JP2003249275A - Dye sensitized solar cell and its manufacturing method - Google Patents

Dye sensitized solar cell and its manufacturing method

Info

Publication number
JP2003249275A
JP2003249275A JP2002046809A JP2002046809A JP2003249275A JP 2003249275 A JP2003249275 A JP 2003249275A JP 2002046809 A JP2002046809 A JP 2002046809A JP 2002046809 A JP2002046809 A JP 2002046809A JP 2003249275 A JP2003249275 A JP 2003249275A
Authority
JP
Japan
Prior art keywords
layer
dye
solar cell
porous
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002046809A
Other languages
Japanese (ja)
Other versions
JP4312991B2 (en
Inventor
Ryosuke Yamanaka
良亮 山中
Reigen Kan
礼元 韓
Takehito Mitachi
武仁 見立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002046809A priority Critical patent/JP4312991B2/en
Publication of JP2003249275A publication Critical patent/JP2003249275A/en
Application granted granted Critical
Publication of JP4312991B2 publication Critical patent/JP4312991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient solar cell of which the light absorption wavelength range is large, and the light absorption amount is much. <P>SOLUTION: With respect to the dye sensitized solar cell in which a porous photoelectric conversion layer that is constituted by making a porous semiconductor layer absorb at least two kinds of coloring matter of which the optimum sensitivity wavelength range of an absorption spectrum differs, a conductive layer, and a counter electrode are laminated one by one on a conductive substrate, the porous photoelectric conversion layer has the multi-layer structure in the shape of layer parallel to the conductive substrate and is absorbed with the coloring matter, and at least one layer among them is the layer that absorbs one kind of the coloring matter. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池およびその製造方法に関する。さらに詳しくは、本発
明は、多孔性半導体層に少なくとも2種類の分光増感色
素を層状に吸着させた多孔性光電変換層を備えた、広い
光吸収波長領域を有する色素増感型太陽電池およびその
製造方法に関する。
TECHNICAL FIELD The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same. More specifically, the present invention provides a dye-sensitized solar cell having a wide light absorption wavelength region, which includes a porous photoelectric conversion layer in which at least two kinds of spectral sensitizing dyes are adsorbed in a layered form on a porous semiconductor layer. The manufacturing method is related.

【0002】[0002]

【従来の技術】色素増感型太陽電池は、有機系太陽電池
の中で高変換効率を示すため、広く注目されている。こ
の色素増感型太陽電池の構造および動作原理について、
具体的に説明する。透明支持体の表面に形成された透明
導電体上に、酸化チタンなどの多孔性半導体層を形成
し、その多孔性半導体層に分光増感色素(光増感剤とし
て機能する色素であり、単に「色素」とも称する)を吸
着させ、多孔性光電変換層を形成する。他方、対極に白
金膜などの触媒をコーティングし、多孔性半導体層と白
金膜とが対向するように透明支持体と対極とを重ね合わ
せ、その間に導電層として電解液を注入し、透明支持体
と対極の側面をエポキシ樹脂などの封止材で封止するこ
とにより、色素増感型太陽電池を得る。
2. Description of the Related Art Dye-sensitized solar cells have been widely noticed because of their high conversion efficiency among organic solar cells. Regarding the structure and operating principle of this dye-sensitized solar cell,
This will be specifically described. On the transparent conductor formed on the surface of the transparent support, a porous semiconductor layer such as titanium oxide is formed, and the porous semiconductor layer has a spectral sensitizing dye (a dye that functions as a photosensitizer, (Also referred to as "dye") is adsorbed to form a porous photoelectric conversion layer. On the other hand, the counter electrode is coated with a catalyst such as a platinum film, and the transparent support and the counter electrode are overlapped so that the porous semiconductor layer and the platinum film face each other, and an electrolytic solution is injected as a conductive layer between them to form a transparent support. By sealing the side surface of the counter electrode with a sealing material such as epoxy resin, a dye-sensitized solar cell is obtained.

【0003】このようにして得られた色素増感型太陽電
池において、多孔性半導体層と色素とからなる多孔性光
電変換層(半導体電極)に光が照射されると、多孔性光
電変換層で電子が発生し、この電子が電気回路を通って
対極に移動し、対極に移動した電子が導電層をイオンと
して移動して多孔性光電変換層に戻り、このようなサイ
クルが繰り返されることにより電気エネルギーが取り出
される。
In the dye-sensitized solar cell thus obtained, when the porous photoelectric conversion layer (semiconductor electrode) composed of the porous semiconductor layer and the dye is irradiated with light, the porous photoelectric conversion layer is formed. Electrons are generated, the electrons move to the counter electrode through the electric circuit, and the electrons that have moved to the counter electrode move as ions in the conductive layer and return to the porous photoelectric conversion layer. Energy is extracted.

【0004】色素増感型太陽電池において光電変換に作
用する多孔性光電変換層としては、可視光領域に吸収を
もつ色素を表面に吸着させた多孔性半導体が用いられて
いる。例えば、特許第2664194号公報には、遷移
金属錯体からなる色素を半導体表面に吸着させた金属酸
化物半導体を用いた色素増感型太陽電池が開示されてい
る。しかし、この色素増感型太陽電池は、単一の色素を
用いるために、光電交換に作用する色素の吸収波長領域
が狭く、シリコン系太陽電池と比較して光電交換効率が
低いという問題があった。
In the dye-sensitized solar cell, as a porous photoelectric conversion layer that acts on photoelectric conversion, a porous semiconductor having a surface having a dye having an absorption in the visible light region adsorbed is used. For example, Japanese Patent No. 2664194 discloses a dye-sensitized solar cell using a metal oxide semiconductor in which a dye composed of a transition metal complex is adsorbed on the semiconductor surface. However, since this dye-sensitized solar cell uses a single dye, it has a problem that the absorption wavelength region of the dye that acts on photoelectric exchange is narrow and the photoelectric conversion efficiency is lower than that of a silicon-based solar cell. It was

【0005】また、特開2000−243466号公報
には、複数の色素を層状に吸着させた構造の多孔性光電
変換層を有する色素増感型太陽電池が開示されている。
この色素増感型太陽電池は、次のようにして製造され
る。まず、オリゴフェニレン色素のポリフェニル(短波
長吸収:紫外光〜可視光)を酸化チタン粒子に吸着させ
乾燥させたものを、アルコールに溶解したバインダーと
混合することによりペースト化し、透明導電膜上にスク
リーン印刷により成膜し乾燥させる。その後、キサンテ
ン系色素のローダミンB(中波長吸収:可視光)を用い
て、前記と同様にしてペーストを調製し、前記の工程で
形成した膜上に成膜し乾燥させる。さらに、シアニン系
色素のIR140(長波長吸収:可視光〜赤外光)を用
いて、前記と同様にしてペーストを調製し、前記の工程
で形成した膜上に成膜し乾燥させる。このようにして、
合計3種類の色素が層状に吸着した多孔性光電変換層を
有する色素増感型太陽電池が得られる。
Further, Japanese Patent Laid-Open No. 2000-243466 discloses a dye-sensitized solar cell having a porous photoelectric conversion layer having a structure in which a plurality of dyes are adsorbed in layers.
This dye-sensitized solar cell is manufactured as follows. First, the oligophenylene dye polyphenyl (short wavelength absorption: ultraviolet light to visible light) is adsorbed on titanium oxide particles and dried, and the mixture is mixed with a binder dissolved in alcohol to form a paste, which is then formed on a transparent conductive film. A film is formed by screen printing and dried. Then, a paste is prepared in the same manner as above using the xanthene dye Rhodamine B (medium wavelength absorption: visible light), and the paste is formed on the film formed in the above step and dried. Further, a paste is prepared in the same manner as above using IR140 (long wavelength absorption: visible light to infrared light) which is a cyanine dye, and is formed on the film formed in the above step and dried. In this way
A dye-sensitized solar cell having a porous photoelectric conversion layer in which a total of three kinds of dyes are adsorbed in layers can be obtained.

【0006】この色素増感型太陽電池の製造方法では、
酸化物半導体(酸化チタン)粒子に色素を吸着させ、乾
燥させた後、アルコールに溶解したバインダーと混合し
ペースト化したものを使用して成膜・乾燥させる工程を
繰り返すことにより、それぞれの色素を吸着させた酸化
物半導体層を形成している。このような製造方法では、
焼結工程を行っていないため、酸化物半導体粒子間の導
電パスに大きな抵抗が生じ、それぞれの色素が光を吸収
しても、有効に光電流を取り出すことができなかった。
また、作業工程数が多く、それに伴って用いるペースト
製造装置や成膜装置などの数が多くなることから、コス
ト高になるという問題もあった。
In this method for producing a dye-sensitized solar cell,
Dyes are adsorbed on oxide semiconductor (titanium oxide) particles, dried, and then mixed with a binder dissolved in alcohol to form a paste, and the steps of forming a film and drying are repeated to obtain each dye. An adsorbed oxide semiconductor layer is formed. In such a manufacturing method,
Since the sintering step was not performed, a large resistance was generated in the conductive path between the oxide semiconductor particles, and even if each of the dyes absorbed light, the photocurrent could not be effectively extracted.
In addition, the number of working steps is large, and the number of paste manufacturing apparatuses, film forming apparatuses, and the like used accordingly increases, which causes a problem of high cost.

【0007】また、複数の色素を層状に吸着させた構造
の多孔性光電変換層を有する色素増感型太陽電池を得る
方法として、1種類の色素を吸着させた多孔性光電変換
層上に、電気化学的手法を用いて別の色素を吸着させる
方法が考えられる。しかし、最初に吸着させた色素上に
別の色素を吸着させて、2層目の光電変換層を形成する
ことになるので、異なる色素が吸着した光電変換層の接
触界面において、多孔性半導体層のキャリア輸送抵抗が
大きくなるなどの悪影響が生じ、色素増感型太陽電池の
性能の低下につながるという問題があった。また、電気
化学的手法により2層目の光電変換層を形成する際に、
先に吸着させた色素が脱着し、1層および2層とも同一
の色素が吸着するという問題があった。色素増感型太陽
電池においては、色素の光吸収範囲が限定され、可視光
から近赤外領域の太陽光を有効に吸収できないため、シ
リコン系太陽電池のように高変換効率が得られ難いとい
う問題があった。
Further, as a method for obtaining a dye-sensitized solar cell having a porous photoelectric conversion layer having a structure in which a plurality of dyes are adsorbed in layers, one kind of dye is adsorbed on the porous photoelectric conversion layer. A method of adsorbing another dye by using an electrochemical method can be considered. However, since another dye is adsorbed on the dye that is first adsorbed to form the second photoelectric conversion layer, the porous semiconductor layer is formed at the contact interface of the photoelectric conversion layers on which different dyes are adsorbed. However, there is a problem in that the carrier transport resistance of No. 2 becomes large and the performance of the dye-sensitized solar cell is deteriorated. When the second photoelectric conversion layer is formed by an electrochemical method,
There is a problem that the previously adsorbed dye is desorbed and the same dye is adsorbed in both the first layer and the second layer. In dye-sensitized solar cells, the light absorption range of the dye is limited, and sunlight in the visible to near-infrared region cannot be effectively absorbed, so it is difficult to obtain high conversion efficiency like silicon-based solar cells. There was a problem.

【0008】[0008]

【発明が解決しようとする課題】本発明は、光吸収波長
領域が広く、かつ光吸収量が多い高性能な色素増感型太
陽電池を提供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-performance dye-sensitized solar cell having a wide light absorption wavelength region and a large light absorption amount.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を行った結果、導電性支持体上
に、吸収スペクトルにおける最大感度波長領域が異なる
少なくとも2種類の色素を多孔性半導体層に吸着させた
多孔性光電変換層、導電層および対極が順次積層された
色素増感型太陽電池において、多孔性光電変換層が、導
電性支持体と平行な層形状で色素を吸着した多層構造で
あり、その少なくとも1層が1種類の色素を吸着した層
とすることにより、光吸収波長領域が広く、かつ光吸収
量が多い高性能な色素増感型太陽電池が得られることを
見出し、本発明を完成するに到った。また、多層構造の
多孔性半導体層の一部を多孔性半導体層とは異なる化合
物を用いて形成することにより、多孔性半導体層の任意
の層領域に色素を選択的に吸着させることができること
を見出し、本発明を完成するに到った。
As a result of intensive studies to solve the above problems, the present inventors have found that at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are formed on a conductive support. In a dye-sensitized solar cell in which a porous photoelectric conversion layer in which a porous semiconductor layer is adsorbed, a conductive layer, and a counter electrode are sequentially laminated, the porous photoelectric conversion layer is a dye in a layer shape parallel to the conductive support. A multilayer dye-sensitized solar cell having a wide light absorption wavelength region and a large amount of light absorption is obtained by having a multilayer structure in which at least one layer has adsorbed one kind of dye. The present invention has been completed and the present invention has been completed. Further, by forming a part of the porous semiconductor layer having a multi-layer structure using a compound different from that of the porous semiconductor layer, it is possible to selectively adsorb the dye to any layer region of the porous semiconductor layer. Heading, it came to complete this invention.

【0010】本発明によれば、導電性支持体上に、吸収
スペクトルにおける最大感度波長領域が異なる少なくと
も2種類の色素を多孔性半導体層に吸着させた多孔性光
電変換層、導電層および対極が順次積層された色素増感
型太陽電池において、多孔性光電変換層が、導電性支持
体と平行な層形状で色素を吸着した多層構造であり、そ
の少なくとも1層が1種類の色素を吸着した層であるこ
とを特徴とする色素増感型太陽電池が提供される。
According to the present invention, a porous photoelectric conversion layer, a conductive layer and a counter electrode in which at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are adsorbed on a porous semiconductor layer are formed on a conductive support. In the dye-sensitized solar cell that is sequentially laminated, the porous photoelectric conversion layer has a multilayer structure in which dyes are adsorbed in a layer shape parallel to the conductive support, and at least one layer adsorbs one kind of dye. Provided is a dye-sensitized solar cell, which is a layer.

【0011】また、本発明によれば、(a)導電性支持
体上に、皮膜層を有さない半導体粒子および皮膜層を有
する半導体粒子のそれぞれからなる、多層構造の多孔性
半導体層を形成し、(b)吸収スペクトルにおける最大
感度波長領域が異なる少なくとも2種類の色素を別々に
含む溶液を調製し、得られた溶液に多孔性半導体層を浸
漬して、導電性支持体と平行な層形状で多孔性半導体層
に色素を吸着させる工程と、皮膜層を有する半導体粒子
からなる多孔性半導体層の皮膜層を除去する工程とを繰
り返して、導電性支持体と平行な層形状で色素を吸着し
た多層構造であり、その少なくとも1層が1種類の色素
を吸着した層である多孔性光電変換層を形成し、(c)
導電性支持体上の多孔性光電変換層と対極とを対向さ
せ、それらの間に導電層を充填し、(d)任意に封止材
を用いて導電層を封止して、色素増感型太陽電池を製造
することを特徴とする色素増感型太陽電池の製造方法が
提供される。
Further, according to the present invention, (a) a porous semiconductor layer having a multi-layer structure is formed on a conductive support, the semiconductor particles having no coating layer and the semiconductor particles having a coating layer. Then, (b) a solution separately containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum is prepared, and the porous semiconductor layer is immersed in the obtained solution to form a layer parallel to the conductive support. The dye is adsorbed in a layer shape parallel to the conductive support by repeating the step of adsorbing the dye to the porous semiconductor layer in a shape and the step of removing the film layer of the porous semiconductor layer composed of the semiconductor particles having the film layer. Forming a porous photoelectric conversion layer having an adsorbed multilayer structure, at least one layer of which adsorbs one kind of dye;
The porous photoelectric conversion layer on the conductive support and the counter electrode are opposed to each other, the conductive layer is filled between them, and (d) the conductive layer is optionally sealed with a sealing material to dye sensitize. Provided is a method for producing a dye-sensitized solar cell, which comprises producing a type solar cell.

【0012】[0012]

【発明の実施の形態】本発明の色素増感型太陽電池(以
下、「太陽電池」と称する)は、導電性支持体上に、吸
収スペクトルにおける最大感度波長領域が異なる少なく
とも2種類の色素を多孔性半導体層に吸着させた多孔性
光電変換層、導電層および対極が順次積層された太陽電
池において、多孔性光電変換層が、導電性支持体と平行
な層形状で色素を吸着した多層構造であり、その少なく
とも1層が1種類の色素を吸着した層であることを特徴
とする。
BEST MODE FOR CARRYING OUT THE INVENTION The dye-sensitized solar cell of the present invention (hereinafter referred to as "solar cell") comprises at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum on a conductive support. In a solar cell in which a porous photoelectric conversion layer adsorbed on a porous semiconductor layer, a conductive layer and a counter electrode are sequentially laminated, the porous photoelectric conversion layer has a multilayer structure in which a dye is adsorbed in a layer shape parallel to the conductive support. And that at least one layer is a layer on which one type of dye is adsorbed.

【0013】本発明における「最大感度波長領域」は、
色素の光吸収スペクトルのうち、最大の吸収感度を示す
ピーク波長(最大光吸収波長)において、ピーク波長を
中心として吸収感度がピーク波長の−20%となる波長
領域、およびピーク波長を中心とする50nm幅の波長
領域のいずれか広い方を意味する。
The "maximum sensitivity wavelength region" in the present invention is
In the light absorption spectrum of the dye, in the peak wavelength (maximum light absorption wavelength) showing the maximum absorption sensitivity, the wavelength region in which the absorption sensitivity is -20% of the peak wavelength with the peak wavelength as the center and the peak wavelength as the center It means the wider one of the wavelength regions of 50 nm width.

【0014】本発明の好適な実施形態について、図面を
用いて説明する。なお、この実施形態は一例であり、種
々の形態での実施が本発明の範囲内で可能である。図1
は、本発明の太陽電池の層構成を示す要部の概略断面図
である。図中、1は透明支持体、2は透明導電体、3は
多孔性光電変換層、4は第1色素が吸着した領域、5は
第2色素が吸着した領域、6は導電層(酸化還元性電解
液)、7は対極、8は白金膜、9は封止材である。透明
支持体1と透明導電体2とを合わせて、導電性支持体1
0ともいう。
A preferred embodiment of the present invention will be described with reference to the drawings. It should be noted that this embodiment is an example, and various embodiments can be implemented within the scope of the present invention. Figure 1
FIG. 3 is a schematic cross-sectional view of a main part showing a layer structure of a solar cell of the present invention. In the figure, 1 is a transparent support, 2 is a transparent conductor, 3 is a porous photoelectric conversion layer, 4 is a region where the first dye is adsorbed, 5 is a region where the second dye is adsorbed, and 6 is a conductive layer (oxidation-reduction). Electrolyte solution), 7 is a counter electrode, 8 is a platinum film, and 9 is a sealing material. The transparent support 1 and the transparent conductor 2 are combined to form a conductive support 1
Also called 0.

【0015】導電性支持体10と対極7は、少なくとも
一方が透明であり、金属板基板、またはガラス板および
透明プラスチックシートなどの基板上に金、銀、アルミ
ニウム、インジウム、酸化インジウムスズ(ITO膜)
および酸化スズなどの導電膜が形成されたものから構成
される。基板上に導電膜を形成する方法としては、材料
となる成分の真空蒸着法、スパッタリング法、CVD
法、PVD法などの気相法、ゾルゲル法によるコーティ
ング法などの公知の方法が挙げられる。図1における導
電性支持体10は透明であり、上記の基板からなる透明
支持体1と上記の導電膜からなる透明導電体2から構成
されている。また、対極7には、触媒として作用する白
金膜8やカーボン膜などがコーティングされていてもよ
い。
At least one of the conductive support 10 and the counter electrode 7 is transparent, and gold, silver, aluminum, indium, indium tin oxide (ITO film) is formed on a metal plate substrate or a substrate such as a glass plate and a transparent plastic sheet. )
And a film on which a conductive film such as tin oxide is formed. As a method of forming a conductive film on a substrate, a vacuum evaporation method, a sputtering method, a CVD method of a component serving as a material are used.
Examples of the known method include a vapor phase method such as a PVD method, a PVD method, and a coating method using a sol-gel method. The conductive support 10 in FIG. 1 is transparent and is composed of a transparent support 1 made of the above substrate and a transparent conductor 2 made of the above conductive film. Further, the counter electrode 7 may be coated with a platinum film 8 or a carbon film which acts as a catalyst.

【0016】多孔性光電変換層3は、導電性支持体と平
行な層形状で、吸収スペクトルにおける最大感度波長領
域が異なる少なくとも2種類の色素を多孔性半導体層に
吸着した多層構造であり、その少なくとも1層が1種類
の色素を吸着した層である。
The porous photoelectric conversion layer 3 has a layer shape parallel to the conductive support and has a multilayer structure in which at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are adsorbed on the porous semiconductor layer. At least one layer is a layer in which one type of dye is adsorbed.

【0017】多孔性半導体層は、例えば、TiO2、S
nO2、ZnO、Nb26、ZrO2、CeO2、WO3
SiO2、Al23、NiO、CuAlO2、SrCu2
2などの酸化物またはこれら複合酸化物から形成さ
れ、これらの中でも酸化チタン(TiO2)が特に好ま
しい。その形態としては粒子状、膜状などが挙げられ、
導電性支持体10上に形成された膜状の多孔性半導体が
特に好ましい。
The porous semiconductor layer is made of, for example, TiO 2 , S.
nO 2 , ZnO, Nb 2 O 6 , ZrO 2 , CeO 2 , WO 3 ,
SiO 2 , Al 2 O 3 , NiO, CuAlO 2 , SrCu 2
It is formed from an oxide such as O 2 or a composite oxide thereof, and among these, titanium oxide (TiO 2 ) is particularly preferable. Examples of the form include particulate form and film form,
A film-like porous semiconductor formed on the conductive support 10 is particularly preferable.

【0018】導電性支持体10上に膜状の多孔性半導体
層を形成する方法としては、特に限定されず、公知の方
法が挙げられる。具体的には、(1)半導体粒子を含有
する懸濁液を導電性支持体上に塗布し、乾燥および焼成
して多孔性半導体層を形成する方法、(2)所望の原料
ガスを用いたCVD法およびMOCVD法などにより、
導電性支持体上に多孔性半導体層を形成する方法、
(3)原料固体を用いたPVD法、蒸着法、スパッタリ
ング法などにより、導電性支持体上に多孔性半導体層を
形成する方法、(4)ゾルーゲル法、電気化学的な酸化
還元反応を利用した方法などにより、導電性支持体上に
多孔性半導体層を形成する方法などが挙げられる。
The method for forming the film-like porous semiconductor layer on the conductive support 10 is not particularly limited and may be a known method. Specifically, (1) a method of forming a porous semiconductor layer by applying a suspension containing semiconductor particles on a conductive support, and drying and firing the solution, (2) using a desired source gas By the CVD method and the MOCVD method,
A method of forming a porous semiconductor layer on a conductive support,
(3) A method of forming a porous semiconductor layer on a conductive support by a PVD method, a vapor deposition method, a sputtering method, etc. using a raw material solid, (4) a sol-gel method, and an electrochemical redox reaction were used. Examples of the method include a method of forming a porous semiconductor layer on a conductive support by a method.

【0019】多孔性半導体層の膜厚は、特に限定される
ものではないが、光透過性、光電変換効率などの観点か
ら、0.5〜20μm程度が好ましい。また、光電変換
効率を向上させるためには、より多くの色素を多孔性半
導体層に吸着させることが必要であり、このために多孔
性半導体の比表面積は大きなものが好ましく、10〜2
00m2/g程度が好ましい。
The thickness of the porous semiconductor layer is not particularly limited, but is preferably about 0.5 to 20 μm from the viewpoint of light transmittance, photoelectric conversion efficiency and the like. Further, in order to improve the photoelectric conversion efficiency, it is necessary to adsorb a larger amount of dye onto the porous semiconductor layer. Therefore, it is preferable that the porous semiconductor has a large specific surface area.
It is preferably about 00 m 2 / g.

【0020】上記の多孔性半導体層の形成方法(1)に
ついて、具体的に説明する。材料となる半導体粒子を分
散剤、溶剤などに加え、分散させて懸濁液(ペースト)
を調製し、その懸濁液を導電性支持体10上に塗布す
る。塗布方法としては、ドクターブレード法、スキージ
法、スピンコート法、スクリーン印刷法など公知の方法
が挙げられる。
The method (1) for forming the above-mentioned porous semiconductor layer will be specifically described. Suspension by adding semiconductor particles as a material to a dispersant, solvent, etc. and dispersing
Is prepared, and the suspension is applied onto the conductive support 10. Examples of the coating method include known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method.

【0021】その後、塗膜を乾燥および焼成することに
より、多孔性半導体層を得る。乾燥・焼成においては、
使用する導電性支持体や半導体粒子の種類により、温
度、時間、雰囲気などの条件を適宜調整する必要があ
る。焼成は、例えば、大気雰囲気下または不活性ガス雰
囲気下、50〜800℃程度の範囲内で、10秒〜12
時間程度で行うことができる。この乾燥および焼成は、
単一の温度で1回または温度を変化させて2回以上行う
ことができる。
Thereafter, the coating film is dried and baked to obtain a porous semiconductor layer. In drying and firing,
It is necessary to appropriately adjust the conditions such as temperature, time and atmosphere depending on the type of conductive support or semiconductor particles used. The firing is performed, for example, in the atmosphere or in the atmosphere of an inert gas in the range of about 50 to 800 ° C. for 10 seconds to 12 seconds.
It can be done in about an hour. This drying and firing is
It can be performed once at a single temperature or twice or more with varying temperatures.

【0022】半導体粒子としては、市販されているもの
のうち適当な平均粒径、例えば1〜500nm程度の平
均粒径を有する、前記のような酸化物または複合酸化物
の半導体粒子などが挙げられる。また、この半導体粒子
を分散するために使用される溶剤は、エチレングリコー
ルモノメチルエーテルなどのグライム系溶剤、イソプロ
ピルアルコール、テルピネオールなどのアルコール系溶
剤、イソプロピルアルコール/トルエンなどの混合溶
剤、水などが挙げられる。
Examples of the semiconductor particles include commercially available particles having a suitable average particle diameter, for example, the above-mentioned oxide or composite oxide semiconductor particles having an average particle diameter of about 1 to 500 nm. The solvent used to disperse the semiconductor particles includes a glyme solvent such as ethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol and terpineol, a mixed solvent such as isopropyl alcohol / toluene, and water. .

【0023】多孔性半導体層に吸着して光増感剤として
機能する色素としては、種々の可視光領域および/また
は赤外光領域に吸収をもつものであって、多孔性半導体
層に色素を強固に吸着させるために、色素分子中にカル
ボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキ
シル基、ヒドロキシアルキル基、スルホン酸基、エステ
ル基、メルカプト基、ホスホニル基などのインターロッ
ク基を有するものが好ましく、これらの中でも、カルボ
ン酸基およびカルボン酸無水基が特に好ましい。なお、
インターロック基は、励起状態の色素と多孔性半導体の
導電帯との間の電子移動を容易にする電気的結合を提供
するものである。
The dye that functions as a photosensitizer by adsorbing on the porous semiconductor layer has absorption in various visible light regions and / or infrared light regions, and the dye can be incorporated into the porous semiconductor layer. Those having an interlocking group such as a carboxylic acid group, a carboxylic acid anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, or a phosphonyl group in the dye molecule for strongly adsorbing Are preferred, and among these, a carboxylic acid group and a carboxylic acid anhydride group are particularly preferred. In addition,
The interlocking group provides an electrical bond that facilitates electron transfer between the excited state dye and the conductive band of the porous semiconductor.

【0024】インターロック基を有する色素としては、
例えば、ルテニウムビピリジン系色素、アゾ系色素、キ
ノン系色素、キノンイミン系色素、キナクリドン系色
素、スクアリリウム系色素、シアニン系色素、メロシア
ニン系色素、トリフェニルメタン系色素、キサンテン系
色素、ポリフィリン系色素、フタロシアニン系色素、べ
リレン系色素、インジゴ系色素、ナフタロシアニン系色
素などが挙げられる。
As the dye having an interlock group,
For example, ruthenium bipyridine dye, azo dye, quinone dye, quinonimine dye, quinacridone dye, squarylium dye, cyanine dye, merocyanine dye, triphenylmethane dye, xanthene dye, porphyrin dye, phthalocyanine Examples thereof include dyes of the series, berylene dyes, indigo dyes, and naphthalocyanine dyes.

【0025】多孔性半導体層に色素を吸着させる方法と
しては、例えば導電性支持体上に形成された多孔性半導
体層を、色素を溶解した溶液(色素吸着用溶液)に浸漬
する方法が挙げられる。
Examples of the method for adsorbing the dye on the porous semiconductor layer include a method of immersing the porous semiconductor layer formed on the conductive support in a solution in which the dye is dissolved (dye adsorbing solution). .

【0026】色素を溶解させる溶剤としては、色素を溶
解するものであればよく、具体的には、エタノールなど
のアルコール類、アセトンなどのケトン類、ジエチルエ
ーテル、テトラヒドロフランなどのエーテル類、アセト
ニトリルなどの窒素化合物類、クロロホルムなどのハロ
ゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水
素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどの
エステル類、水などが挙げられる。これらの溶剤は2種
以上を混合して用いることもできる。
As the solvent for dissolving the dye, any solvent capable of dissolving the dye may be used. Specifically, alcohols such as ethanol, ketones such as acetone, diethyl ether, ethers such as tetrahydrofuran, acetonitrile and the like. Examples thereof include nitrogen compounds, halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, and water . These solvents may be used as a mixture of two or more kinds.

【0027】溶液中の色素濃度は、使用する色素および
溶剤の種類により適宜調整することができるが、吸着機
能を向上させるためにはできるだけ高濃度である方が好
ましい。色素濃度は、例えば5×10-5モル/リットル
以上であればよい。
The dye concentration in the solution can be appropriately adjusted depending on the type of dye and solvent used, but it is preferable that the dye concentration is as high as possible in order to improve the adsorption function. The dye concentration may be, for example, 5 × 10 −5 mol / liter or more.

【0028】本発明においては、上記の色素のうち、吸
収スペクトルにおける最大感度波長領域が異なる少なく
とも2種類が用いられ、これにより幅広い波長領域の光
を有効利用することができる。このような観点から、2
種類の色素を用いる場合、色素は、400nm以上60
0nm未満の範囲と600nm以上1000nm以下の
範囲にそれぞれ吸収スペクトルにおける最大感度波長領
域を有する色素の組み合わせが好ましい。具体的には、
630〜800nmの最大感度波長領域を有するフタロ
シアニン系色素と450〜600nmの最大感度波長領
域を有するメロシアニン系色素との組み合わせ、前記の
フタロシアニン系色素と400〜550nmの最大感度
波長領域を有するキサンテン系色素との組み合わせが代
表的なものとして挙げられる。
In the present invention, at least two kinds of the above dyes having different maximum sensitivity wavelength regions in the absorption spectrum are used, whereby light in a wide wavelength region can be effectively used. From this perspective, 2
When using different types of dye, the dye should be 400 nm or more 60
A combination of dyes having a maximum sensitivity wavelength region in the absorption spectrum in a range of less than 0 nm and a range of 600 nm or more and 1000 nm or less is preferable. In particular,
A combination of a phthalocyanine dye having a maximum sensitivity wavelength region of 630 to 800 nm and a merocyanine dye having a maximum sensitivity wavelength region of 450 to 600 nm, the phthalocyanine dye, and a xanthene dye having a maximum sensitivity wavelength region of 400 to 550 nm. A typical combination is with.

【0029】多孔性光電変換層は、吸収スペクトルにお
ける最大感度波長領域を短波長側に有する色素から吸収
スペクトルにおける最大感度波長領域を長波長側に有す
る色素の順に受光面側から色素を吸着しているのが好ま
しい。これにより、最大感度吸収波長領域を短波長側に
有する色素で吸収できなかった光を、最大感度吸収波長
領域を長波長側に有する色素で吸収させることができ、
幅広い波長領域の光を有効利用することができる。
The porous photoelectric conversion layer adsorbs dyes from the light-receiving surface side in this order from a dye having the maximum sensitivity wavelength region in the absorption spectrum on the short wavelength side to a dye having the maximum sensitivity wavelength region in the absorption spectrum on the long wavelength side. Is preferred. Thereby, the light which could not be absorbed by the dye having the maximum sensitivity absorption wavelength region on the short wavelength side, can be absorbed by the dye having the maximum sensitivity absorption wavelength region on the long wavelength side,
Light in a wide wavelength range can be effectively used.

【0030】理論的には、吸収スペクトルにおける最大
感度波長領域が異なる少なくとも2種類の色素がそれぞ
れ単分子レベルで層状に区別されて多孔性半導体層に吸
着されている方が、色素間の相互作用がなく、効率的に
電子注入が行われる。しかし、各色素の吸光度および各
色素を単体で用いたときの太陽電池の量子効率などによ
り変化するが、色素を混合吸着した層領域が、多孔性光
電変換層の総膜厚に対して50%以下、好ましくは10
%以下の膜厚を有する場合には、色素を混合吸着した層
領域が存在しない場合よりも、多孔性光電変換層の総膜
厚を薄くすることができる。これにより、キャリア輸送
における抵抗が低減され、より効率のよい太陽電池を得
ることができる。
Theoretically, the interaction between the dyes should be such that at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are individually adsorbed in the porous semiconductor layer in a layered manner at the single molecule level. And the electron injection is efficiently performed. However, although it varies depending on the absorbance of each dye and the quantum efficiency of the solar cell when each dye is used alone, the layer area where the dyes are mixed and adsorbed is 50% of the total thickness of the porous photoelectric conversion layer. Below, preferably 10
When the film thickness is less than or equal to%, the total film thickness of the porous photoelectric conversion layer can be made smaller than when there is no layer region in which the dyes are mixed and adsorbed. Thereby, resistance in carrier transport is reduced, and a more efficient solar cell can be obtained.

【0031】本発明の太陽電池の製造方法は、(a)導
電性支持体上に、皮膜層を有さない半導体粒子および皮
膜層を有する半導体粒子のそれぞれからなる、多層構造
の多孔性半導体層を形成し、(b)吸収スペクトルにお
ける最大感度波長領域が異なる少なくとも2種類の色素
を別々に含む溶液を調製し、得られた溶液に多孔性半導
体層を浸漬して、導電性支持体と平行な層形状で多孔性
半導体層に色素を吸着させる工程と、皮膜層を有する半
導体粒子からなる多孔性半導体層の皮膜層を除去する工
程とを繰り返して、導電性支持体と平行な層形状で色素
を吸着した多層構造であり、その少なくとも1層が1種
類の色素を吸着した層である多孔性光電変換層を形成
し、(c)導電性支持体上の多孔性光電変換層と対極と
を対向させ、それらの間に導電層を充填し、(d)任意
に封止材を用いて導電層を封止して、太陽電池を製造す
ることを特徴とする。
The method for producing a solar cell of the present invention comprises: (a) a porous semiconductor layer having a multi-layer structure, which comprises, on a conductive support, semiconductor particles having no coating layer and semiconductor particles having a coating layer. And (b) a solution separately containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum is prepared, and the porous semiconductor layer is immersed in the obtained solution to be parallel to the conductive support. The step of adsorbing the dye to the porous semiconductor layer in a layer shape different from that of the porous semiconductor layer and the step of removing the coating layer of the porous semiconductor layer composed of semiconductor particles having a coating layer are repeated to form a layer shape parallel to the conductive support. A porous photoelectric conversion layer having a multilayer structure in which a dye is adsorbed, at least one of which is a layer in which one kind of dye is adsorbed, and (c) a porous photoelectric conversion layer on a conductive support and a counter electrode To face them Filling a conductive layer between, sealing the conductive layer with a sealing material optionally (d), characterized in that the production of solar cells.

【0032】上記の工程(a)、(b)、すなわち多孔
性半導体層の形成から導電性支持体と平行な層形状で多
孔性半導体層に色素を吸着させて、多孔性光電変換層を
形成までの方法について、具体的に説明する。以下の説
明は、半導体粒子として酸化チタン、皮膜層を形成する
化合物として酸化マグネシウム、多孔性半導体層の形成
方法として半導体粒子を分散させたペーストによるドク
ターブレード法をそれぞれ用いた例であるが、本発明は
これらに限定されるものではない。
From the above steps (a) and (b), that is, the formation of the porous semiconductor layer, the dye is adsorbed to the porous semiconductor layer in a layer shape parallel to the conductive support to form the porous photoelectric conversion layer. The methods up to are specifically described. The following description is an example in which titanium oxide is used as the semiconductor particles, magnesium oxide is used as the compound for forming the coating layer, and a doctor blade method using a paste in which the semiconductor particles are dispersed is used as the method for forming the porous semiconductor layer. The invention is not limited to these.

【0033】工程(a) 導電性支持体10上の透明導電体2側に、酸化チタンペ
ーストをドクターブレード法により成膜し、得られた塗
膜を乾燥させる(層A)。その後、皮膜層を形成する化
合物として酸化マグネシウム粉末を酸化チタンに対して
5〜30wt%程度、前記の酸化チタンペーストに混入
し分散させ、さらに塩酸などによりpHを1程度に調整
することにより、混合ペーストを調製する。得られた混
合ペーストを、先に成膜した酸化チタン膜(層A)上に
同じくドクターブレード法により成膜し、得られた塗膜
を乾燥させる(層B)。その後、層Aおよび層Bからな
る酸化チタン膜を焼成することにより、透明導電体2側
に酸化チタン膜のみ、反対側に表面に酸化マグネシウム
層(皮膜層)を有する酸化チタン膜が得られる。
Step (a) A titanium oxide paste is deposited on the transparent conductor 2 side of the conductive support 10 by the doctor blade method, and the obtained coating film is dried (layer A). Then, about 5 to 30 wt% of magnesium oxide powder as a compound for forming the coating layer is mixed with the titanium oxide paste and dispersed therein, and the pH is adjusted to about 1 with hydrochloric acid or the like to mix them. Prepare the paste. The obtained mixed paste is similarly formed on the previously formed titanium oxide film (layer A) by the doctor blade method, and the obtained coating film is dried (layer B). Then, the titanium oxide film composed of the layers A and B is fired to obtain a titanium oxide film having only the titanium oxide film on the transparent conductor 2 side and a magnesium oxide layer (coating layer) on the opposite side.

【0034】混合ペーストの調製時に、pHを1程度に
調整することにより、含有粒子の分散安定性が向上し、
ペースト中に酸化マグネシウム粉末が溶解する。これに
より、酸化チタン上に層状に酸化マグネシウムが形成さ
れた層Bを形成することができる。
By adjusting the pH to about 1 when preparing the mixed paste, the dispersion stability of the contained particles is improved,
Magnesium oxide powder dissolves in the paste. As a result, the layer B in which magnesium oxide is layered on the titanium oxide can be formed.

【0035】工程(b) 色素Aを含む色素吸着用溶液に層Aおよび層Bからなる
酸化チタン膜を浸漬して、酸化チタン膜に色素Aを吸着
させる。このとき、層Aでは酸化チタン上に色素Aが吸
着され、層Bでは酸化マグネシウム上に色素Aが吸着さ
れた状態となる。その後、酸性溶液に酸化チタン膜を浸
漬し、層Bの酸化マグネシウムを溶解する。これによ
り、層B上の色素Aが除去(脱着)されることになる。
酸性溶液としては、塩酸、硝酸などが挙げられ、その濃
度は、溶解時間や使用する色素にも影響されるが、0.
2〜2N(N:規定度)程度が好ましい。
Step (b) The titanium oxide film comprising layers A and B is immersed in a dye adsorbing solution containing the dye A to adsorb the dye A on the titanium oxide film. At this time, the dye A is adsorbed on the titanium oxide in the layer A, and the dye A is adsorbed on the magnesium oxide in the layer B. Then, the titanium oxide film is immersed in an acidic solution to dissolve the magnesium oxide in layer B. As a result, the dye A on the layer B is removed (desorbed).
Examples of the acidic solution include hydrochloric acid, nitric acid and the like.
It is preferably about 2 to 2N (N: normality).

【0036】次いで、色素Bを含む色素吸着用溶液に層
Aおよび層Bからなる酸化チタン膜を浸漬して、酸化チ
タン膜に色素Bを吸着させる。これにより、層Aには色
素A(一部、色素B)が、層Bには色素Bが、導電性支
持体と平行な層形状で吸着した多層構造の多孔性光電変
換層が得られる。このように本発明においては、多層構
造の少なくとも1層が1種類の色素を吸着した層であ
り、他の層は2種類以上の色素が吸着した層であっても
よい。図1では、前者を第1色素が吸着した領域4とし
て示し、後者を第2色素が吸着した領域5として示して
いる。それぞれの色素を吸着させた後には、アセトニト
リルなどの極性溶剤やアルコール系溶剤などの有機溶媒
を用いる公知の方法により、多孔性半導体層を洗浄、乾
燥すればよい。
Next, the titanium oxide film consisting of layer A and layer B is immersed in a dye adsorbing solution containing dye B to adsorb dye B on the titanium oxide film. As a result, a porous photoelectric conversion layer having a multilayer structure in which the dye A (partly, the dye B) is adsorbed in the layer A and the dye B is adsorbed in the layer B in a layer shape parallel to the conductive support is obtained. As described above, in the present invention, at least one layer of the multilayer structure may be a layer adsorbing one kind of dye, and the other layers may be layers adsorbing two or more kinds of dyes. In FIG. 1, the former is shown as a region 4 where the first dye is adsorbed, and the latter is shown as a region 5 where the second dye is adsorbed. After each dye is adsorbed, the porous semiconductor layer may be washed and dried by a known method using a polar solvent such as acetonitrile or an organic solvent such as an alcohol solvent.

【0037】ここで、酸化チタン膜に吸着させる色素の
うち、受光面側の層に吸着される色素Aは吸収スペクト
ルにおける最大感度吸収波長領域が短波長側あるもの、
色素Bは吸収スペクトルにおける最大感度吸収波長領域
が長波長側にあるものを用いるのが好ましい。一般に、
最大感度吸収波長領域が短波長側にあるものは分子量
(分子の大きさ)が小さいため、この色素Aを先に酸化
チタン膜に吸着させ、層Bの酸化マグネシウムを酸性溶
液にて除去し、次いで色素Bを酸化チタン膜に吸着させ
ることにより、層A上にも色素Bが吸着されることにな
る。
Among the dyes adsorbed on the titanium oxide film, the dye A adsorbed on the layer on the light receiving surface side has the maximum sensitivity absorption wavelength region in the absorption spectrum on the short wavelength side,
As the dye B, it is preferable to use a dye having a maximum sensitivity absorption wavelength region in the absorption spectrum on the long wavelength side. In general,
Since the one having the maximum sensitivity absorption wavelength region on the short wavelength side has a small molecular weight (molecular size), the dye A is adsorbed on the titanium oxide film first, and the magnesium oxide in the layer B is removed with an acidic solution. Then, the dye B is adsorbed on the titanium oxide film, so that the dye B is also adsorbed on the layer A.

【0038】半導体粒子に皮膜層を形成する方法として
は、上記のように酸化マグネシウム粉末を用いる方法以
外に、コロイド溶液や金属アルコキシドを使用して半導
体粒子表面で加水分解などを行い、皮膜層を形成する方
法もある。これらの場合、形成した酸化チタン膜を金属
アルコキシド水溶液中に浸漬し、酸化チタン粒子で金属
アルコキシドを加水分解してその表面を修飾させ、焼成
することにより酸化チタン粒子の表面に皮膜層を形成す
る。この時に使用する金属アルコキシド水溶液中にエタ
ノールを加えることにより、表面張力が低下して、酸化
チタン膜中に金属アルコキシド水溶液を効率よく浸透さ
せることができる。
As a method of forming a coating layer on semiconductor particles, in addition to the method of using magnesium oxide powder as described above, a colloid solution or a metal alkoxide is used to hydrolyze the surface of the semiconductor particles to form a coating layer. There is also a method of forming. In these cases, the formed titanium oxide film is immersed in an aqueous solution of metal alkoxide, the metal alkoxide is hydrolyzed with titanium oxide particles to modify the surface thereof, and the film is baked to form a coating layer on the surface of the titanium oxide particles. . By adding ethanol to the aqueous metal alkoxide solution used at this time, the surface tension is lowered, and the aqueous metal alkoxide solution can be efficiently permeated into the titanium oxide film.

【0039】皮膜層を形成する化合物としては、酸性溶
液および塩基性溶液に溶解する酸化物であれば問題な
く、具体的には酸性溶液を使用する場合には、酸化マグ
ネシウム、酸化亜鉛、酸化銅、酸化ニッケル、酸化モリ
ブデンなどが挙げられ、塩基性溶液を使用する場合は、
酸化亜鉛、酸化ニオブ、酸化鉛などが挙げられる。ま
た、上記の化合物を溶解させる酸性溶液および塩基性溶
液としては、特に限定されない。酸性溶液としては、溶
解後の陰イオンが焼結時に蒸発するものが特に好まし
く、具体的には塩酸や硝酸などが挙げられ、塩基性溶液
としては、水酸化ナトリウム、水酸化カリウムなどが挙
げられる。これらの濃度は、溶解時間や使用する色素に
も影響されるが、0.2〜2N(N:規定度)程度が好
ましい。
As the compound for forming the coating layer, there is no problem as long as it is an oxide which can be dissolved in an acidic solution and a basic solution. Specifically, when an acidic solution is used, magnesium oxide, zinc oxide, copper oxide are used. , Nickel oxide, molybdenum oxide, etc., when using a basic solution,
Examples thereof include zinc oxide, niobium oxide and lead oxide. The acidic solution and the basic solution in which the above compound is dissolved are not particularly limited. The acidic solution is particularly preferably one in which the anions after dissolution evaporate during sintering, and specific examples thereof include hydrochloric acid and nitric acid, and the basic solution includes sodium hydroxide, potassium hydroxide and the like. . These concentrations are influenced by the dissolution time and the dye used, but are preferably about 0.2 to 2N (N: normality).

【0040】また、使用する色素の組み合わせにより変
化するが、皮膜層を有する半導体粒子からなる多孔性半
導体層(層B)は受光面側にあっても問題はない。具体
的には下記のような場合に適応すると効果的である。例
えば、受光面側に耐酸性が弱い色素を吸着させる場合、
酸性溶液により酸化マグネシウムを除去する際に、酸化
チタン(受光面側)に吸着した色素も酸性溶液中に溶解
することが考えられる。このような場合には、吸収スペ
クトルにおける最大感度吸収波長領域が長波長側にある
色素B、吸収スペクトルにおける最大感度吸収波長領域
が短波長側ある色素Aの順に、色素を多孔性半導体層に
吸着させればよい。すなわち、多孔性半導体層に色素B
を吸着させ、酸性溶液で酸化マグネシウムおよびそれに
吸着した色素Bを除去した後、多孔性半導体層に色素A
を吸着させる。
Although it changes depending on the combination of dyes used, there is no problem even if the porous semiconductor layer (layer B) made of semiconductor particles having a coating layer is on the light receiving surface side. Specifically, it is effective to adapt to the following cases. For example, when adsorbing a dye with weak acid resistance on the light receiving surface side,
When magnesium oxide is removed with an acidic solution, it is considered that the dye adsorbed on titanium oxide (light-receiving surface side) is also dissolved in the acidic solution. In such a case, the dye is adsorbed on the porous semiconductor layer in the order of dye B having the maximum sensitivity absorption wavelength region in the absorption spectrum on the long wavelength side and dye A having the maximum sensitivity absorption wavelength region in the absorption spectrum on the short wavelength side. You can do it. That is, the dye B is added to the porous semiconductor layer.
Is adsorbed and magnesium oxide and the dye B adsorbed thereto are removed with an acidic solution, and then the dye A is attached to the porous semiconductor layer.
Adsorb.

【0041】上記のように酸性溶液で酸化マグネシウム
およびそれに吸着された色素Bを除去する際には、層A
と層Bの界面付近に酸化マグネシウムが残留して、電気
的な界面接触が悪くなることが予測される。しかし、p
Hを1程度の酸性に調整した混合ペーストを用いて層B
を成膜し、次いで酸化チタンペーストを用いて層Aを塗
布したときには、塗布した層A近傍の層B中の酸化マグ
ネシウムが溶解するので、層Aと層Bの界面付近の酸化
チタン粒子同士は酸化マグネシウムを介さずに接触する
ようになり、前記のように予想される界面接触の悪化に
よるキャリア輸送における抵抗上昇の問題は生じない。
When the magnesium oxide and the dye B adsorbed thereto are removed with an acidic solution as described above, the layer A is used.
It is expected that magnesium oxide will remain near the interface between the layer B and the layer B, and the electrical interface contact will deteriorate. But p
Layer B using a mixed paste in which H is adjusted to an acidity of about 1
When the layer A is applied using a titanium oxide paste and the magnesium oxide in the layer B near the applied layer A is dissolved, titanium oxide particles in the vicinity of the interface between the layer A and the layer B are separated from each other. The contact is made without the intermediary of magnesium oxide, and the problem of increase in resistance in carrier transport due to deterioration of interfacial contact expected as described above does not occur.

【0042】多孔性光電変換層3と対極7との間に充填
される導電層7は、電子、ホール、イオンを輸送できる
導電性材料から構成される。例えば、ポリカルバゾール
などのホール輸送材料;テトラニトロフロオルレノンな
どの電子輸送材料;ポリピロールなどの導電性ポリマ
ー;液体電解質、高分子電解質などのイオン導電体;ヨ
ウ化銅、チオシアン酸銅などのp型半導体が挙げられ
る。
The conductive layer 7 filled between the porous photoelectric conversion layer 3 and the counter electrode 7 is made of a conductive material capable of transporting electrons, holes and ions. For example, hole-transporting materials such as polycarbazole; electron-transporting materials such as tetranitrofluorolenone; conductive polymers such as polypyrrole; ionic conductors such as liquid electrolytes and polymer electrolytes; copper iodide, copper thiocyanate, etc. Type semiconductors.

【0043】上記の導電性材料の中でもイオン導電体が
好ましく、酸化還元性電解質を含む液体電解質が特に好
ましい。このような酸化還元性電解質としては、一般に
電池や太陽電池などにおいて使用することができるもの
であれば特に限定されない。具体的には、LiI、Na
I、KI、CaI2などの金属ヨウ化物とヨウ素の組み
合わせおよびLiBr、NaBr、KBr、CaBr2
などの金属臭化物と臭素の組み合わせが好ましく、これ
らの中でも、LiIとヨウ素の組み合わせが特に好まし
い。
Among the above conductive materials, the ionic conductor is preferable, and the liquid electrolyte containing the redox electrolyte is particularly preferable. Such redox electrolyte is not particularly limited as long as it can be generally used in batteries, solar cells and the like. Specifically, LiI, Na
Combinations of metal iodides such as I, KI, CaI 2 and iodine and LiBr, NaBr, KBr, CaBr 2
A combination of a metal bromide such as bromine and bromine is preferable, and among these, a combination of LiI and iodine is particularly preferable.

【0044】また、電解質の溶剤としては、プロピレン
カーボネートなどのカーボネート化合物、アセトニトリ
ルなどのニトリル化合物、エタノールなどのアルコール
類、その他、水や非プロトン極性物質などが挙げられる
が、これらの中でも、カーボネート化合物やニトリル化
合物が特に好ましい。電解質濃度は、0.1〜1.5モ
ル/リットル程度であり、0.1〜0.7モル/リット
ル程度が好ましい。
Examples of the solvent for the electrolyte include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, and water and aprotic polar substances. Among these, carbonate compounds And nitrile compounds are particularly preferred. The electrolyte concentration is about 0.1 to 1.5 mol / liter, preferably about 0.1 to 0.7 mol / liter.

【0045】封止材9は、導電層7を構成する材料が漏
れ出さないように太陽電池をシールできるものであれ
ば、特に限定されない。例えば、エポキシ樹脂、シリコ
ン樹脂、熱可塑性樹脂などが挙げられる。また、導電層
7を構成する材料が固体であって、太陽電池からの流出
の恐れがない場合には、封止材9は必ずしも設けなくて
もよい。
The sealing material 9 is not particularly limited as long as it can seal the solar cell so that the material forming the conductive layer 7 does not leak out. For example, epoxy resin, silicone resin, thermoplastic resin, etc. may be mentioned. Further, when the material forming the conductive layer 7 is solid and there is no risk of outflow from the solar cell, the sealing material 9 may not be necessarily provided.

【0046】[0046]

【実施例】本発明を実施例および比較例によりさらに具
体的に説明するが、これらの実施例により本発明が限定
されるものではない。なお、以下の実施例および比較例
については、本発明の太陽電池の層構成を示す要部の概
略断面図である図1に基づいて説明する。図1におい
て、1は透明支持体、2は透明導電体、3は多孔性光電
変換層、4は第1色素が吸着した領域、5は第2色素が
吸着した領域、6は導電層(酸化還元性電解液)、7は
対極、8は白金膜、9は封止材である。透明支持体1と
透明導電体2とを合わせて、導電性支持体10ともい
う。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The following examples and comparative examples will be described with reference to FIG. 1, which is a schematic cross-sectional view of an essential part showing the layer structure of the solar cell of the present invention. In FIG. 1, 1 is a transparent support, 2 is a transparent conductor, 3 is a porous photoelectric conversion layer, 4 is a region where the first dye is adsorbed, 5 is a region where the second dye is adsorbed, and 6 is a conductive layer (oxidized). (Reducing electrolytic solution), 7 is a counter electrode, 8 is a platinum film, and 9 is a sealing material. The transparent support 1 and the transparent conductor 2 are collectively referred to as a conductive support 10.

【0047】実施例1 多孔性半導体層に2種類の色素を層状に吸着させた多孔
性光電変換層を用いた太陽電池を製造し、その性能を評
価した。まず、多孔性光電変換層3の多孔性半導体層と
なる酸化チタン膜を形成する塗液として、市販の酸化チ
タンペースト(Solaronix社製、商品名:D)
を用意した。透明導電体2としてSnO2膜を形成した
ガラス基板からなる透明支持体1の透明導電膜2側に、
ドクターブレード法を用いて酸化チタンペーストを塗布
し、膜厚10μm程度、面積10mm×10mm程度の
塗膜を得た。得られた塗膜を80℃で20分間予備乾燥
した(第1層)。
Example 1 A solar cell using a porous photoelectric conversion layer in which two kinds of dyes were adsorbed in layers on the porous semiconductor layer was manufactured and its performance was evaluated. First, as a coating liquid for forming a titanium oxide film to be the porous semiconductor layer of the porous photoelectric conversion layer 3, a commercially available titanium oxide paste (manufactured by Solaronix, trade name: D) is used.
Prepared. On the transparent conductive film 2 side of the transparent support 1 made of a glass substrate on which a SnO 2 film is formed as the transparent conductor 2,
Titanium oxide paste was applied using a doctor blade method to obtain a coating film having a film thickness of about 10 μm and an area of about 10 mm × 10 mm. The obtained coating film was pre-dried at 80 ° C. for 20 minutes (first layer).

【0048】次に、上記の酸化チタンペースト中に、酸
化マグネシウム粉末(キシダ化学株式会社製)を酸化チ
タンに対して10wt%混入し、塩酸でpHを1程度に
調整し、10分間攪拌した後、超音波分散を10分間行
うことにより、酸化マグネシウムを酸化チタンペースト
中に分散させた混合ペーストを得た。予備乾燥を行った
酸化チタン膜(第1層)上にドクターブレード法を用い
て得られた混合ペーストを塗布し、膜厚5μm程度の塗
膜を得た。得られた塗膜を80℃で20分間予備乾燥し
(第2層)、酸素雰囲気下、約500℃で60分間焼成
することにより、膜厚4μm程度の多孔性半導体層を得
た。
Next, 10 wt% of magnesium oxide powder (manufactured by Kishida Chemical Co., Ltd.) was mixed in the titanium oxide paste with respect to titanium oxide, the pH was adjusted to about 1 with hydrochloric acid, and the mixture was stirred for 10 minutes. Then, ultrasonic dispersion was performed for 10 minutes to obtain a mixed paste in which magnesium oxide was dispersed in a titanium oxide paste. The mixed paste obtained by using the doctor blade method was applied onto the titanium oxide film (first layer) which had been preliminarily dried to obtain a coating film having a thickness of about 5 μm. The obtained coating film was pre-dried at 80 ° C. for 20 minutes (second layer) and baked at about 500 ° C. for 60 minutes in an oxygen atmosphere to obtain a porous semiconductor layer having a thickness of about 4 μm.

【0049】次に、吸収スペクトルにおける最大感度吸
収波長領域を短波長側に有する色素(第1色素)とし
て、式(1)で表されるメロシアニン系色素(株式会社
林原生物化学研究所製、商品名:NK2684)をエタ
ノールに溶解して、濃度4×10-4モル/リットルの第
1色素の吸着用色素溶液を調製した。この吸着用色素溶
液と上述で得られた多孔性半導体層を具備する透明支持
体1を容器に入れ、約50℃で約10分間加熱浸漬する
ことにより、多孔性半導体層に第1色素を吸着させた。
その後、無水エタノールで数回洗浄し、約60℃で約2
0分間乾燥させた。
Next, as a dye (first dye) having the maximum sensitivity absorption wavelength region in the absorption spectrum on the short wavelength side, a merocyanine dye represented by the formula (1) (produced by Hayashibara Biochemical Laboratory Co., Ltd., a product Name: NK2684) was dissolved in ethanol to prepare a dye solution for adsorption of the first dye having a concentration of 4 × 10 −4 mol / liter. The transparent support 1 including the dye solution for adsorption and the porous semiconductor layer obtained above is placed in a container and heated and immersed at about 50 ° C. for about 10 minutes to adsorb the first dye on the porous semiconductor layer. Let
After that, wash with absolute ethanol several times, and at about 60 ℃ for about 2
It was dried for 0 minutes.

【0050】[0050]

【化1】 [Chemical 1]

【0051】第1色素を吸着させた多孔性半導体層を具
備する透明支持体1を0.5N−塩酸中に約10分間浸
漬し、第1色素が吸着した酸化マグネシウムを塩酸中に
溶解させて、酸化マグネシウムに吸着した第1色素を脱
着し、約60℃で約20分間乾燥させた。
The transparent support 1 having the porous semiconductor layer on which the first dye is adsorbed is immersed in 0.5N hydrochloric acid for about 10 minutes to dissolve the magnesium oxide adsorbed on the first dye in hydrochloric acid. The first dye adsorbed on magnesium oxide was desorbed and dried at about 60 ° C. for about 20 minutes.

【0052】次に、吸収スペクトルにおける最大感度吸
収波長領域が長波長側に有する色素(第2色素)とし
て、式(2)で表されるフタロシアニン系色素を使用し
た。合成手法はJ.Porphyrins Phtha
locyanines 3,230−237(199
9)に記載の手法を使用した。式(2)で表されるフタ
ロシアニン系色素をジメチルホルムアミドに溶解して、
濃度4×10-4モル/リットルの第2色素の吸着用色素
溶液を調製した。この吸着用色素溶液と上述で得られた
多孔性半導体層を具備する透明支持体1を容器に入れ、
室温、常圧で約15分間浸漬することにより、多孔性半
導体層に第2色素を吸着させた。その後、無水エタノー
ルで数回洗浄し、約60℃で約20分間乾燥させた。
Next, the phthalocyanine dye represented by the formula (2) was used as the dye (second dye) having the maximum sensitivity absorption wavelength region on the long wavelength side in the absorption spectrum. The synthesis method is described in J. Porphyrins Phtha
locyanines 3,230-237 (199
The method described in 9) was used. Dissolving the phthalocyanine dye represented by the formula (2) in dimethylformamide,
A dye solution for adsorption of the second dye having a concentration of 4 × 10 −4 mol / liter was prepared. The transparent support 1 having the adsorbing dye solution and the porous semiconductor layer obtained above is placed in a container,
The second dye was adsorbed on the porous semiconductor layer by immersing the porous semiconductor layer at room temperature and atmospheric pressure for about 15 minutes. Then, it was washed with absolute ethanol several times and dried at about 60 ° C. for about 20 minutes.

【0053】[0053]

【化2】 [Chemical 2]

【0054】次に、3−メトキシプロピオニトリル溶媒
に、ジメチルプロピルイミダゾリウムヨージドが濃度
0.5モル/リットル、ヨウ化リチウムが濃度0.1モ
ル/リットル、ヨウ素が濃度0.05モル/リットルに
なるように溶解させて、酸化還元性電解液を調製した。
第1色素と第2色素を吸着させた多孔性光電変換層3を
具備した透明支持体1の多孔性光電変換層3側と、対向
電極層8として白金膜を具備したITOガラスからなる
対極7の白金膜側とが対向するように設置し、その間に
調製した酸化還元性電解液を注入し、周囲をエポキシ系
樹脂の封止材9により封止して、太陽電池を完成した。 得られた太陽電池を測定条件:AM−1.5(100m
W/cm2)で評価したところ、電流値(Jsc):1
0.1mA/cm2であった。
Next, in a 3-methoxypropionitrile solvent, dimethylpropyl imidazolium iodide has a concentration of 0.5 mol / liter, lithium iodide has a concentration of 0.1 mol / liter, and iodine has a concentration of 0.05 mol / liter. It was dissolved so as to be 1 liter to prepare an oxidation-reduction electrolytic solution.
The porous photoelectric conversion layer 3 side of the transparent support 1 having the porous photoelectric conversion layer 3 adsorbing the first dye and the second dye, and the counter electrode 7 made of ITO glass having a platinum film as the counter electrode layer 8 The solar cell was completed by placing it so as to face the platinum film side of, and injecting the prepared redox electrolytic solution between them, and sealing the periphery with the epoxy resin sealing material 9. Measurement conditions of the obtained solar cell: AM-1.5 (100 m
Current value (Jsc): 1 when evaluated by W / cm 2 )
It was 0.1 mA / cm 2 .

【0055】比較例1 多孔性半導体層3に吸着させる色素として、実施例1の
第1色素である式(1)で表されるメロシアニン系色素
のみを使用すること以外は、実施例1と同様にして太陽
電池を製造し、評価した。得られた太陽電池は、電流
値:8.5mA/cm2であった。
Comparative Example 1 Similar to Example 1 except that only the merocyanine dye represented by the formula (1) which is the first dye of Example 1 is used as the dye to be adsorbed on the porous semiconductor layer 3. Then, a solar cell was manufactured and evaluated. The obtained solar cell had a current value of 8.5 mA / cm 2 .

【0056】比較例2 多孔性半導体層3に吸着させる色素として、実施例1の
第2色素である式(2)で表されるフタロシアニン系色
素のみを使用すること以外は、実施例1と同様にして太
陽電池を製造し、評価した。得られた太陽電池は、電流
値:2.7mA/cm2であった。
Comparative Example 2 Similar to Example 1 except that only the phthalocyanine dye represented by the formula (2) which is the second dye of Example 1 is used as the dye to be adsorbed on the porous semiconductor layer 3. Then, a solar cell was manufactured and evaluated. The obtained solar cell had a current value of 2.7 mA / cm 2 .

【0057】以上の結果から、本発明の太陽電池(実施
例1)は、単一色素のみを用いた太陽電池(比較例1お
よび比較例2)よりも、広範囲の光を吸収する(光を有
効に利用する)ことができ、高い光電変換効率を有する
ことがわかる。
From the above results, the solar cell of the present invention (Example 1) absorbs a wider range of light than the solar cells using only a single dye (Comparative Example 1 and Comparative Example 2). It can be effectively used) and has high photoelectric conversion efficiency.

【0058】実施例2 多孔性光電変換層3の多孔性半導体層となる酸化チタン
膜の第1層と第2層の成膜順序を変えること以外は、実
施例1と同様にして多孔性光電変換層3を形成した。す
なわち、膜厚6μmの酸化マグネシウム皮膜を行った酸
化チタン膜(第1層)と、膜厚10μmの酸化チタン膜
(第2層)を得た。多孔性半導体層の第1層に吸着させ
る第1色素として、式(3)で表されるキサンテン系色
素(ACROS社製、商品名:EOSIN−Y)を使用
すること以外は、実施例1と同様にして太陽電池を製造
し、評価した。つまり、多孔性半導体層の第2層に吸着
させる第2色素としては、実施例1と同様にして式
(2)で表されるフタロシアニン色素を使用した。
Example 2 In the same manner as in Example 1, except that the order of forming the first layer and the second layer of the titanium oxide film to be the porous semiconductor layer of the porous photoelectric conversion layer 3 was changed. The conversion layer 3 was formed. That is, a titanium oxide film (first layer) having a thickness of 6 μm and a titanium oxide film (second layer) having a thickness of 10 μm were obtained. Example 1 except that a xanthene-based dye represented by formula (3) (manufactured by ACROS, trade name: EOSIN-Y) was used as the first dye to be adsorbed on the first layer of the porous semiconductor layer. Similarly, a solar cell was manufactured and evaluated. That is, as the second dye to be adsorbed on the second layer of the porous semiconductor layer, the phthalocyanine dye represented by the formula (2) was used as in Example 1.

【0059】[0059]

【化3】 [Chemical 3]

【0060】得られた太陽電池を測定条件:AM−1.
5(100mW/cm2)で評価したところ、電流値:
3.8mA/cm2であった。
Measurement conditions of the obtained solar cell: AM-1.
When evaluated at 5 (100 mW / cm 2 ), the current value:
It was 3.8 mA / cm 2 .

【0061】比較例3 多孔性半導体層3に吸着させる色素として、実施例2の
第2色素である式(3)で表されるキサンテン系色素の
みを使用すること以外は、実施例1と同様にして太陽電
池を製造し、評価した。得られた太陽電池は、電流値:
1.2mA/cm2であった。
Comparative Example 3 The same as Example 1 except that only the xanthene dye represented by the formula (3) which is the second dye of Example 2 was used as the dye to be adsorbed on the porous semiconductor layer 3. Then, a solar cell was manufactured and evaluated. The obtained solar cell had a current value:
It was 1.2 mA / cm 2 .

【0062】以上の結果から、本発明の太陽電池(実施
例2)は、単一色素のみを用いた太陽電池(比較例2お
よび比較例3)よりも、広範囲の光を吸収する(光を有
効に利用する)ことができ、高い光電変換効率を有する
ことがわかる。
From the above results, the solar cell of the present invention (Example 2) absorbs a wider range of light than the solar cells using only a single dye (Comparative Examples 2 and 3). It can be effectively used) and has high photoelectric conversion efficiency.

【0063】実施例3 実施例1と同様にして、酸化チタンペーストを塗布し、
第1層として酸化チタン多孔性膜を形成した。次に、容
量比1:1のイオン交換水とエタノールとの混合溶媒中
に、ニオブ(V)エトキシド(キシダ化学株式会社製)
を濃度0.1モル/リットルになるように添加して、皮
膜層形成用溶液を調製した。この溶液中に酸化チタン多
孔性膜を常温で30分間浸透させた後、酸素雰囲気下、
500℃で30分間焼成することにより、酸化チタン多
孔性膜上に酸化ニオブ皮膜を形成した。その後、酸化チ
タン多孔性膜を形成し、実施例2と同様にして太陽電池
を製造し、評価した。ただし、酸化ニオブを除去する際
に、0.5N−水酸化ナトリウム溶液を使用した。この
場合、酸化ニオブを除去した後に、酸化チタン多孔性膜
中にナトリウムイオンが残存する可能性があるため、イ
オン交換水で十分に洗浄した後、第2色素の吸着を行っ
た。得られた太陽電池は、電流値:3.6mA/cm2
であった。
Example 3 In the same manner as in Example 1, a titanium oxide paste was applied,
A titanium oxide porous film was formed as the first layer. Next, niobium (V) ethoxide (manufactured by Kishida Chemical Co., Ltd.) was added to a mixed solvent of ion-exchanged water and ethanol with a volume ratio of 1: 1.
Was added at a concentration of 0.1 mol / liter to prepare a film layer forming solution. A titanium oxide porous film was allowed to penetrate into this solution at room temperature for 30 minutes, and then, under an oxygen atmosphere,
A niobium oxide film was formed on the titanium oxide porous film by firing at 500 ° C. for 30 minutes. Then, a titanium oxide porous film was formed, and a solar cell was manufactured and evaluated in the same manner as in Example 2. However, when removing niobium oxide, a 0.5 N sodium hydroxide solution was used. In this case, since sodium ions may remain in the titanium oxide porous film after removing niobium oxide, the second dye was adsorbed after sufficiently washing with ion-exchanged water. The obtained solar cell had a current value of 3.6 mA / cm 2.
Met.

【0064】[0064]

【発明の効果】本発明の太陽電池は、多孔性半導体層に
吸着させて多孔性光電変換層を形成する色素として、吸
収スペクトルにおける最大感度波長領域が異なる少なく
とも2種類の色素を用いるので、従来の太陽電池と比較
して、光吸収波長領域が広く、かつ光吸収量が多い高性
能な太陽電池を提供することができる。
In the solar cell of the present invention, at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are used as the dyes which are adsorbed on the porous semiconductor layer to form the porous photoelectric conversion layer. It is possible to provide a high-performance solar cell having a wide light absorption wavelength region and a large amount of light absorption, as compared with the above solar cell.

【0065】また、本発明の太陽電池の製造方法は、そ
の一部を他の化合物でコーティングした多孔性半導体層
に色素を吸着させるので、多孔性半導体層に部分的に、
かつ層状に色素を吸着させることができる。したがっ
て、別の色素の混入吸着が避けれられた、すなわち単一
色素が吸着した少なくとも1層の多孔性半導体層と、色
素が混合吸着した多孔質半導体層との多層構造を有する
太陽電池が得られるので、多孔性半導体層の総膜厚を薄
くすることができ、キャリア輸送における抵抗を低減で
き、高性能な太陽電池の作製を提供することができる。
In the method for producing a solar cell of the present invention, the dye is adsorbed on the porous semiconductor layer, a part of which is coated with another compound.
In addition, the dye can be adsorbed in layers. Therefore, it is possible to obtain a solar cell having a multi-layer structure in which the adsorption of another dye is avoided, that is, at least one porous semiconductor layer in which a single dye is adsorbed and a porous semiconductor layer in which the dyes are mixed and adsorbed. Therefore, the total thickness of the porous semiconductor layer can be reduced, the resistance in carrier transport can be reduced, and a high-performance solar cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の色素増感型太陽電池の層構成を示す要
部の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a main part showing a layer structure of a dye-sensitized solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1 透明支持体 2 透明導電体 3 多孔性光電変換層 4 第1色素が吸着した領域 5 第2色素が吸着した領域 6 導電層(酸化還元性電解液) 7 対極 8 白金膜 9 封止材 10 導電性支持体 1 transparent support 2 transparent conductor 3 Porous photoelectric conversion layer 4 Area where the first dye is adsorbed 5 Area where the second dye is adsorbed 6 Conductive layer (redox electrolyte) 7 opposite poles 8 Platinum film 9 Sealant 10 Conductive support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5F051 AA14 BA13 CB13 DA20 FA03 GA03 HA20 5H032 AA06 AS06 AS16 EE02 EE16 HH07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takehito             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company F term (reference) 5F051 AA14 BA13 CB13 DA20 FA03                       GA03 HA20                 5H032 AA06 AS06 AS16 EE02 EE16                       HH07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に、吸収スペクトルにお
ける最大感度波長領域が異なる少なくとも2種類の色素
を多孔性半導体層に吸着させた多孔性光電変換層、導電
層および対極が順次積層された色素増感型太陽電池にお
いて、多孔性光電変換層が、導電性支持体と平行な層形
状で色素を吸着した多層構造であり、その少なくとも1
層が1種類の色素を吸着した層であることを特徴とする
色素増感型太陽電池。
1. A porous photoelectric conversion layer in which at least two kinds of dyes having different maximum sensitivity wavelength regions in an absorption spectrum are adsorbed on a porous semiconductor layer, a conductive layer and a counter electrode are sequentially laminated on a conductive support. In the dye-sensitized solar cell, the porous photoelectric conversion layer has a multilayer structure in which the dye is adsorbed in a layer shape parallel to the conductive support, and at least 1
A dye-sensitized solar cell, wherein the layer is a layer on which one type of dye is adsorbed.
【請求項2】 多孔性光電変換層が、吸収スペクトルに
おける最大感度波長領域を短波長側に有する色素から吸
収スペクトルにおける最大感度波長領域を長波長側に有
する色素の順に受光面側から色素を吸着している請求項
1に記載の色素増感型太陽電池。
2. The porous photoelectric conversion layer adsorbs dyes from the light-receiving surface side in this order from dyes having the maximum sensitivity wavelength region in the absorption spectrum on the short wavelength side to dyes having the maximum sensitivity wavelength region in the absorption spectrum on the long wavelength side. The dye-sensitized solar cell according to claim 1.
【請求項3】 (a)導電性支持体上に、皮膜層を有さ
ない半導体粒子および皮膜層を有する半導体粒子のそれ
ぞれからなる、多層構造の多孔性半導体層を形成し、
(b)吸収スペクトルにおける最大感度波長領域が異な
る少なくとも2種類の色素を別々に含む溶液を調製し、
得られた溶液に多孔性半導体層を浸漬して、導電性支持
体と平行な層形状で多孔性半導体層に色素を吸着させる
工程と、皮膜層を有する半導体粒子からなる多孔性半導
体層の皮膜層を除去する工程とを繰り返して、導電性支
持体と平行な層形状で色素を吸着した多層構造であり、
その少なくとも1層が1種類の色素を吸着した層である
多孔性光電変換層を形成し、(c)導電性支持体上の多
孔性光電変換層と対極とを対向させ、それらの間に導電
層を充填し、(d)任意に封止材を用いて導電層を封止
して、色素増感型太陽電池を製造することを特徴とする
色素増感型太陽電池の製造方法。
3. A porous semiconductor layer having a multi-layered structure is formed on a conductive support, comprising a semiconductor particle having no coating layer and a semiconductor particle having a coating layer.
(B) preparing a solution separately containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum,
A step of immersing the porous semiconductor layer in the obtained solution to adsorb the dye in the porous semiconductor layer in a layer shape parallel to the conductive support, and a film of the porous semiconductor layer comprising semiconductor particles having a film layer By repeating the step of removing the layer, a multilayer structure in which the dye is adsorbed in a layer shape parallel to the conductive support,
A porous photoelectric conversion layer in which at least one layer is adsorbed with one kind of dye is formed, and (c) the porous photoelectric conversion layer on the conductive support and the counter electrode are opposed to each other, and a conductive layer is formed between them. A method for producing a dye-sensitized solar cell, which comprises filling a layer and (d) sealing a conductive layer with an optional encapsulating material to produce a dye-sensitized solar cell.
【請求項4】 半導体粒子が、酸化チタン粒子である請
求項3に記載の色素増感型太陽電池の製造方法。
4. The method for producing a dye-sensitized solar cell according to claim 3, wherein the semiconductor particles are titanium oxide particles.
【請求項5】 皮膜層が、酸化マグネシウム、酸化亜
鉛、酸化銅、酸化ニッケル、酸化モリブデンから選択さ
れる化合物からなる層であり、かつ工程(b)におい
て、酸性溶液に多孔性半導体層を浸漬することにより多
孔性半導体層の皮膜層を溶解除去する請求項3または4
に記載の色素増感型太陽電池の製造方法。
5. The coating layer is a layer made of a compound selected from magnesium oxide, zinc oxide, copper oxide, nickel oxide and molybdenum oxide, and the porous semiconductor layer is immersed in an acidic solution in the step (b). 5. The coating layer of the porous semiconductor layer is dissolved and removed by carrying out.
The method for producing a dye-sensitized solar cell according to item 1.
【請求項6】 皮膜層が、酸化亜鉛、酸化ニオブ、酸化
鉛から選択される化合物からなる層であり、かつ工程
(b)において、塩基性溶液に多孔性半導体層を浸漬す
ることにより多孔性半導体層の皮膜層を溶解除去する請
求項3または4に記載の色素増感型太陽電池の製造方
法。
6. The coating layer is a layer made of a compound selected from zinc oxide, niobium oxide and lead oxide, and in step (b), the porous semiconductor layer is made porous by immersing it in a basic solution. The method for producing a dye-sensitized solar cell according to claim 3, wherein the coating layer of the semiconductor layer is dissolved and removed.
【請求項7】 工程(b)において、吸収スペクトルに
おける最大感度波長領域を短波長側に有する色素から吸
収スペクトルにおける最大感度波長領域を長波長側に有
する色素の順に受光面側から色素を多孔性光電変換層に
吸着する請求項3〜6のいずれか1つに記載の色素増感
型太陽電池の製造方法。
7. In the step (b), the dye is porous from the light-receiving surface side in the order of the dye having the maximum sensitivity wavelength region in the absorption spectrum on the short wavelength side to the dye having the maximum sensitivity wavelength region in the absorption spectrum on the long wavelength side. The method for producing a dye-sensitized solar cell according to claim 3, wherein the dye-sensitized solar cell is adsorbed on a photoelectric conversion layer.
JP2002046809A 2002-02-22 2002-02-22 Method for producing dye-sensitized solar cell Expired - Fee Related JP4312991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046809A JP4312991B2 (en) 2002-02-22 2002-02-22 Method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046809A JP4312991B2 (en) 2002-02-22 2002-02-22 Method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2003249275A true JP2003249275A (en) 2003-09-05
JP4312991B2 JP4312991B2 (en) 2009-08-12

Family

ID=28660086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046809A Expired - Fee Related JP4312991B2 (en) 2002-02-22 2002-02-22 Method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4312991B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343455A (en) * 2001-05-22 2002-11-29 Sharp Corp Dye-sensitized solar cell and manufacturing method therefor
WO2005041216A1 (en) * 2003-10-23 2005-05-06 Bridgestone Corporation Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP2006179488A (en) * 2004-12-20 2006-07-06 Konarka Technologies Inc Patterned photovoltaic cell
JP2006278112A (en) * 2005-03-29 2006-10-12 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2007299557A (en) * 2006-04-28 2007-11-15 Oki Electric Ind Co Ltd Dye-sensitized solar cell
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2008071535A (en) * 2006-09-12 2008-03-27 Kyushu Institute Of Technology Photoelectric conversion element and its manufacturing method
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010135334A (en) * 2010-01-15 2010-06-17 Casio Computer Co Ltd Dye-sensitized solar cell, decorative device, electronic equipment, and manufacturing method of dye-sensitized solar cell
WO2010109821A1 (en) * 2009-03-26 2010-09-30 新日鐵化学株式会社 Photoelectric conversion element
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011145229A1 (en) * 2010-05-21 2011-11-24 株式会社アルバック Process for production of photoelectrode, process for production of dye-sensitized solar cell, photoelectrode, and dye-sensitized solar cell
JP2012053985A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric conversion element, and photoelectrochemical battery using the same
JP2013196852A (en) * 2012-03-16 2013-09-30 Sekisui Chem Co Ltd Method for manufacturing photoelectrode, photoelectrode, and dye-sensitized solar cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574897B2 (en) * 2001-05-22 2010-11-04 シャープ株式会社 Dye-sensitized solar cell and method for producing the same
JP2002343455A (en) * 2001-05-22 2002-11-29 Sharp Corp Dye-sensitized solar cell and manufacturing method therefor
WO2005041216A1 (en) * 2003-10-23 2005-05-06 Bridgestone Corporation Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP4627427B2 (en) * 2004-10-04 2011-02-09 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006179488A (en) * 2004-12-20 2006-07-06 Konarka Technologies Inc Patterned photovoltaic cell
JP2006278112A (en) * 2005-03-29 2006-10-12 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2007299557A (en) * 2006-04-28 2007-11-15 Oki Electric Ind Co Ltd Dye-sensitized solar cell
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2008071535A (en) * 2006-09-12 2008-03-27 Kyushu Institute Of Technology Photoelectric conversion element and its manufacturing method
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010109821A1 (en) * 2009-03-26 2010-09-30 新日鐵化学株式会社 Photoelectric conversion element
JP5577519B2 (en) * 2009-03-26 2014-08-27 新日鉄住金化学株式会社 Photoelectric conversion element
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2010135334A (en) * 2010-01-15 2010-06-17 Casio Computer Co Ltd Dye-sensitized solar cell, decorative device, electronic equipment, and manufacturing method of dye-sensitized solar cell
WO2011145229A1 (en) * 2010-05-21 2011-11-24 株式会社アルバック Process for production of photoelectrode, process for production of dye-sensitized solar cell, photoelectrode, and dye-sensitized solar cell
JP5490229B2 (en) * 2010-05-21 2014-05-14 株式会社アルバック Photoelectrode manufacturing method, dye-sensitized solar cell manufacturing method, photoelectrode and dye-sensitized solar cell
JP2012053985A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric conversion element, and photoelectrochemical battery using the same
JP2013196852A (en) * 2012-03-16 2013-09-30 Sekisui Chem Co Ltd Method for manufacturing photoelectrode, photoelectrode, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4312991B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
EP2043190B1 (en) Dye-sensitized solar cell module and method for fabricating same
EP1976051B1 (en) Dye sensitized solar cell and dye sensitized solar cell module
JP5084730B2 (en) Dye-sensitized solar cell
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP5118805B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
EP1981118A1 (en) Dye sensitization photoelectric converter
JP4312991B2 (en) Method for producing dye-sensitized solar cell
WO2005112183A1 (en) Photoelectric conversion element and semiconductor electrode
JP2005235725A (en) Dye-sensitized solar cell module
JP4448478B2 (en) Dye-sensitized solar cell module
JP2002222971A (en) Photoelectric converter
JP2004319439A (en) Dye-sensitized solar cell and its manufacturing method
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4149714B2 (en) Dye-sensitized solar cell and method for producing the same
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP2004047264A (en) Dye-sensitized solar cell and its manufacturing method
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP4537693B2 (en) Dye-sensitized solar cell
JP4455868B2 (en) Dye-sensitized solar cell
JP2004303463A (en) Dye-sensitized solar cell module and its manufacturing method
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
JP4537694B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees