed through the dye-sensitized solar cell body and reflected by the light-reflecting structure to be sufficiently emitted to the light incident side. At this time, since the pattern or the like attached to the surface of the structure can be reliably recognized, the visual added value can be increased. Accordingly, since the dye-sensitized solar cell can be attached to the structure without obscuring the pattern attached to the surface of the structure, the attachment method increases the degree of freedom in installing the dye-sensitized solar cell.

以下、本発明の実施例を図面に基づいて説明する。
図1に示したように、本発明の色素増感型太陽電池Xは、受光面F2を有すると共に色素を含有する半導体電極11と受光面F2上に隣接配置された透明電極12とを有する光電極10、及び、電解質20を介して半導体電極11と対向配置してある対極30を有し、さらに、光電極10及び対極30を透明基板50上に形成してある色素増感型太陽電池本体Aと、色素増感型太陽電池本体Aを透過した光を反射する反射手段Bとを有する。以下に各構成について詳述する。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the dye-sensitized solar cell X of the present invention has a light receiving surface F2 and a light having a semiconductor electrode 11 containing a dye and a transparent electrode 12 disposed adjacently on the light receiving surface F2. The main body of the dye-sensitized solar cell having the electrode 10 and the counter electrode 30 disposed opposite to the semiconductor electrode 11 with the electrolyte 20 interposed therebetween, and further having the photoelectrode 10 and the counter electrode 30 formed on the transparent substrate 50 A and reflecting means B for reflecting the light transmitted through the dye-sensitized solar cell main body A. Each configuration will be described in detail below.

(色素増感型太陽電池本体A)
光電極10は、受光面F2を有する半導体電極11と、当該半導体電極11の受光面F2上に隣接して配置された透明電極12とから構成されている。そして、半導体電極11は、受光面F2と反対側の裏面F22において電解質20と接触している。
(Dye-sensitized solar cell body A)
The photoelectrode 10 includes a semiconductor electrode 11 having a light receiving surface F2 and a transparent electrode 12 disposed adjacent to the light receiving surface F2 of the semiconductor electrode 11. The semiconductor electrode 11 is in contact with the electrolyte 20 on the back surface F22 opposite to the light receiving surface F2.

半導体電極11は、酸化物半導体粒子を構成材料とする酸化物半導体層からなる。半導体電極11に含有される酸化物半導体粒子は特に限定されるものではなく、公知の酸化物半導体等を使用することができる。酸化物半導体としては、例えば、TiO,ZnO,SnO・Nb・In・WO・ZrO・La・Ta・SrTiO・BaTiO等を用いることができる。これらの酸化物半導体の中でもアナターゼ型TiOが好ましい。 The semiconductor electrode 11 is composed of an oxide semiconductor layer containing oxide semiconductor particles as a constituent material. The oxide semiconductor particle contained in the semiconductor electrode 11 is not specifically limited, A well-known oxide semiconductor etc. can be used. As the oxide semiconductor, for example, a TiO 2, ZnO, SnO 2 · Nb 2 O 5 · In 2 O 3 · WO 3 · ZrO 2 · La 2 O 3 · Ta 2 O 5 · SrTiO 3 · BaTiO 3 , etc. be able to. Among these oxide semiconductors, anatase TiO 2 is preferable.

また、半導体電極11に含有される増感色素は、可視光領域・赤外光領域に吸収を持つ色素であれば特に限定されるものではない。例えば、少なくとも200nm〜10μmの波長の光により励起されて電子を放出するものであれば好ましい。このような増感色素としては、金属錯体や有機色素等を用いることができる。金属錯体としては銅フタロシアニン・チタニルフタロシアニン等の金属フタロシアニン・クロロフィルまたはその誘導体・ルテニウム・ヘミン・オスミウム・鉄及び亜鉛の錯体等が挙げられる。有機色素としては、メタルフリーフタロシアニン・シアニン系色素・メロシアニン系色素・キサンテン系色素・トリフェニルメタン系色素等を用いることができる。   The sensitizing dye contained in the semiconductor electrode 11 is not particularly limited as long as it is a dye having absorption in the visible light region and the infrared light region. For example, it is preferable if it emits electrons when excited with light having a wavelength of at least 200 nm to 10 μm. As such a sensitizing dye, a metal complex, an organic dye, or the like can be used. Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof, ruthenium, hemin, osmium, iron and zinc complexes. As the organic dye, metal free phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, triphenylmethane dye, and the like can be used.

透明電極12の構成は特に限定されるものではなく、通常の色素増感型太陽電池に搭載される透明電極を使用できる。例えば、ガラス基板等の透明基板50の半導体電極11側に膜状の透明電極12をコートした構成が好適に例示される。   The structure of the transparent electrode 12 is not specifically limited, The transparent electrode mounted in a normal dye-sensitized solar cell can be used. For example, a configuration in which the film-like transparent electrode 12 is coated on the semiconductor electrode 11 side of the transparent substrate 50 such as a glass substrate is preferably exemplified.

この膜状の透明電極12としては、液晶パネル等に用いられる透明電極が適用可能である。例えば、フッ素ドープSnOコートガラス・ITOコートガラス・ZnO/Alコ
ートガラス・アンチモンドープ酸化スズ(SnO−Sb)等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極や、メッシュ状・ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものでもよい。
As this film-like transparent electrode 12, a transparent electrode used for a liquid crystal panel or the like is applicable. Examples thereof include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO / Al coated glass, antimony-doped tin oxide (SnO 2 —Sb), and the like. In addition, a transparent electrode in which tin oxide or indium oxide is doped with cations or anions having different valences, or a metal electrode having a structure capable of transmitting light, such as a mesh or stripe, is provided on a substrate such as a glass substrate. But you can.

透明基板50としては、液晶パネル等に用いられる透明基板が適用可能である。具体的には、透明ガラス基板、すりガラス状の半透明ガラス基板など、光を透過するものが透明基板材料として例示される。尚、光を透過するものであれば材質はガラスに限定されるものではなく、透明プラスチック板等のプラスチック樹脂・無機物透明結晶体などが適用できる。   As the transparent substrate 50, a transparent substrate used for a liquid crystal panel or the like is applicable. Specifically, materials that transmit light, such as a transparent glass substrate and a ground glass-like translucent glass substrate, are exemplified as the transparent substrate material. The material is not limited to glass as long as it transmits light, and a plastic resin such as a transparent plastic plate, an inorganic transparent crystal, and the like can be applied.

この色素増感型太陽電池本体Aは、透明基板50及び透明電極12を透過して半導体電極11に照射される光Lによって、半導体電極11内に吸着されている増感色素が励起され、この増感色素から半導体電極11へ電子が注入される。そして、半導体電極11において注入された電子は、透明電極12に集められ、外部に取り出される。   In the dye-sensitized solar cell body A, the sensitizing dye adsorbed in the semiconductor electrode 11 is excited by the light L that is transmitted through the transparent substrate 50 and the transparent electrode 12 and is irradiated on the semiconductor electrode 11. Electrons are injected from the sensitizing dye into the semiconductor electrode 11. The electrons injected in the semiconductor electrode 11 are collected on the transparent electrode 12 and taken out to the outside.

電解質20は、スペーサ40により光電極10と対極30との間に形成される空間に充填してある。例えば、電解液が好適に例示される。
電解質20は、光励起されて半導体電極11へ電子を注入した後の色素を還元するための酸化還元種を含んでいれば特に限定されず、例えば、上述した電解液の他に、電解液に公知のゲル化剤(高分子或いは低分子のゲル化剤)を添加して得られるゲル状の電解質とすることが可能である。
The electrolyte 20 is filled in a space formed between the photoelectrode 10 and the counter electrode 30 by the spacer 40. For example, an electrolytic solution is preferably exemplified.
The electrolyte 20 is not particularly limited as long as it contains a redox species for reducing the dye after being photoexcited and injecting electrons into the semiconductor electrode 11. For example, in addition to the above-described electrolytic solution, the electrolyte 20 is known as an electrolytic solution. It is possible to obtain a gel electrolyte obtained by adding a gelling agent (polymer or low molecular weight gelling agent).

また、電解液に使用される溶媒としては、溶質成分を溶解できる化合物であれば特に限定されないが、電気化学的に不活性で、比誘電率が高くかつ粘度が低い溶媒が好ましい。例えば、メトキシプロピオニトリルやアセトニトリルのようなニトリル化合物・γ−ブチロラクトンやバレロラクトンのようなラクトン化合物・エチレンカーボネートやプロピレンカーボネートのようなカーボネート化合物・炭酸プロピレン等が挙げられる。   The solvent used in the electrolytic solution is not particularly limited as long as it is a compound that can dissolve a solute component, but a solvent that is electrochemically inactive, has a high dielectric constant, and a low viscosity is preferable. Examples include nitrile compounds such as methoxypropionitrile and acetonitrile, lactone compounds such as γ-butyrolactone and valerolactone, carbonate compounds such as ethylene carbonate and propylene carbonate, and propylene carbonate.

電解質20に使用される溶質としては、半導体電極11に含有される増感色素や対極30と電子の受け渡しを行える酸化還元対(例えば、I /I系の電解質・Br /Br系の電解質・ハイドロキノン/キノン系の電解質などのレドックス電解質)や、この電子の受け渡しを助長する作用を有する化合物等が挙げられ、これらがそれぞれ単独あるいは複数組み合せて含まれていてもよい。 Solutes used in the electrolyte 20 include sensitizing dyes contained in the semiconductor electrode 11 and redox couples that can exchange electrons with the counter electrode 30 (for example, I 3 / I system electrolytes, Br 3 / Br). - based electrolyte hydroquinone / redox electrolyte such as quinone-based electrolyte) and the, include compounds having an effect of promoting the transfer of the electron, they may be contained singly or in combination.

酸化還元対を構成する物質としては、例えば、ヨウ素・臭素・塩素などのハロゲン、ヨウ化ジメチルプロピルイミダゾリウム・ヨウ化テトラプロピルアンモニウム・ヨウ化リチウムのようなハロゲン化物などが挙げられる。電子の受け渡しを効率よく行うための添加剤としては、4−t−ブチルピリジン・N−メチルベンズイミダゾールのようなヘテロ環状化合物などが挙げられる。   Examples of the substance constituting the redox pair include halogens such as iodine, bromine, and chlorine, and halides such as dimethylpropylimidazolium iodide, tetrapropylammonium iodide, and lithium iodide. Examples of the additive for efficiently transferring electrons include heterocyclic compounds such as 4-t-butylpyridine and N-methylbenzimidazole.

対極30は、電解質中の酸化還元対(例えば、I /I等)に高効率で電子を渡すことができる材料から構成されるものであれば特に限定されるものではない。例えば、シリコン太陽電池・液晶パネル等に通常用いられている対極と同じ構成、或いは、前述の透明電極12と同じ構成を有するものであってもよい。例えば、ガラス基板等の透明基板50の電解質20側に、対極30としてPt等の金属薄膜電極を形成するのが好ましい。また、金属薄膜電極の他に、炭素などの導電性膜などであってもよい。 The counter electrode 30 is not particularly limited as long as it is made of a material capable of passing electrons with high efficiency to an oxidation-reduction pair (for example, I 3 / I etc.) in the electrolyte. For example, you may have the same structure as the counter electrode normally used for a silicon solar cell, a liquid crystal panel, etc., or the same structure as the above-mentioned transparent electrode 12. For example, it is preferable to form a metal thin film electrode such as Pt as the counter electrode 30 on the electrolyte 20 side of the transparent substrate 50 such as a glass substrate. In addition to the metal thin film electrode, a conductive film such as carbon may be used.

(反射手段B)
反射手段Bは、例えば、受光した光に対する全反射率の高い金属板等が好適に例示されるが、これに限られるものではなく、全反射率の高い金属をメッキした樹脂、ガラス、金属等であってもよい。そして、反射手段Bは、好ましくは、対極30を形成した透明基板50側に配設するがこれに限られるものではなく、光電極10を形成した透明基板50側に配設することも可能である。
(Reflection means B)
For example, the reflection means B is preferably a metal plate having a high total reflectivity with respect to received light, but is not limited thereto, and is a resin, glass, metal or the like plated with a metal having a high total reflectivity. It may be. The reflecting means B is preferably disposed on the transparent substrate 50 side on which the counter electrode 30 is formed, but is not limited thereto, and can be disposed on the transparent substrate 50 side on which the photoelectrode 10 is formed. is there.

このように色素増感型太陽電池本体Aを透過した光を反射する反射手段Bを有する本発明の色素増感型太陽電池Xに光Lが入射して色素増感型太陽電池本体Aを透過すると、透過した光Lが反射手段Bによって反射され、光Lの入射側に出射される。その結果、色素増感型太陽電池本体A自身の色相が、例えば明度や彩度が増す等して変化する。
また、色素増感型太陽電池本体Aを透過した光を受けた反射手段Bの表面の模様は、光の入射側で認識されるため、例えば、反射手段Bの表面に模様を施すことにより、所望の模様を認識できる色素増感型太陽電池Xとなる。
そのため、視覚的付加価値が向上してデザイン的に優れた色素増感型太陽電池Xとなる。
Thus, the light L is incident on the dye-sensitized solar cell X of the present invention having the reflection means B for reflecting the light transmitted through the dye-sensitized solar cell main body A, and is transmitted through the dye-sensitized solar cell main body A. Then, the transmitted light L is reflected by the reflecting means B and emitted to the incident side of the light L. As a result, the hue of the dye-sensitized solar cell body A itself changes, for example, by increasing the brightness and saturation.
Moreover, since the pattern of the surface of the reflection means B which received the light which permeate | transmitted the dye-sensitized solar cell main body A is recognized by the incident side of light, for example, by giving a pattern to the surface of the reflection means B, The dye-sensitized solar cell X can recognize a desired pattern.
Therefore, the dye-sensitized solar cell X is improved in visual added value and excellent in design.

さらに、入射光のみを増感色素が感応して光発電に利用する色素増感型太陽電池に比べて、反射手段Bで光を反射させることにより、色素増感型太陽電池本体A内において往復の光、つまり、入射光と反射光とを増感色素が感応して光発電に利用することができるため、光電変換効率が向上する。   Furthermore, compared with the dye-sensitized solar cell in which only the incident light is sensitized by the sensitizing dye and used for photovoltaic power generation, the light is reflected by the reflecting means B, thereby reciprocating in the dye-sensitized solar cell main body A. The light, that is, incident light and reflected light can be used by the sensitizing dye and can be utilized for photovoltaic power generation, so that the photoelectric conversion efficiency is improved.

反射手段Bが、色素増感型太陽電池本体A側の表面に模様を形成する凹凸を有する構成とすることができる。
色素増感型太陽電池本体A側の表面に付された凹凸は、例えば、エンボス加工が好適に例示されるが、これに限られるものではない。他に、エッチング、穿孔等、公知の種々の態様が適用できる。
The reflection means B can be configured to have irregularities that form a pattern on the surface of the dye-sensitized solar cell main body A side.
As for the unevenness | corrugation attached | subjected to the surface by the side of the dye-sensitized solar cell main body A, although an embossing process is illustrated suitably, for example, it is not restricted to this. In addition, various known modes such as etching and drilling can be applied.

これにより、色素増感型太陽電池本体Aを透過して反射手段Bによって反射され、光の入射側に出射した光は、立体感のある模様として認識される。
例えば、反射手段Bに局所的に模様を入れて反射手段Bの反射率を変化させると、質感・意匠等のデザイン性に優れた色素増感型太陽電池Xとなる。
As a result, the light transmitted through the dye-sensitized solar cell main body A and reflected by the reflecting means B and emitted to the light incident side is recognized as a three-dimensional pattern.
For example, when the reflection means B is locally patterned to change the reflectance of the reflection means B, the dye-sensitized solar cell X having excellent design properties such as texture and design is obtained.

反射手段Bの色素増感型太陽電池本体A側の表面に付された模様は、反射させたい光の波長や角度に応じて種々変更することができる。例えば、大理石模様や高級タイル模様とすることができ、さらに、メロン素地・ピラミッド状テキスチャー・どろ目・斜め格子・千鳥格子・格子・波・筋等の模様を付することができる(図2(a)〜(i)参照)。   The pattern given to the surface of the reflecting means B on the dye-sensitized solar cell main body A side can be variously changed according to the wavelength and angle of the light to be reflected. For example, it can be a marble pattern or a high-grade tile pattern, and can be further provided with a pattern such as a melon base, a pyramid-like texture, a slotted eye, an oblique lattice, a houndstooth lattice, a lattice, a wave, or a line (FIG. 2). (See (a) to (i)).

反射手段Bは、色素増感型太陽電池本体Aに対する相対位置を変更可能に取付けることが可能である。ここで、「相対位置を変更可能」との文言は、反射手段Bと色素増感型太陽電池本体Aとの取付け角度・取付け位置・取付け方向等を変更可能に構成してあることを指す。   The reflection means B can be attached so that the relative position with respect to the dye-sensitized solar cell body A can be changed. Here, the phrase “relative position can be changed” indicates that the mounting angle, mounting position, mounting direction, and the like of the reflecting means B and the dye-sensitized solar cell main body A can be changed.

例えば、反射手段Bと色素増感型太陽電池本体Aとの取付け角度を予め調節しておくことにより、色素増感型太陽電池Xの観察者が、色素増感型太陽電池Xの反射手段Bに付された模様が好ましく認識できるように、屋外において太陽光の反射角度を調整することができる。
さらに、光の入射方向の変動に伴い、色素増感型太陽電池本体Aを回転させる等して色素増感型太陽電池本体Xと反射手段Bとの取付け方向を変更し、目視効果を変化させることができる。
そのため、観察者にバラエティーに富んだ目視効果を与えることができる。
For example, the observer of the dye-sensitized solar cell X can adjust the angle of attachment between the reflecting means B and the dye-sensitized solar cell body A in advance so that the observer of the dye-sensitized solar cell X can reflect the reflecting means B of the dye-sensitized solar cell X. The reflection angle of sunlight can be adjusted outdoors so that the pattern attached to can be preferably recognized.
Furthermore, the visual effect is changed by changing the mounting direction of the dye-sensitized solar cell body X and the reflecting means B by rotating the dye-sensitized solar cell body A or the like in accordance with the change in the incident direction of light. be able to.
Therefore, a variety of visual effects can be given to the observer.

前記色素増感型太陽電池本体Aと前記反射手段とは、当接配置する形態、或いは、所定距離だけ離間させた形態の何れであってもよい。前記所定距離は、色素増感型太陽電池本体Aを透過して反射手段Bによって反射した光が、光の入射側に充分出射できる距離であれば好ましい。このとき、反射手段B表面に付された模様等が確実に認識できる。   The dye-sensitized solar cell main body A and the reflecting means may be either in a contact arrangement or in a form separated by a predetermined distance. The predetermined distance is preferably a distance that allows the light transmitted through the dye-sensitized solar cell body A and reflected by the reflecting means B to be sufficiently emitted to the light incident side. At this time, the pattern etc. which were attached | subjected to the reflection means B surface can be recognized reliably.

上述した本発明の色素増感型太陽電池Xの具体例を以下に示す。
透明電極12としてフッ素ドープ酸化スズ(SnO)をコートしたガラス基板50を2枚作製した。
平均粒子径約10nmの酸化チタン(TiO)微粒子を構成材料とする半導体電極11をペースト化し、一方のフッ素ドープSnOコートガラス基板50にスクリーン印刷した。450℃で焼成後、半導体電極11の膜厚が約5μmとなるように調整した。そして、増感色素としてルテニウム錯体(シス−ジシアネート−N,N’−ビス(2、2’−ビピリジル−4、4’−ジカルボキシレート)ルテニウム(II))を、ニトリル系溶媒に所定濃度で溶解し、室温で24時間吸着させた。
Specific examples of the dye-sensitized solar cell X of the present invention described above are shown below.
Two glass substrates 50 coated with fluorine-doped tin oxide (SnO 2 ) as the transparent electrode 12 were produced.
The semiconductor electrode 11 having titanium oxide (TiO 2 ) fine particles having an average particle diameter of about 10 nm as a constituent material was pasted and screen-printed on one fluorine-doped SnO 2 -coated glass substrate 50. After baking at 450 ° C., the thickness of the semiconductor electrode 11 was adjusted to about 5 μm. Then, a ruthenium complex (cis-dicyanate-N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II)) is used as a sensitizing dye in a nitrile solvent at a predetermined concentration. Dissolved and adsorbed at room temperature for 24 hours.

もう一方のフッ素ドープSnOコートガラス基板50に、アイオノマー系の接着剤により粒径約20nmのPt微粒子を接着してこれを対極30とした。 Pt fine particles having a particle diameter of about 20 nm were adhered to the other fluorine-doped SnO 2 coated glass substrate 50 with an ionomer-based adhesive, and this was used as the counter electrode 30.

酸化還元対としてヨウ化物イオン(I /I等)を溶質とし、メトキシプロピオニトリル(MPN)を溶媒として含む電解液20を用いた。 As an oxidation-reduction pair, an electrolytic solution 20 containing iodide ions (I 3 / I etc.) as a solute and methoxypropionitrile (MPN) as a solvent was used.

このように構成された色素増感型太陽電池本体Aは厚さ6mmとなり、可視光透過率は600nmで13.9%、700nmで50.3%であった。また、色素増感型太陽電池本体Aの光電変換効率は4.1%であった。   The dye-sensitized solar cell body A thus configured had a thickness of 6 mm, and the visible light transmittance was 13.9% at 600 nm and 50.3% at 700 nm. Moreover, the photoelectric conversion efficiency of the dye-sensitized solar cell body A was 4.1%.

この色素増感型太陽電池本体Aの裏面(対極30を形成した透明基板50側)に反射手段Bを付設し、本発明の色素増感型太陽電池Xとした。ここで、裏面とは、色素増感型太陽電池本体Aに入射した光が透過する側のことである。
反射手段Bは、アルミニウム板表面をどろ目模様(図2(c)参照)にエンボス加工した。どろ目模様は、例えば直径約10mm以内で高さが1mm程度に隆起した不規則に配置した円形状の構造を有する。そして、アルマイト処理を施し、さらに、反射率を高めるためにニッケルめっきを行った。このようにして構成された反射手段Bの全反射率は可視光領域で75%であった。
Reflecting means B was attached to the back surface of the dye-sensitized solar cell body A (on the transparent substrate 50 side on which the counter electrode 30 was formed) to obtain a dye-sensitized solar cell X of the present invention. Here, the back surface is a side through which light incident on the dye-sensitized solar cell main body A is transmitted.
The reflection means B embossed the surface of the aluminum plate into a slotted pattern (see FIG. 2C). The slotted pattern has, for example, an irregularly arranged circular structure with a diameter of about 10 mm and a height of about 1 mm. Then, alumite treatment was performed, and nickel plating was further performed to increase the reflectance. The total reflectance of the reflection means B configured as described above was 75% in the visible light region.

ここで、AM1.5フィルター付の500Wキセノンランプを20mW/cmの条件で色素増感型太陽電池本体A及び本発明の色素増感型太陽電池Xに照射した。照射方法は、斜め方向から次第に垂直方向になるように行った。
反射手段Bを配設しない色素増感型太陽電池本体Aでは、増感色素と電解液20との色が合わさって、オレンジから茶色系統の発色を呈した。
一方、反射手段Bを配設した色素増感型太陽電池Xでは、不規則に配置してあるどろ目模様が入射光を乱反射し、ルテニウム錯体の赤色の明度及び彩度が向上した。さらに、表面が平面ガラス基板で構成されるにもかかわらず、どろ目模様が立体的に認識され、大理石調の質感を呈した。
Here, a 500 W xenon lamp with an AM 1.5 filter was irradiated to the dye-sensitized solar cell body A and the dye-sensitized solar cell X of the present invention under the condition of 20 mW / cm 2 . The irradiation method was performed so as to gradually become a vertical direction from an oblique direction.
In the dye-sensitized solar cell main body A in which the reflection means B is not provided, the colors of the sensitizing dye and the electrolytic solution 20 are combined to exhibit an orange to brown color.
On the other hand, in the dye-sensitized solar cell X provided with the reflection means B, the irregularly arranged dorsal pattern irregularly reflected the incident light, and the red brightness and saturation of the ruthenium complex were improved. Furthermore, despite the fact that the surface is composed of a flat glass substrate, the slotted pattern was recognized three-dimensionally and presented a marble-like texture.

実施例1に記載の反射手段Bにおいて、アルミニウム板表面の模様をピラミッド状テキスチャー(図2(b)参照)としたこと以外は、実施例1に記載の色素増感型太陽電池Xと同様の構成とした。ピラミッド状テキスチャー構造は、例えば底面積1mm、高さが1mm程度の規則的に配置した構造を有する。 In the reflection means B described in Example 1, the same pattern as that of the dye-sensitized solar cell X described in Example 1 is used except that the pattern on the surface of the aluminum plate is a pyramidal texture (see FIG. 2B). The configuration. The pyramidal texture structure has a regularly arranged structure with a bottom area of 1 mm 2 and a height of about 1 mm, for example.

実施例1に記載の条件でキセノンランプにより色素増感型太陽電池本体A及び本発明の色素増感型太陽電池Xに照射した。   The dye-sensitized solar cell body A and the dye-sensitized solar cell X of the present invention were irradiated with a xenon lamp under the conditions described in Example 1.

反射手段Bを配設しない色素増感型太陽電池本体Aでは、増感色素と電解液20との色が合わさって、オレンジから茶色系統の発色を呈した。
一方、反射手段Bを配設した色素増感型太陽電池Xでは、一定周期で入射光を強く反射し、テキスチャーの頂点で宝石のような光沢を呈し、ピラミッド状テキスチャー構造が立体的に認識された。さらに、ピラミッド状テキスチャー構造のない平坦部では、入射光を反射して明度が向上した。
In the dye-sensitized solar cell main body A in which the reflection means B is not provided, the colors of the sensitizing dye and the electrolytic solution 20 are combined to exhibit an orange to brown color.
On the other hand, in the dye-sensitized solar cell X provided with the reflection means B, the incident light is strongly reflected at a constant period, and the gloss of the jewel is exhibited at the top of the texture, and the pyramidal texture structure is recognized three-dimensionally. It was. Furthermore, in the flat part without the pyramid-like texture structure, the incident light was reflected and the brightness was improved.

実施例1及び2より、予め設定された太陽光や光源の位置で所望の方向に反射するように反射手段Bの模様や反射率を設計することにより、太陽電池という基本機能を備え、かつ、反射光による光の演出が可能になるため、視覚的付加価値が向上してデザイン的に優れた色素増感型太陽電池Xとなることが期待される。   From Examples 1 and 2, by designing the pattern and reflectivity of the reflecting means B so as to reflect in a desired direction at the position of sunlight or light source set in advance, it has a basic function of a solar cell, and Since it is possible to produce light by reflected light, it is expected that the dye-sensitized solar cell X is improved in visual added value and excellent in design.

実施例1に記載の反射手段Bにおいて、アルミニウム板表面にエンボス加工を施さず、アルマイト処理及びニッケルめっきを施し、さらに、スクリーン印刷で幾何学的な模様を印刷したこと以外は、実施例1に記載の色素増感型太陽電池Xと同様の構成とした。幾何学的な模様とは、例えば、格子模様等が例示される。   In the reflection means B described in Example 1, the surface of the aluminum plate was not embossed, anodized and nickel-plated, and the geometric pattern was printed by screen printing. It was set as the structure similar to the dye-sensitized solar cell X of description. Examples of the geometric pattern include a lattice pattern.

実施例1に記載の条件でキセノンランプにより色素増感型太陽電池本体A及び本発明の色素増感型太陽電池Xに照射した。   The dye-sensitized solar cell body A and the dye-sensitized solar cell X of the present invention were irradiated with a xenon lamp under the conditions described in Example 1.

反射手段Bを配設しない色素増感型太陽電池本体Aでは、増感色素と電解液20との色が合わさって、オレンジから茶色系統の発色を呈した。
一方、反射手段Bを配設した色素増感型太陽電池Xでは、赤色の明度及び彩度が向上すると共に、スクリーン印刷した模様が立体的に認識され、装飾タイル調の質感を呈した。
これより、反射手段Bには、表面に凹凸構造を付するだけでなく、模様を印刷した平面模様においても視覚的付加価値が向上してデザイン的に優れた色素増感型太陽電池Xとなることが期待される。
In the dye-sensitized solar cell main body A in which the reflection means B is not provided, the colors of the sensitizing dye and the electrolytic solution 20 are combined to exhibit an orange to brown color.
On the other hand, in the dye-sensitized solar cell X provided with the reflection means B, the lightness and saturation of red are improved, and the screen-printed pattern is recognized three-dimensionally and exhibits a decorative tile-like texture.
As a result, the reflection means B not only has a concavo-convex structure on the surface, but also improves the visual added value in a planar pattern on which a pattern is printed, resulting in a dye-sensitized solar cell X that is excellent in design. It is expected.

実施例3に記載の色素増感型太陽電池Xに対して、AM1.5フィルター付の500W
キセノンランプを100mW/cmの条件で垂直に照射して、光電変換効率を測定した
。尚、光電変換効率の測定は定法により行った。
For the dye-sensitized solar cell X described in Example 3, 500 W with AM 1.5 filter
A xenon lamp was vertically irradiated under the condition of 100 mW / cm 2 to measure the photoelectric conversion efficiency. The photoelectric conversion efficiency was measured by a conventional method.

反射手段Bを配設しない色素増感型太陽電池本体Aでは、光電変換効率は4.1%であ
ったのに対し、反射手段Bを配設した色素増感型太陽電池Xでは、光電変換効率は4.3
%であった。そのため、約5%の光電変換効率の向上が認められた。
これは、反射手段Bで光を反射させることにより色素増感型太陽電池本体A内において往復の光を発電に利用することができるため、光電変換効率が向上したと考えられる。
In the dye-sensitized solar cell main body A in which the reflection means B is not provided, the photoelectric conversion efficiency is 4.1%, whereas in the dye-sensitized solar cell X in which the reflection means B is provided, the photoelectric conversion is performed. Efficiency is 4.3
%Met. Therefore, an improvement in photoelectric conversion efficiency of about 5% was recognized.
It is considered that this is because the photoelectric conversion efficiency is improved because the reciprocating light can be used for power generation in the dye-sensitized solar cell body A by reflecting the light with the reflecting means B.

光路を長くするために、光電極の粒子径を制御した散乱粒子を諸定量含有させたり、透明電極等の粒子径や膜厚を制御することを行っていたが、これらは透光性を著しく損ねるものであった。しかし、本発明のように反射手段Bを配設すると、各電極の粒子径や膜厚を制御するといった煩雑な工程なしに、光電変換効率を向上させることができる。
〔別実施の形態〕
In order to lengthen the optical path, a certain amount of scattering particles whose particle diameter of the photoelectrode was controlled were included, and the particle diameter and film thickness of the transparent electrode and the like were controlled. It was detrimental. However, when the reflecting means B is provided as in the present invention, the photoelectric conversion efficiency can be improved without a complicated process of controlling the particle diameter and film thickness of each electrode.
[Another embodiment]

上述した色素増感型太陽電池本体Aを、光反射性を有する構造物に取り付けることが可能である。構造物は、住宅・ビル・広告塔等が好適に例示され、取付け面は、ビルの外壁面・室内の壁面・家屋の屋根等が挙げられる。
つまり、上述した実施例1〜4で記載した反射手段Bの代わりに、光反射性を有する構造物により色素増感型太陽電池本体Aを透過した光を反射し、光の入射側に出射するように構成する。
It is possible to attach the dye-sensitized solar cell main body A described above to a structure having light reflectivity. The structure is preferably exemplified by a house, a building, an advertising tower, and the like, and examples of the mounting surface include an outer wall surface of the building, an indoor wall surface, and a roof of a house.
That is, instead of the reflection means B described in the first to fourth embodiments, the light transmitted through the dye-sensitized solar cell main body A is reflected by a structure having light reflectivity and emitted to the light incident side. Configure as follows.

例えば、光反射性を有する白色タイルが壁面に配設してあるビルの壁面に色素増感型太陽電池本体Aを付設した。このとき、色素増感型太陽電池本体Aと構造物とを離間させる所定距離は100mmとした。
このように構成すると、太陽光が色素増感型太陽電池本体Aに入射した透過光がビルの白色タイルで反射され、光の入射側に出射する。このとき、出射した光は、明度及び彩度の高い赤色を呈した。
For example, the dye-sensitized solar cell body A is attached to the wall surface of a building in which white tiles having light reflectivity are arranged on the wall surface. At this time, the predetermined distance for separating the dye-sensitized solar cell main body A and the structure was 100 mm.
If comprised in this way, the transmitted light which sunlight injected into the dye-sensitized solar cell main body A will be reflected by the white tile of a building, and will radiate | emit to the incident side of light. At this time, the emitted light was red with high brightness and saturation.

つまり、色素増感型太陽電池本体Aを、光反射性を有する構造物に取り付けることにより、色素増感型太陽電池本体Aを透過して構造物によって反射した光が、光の入射側に出射するように色素増感型太陽電池本体Aを配設することができる。そのため、仮に白色タイルに模様が付されている場合であっても、この模様が確実に認識できる。尚、前記所定距離は小さい方が好ましく、100mm以下、より好ましくは、10mm、5mm、2mm以下とする。   That is, by attaching the dye-sensitized solar cell body A to a structure having light reflectivity, the light transmitted through the dye-sensitized solar cell body A and reflected by the structure is emitted to the light incident side. Thus, the dye-sensitized solar cell main body A can be disposed. Therefore, even if a pattern is added to the white tile, this pattern can be reliably recognized. The predetermined distance is preferably smaller, and is 100 mm or less, more preferably 10 mm, 5 mm, 2 mm or less.

本発明の色素増感型太陽電池の概略図Schematic of the dye-sensitized solar cell of the present invention 反射手段に施す模様の例を示した図The figure which showed the example of the pattern given to a reflection means

X 色素増感型太陽電池
A 色素増感型太陽電池本体
B 反射手段
F2 受光面
10 光電極
11 半導体電極
12 透明電極
20 電解質
30 対極
X Dye-sensitized solar cell A Dye-sensitized solar cell body B Reflecting means F2 Light-receiving surface 10 Photoelectrode 11 Semiconductor electrode 12 Transparent electrode 20 Electrolyte 30 Counter electrode

Claims (6)

受光面を有すると共に色素を含有する半導体電極と前記受光面上に隣接配置された透明電極とを有する光電極、及び、電解質を介して前記半導体電極と対向配置してある対極を有する色素増感型太陽電池本体と、前記色素増感型太陽電池本体を透過した光を反射する反射手段とを有し、
前記色素増感型太陽電池本体および前記反射手段は所定距離だけ離間配置してあり、
前記反射手段は前記色素増感型太陽電池本体に対して前記対極の側に配設し、前記色素増感型太陽電池本体を前記反射手段に対して取付け角度を変更可能に取り付け、
前記受光面から入射して前記色素増感型太陽電池本体を透過した光が前記反射手段で反射し、この反射した光が、前記色素増感型太陽電池本体の前記対極側から入射して前記色素増感型太陽電池本体を透過する色素増感型太陽電池。
A dye electrode sensitized having a photoelectrode having a semiconductor electrode having a light receiving surface and containing a dye and a transparent electrode adjacently disposed on the light receiving surface, and a counter electrode disposed opposite to the semiconductor electrode via an electrolyte A solar cell body, and reflecting means for reflecting the light transmitted through the dye-sensitized solar cell body,
The dye-sensitized solar cell body and the reflecting means Ri Thea and spaced by a predetermined distance,
The reflecting means is disposed on the counter electrode side with respect to the dye-sensitized solar cell main body, and the dye-sensitized solar cell main body is attached to the reflecting means so that the mounting angle can be changed,
Light incident from the light receiving surface and transmitted through the dye-sensitized solar cell body is reflected by the reflecting means, and the reflected light enters from the counter electrode side of the dye-sensitized solar cell body and dye-sensitized solar cells you pass through the dye-sensitized solar cell body.
前記反射手段が、前記色素増感型太陽電池本体側の表面に模様を形成する凹凸を有する請求項1に記載の色素増感型太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein the reflecting means has unevenness forming a pattern on the surface of the dye-sensitized solar cell main body side. 前記反射手段が、前記色素増感型太陽電池本体側の表面に幾何学的な模様を付してある請求項1に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the reflecting means has a geometric pattern on the surface of the dye-sensitized solar cell main body. 前記反射手段は、前記色素増感型太陽電池本体に対する相対位置を変更可能に取付けてある請求項1〜3の何れか一項に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the reflecting means is attached so that a relative position with respect to the dye-sensitized solar cell main body can be changed. 前記反射手段は、前記色素増感型太陽電池本体と別個に設けられ、前記色素増感型太陽電池本体を回転させ、前記色素増感型太陽電池本体に対する前記相対位置を変更可能に取り付けられる請求項4に記載の色素増感型太陽電池。 It said reflecting means, the dye-sensitized solar cell body and provided separately, rotates the dye-sensitized solar cell body, mounted for changing the relative position with respect to the dye-sensitized solar cell body according Item 5. The dye-sensitized solar cell according to Item 4 . 受光面を有すると共に色素を含有する半導体電極と前記受光面上に隣接配置された透明電極とを有する光電極、及び、電解質を介して前記半導体電極と対向配置してある対極を有する色素増感型太陽電池本体を、室内の壁面であり光反射性を有する構造物に取り付けるに際し、
前記色素増感型太陽電池本体および前記構造物を所定距離だけ離間配置し、
前記構造物を前記色素増感型太陽電池本体に対して前記対極の側になるように配設し、
前記色素増感型太陽電池本体を前記構造物に対して取付け角度を変更可能に取り付け、
前記受光面から入射して前記色素増感型太陽電池本体を透過した光が前記構造物で反射し、この反射した光が、前記色素増感型太陽電池本体の前記対極側から入射して前記色素増感型太陽電池本体を透過するように取付ける色素増感型太陽電池本体の取付け方法。
A dye electrode sensitized having a photoelectrode having a semiconductor electrode having a light receiving surface and containing a dye and a transparent electrode adjacently disposed on the light receiving surface, and a counter electrode disposed opposite to the semiconductor electrode via an electrolyte When attaching the solar cell body to the indoor wall surface and light reflecting structure,
The dye-sensitized solar cell body and the structure are spaced apart by a predetermined distance,
The structure is disposed on the counter electrode side with respect to the dye-sensitized solar cell body,
Attaching the dye-sensitized solar cell body to the structure so that the attachment angle can be changed,
The light incident from the light receiving surface and transmitted through the dye-sensitized solar cell body is reflected by the structure, and the reflected light is incident from the counter electrode side of the dye-sensitized solar cell body and A method of attaching a dye-sensitized solar cell body that is attached so as to pass through the dye-sensitized solar cell body.
JP2004202385A 2004-07-08 2004-07-08 Dye-sensitized solar cell and method of attaching dye-sensitized solar cell Active JP4936648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202385A JP4936648B2 (en) 2004-07-08 2004-07-08 Dye-sensitized solar cell and method of attaching dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202385A JP4936648B2 (en) 2004-07-08 2004-07-08 Dye-sensitized solar cell and method of attaching dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006024477A JP2006024477A (en) 2006-01-26
JP4936648B2 true JP4936648B2 (en) 2012-05-23

Family

ID=35797594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202385A Active JP4936648B2 (en) 2004-07-08 2004-07-08 Dye-sensitized solar cell and method of attaching dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4936648B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258120A (en) * 2006-03-25 2007-10-04 Sekisui Jushi Co Ltd Dye-sensitized solar cell, and road sign
JP2008111321A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Building board with solar cell
JP2008112705A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2008112704A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP5108278B2 (en) * 2006-10-31 2012-12-26 ケイミュー株式会社 Building board with solar cell
JP5173201B2 (en) * 2007-01-23 2013-04-03 トヨタホーム株式会社 SOLAR CELL DEVICE AND BUILDING WITH SAME
JP5346162B2 (en) * 2007-09-28 2013-11-20 ケイミュー株式会社 Wall building materials
KR101135476B1 (en) 2010-11-16 2012-04-13 삼성에스디아이 주식회사 Dye-sensitized solar cell
JP2013224537A (en) * 2012-04-20 2013-10-31 Taisei Corp Building board with solar cell
JP7106900B2 (en) * 2018-03-13 2022-07-27 日本精工株式会社 Display device with photoelectric conversion function

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JPS6251766U (en) * 1985-09-17 1987-03-31
US5626687A (en) * 1995-03-29 1997-05-06 The United States Of America As Represented By The United States Department Of Energy Thermophotovoltaic in-situ mirror cell
JP3778695B2 (en) * 1998-05-28 2006-05-24 三洋電機株式会社 Solar cell device
JP4422236B2 (en) * 1999-06-07 2010-02-24 株式会社リコー Photoelectric conversion element and manufacturing method thereof
JP2002008740A (en) * 2000-06-22 2002-01-11 Yamaha Corp Dye sensitized photocell and its manufacturing method
JP2002158367A (en) * 2000-11-17 2002-05-31 Sanyo Electric Co Ltd Solar battery module
JP4046974B2 (en) * 2001-10-31 2008-02-13 株式会社豊田中央研究所 Photoelectrode and dye-sensitized solar cell provided with the same
JP2003282918A (en) * 2002-03-27 2003-10-03 Sanko Seiki Kk Mobile solar cell generating set

Also Published As

Publication number Publication date
JP2006024477A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
Tulloch Light and energy—dye solar cells for the 21st century
JP4362111B2 (en) Dye-sensitized solar cell and manufacturing method thereof
JPH11273753A (en) Coloring matter sensitizing type photocell
US20050166958A1 (en) Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
US8962982B2 (en) Dye-sensitized solar cell
JP4046974B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
KR20050030759A (en) Dye-sensitized solar cell
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP4936648B2 (en) Dye-sensitized solar cell and method of attaching dye-sensitized solar cell
KR102000772B1 (en) Dye-sensitized solar cell including light collecting apparatus panel
TW201304153A (en) Composite glass plate
JP2002050413A (en) Light electrode, and solar cell using the same
Otsuka et al. Design and synthesis of near-infrared-active Heptamethine–Cyanine dyes to suppress aggregation in a dye-sensitized porous zinc oxide solar cell
JP2004165015A (en) Counter electrode and dye-sensitized solar cell equipped therewith
CN101509306B (en) Photoelectric integration construction material based on dye sensitization solar energy cell
KR20130030897A (en) Dye-sensitized solar cell including scattering layer containing colloid crystal, and preparing method of the same
JP2008123894A (en) Photoelectric conversion element module
KR100984932B1 (en) Dye-sensitized solar cell and method of manufacturing the same
KR101068436B1 (en) Photochromic dye for dye-sensitized solar cell and dye-sensitized solar cell using them
Kato et al. Demonstration of 12 Years Outdoor Working of Highly Durable Dye-Sensitized Solar Cell Modules Employing Hydrophobic Surface Passivation and Suppression of Biased Distribution of Iodine Ions
JP2008111321A (en) Building board with solar cell
CN202949381U (en) Photovoltaic cell device for photovoltaic solar building integration
US20090266417A1 (en) Dye sensitized solar cell
Babkair et al. Dye sensitized solar cells based on double-layered titanium dioxide and their evaluation in tropical hot desert climate of Saudi Arabia
KR101601965B1 (en) Photoelectrode for dye-sensitized solar cell, and preparing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250