JP2006278112A - Dye-sensitized solar cell and dye-sensitized solar cell module - Google Patents

Dye-sensitized solar cell and dye-sensitized solar cell module Download PDF

Info

Publication number
JP2006278112A
JP2006278112A JP2005094667A JP2005094667A JP2006278112A JP 2006278112 A JP2006278112 A JP 2006278112A JP 2005094667 A JP2005094667 A JP 2005094667A JP 2005094667 A JP2005094667 A JP 2005094667A JP 2006278112 A JP2006278112 A JP 2006278112A
Authority
JP
Japan
Prior art keywords
dye
solar cell
absorption peak
sensitized solar
sensitizing dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005094667A
Other languages
Japanese (ja)
Other versions
JP5118805B2 (en
Inventor
Yoshiyo Sumiya
佳代 角谷
Atsushi Fukui
篤 福井
Nobuhiro Fukuya
信洋 福家
Reigen Kan
礼元 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005094667A priority Critical patent/JP5118805B2/en
Publication of JP2006278112A publication Critical patent/JP2006278112A/en
Application granted granted Critical
Publication of JP5118805B2 publication Critical patent/JP5118805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance photoelectric transfer efficiency of a dye-sensitized solar cell. <P>SOLUTION: This dye-sensitized solar cell has at least a conductive substrate, a porous semiconductor layer adsorbing a sensitized dye, a carrier transport layer, and a counter electrode in this order. The sensitized dye comprises two kinds of sensitized dye having different absorption peak wavelengths in an absorption spectrum, and the molecular weight of the sensitized dye having the absorption peak wavelength on the short wavelength side is smaller than the molecular weight of the sensitized dye having the absorption peak wavelength on the long wavelength side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感太陽電池及び色素増感太陽電池モジュールに関する。更に詳しくは、本発明は、高い光電変換効率を有する色素増感太陽電池及び、それを集積化した構造においても優れた性能を示す色素増感太陽電池モジュールに関する。   The present invention relates to a dye-sensitized solar cell and a dye-sensitized solar cell module. More specifically, the present invention relates to a dye-sensitized solar cell having high photoelectric conversion efficiency and a dye-sensitized solar cell module exhibiting excellent performance even in a structure in which it is integrated.

現在の太陽光発電は、単結晶シリコン、多結晶シリコン、アモルファスシリコンを用いたシリコン系太陽電池を中心に実用化されている。しかしながら、シリコン系太陽電池では、製造プロセスにおける使用エネルギーが大きいことや、製造コストが高い等の問題がある。更に、このまま普及させていくとなると、原料となるシリコンの不足も問題となる。   Present solar power generation is put to practical use mainly for silicon-based solar cells using single crystal silicon, polycrystalline silicon, and amorphous silicon. However, silicon-based solar cells have problems such as high energy consumption in the manufacturing process and high manufacturing costs. Furthermore, when it is spread as it is, a shortage of silicon as a raw material becomes a problem.

そこで、色素増感太陽電池が注目されるようになった。この色素増感太陽電池は、例えば、透明基板上の透明導電膜に形成された増感色素を担持した半導体からなる多孔性電極(多孔性半導体層)、対極及びそれらの電極間に狭持されたキャリア輸送層とから主に構成されている。この太陽電池は、作製方法の簡便さや材料コストの低さ等から、次世代太陽電池として期待されている。   Accordingly, attention has been focused on dye-sensitized solar cells. This dye-sensitized solar cell is sandwiched between, for example, a porous electrode (porous semiconductor layer) made of a semiconductor carrying a sensitizing dye formed on a transparent conductive film on a transparent substrate, a counter electrode, and the electrodes. It is mainly composed of a carrier transport layer. This solar cell is expected as a next-generation solar cell because of its simplicity of manufacturing method and low material cost.

J.Am.Ceram.Soc.,80(12)3157−3171(1997)(非特許文献1)には、酸化チタン多孔性電極の表面に遷移金属錯体等の増感色素が吸着された色素増感太陽電池の作製方法が記載されている。該方法では、透明基板上の透明導電膜に形成された多孔性電極を、増感色素を溶解した溶液に浸漬することにより、多孔性電極に増感色素を担持させる。その後、酸化還元系の電解液を滴下し、多孔性電極上に対極を重ねることにより太陽電池を作製している。   J. et al. Am. Ceram. Soc. , 80 (12) 3157-3171 (1997) (Non-Patent Document 1) describes a method for producing a dye-sensitized solar cell in which a sensitizing dye such as a transition metal complex is adsorbed on the surface of a titanium oxide porous electrode. Has been. In this method, a porous electrode formed on a transparent conductive film on a transparent substrate is immersed in a solution in which a sensitizing dye is dissolved, whereby the sensitizing dye is supported on the porous electrode. Thereafter, a redox electrolyte is dropped, and a counter electrode is stacked on the porous electrode to produce a solar cell.

該太陽電池では、半導体電極に可視光が照射されると、半導体電極表面上の増感色素が光を吸収することにより、色素分子内の電子が励起され、励起電子が半導体電極に注入される。よって、この半導体電極側で電子が発生し、該電子は電気回路を通って対極に移動する。対極に移動した電子は、キャリア輸送層中のホール又はイオンによって運ばれ、多孔性電極表面上の増感色素に戻る。このような過程が繰り返されて、高いエネルギー変換効率で、電気エネルギーが取り出される。
しかしながら、太陽電池として実用化するためには、更なる変換効率の向上が望まれている。
In the solar cell, when the semiconductor electrode is irradiated with visible light, the sensitizing dye on the surface of the semiconductor electrode absorbs light, thereby exciting electrons in the dye molecule and injecting excited electrons into the semiconductor electrode. . Therefore, electrons are generated on the semiconductor electrode side, and the electrons move through the electric circuit to the counter electrode. The electrons that have moved to the counter electrode are carried by holes or ions in the carrier transport layer and return to the sensitizing dye on the porous electrode surface. Such a process is repeated to extract electric energy with high energy conversion efficiency.
However, in order to put it to practical use as a solar cell, further improvement in conversion efficiency is desired.

色素増感太陽電池の特性低下の一因としては、色素によって被覆されていない半導体電極表面から、注入されたキャリアがキャリア輸送層内に流れることが考えられている。例えば、特開2001−102103号公報(特許文献1)及び特開2000−323192号公報(特許文献2)には、前記キャリアの流れを抑制するため、半導体電極表面に色素とキャリアの移動を防止する物質とを担持させる技術が記載されている。キャリアの移動を防止する分子としては、ケイ素化合物、錫化合物、スルホン化合物、スルホン酸塩、硫酸エステル塩、リン酸エステル塩含有高分子が用いられている。また、特開2004−119279号公報(特許文献3)では、同様の目的で、それぞれフッ素原子を含有するアルコキシシラン、クロロシラン、シラノール、ピリジン類、イミダゾール類を半導体電極表面に担持させている。   As one cause of the deterioration of the characteristics of the dye-sensitized solar cell, it is considered that injected carriers flow into the carrier transport layer from the surface of the semiconductor electrode not covered with the dye. For example, Japanese Patent Application Laid-Open No. 2001-102103 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-323192 (Patent Document 2) prevent the movement of a dye and a carrier on the surface of a semiconductor electrode in order to suppress the flow of the carrier. A technique for supporting a substance to be carried is described. As a molecule for preventing carrier movement, a silicon compound, a tin compound, a sulfone compound, a sulfonate, a sulfate ester salt, and a phosphate ester-containing polymer are used. In Japanese Patent Laid-Open No. 2004-119279 (Patent Document 3), for the same purpose, alkoxysilane, chlorosilane, silanol, pyridines, and imidazoles each containing a fluorine atom are supported on the surface of the semiconductor electrode.

特開2001−102103号公報JP 2001-102103 A 特開2000−323192号公報JP 2000-323192 A 特開2004−119279号公報JP 2004-119279 A J.Am.Ceram.Soc.,80(12)3157−3171(1997)J. et al. Am. Ceram. Soc. , 80 (12) 3157-3171 (1997)

しかしながら、これらのキャリアの移動を防止する物質を多孔性電極表面に担持させた場合、これらの物質が吸収した光は電気エネルギーとして取り出されない。そのため光電変換効率が低下するという課題があった。   However, when a substance that prevents the movement of these carriers is supported on the porous electrode surface, the light absorbed by these substances is not extracted as electrical energy. Therefore, the subject that the photoelectric conversion efficiency fell occurred.

かくして本発明によれば、導電性基板、該導電性基板上に、増感色素を吸着した多孔性半導体層、キャリア輸送層及び対極をこの順で少なくとも有し、前記増感色素が、吸収スペクトルにおける吸収ピーク波長の異なる2種の増感色素からなり、かつ、吸収ピーク波長を長波長側に有する増感色素の分子量よりも、吸収ピーク波長を短波長側に有する増感色素の分子量が小さいことを特徴とする色素増感太陽電池が提供される。   Thus, according to the present invention, a conductive substrate, a porous semiconductor layer on which the sensitizing dye is adsorbed, a carrier transport layer, and a counter electrode are provided in this order, and the sensitizing dye has an absorption spectrum. The molecular weight of the sensitizing dye having the absorption peak wavelength on the short wavelength side is smaller than the molecular weight of the sensitizing dye having the absorption peak wavelength on the long wavelength side. A dye-sensitized solar cell is provided.

更に、本発明によれば、上記色素増感太陽電池を2つ以上直列接続した色素増感太陽電池モジュールが提供される。   Furthermore, according to the present invention, there is provided a dye-sensitized solar cell module in which two or more dye-sensitized solar cells are connected in series.

本発明によれば、2種類の増感色素により、多孔性半導体層からキャリア輸送層へ電子が流れる部分を低減できるので、多孔性半導体層からキャリア輸送層へと逆向きに流れる電荷の割合を低減できる。その結果、短絡電流、開放電圧及び光電変換効率を増加できる。   According to the present invention, the two types of sensitizing dyes can reduce the portion of electrons flowing from the porous semiconductor layer to the carrier transport layer, so the ratio of charges flowing in the opposite direction from the porous semiconductor layer to the carrier transport layer can be reduced. Can be reduced. As a result, the short circuit current, the open circuit voltage, and the photoelectric conversion efficiency can be increased.

以下では、本発明をなすに至った経緯を説明する。
導電性基板、該導電性基板上に、増感色素を吸着した多孔性半導体層(半導体電極)、キャリア輸送層、対極をこの順に有する色素増感太陽電池は、多孔性半導体層表面上の増感色素が光を吸収することにより、色素分子内の電子が励起され、励起電子が多孔性半導体層に注入され、該電子を取り出すことで電気エネルギーを得ている。しかしながら、多孔性半導体層表面上には増感色素で覆われていない部分が存在し、増感色素から注入された電子が、増感色素で覆われていない部分からキャリア輸送層に流れる(逆電流)という現象がある。この現象は光電変換効率を低下させる。
In the following, the background to the present invention will be described.
A dye-sensitized solar cell having a conductive substrate, a porous semiconductor layer (semiconductor electrode) in which a sensitizing dye is adsorbed on the conductive substrate, a carrier transport layer, and a counter electrode in this order is provided on the surface of the porous semiconductor layer. When the dye-sensitive material absorbs light, electrons in the dye molecule are excited, the excited electrons are injected into the porous semiconductor layer, and electric energy is obtained by taking out the electrons. However, there is a portion not covered with the sensitizing dye on the surface of the porous semiconductor layer, and electrons injected from the sensitizing dye flow from the portion not covered with the sensitizing dye to the carrier transport layer (reversely). Current). This phenomenon reduces the photoelectric conversion efficiency.

また、増感色素から注入された電子は、多孔性半導体層の伝導帯下端準位を占めている。この電子は増感色素のLUMO準位又はHOMO準位に戻ることで逆向きの電子の流れが生じ、開放電圧が低下することがある。増感色素の吸収ピーク波長が短波長であることは、LUMO準位―HOMO準位間のエネルギーギャップが大きいことを意味し、LUMO準位は高く、HOMO準位は低くなる。HOMO準位が低下すれば、伝導帯下端準位とHOMO準位とのエネルギーギャップが大きくなり、多孔性半導体層から増感色素のHOMO準位への逆向きの電子の流れが抑制されると考えられる。また、LUMO準位についても同様のことがいえる。よって、吸収ピーク波長が短波長である方が、開放電圧は大きくなるため、吸収ピーク波長が短波長側にある増感色素の方が、吸収ピーク波長が長波長側にある増感色素よりも逆電流防止効果が大きい。   Moreover, the electrons injected from the sensitizing dye occupy the conduction band bottom level of the porous semiconductor layer. When these electrons return to the LUMO level or HOMO level of the sensitizing dye, a reverse flow of electrons occurs, and the open circuit voltage may decrease. That the absorption peak wavelength of the sensitizing dye is short means that the energy gap between the LUMO level and the HOMO level is large, and the LUMO level is high and the HOMO level is low. If the HOMO level decreases, the energy gap between the conduction band bottom level and the HOMO level increases, and the reverse flow of electrons from the porous semiconductor layer to the HOMO level of the sensitizing dye is suppressed. Conceivable. The same can be said for the LUMO level. Therefore, since the open circuit voltage is larger when the absorption peak wavelength is short, the sensitizing dye having the absorption peak wavelength on the short wavelength side is more sensitive than the sensitizing dye having the absorption peak wavelength on the long wavelength side. The reverse current prevention effect is great.

本発明の色素増感太陽電池では、2種類の色素の中で、吸収ピーク波長が短波長側にあり、逆電流防止効果が大きいと考えられる増感色素分子の大きさの方が小さい。したがって、吸収ピーク波長が短波長側にある増感色素が、多孔性半導体層に吸着している吸収ピーク波長が長波長側にある増感色素間や、吸収ピーク波長が長波長側にある増感色素が吸着し難い細孔にも吸着でき、その結果、多孔性半導体層表面をより広く増感色素で被覆できる。よって、吸収ピーク波長が短波長側にある分子量の小さい増感色素を担持させることで多孔性半導体層からキャリア輸送層へ電子が流れる部分を低減できるので、多孔性半導体層からキャリア輸送層へと逆向きに流れる電荷の割合を低減できる。その結果、短絡電流及び開放電圧を増加できる。
以下では、色素増感太陽電池の各構成要素を説明する。
In the dye-sensitized solar cell of the present invention, among the two types of dyes, the absorption peak wavelength is on the short wavelength side, and the size of the sensitizing dye molecule considered to have a large reverse current prevention effect is smaller. Therefore, the sensitizing dye whose absorption peak wavelength is on the short wavelength side is increased between the sensitizing dye whose absorption peak wavelength is adsorbed on the porous semiconductor layer is on the long wavelength side, or the absorption peak wavelength is on the long wavelength side. It can also be adsorbed in pores where dyes are difficult to adsorb, and as a result, the surface of the porous semiconductor layer can be more widely coated with sensitizing dyes. Therefore, by supporting a sensitizing dye with a small molecular weight having an absorption peak wavelength on the short wavelength side, it is possible to reduce the portion of electrons flowing from the porous semiconductor layer to the carrier transport layer, so that from the porous semiconductor layer to the carrier transport layer. The proportion of charges flowing in the opposite direction can be reduced. As a result, the short circuit current and the open circuit voltage can be increased.
Below, each component of a dye-sensitized solar cell is demonstrated.

(導電性基板)
本発明において、多孔性半導体層は、導電性基板上に形成される。
導電性基板としては、金属基板のようにそれ自体が導電性を有する基板、またその表面に導電層を有するガラス、プラスチック等の基板が利用できる。後者の場合、好ましい導電材料は、金、白金、銀、銅、アルミニウム、インジウム等の金属、導電性カーボン、インジウム錫複合酸化物、フッ素をドープした酸化錫、酸化亜鉛等が挙げられる。これら導電材料は、常法によって、該基板上に形成できる。導電層の膜厚は0.02〜5μm程度が好ましい。
(Conductive substrate)
In the present invention, the porous semiconductor layer is formed on a conductive substrate.
As the conductive substrate, a substrate having conductivity itself such as a metal substrate, or a substrate such as glass or plastic having a conductive layer on the surface thereof can be used. In the latter case, preferable conductive materials include metals such as gold, platinum, silver, copper, aluminum, and indium, conductive carbon, indium tin composite oxide, fluorine-doped tin oxide, and zinc oxide. These conductive materials can be formed on the substrate by a conventional method. The thickness of the conductive layer is preferably about 0.02 to 5 μm.

導電性基板は表面抵抗が低いほどよく、例えば、表面抵抗は40Ω/sq以下であることが好ましい。また、該支持体の膜厚は、多孔性半導体層に適当な強度を付与できるものであれば特に限定されない。
また、導電性基板側が受光面となる場合、該基板は、透明であることが好ましい。
The conductive substrate preferably has a lower surface resistance. For example, the surface resistance is preferably 40 Ω / sq or less. Moreover, the film thickness of this support body will not be specifically limited if an appropriate intensity | strength can be provided to a porous semiconductor layer.
When the conductive substrate side is the light receiving surface, the substrate is preferably transparent.

上記点及び機械的な強度を満足させることを考慮に入れると、フッ素をドープした酸化錫からなる導電層をソーダ石灰フロートガラスからなる透明基板上に積層したものが代表的な支持体として挙げられる。   Taking into account the above points and satisfying the mechanical strength, a typical support is a laminate in which a conductive layer made of fluorine-doped tin oxide is laminated on a transparent substrate made of soda-lime float glass. .

また、コスト面、フレキシブル性等を考慮に入れると、透明ポリマーシート上に上記導電層を設けたものを用いてもよい。透明ポリマーシートとしては、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニルスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂等が挙げられる。   In consideration of cost, flexibility, etc., a transparent polymer sheet provided with the conductive layer may be used. Examples of the transparent polymer sheet include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenyl sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyether imide (PEI), phenoxy resin, and the like. It is done.

導電性基板の抵抗を下げるために金属リード線を加えてもよい。金属リード線の材質としては、白金、銀、銅、アルミニウム、インジウム、ニッケル、チタン等が好ましい。金属リード線は、酸化錫、ITO等の透明な導電層を形成する前に、支持基板上にスパッタ、蒸着等で形成してもよく、導電層を設けた後、形成してもよい。ただし、金属リード線は、入射光量を低下させる場合があるので注意が必要である。
更に、該導電性基板が受光面でない場合には、白金、銀、銅、アルミニウム、インジウム、ニッケル、チタン、タンタル、タングステン、モリブデン等の金属基板を用いてもよい。
Metal leads may be added to reduce the resistance of the conductive substrate. The material of the metal lead wire is preferably platinum, silver, copper, aluminum, indium, nickel, titanium, or the like. The metal lead wire may be formed on the support substrate by sputtering, vapor deposition or the like before forming a transparent conductive layer such as tin oxide or ITO, or may be formed after the conductive layer is provided. However, it should be noted that the metal lead wire may reduce the amount of incident light.
Further, when the conductive substrate is not a light receiving surface, a metal substrate such as platinum, silver, copper, aluminum, indium, nickel, titanium, tantalum, tungsten, or molybdenum may be used.

(多孔性半導体層)
多孔性半導体層は、通常半導体微粒子の集合体からなる。
(Porous semiconductor layer)
The porous semiconductor layer is usually composed of an aggregate of semiconductor fine particles.

半導体微粒子は、一般に光電変換材料に使用されるものであればどのようなものでも使用できる。例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化ジルコニウム、酸化セリウム、酸化タングステン、酸化シリコン、酸化アルミニウム、酸化ニッケル、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅−インジウム硫化物(CuInS2)、CuAlO2、SrCu22等の単独又は組み合わせが挙げられる。その中でも、酸化チタン、酸化亜鉛、酸化錫、酸化ニオブが好ましく、安定性及び安全性の点から、酸化チタンが特に好ましい。 Any fine semiconductor particles can be used as long as they are generally used for photoelectric conversion materials. For example, titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, zirconium oxide, cerium oxide, tungsten oxide, silicon oxide, aluminum oxide, nickel oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, sulfide Examples thereof include zinc, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , and SrCu 2 O 2 . Among these, titanium oxide, zinc oxide, tin oxide, and niobium oxide are preferable, and titanium oxide is particularly preferable from the viewpoint of stability and safety.

酸化チタンは、アナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸等の各種の狭義の酸化チタンに加えて、水酸化チタン、含水酸化チタン等を包含する。   Titanium oxide includes titanium hydroxide, hydrous titanium oxide and the like in addition to various narrowly defined titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, metatitanic acid, and orthotitanic acid.

半導体微粒子は、単結晶、多結晶、アモルファスのいずれでもよい。この内、安定性、結晶成長の困難さ、製造コスト等より、多結晶が好ましい。特に微粉末(ナノからマイクロスケール)の多結晶の半導体微粒子が好ましい。   The semiconductor fine particles may be single crystal, polycrystalline, or amorphous. Among these, polycrystal is preferable from the viewpoint of stability, difficulty of crystal growth, production cost, and the like. In particular, polycrystalline semiconductor fine particles of fine powder (nano to microscale) are preferable.

また、2種類以上の粒子サイズの異なる粒子を混合して用いてもよい。この場合、各粒子の材料は同一でも異なっていてもよい。異なる粒子サイズの平均粒径の比率は10倍以上の差がある方がよい。粒径の大きい粒子(例えば100〜500nm)は、入射光を散乱させ、光補足率を上げる目的で用いることができる。特に半導体の種類の異なる微粒子を使用した場合、吸着作用の強い半導体微粒子を小粒径にした方が光捕捉率の向上に効果的である。   Further, two or more kinds of particles having different particle sizes may be mixed and used. In this case, the material of each particle may be the same or different. The ratio of the average particle sizes of different particle sizes should have a difference of 10 times or more. Particles having a large particle size (for example, 100 to 500 nm) can be used for the purpose of scattering incident light and increasing the light capture rate. In particular, when fine particles of different types of semiconductors are used, it is more effective to improve the light capture rate if the fine particles of semiconductor particles having a strong adsorption action are made smaller.

多孔性半導体層の厚みは、特に限定されるものではなく、例えば、0.1〜100μm程度が挙げられる。また、別の観点から、多孔性半導体層の表面積が大きいものが好ましく、例えば、10〜200m2/g程度が挙げられる。
また、多孔性半導体層の空隙率は、40〜80%であることが好ましい。40%より小さい場合、色素溶液が浸透し難いため色素吸着が困難になるので好ましくなく、80%より大きい場合、膜の強度が弱いので好ましくない。
The thickness of a porous semiconductor layer is not specifically limited, For example, about 0.1-100 micrometers is mentioned. From another point of view, a porous semiconductor layer having a large surface area is preferable, for example, about 10 to 200 m 2 / g.
Further, the porosity of the porous semiconductor layer is preferably 40 to 80%. If it is less than 40%, it is not preferred because the dye solution is difficult to permeate, so that it is difficult to adsorb the dye.

(酸化チタン作製方法)
最も好ましい半導体微粒子の形態である酸化チタンは、各種文献に記載されている方法に準じて作製できる。例えば、作製法としては、「新合成法:ゾル−ゲル法による単分散粒子の合成とサイズ形態制御」第35巻、第9号1012〜1018頁(1995)等が代表的なものとして挙げることができる。また、Degussa社が開発した塩化物を高温加水分解することにより得る方法も適している。
(Titanium oxide production method)
Titanium oxide, which is the most preferable form of semiconductor fine particles, can be produced according to methods described in various documents. For example, as a production method, “New synthesis method: Synthesis of monodispersed particles by sol-gel method and control of size form” Vol. 35, No. 9, pages 1012 to 1018 (1995) can be cited as representative examples. Can do. Also suitable is a method obtained by hydrolyzing a chloride developed by Degussa.

本発明に使用される酸化チタンの内、アナターゼ型とルチル型は、その製法や熱履歴によりいずれの形もとりうるが、アナターゼ型が一般的である。アナターゼ型はルチル型より光吸収の長波端波長が短く、紫外光による光電変換の低下を起こす度合いが小さい。よって、アナターゼ型の含有率の高いものが好ましく、その割合は80%以上が好ましい。   Among the titanium oxides used in the present invention, the anatase type and the rutile type can take any form depending on the production method and thermal history, but the anatase type is common. The anatase type has a shorter light absorption wavelength than the rutile type, and the degree of decrease in photoelectric conversion by ultraviolet light is small. Therefore, a high anatase type content is preferable, and the ratio is preferably 80% or more.

(多孔性半導体層の作製方法)
多孔性半導体層の形成方法は、例えば、透明導電膜上に半導体微粒子を含有する懸濁液を塗布し、乾燥及び/又は焼成する方法が挙げられる。
上記方法を具体的に説明する。
(Method for producing porous semiconductor layer)
Examples of the method for forming the porous semiconductor layer include a method of applying a suspension containing semiconductor fine particles on a transparent conductive film, and drying and / or firing.
The above method will be specifically described.

まず、半導体微粒子を適当な溶媒に懸濁させる。そのような溶媒としては、エチレングリコールモノメチルエーテル等のグライム系溶媒、イソプロピルアルコール等のアルコール類、イソプロピルアルコール/トルエン等のアルコール系混合溶媒、水等が挙げられる。また、これらの懸濁液の代わりに市販の酸化チタンペースト(Ti−nanoxide,D,T/SP,D/SP,Solaronix社製)を用いてもよい。   First, the semiconductor fine particles are suspended in a suitable solvent. Examples of such a solvent include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol mixed solvents such as isopropyl alcohol / toluene, water, and the like. Further, instead of these suspensions, a commercially available titanium oxide paste (Ti-nanoxide, D, T / SP, D / SP, manufactured by Solaronix) may be used.

多孔性半導体層形成のための懸濁液の基板への塗布方法は、ドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法等公知の方法が挙げられる。その後、塗布液を乾燥及び焼成する。乾燥及び焼成に必要な温度、時間、雰囲気等は、使用される基板及び半導体微粒子の種類に応じて、適宜調整できる。例えば、大気下又は不活性ガス雰囲気下、500〜800℃程度の範囲で10秒〜12時間程度が挙げられる。乾燥及び焼成は、単一の温度で1回のみ行ってもよいし、温度を変化させて2回以上行ってもよい。半導体層が複数の場合には、平均粒径の異なる半導体微粒子懸濁液を準備し、塗布、乾燥及び焼成の工程を2回行ってもよい。   Examples of the method for applying the suspension to the substrate for forming the porous semiconductor layer include known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method. Thereafter, the coating solution is dried and baked. The temperature, time, atmosphere, etc. necessary for drying and firing can be appropriately adjusted according to the type of substrate and semiconductor fine particles used. For example, in the range of about 500-800 degreeC under air | atmosphere or inert gas atmosphere, about 10 second-about 12 hours are mentioned. Drying and firing may be performed only once at a single temperature, or may be performed twice or more by changing the temperature. When there are a plurality of semiconductor layers, semiconductor fine particle suspensions having different average particle diameters may be prepared, and the coating, drying, and firing steps may be performed twice.

導電性基板上に多孔性半導体層を形成した後、半導体微粒子同士の電気的接続の向上、多孔性半導体層の表面積の増加、半導体微粒子上の欠陥準位の低減を目的として、例えば、多孔性半導体層が酸化チタンからなる場合、四塩化チタン水溶液を用いて多孔性半導体層を前処理してもよい。   After forming a porous semiconductor layer on a conductive substrate, for example, for the purpose of improving electrical connection between semiconductor fine particles, increasing the surface area of the porous semiconductor layer, and reducing defect levels on the semiconductor fine particles. When the semiconductor layer is made of titanium oxide, the porous semiconductor layer may be pretreated with an aqueous titanium tetrachloride solution.

(増感色素)
多孔性半導体層には2種類の増感色素を吸着させる。
増感色素としては、有機色素や金属錯体色素を用いることができる。有機色素は、例えば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素等が挙げられる。
(Sensitizing dye)
Two types of sensitizing dyes are adsorbed on the porous semiconductor layer.
As the sensitizing dye, an organic dye or a metal complex dye can be used. Examples of organic dyes include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylene dyes. Examples thereof include dyes, indigo dyes, and naphthalocyanine dyes.

金属錯体色素においては、Cu,Ni,Fe,Co,V,Sn,Si,Ti,Ge,Cr,Zn,Ru,Mg,Al,Pb,Mn,In,Mo,Y,Zr,Nb,Sb,La,W,Pt,Ta,Ir,Pd,Os,Ga,Tb,Eu,Rb,Bi,Se,As,Sc,Ag,Cd,Hf,Re,Au,Ac,Tc,Te,Rh等の中心金属を有する色素が挙げられる。特に、フタロシアニン系色素、ルテニウムビピリジン系色素等が好ましい。   In the metal complex dye, Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh, etc. Examples thereof include a pigment having a metal. In particular, phthalocyanine dyes, ruthenium bipyridine dyes, and the like are preferable.

増感色素の内、吸収ピーク波長を短波長側に有する増感色素の分子量が、吸収ピーク波長を長波長側に有する増感色素の分子量より、50以上小さいことが好ましい。更に、80〜1200の範囲で小さいことが好ましい。   Among the sensitizing dyes, the molecular weight of the sensitizing dye having the absorption peak wavelength on the short wavelength side is preferably 50 or more smaller than the molecular weight of the sensitizing dye having the absorption peak wavelength on the long wavelength side. Furthermore, it is preferable that it is small in the range of 80-1200.

また、増感色素の内、吸収ピーク波長が長波長側にある増感色素の分子量は650〜2000が好ましく、700〜1500であることがより好ましい。一方、吸収ピーク波長が短波長側にある増感色素は150〜900が好ましく、200〜700であることがより好ましい。   Moreover, 650-2000 are preferable and, as for the molecular weight of the sensitizing dye whose absorption peak wavelength exists in a long wavelength side among sensitizing dyes, it is more preferable that it is 700-1500. On the other hand, the sensitizing dye whose absorption peak wavelength is on the short wavelength side is preferably 150 to 900, and more preferably 200 to 700.

吸収ピーク波長が短波長側にある増感色素は、350〜510nmの光波長領域に吸収ピーク波長をもつことが好ましい。吸収ピーク波長が長波長側にある増感色素は、500〜800nmの光波長領域に吸収ピーク波長をもつことが好ましい。また、2つの増感色素の吸収ピーク波長の差は、10〜400nmであることが好ましい。   A sensitizing dye having an absorption peak wavelength on the short wavelength side preferably has an absorption peak wavelength in the light wavelength region of 350 to 510 nm. The sensitizing dye having an absorption peak wavelength on the long wavelength side preferably has an absorption peak wavelength in the light wavelength region of 500 to 800 nm. Moreover, it is preferable that the difference of the absorption peak wavelength of two sensitizing dyes is 10-400 nm.

2種の増感色素の割合は、吸収ピーク波長が長波長側にある増感色素に対して、吸収ピーク波長が短波長側にある増感色素のモル比が0.1〜10の範囲であることが好ましく、より好ましくは0.2〜4の範囲である。吸収ピーク波長が短波長側にある増感色素が0.1より少ない場合、短波長側の光を十分に吸収できなくなるので好ましくなく、10より多い場合、長波長側の光を十分に吸収できなくなるので好ましくない。   The ratio of the two sensitizing dyes is such that the molar ratio of the sensitizing dye having the absorption peak wavelength on the short wavelength side is 0.1 to 10 with respect to the sensitizing dye having the absorption peak wavelength on the long wavelength side. It is preferable that it is in the range of 0.2-4. If the sensitizing dye having an absorption peak wavelength on the short wavelength side is less than 0.1, it is not preferable because the light on the short wavelength side cannot be sufficiently absorbed, and if it exceeds 10, the light on the long wavelength side can be sufficiently absorbed. Since it disappears, it is not preferable.

前記増感色素の中で、吸収ピーク波長が長波長側にある増感色素は、ルテニウム系金属錯体色素やターピリジン系ルテニウム錯体がより好ましく、特に以下の構造式で示すRuthenium535色素(化合物1、分子量705、吸収ピーク波長538nm、Solaronix社製)、Ruthenium535−bisTBA色素(化合物2、分子量1203、吸収ピーク波長535nm、Solaronix社製)、Ruthenium620−1H3TBA色素(化合物3、分子量1363、吸収ピーク波長620nm、Solaronix社製)が好ましい。   Among the sensitizing dyes, the sensitizing dye having an absorption peak wavelength on the long wavelength side is more preferably a ruthenium-based metal complex dye or a terpyridine-based ruthenium complex, and particularly a Ruthenium 535 dye (compound 1, molecular weight) represented by the following structural formula. 705, absorption peak wavelength 538 nm, manufactured by Solaronix), Ruthenium 535-bisTBA dye (compound 2, molecular weight 1203, absorption peak wavelength 535 nm, manufactured by Solaronix), Ruthenium620-1H3TBA dye (compound 3, molecular weight 1363, absorption peak wavelength 620 nm, Solaronix) Are preferable.

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

吸収ピーク波長が短波長側にある増感色素は、例えば、以下の構造式で示すNK−3985(化合物4、分子量357、吸収極大波長472nm、林原生物化学研究所製)、NKX−2311(化合物5、分子量418、吸収極大波長504nm、林原生物化学研究所製)、NKX−2586(化合物6、分子量444、吸収極大波長470nm、林原生物化学研究所製)、NKX−2569(化合物7、分子量387、吸収極大波長489nm、林原生物化学研究所製)、NKX−2577(化合物8、分子量394、吸収極大波長470nm、林原生物化学研究所製)、NKX−2510(化合物9、分子量338、吸収極大波長430nm、林原生物化学研究所製)、NKX−2398(化合物10、分子量367、吸収極大波長490nm、林原生物化学研究所製)、NKX−2393(化合物11、分子量437、吸収極大波長500nm、林原生物化学研究所製)、NKX−2553(化合物12、分子量242、吸収極大波長455nm、林原生物化学研究所製)、NKX−2554(化合物13、分子量362、吸収極大波長460nm、林原生物化学研究所製)、NKX−2590(化合物14、分子量562、吸収極大波長430nm、林原生物化学研究所製)、NKX−2595(化合物15、分子量602、吸収極大波長500nm、林原生物化学研究所製)、NKX−2672(化合物16、分子量550、吸収極大波長454m、林原生物化学研究所製)、NKX−2718(化合物17、分子量471、吸収極大波長460nm、林原生物化学研究所製)、NKX−2656(化合物18、分子量607、吸収極大波長490nm、林原生物化学研究所製)、S0313(化合物19、分子量352、吸収極大波長426nm、日本シイベルヘグナー社製)、S0312(化合物20、分子量385、吸収極大波長426nm、日本シイベルヘグナー社製)、S0294(化合物21、分子量336、吸収極大波長428nm、日本シイベルヘグナー社製)、S0308(化合物22、分子量282、吸収極大波長454nm、日本シイベルヘグナー社製)、S0280(化合物23、分子量316、吸収極大波長476nm、日本シイベルヘグナー社製)、S0279(化合物24、分子量330、吸収極大波長479nm、日本シイベルヘグナー社製)、S0056(化合物25、分子量316、吸収極大波長487nm、日本シイベルヘグナー社製)、S0285(化合物26、分子量344、吸収極大波長491nm、日本シイベルヘグナー社製)、Coumarin343(化合物27、分子量285、吸収極大波長409nm、日本シイベルヘグナー社製)、Coumarin4(化合物28、分子量176、吸収極大波長372nm、日本シイベルヘグナー社製)、日本化薬社製の色素(化合物29、分子量377、吸収極大波長420、440nm)等が挙げられる。   Sensitizing dyes whose absorption peak wavelength is on the short wavelength side include, for example, NK-3985 (compound 4, molecular weight 357, absorption maximum wavelength 472 nm, manufactured by Hayashibara Biochemical Laboratories) represented by the following structural formula, NKX-2311 (compound 5, molecular weight 418, absorption maximum wavelength 504 nm, manufactured by Hayashibara Biochemical Laboratory), NKX-2586 (compound 6, molecular weight 444, absorption maximum wavelength 470 nm, manufactured by Hayashibara Biochemical Laboratory), NKX-2569 (compound 7, molecular weight 387) , Absorption maximum wavelength 489 nm, manufactured by Hayashibara Biochemical Laboratory), NKX-2577 (compound 8, molecular weight 394, absorption maximum wavelength 470 nm, manufactured by Hayashibara Biochemical Laboratory), NKX-2510 (compound 9, molecular weight 338, absorption maximum wavelength) 430 nm, manufactured by Hayashibara Biochemical Research Institute), NKX-2398 (compound 10, molecular weight 367, absorption maximum wavelength 49) nm, manufactured by Hayashibara Biochemical Laboratories), NKX-2393 (compound 11, molecular weight 437, absorption maximum wavelength 500 nm, manufactured by Hayashibara Biochemical Research Institute), NKX-2553 (compound 12, molecular weight 242, absorption maximum wavelength 455 nm, Hayashibara organism Chemical Laboratory), NKX-2554 (compound 13, molecular weight 362, absorption maximum wavelength 460 nm, Hayashibara Biochemical Laboratory), NKX-2590 (compound 14, molecular weight 562, absorption maximum wavelength 430 nm, Hayashibara Biochemistry Research Institute) ), NKX-2595 (compound 15, molecular weight 602, absorption maximum wavelength 500 nm, manufactured by Hayashibara Biochemical Laboratories), NKX-2672 (compound 16, molecular weight 550, absorption maximum wavelength 454 m, manufactured by Hayashibara Biochemical Research Institute), NKX- 2718 (compound 17, molecular weight 471, absorption maximum wavelength 460 nm, Hayashibara Biochemical Research) NKX-2656 (compound 18, molecular weight 607, absorption maximum wavelength 490 nm, manufactured by Hayashibara Biochemical Laboratories), S0313 (compound 19, molecular weight 352, absorption maximum wavelength 426 nm, manufactured by Nippon Siebel Hegner), S0312 (compound 20, Molecular weight 385, absorption maximum wavelength 426 nm, manufactured by Nippon Siebel Hegner, Inc., S0294 (compound 21, molecular weight 336, absorption maximum wavelength 428 nm, manufactured by Nippon Siebel Hegner), S0308 (compound 22, molecular weight 282, absorption maximum wavelength 454 nm, manufactured by Nippon Siebel Hegner, Inc.) ), S0280 (Compound 23, molecular weight 316, absorption maximum wavelength 476 nm, manufactured by Nippon Siebel Hegner), S0279 (Compound 24, molecular weight 330, absorption maximum wavelength 479 nm, manufactured by Nippon Siebel Hegner), S0056 (Compound 25, molecule Quantity 316, absorption maximum wavelength 487 nm, manufactured by Nippon Siebel Hegner, Inc., S0285 (compound 26, molecular weight 344, absorption maximum wavelength 491 nm, manufactured by Nippon Siebel Hegner), Coumarin 343 (compound 27, molecular weight 285, absorption maximum wavelength 409 nm, manufactured by Nippon Siebel Hegner) ), Coumarin 4 (compound 28, molecular weight 176, absorption maximum wavelength 372 nm, manufactured by Nippon Shibel Hegner), Nippon Kayaku Co., Ltd. dye (compound 29, molecular weight 377, absorption maximum wavelength 420, 440 nm), and the like.

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

Figure 2006278112
Figure 2006278112

多孔性半導体層へ強固に吸着させるため、増感色素は、その分子中にカルボキシル基、アルコキシ基、スルホン基、エステル基、メルカプト基、ホスホニル基等のインターロック基を有するものが好ましい。インターロック基を有する場合、この基を介して増感色素を多孔性半導体層により強固に固定できる。その結果、励起状態の増感色素と多孔性半導体層の伝導体との間の電子の移動を容易にすることができる。言い換えると増感色素と多孔性半導体層の電気的結合を向上できる。   In order to firmly adsorb to the porous semiconductor layer, the sensitizing dye preferably has an interlock group such as a carboxyl group, an alkoxy group, a sulfone group, an ester group, a mercapto group, or a phosphonyl group in the molecule. In the case of having an interlock group, the sensitizing dye can be firmly fixed to the porous semiconductor layer through this group. As a result, the movement of electrons between the excited sensitizing dye and the conductor of the porous semiconductor layer can be facilitated. In other words, the electrical coupling between the sensitizing dye and the porous semiconductor layer can be improved.

また、増感色素の吸光係数は大きい方が、少量で多くの光を吸収できるために好ましい。特に、吸収ピーク波長が長波長側にある増感色素よりも吸収ピーク波長が短波長側にある増感色素の吸光係数が大きい方が好ましい。吸収ピーク波長が短波長側にある増感色素の吸光係数は2000以上であることが好ましい。   Further, it is preferable that the sensitizing dye has a large extinction coefficient because a large amount of light can be absorbed in a small amount. In particular, it is preferable that the absorption coefficient of the sensitizing dye having the absorption peak wavelength on the short wavelength side is larger than that of the sensitizing dye having the absorption peak wavelength on the long wavelength side. The absorption coefficient of a sensitizing dye having an absorption peak wavelength on the short wavelength side is preferably 2000 or more.

(増感色素の吸着法)
増感色素は、多孔性半導体層に吸着させることにより半導体を分光増感させることができる。増感色素の吸着は、多孔性半導体層の形成用の半導体微粒子に行っても、多孔性半導体層に行ってもよい。通常は多孔性半導体層を形成後に吸着させた方が、半導体微粒子に吸着させるより、増感色素の吸着性が向上するので好ましい。
(Sensitivity dye adsorption method)
The sensitizing dye can spectrally sensitize the semiconductor by being adsorbed to the porous semiconductor layer. The adsorption of the sensitizing dye may be performed on the semiconductor fine particles for forming the porous semiconductor layer or on the porous semiconductor layer. In general, it is preferable to adsorb the porous semiconductor layer after forming it because the adsorbability of the sensitizing dye is improved rather than adsorbing to the semiconductor fine particles.

増感色素を半導体(半導体微粒子又は多孔性半導体層)に吸着させる方法としては、増感色素を含有した溶液中に、よく乾燥した半導体を浸漬させるか、もしくは色素溶液を半導体に塗布して吸着させる方法が挙げられる。この内、浸漬により半導体に増感色素を吸着させる方法が一般的である。   As a method of adsorbing the sensitizing dye to the semiconductor (semiconductor fine particles or porous semiconductor layer), a well-dried semiconductor is immersed in a solution containing the sensitizing dye, or the dye solution is applied to the semiconductor and adsorbed. The method of letting it be mentioned. Of these, a method of adsorbing a sensitizing dye to a semiconductor by dipping is common.

色素溶液の溶媒としては、使用する増感色素を溶解するものが好ましい。具体的には、アルコール、トルエン、アセトニトリル、THF、クロロホルム、ジメチルホルムアミド等の有機溶剤が挙げられる。通常は、前記の溶媒は精製されたものを用いることが好ましい。増感色素の溶解性を向上させるために溶解温度を上げるか、2種類以上の異なる溶剤を混合してもよい。溶媒中の色素濃度は、使用する増感色素、溶媒の種類、色素吸着方法の条件に応じて調整できる。増感色素の濃度は、1×10-5モル/リットル以上が好ましい。 As a solvent for the dye solution, a solvent capable of dissolving the sensitizing dye to be used is preferable. Specific examples include organic solvents such as alcohol, toluene, acetonitrile, THF, chloroform, and dimethylformamide. Usually, it is preferable to use a purified solvent. In order to improve the solubility of the sensitizing dye, the dissolution temperature may be increased, or two or more different solvents may be mixed. The dye concentration in the solvent can be adjusted according to the sensitizing dye used, the type of solvent, and the conditions of the dye adsorption method. The concentration of the sensitizing dye is preferably 1 × 10 −5 mol / liter or more.

本発明においては、多孔性半導体層に2種類の増感色素を吸着させる必要がある。吸着方法としては、2種類の増感色素を同一の溶媒に溶解させた色素溶液を調整し、多孔性半導体層を前記色素溶液に浸漬する方法がある。また、1種類の増感色素を溶解させた色素溶液に多孔性半導体層を浸漬させて色素を吸着させた後に、他方の増感色素を溶解させた溶液に多孔性半導体層を浸漬させて他方の色素を吸着させる方法がある。別々に色素を吸着させる場合、色素を吸着させる順番は、吸収ピーク波長が長波長側にある増感色素を吸着させた後、吸収ピーク波長が短波長側にある色素を吸着させるのが好ましい。   In the present invention, it is necessary to adsorb two types of sensitizing dyes to the porous semiconductor layer. As an adsorption method, there is a method in which a dye solution in which two kinds of sensitizing dyes are dissolved in the same solvent is prepared, and a porous semiconductor layer is immersed in the dye solution. In addition, after the porous semiconductor layer is immersed in a dye solution in which one kind of sensitizing dye is dissolved and the dye is adsorbed, the porous semiconductor layer is immersed in a solution in which the other sensitizing dye is dissolved, and the other There is a method of adsorbing the dye. When adsorbing the dyes separately, the order of adsorbing the dyes is preferably to adsorb the dye having the absorption peak wavelength on the short wavelength side after adsorbing the sensitizing dye having the absorption peak wavelength on the long wavelength side.

増感色素の吸着量は、少ないと増感効果が不十分になることがある。逆に多いと、多孔性半導体層に吸着していない色素が浮遊して、これが増感効果を減じ、効率効果をもたらす原因ともなることがある。増感色素の吸着量は、多孔性半導体層あたり、10-4〜10-3mol/cm3の範囲であることが好ましい。 If the adsorption amount of the sensitizing dye is small, the sensitizing effect may be insufficient. On the contrary, if the amount is large, the dye not adsorbed on the porous semiconductor layer may float, which may reduce the sensitizing effect and cause an efficiency effect. The adsorption amount of the sensitizing dye is preferably in the range of 10 −4 to 10 −3 mol / cm 3 per porous semiconductor layer.

必要に応じて、増感色素同士や、増感色素と添加剤との会合を防止させ、増感色素に一定の方向性をもたらすために、比較的低分子の共吸着性の化合物を加えてもよい。共吸着性の化合物としては、カルボキシル基、カルボン酸無水物基を有するコール酸等のステロイド化合物が挙げられる。   If necessary, a relatively low-molecular coadsorbing compound can be added to prevent sensitizing dyes or between sensitizing dyes and additives and to give sensitizing dyes a certain direction. Also good. Examples of the co-adsorbing compound include steroid compounds such as cholic acid having a carboxyl group or a carboxylic anhydride group.

未吸着の増感色素は、吸着工程後に速やかに洗浄することにより除去してもよい。洗浄剤は比較的揮発性の高い有機溶剤を用いるのがよい。有機溶剤としては、メタノール、エタノール等のアルコール類、アセトニトリル、アセトン等の比較的乾燥しやすい溶剤が挙げられる。   Unadsorbed sensitizing dye may be removed by washing immediately after the adsorption step. As the cleaning agent, an organic solvent having a relatively high volatility is preferably used. Examples of the organic solvent include alcohols such as methanol and ethanol, and solvents that are relatively easy to dry, such as acetonitrile and acetone.

また、未吸着の増感色素の除去後、吸着状態をより安定にするために半導体微粒子の表面を有機塩基性化合物で処理して、未吸着の増感色素の除去を促進させてもよい。有機塩基性化合物としては、ビピリジン、キノリン等の誘導体が挙げられる。有機塩基性化合物は、液体の場合はそのまま用いてもよい。固体の場合は、溶剤(例えば、色素溶液と同じ溶剤)に溶解して用いることが好ましい。   Further, after removing the unadsorbed sensitizing dye, the surface of the semiconductor fine particles may be treated with an organic basic compound in order to make the adsorption state more stable, thereby promoting the removal of the unadsorbed sensitizing dye. Examples of the organic basic compound include derivatives such as bipyridine and quinoline. In the case of a liquid, the organic basic compound may be used as it is. In the case of a solid, it is preferably used after being dissolved in a solvent (for example, the same solvent as the dye solution).

(対極)
対極は、半導体電極(多孔性半導体層)と共に一対の電極を構成し得るものである。通常、支持基板上に形成される。対極は、支持基板側から導電層、触媒層の順の積層体からなる構成を有していてもよい。
支持基板としては、通常太陽電池の基板として使用できる透明又は不透明の基板が挙げられる。
(Counter electrode)
The counter electrode can constitute a pair of electrodes together with a semiconductor electrode (porous semiconductor layer). Usually, it is formed on a support substrate. The counter electrode may have a configuration including a laminated body in the order of a conductive layer and a catalyst layer from the support substrate side.
Examples of the supporting substrate include a transparent or opaque substrate that can be usually used as a substrate for a solar cell.

次に、導電層は透明でもよいし、不透明であってもよい。例えば、N型又はP型の元素半導体(例えば、シリコン、ゲルマニウム等)又は化合物半導体(例えば、GaAs、InP、ZnSe、CsS等);金、白金、銀、銅、アルミニウム等の金属;チタン、タンタル、タングステン等の高融点金属;ITO、SnO2、CuI、ZnO等の透明導電材料からなる層が挙げられる。導電層の膜厚は0.1〜0.5μm程度が適当である。これらの導電層は、常法によって形成できる。 Next, the conductive layer may be transparent or opaque. For example, an N-type or P-type elemental semiconductor (eg, silicon, germanium, etc.) or a compound semiconductor (eg, GaAs, InP, ZnSe, CsS, etc.); a metal such as gold, platinum, silver, copper, aluminum, etc .; titanium, tantalum And a high melting point metal such as tungsten; and a layer made of a transparent conductive material such as ITO, SnO 2 , CuI, and ZnO. The thickness of the conductive layer is suitably about 0.1 to 0.5 μm. These conductive layers can be formed by a conventional method.

また、触媒層としては、白金、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレン等の層が挙げられる。白金の場合、触媒層は、スパッタ、塩化白金酸の熱分解、電着等の方法によって、導電層で被覆された支持基板上に形成できる。白金からなる触媒層の厚さは、0.5〜1000nm程度が挙げられる。
なお、触媒層の電気伝導性が高い場合には、導電層を設けなくてもよい。
Examples of the catalyst layer include platinum, carbon black, ketjen black, carbon nanotube, fullerene and the like. In the case of platinum, the catalyst layer can be formed on a support substrate coated with a conductive layer by a method such as sputtering, thermal decomposition of chloroplatinic acid, or electrodeposition. As for the thickness of the catalyst layer which consists of platinum, about 0.5-1000 nm is mentioned.
Note that when the catalyst layer has high electrical conductivity, the conductive layer may not be provided.

(キャリア輸送層)
キャリア輸送層は、電子、ホール及び/又はイオンを輸送できる導電性材料から構成されることが好ましい。例えば、ポリビニルカルバゾール、トリフェニルアミン等のホール輸送材料;テトラニトロフロレノン等の電子輸送材料;ポリチオフェン、ポリピロール等の導電性ポリマー;液体電解質、高分子電解質等のイオン導電体;ヨウ化銅、チオシアニン酸銅等の無機p型半導体が挙げられる。
上記の導電性材料の中でも、イオンを輸送できる導電性材料、すなわちイオン導電体が好ましい。
(Carrier transport layer)
The carrier transport layer is preferably composed of a conductive material capable of transporting electrons, holes and / or ions. For example, hole transport materials such as polyvinyl carbazole and triphenylamine; electron transport materials such as tetranitrophlorenone; conductive polymers such as polythiophene and polypyrrole; ionic conductors such as liquid electrolyte and polymer electrolyte; copper iodide, thiocyanin Examples include inorganic p-type semiconductors such as copper acid.
Among the above conductive materials, a conductive material that can transport ions, that is, an ionic conductor is preferable.

(液体電解質)
液体電解質は、酸化還元性電解質を含むことが好ましい。
酸化還元性電解質としては、一般に、電池や太陽電池等において使用できるものであれば特に限定されない。具体的には、I-/I3 -系、Br2 -/Br3 -系、Fe2+/Fe3+系、キノン/ハイドロキノン系等の酸化還元性電解質が挙げられる。
(Liquid electrolyte)
The liquid electrolyte preferably includes a redox electrolyte.
In general, the redox electrolyte is not particularly limited as long as it can be used in a battery, a solar battery or the like. Specific examples include redox electrolytes such as I / I 3 system, Br 2 / Br 3 system, Fe 2+ / Fe 3+ system, and quinone / hydroquinone system.

酸化還元性電解質の具体例としては、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI)等の金属ヨウ化物とヨウ素(I2)の組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンンモニウムアイオダイド(THAI)等のテトラアルキルアンンモニウム塩とヨウ素の組み合わせ、及び臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr)等の金属臭化物と臭素の組み合わせが好ましい。これらの中でもLiIとI2の組み合わせが特に好ましい。 Specific examples of the redox electrolyte include combinations of metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI) and iodine (I 2 ). A tetraalkylammonium salt such as tetraethylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), tetrahexylammonium iodide (THAI), etc., and odor A combination of metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), calcium bromide (CaBr) and bromine is preferable. Among these, a combination of LiI and I 2 is particularly preferable.

また、液体電解質の溶剤としては、プロピレンカーボネート等のカーボネート系、アセトニトリル等のニトリル系、エタノール等のアルコール系、その他、水や非プロトン極性物質等が挙げられるが、これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。
これらの溶剤は2種類以上を混合して用いることもできる。
Examples of the liquid electrolyte solvent include carbonates such as propylene carbonate, nitriles such as acetonitrile, alcohols such as ethanol, water, aprotic polar substances, and the like. Among these, carbonate compounds and nitriles Compounds are particularly preferred.
Two or more of these solvents can be used in combination.

液体電解質には、種々の添加剤が含まれていてもよい。添加剤としては、t−ブチルピリジン(TBP)等の含窒素芳香族化合物、あるいは、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、へキシルメチルイミダゾールアイオダイド(HMII)等のイミダゾール塩を添加してもよい。
液体電解質中の電解質濃度は、0.1〜1.5モル/リットルの範囲が好ましく、0.1〜0.7モル/リットルの範囲が特に好ましい。
Various additives may be contained in the liquid electrolyte. Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethyl Imidazole salts such as imidazole iodide (EII) and hexylmethylimidazole iodide (HMII) may be added.
The electrolyte concentration in the liquid electrolyte is preferably in the range of 0.1 to 1.5 mol / liter, particularly preferably in the range of 0.1 to 0.7 mol / liter.

(高分子電解質)
次に、高分子電解質としては、酸化還元種と、酸化還元種を溶解あるいは酸化還元種を構成する少なくとも1つの物質と結合できる固体状の物質とからなることが好ましい。固体状の物質としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリ−β−プロピオラクトン、ポリエチレンイミン、ポリアルキレンスルフィド等の高分子化合物又はそれらの架橋体、ポリフォスファゼン、ポリシロキサン、ポリビニルアルコール、ポリアクリル酸、ポリアルキレンオキサイド等の高分子官能基に、ポリエーテルセグメント又はオリゴアルキレンオキサイド構造を側鎖として付加したもの又はそれらの共重合体等が挙げられ、その中でも特に、オリゴアルキレンオキサイド構造を側鎖として有するものやポリエーテルセグメント構造を側鎖として有するものが好ましい。
酸化還元種は、上記液体電解質で挙げたものと同様のものを使用できる。
(Polymer electrolyte)
Next, the polymer electrolyte is preferably composed of a redox species and a solid substance capable of dissolving the redox species or binding to at least one substance constituting the redox species. Examples of the solid material include polyethylene oxide, polypropylene oxide, polyethylene succinate, poly-β-propiolactone, polyethyleneimine, polyalkylene sulfide, and the like, or a crosslinked product thereof, polyphosphazene, polysiloxane. In addition, a polymer functional group such as polyvinyl alcohol, polyacrylic acid, polyalkylene oxide, or the like having a polyether segment or oligoalkylene oxide structure added as a side chain or a copolymer thereof can be mentioned. Those having an alkylene oxide structure as a side chain and those having a polyether segment structure as a side chain are preferred.
As the redox species, the same ones as mentioned for the liquid electrolyte can be used.

固体状の物質中に酸化還元種を含有させるには、例えば、高分子化合物となるモノマーを、酸化還元種との共存下で重合させる方法、高分子化合物等の固体を必要に応じて溶媒に溶解し、得られた溶液に酸化還元種を加えて、溶媒を除去する方法等が挙げられる。酸化還元種の含有量は、必要とするイオン導電性能に応じて、適宜選定できる。   In order to contain the redox species in the solid substance, for example, a method of polymerizing a monomer that becomes a polymer compound in the coexistence with the redox species, a solid such as a polymer compound is used as a solvent as necessary. Examples include a method of dissolving and adding a redox species to the resulting solution to remove the solvent. The content of the redox species can be appropriately selected according to the required ionic conductivity performance.

(スペーサー)
また、対極と多孔性半導体層との接触を防止するために、スペーサーを用いてもよい。スペーサーとしては、ポリエチレン等の高分子フィルムが挙げられる。フィルムの膜厚は、多孔性半導体層が酸化チタンからなる場合、その膜厚とキャリア輸送層のイオンの移動度を考慮すると10〜50μmくらいが適当である。
また、上記色素増感太陽電池(ユニットセル)を2つ以上直列接続させて、色素増感太陽電池モジュールとしてもよい。このモジュールは、高い変換効率を実現できる。
(spacer)
A spacer may be used to prevent contact between the counter electrode and the porous semiconductor layer. Examples of the spacer include a polymer film such as polyethylene. When the porous semiconductor layer is made of titanium oxide, the film thickness is suitably about 10 to 50 μm considering the film thickness and the ion mobility of the carrier transport layer.
Two or more dye-sensitized solar cells (unit cells) may be connected in series to form a dye-sensitized solar cell module. This module can achieve high conversion efficiency.

以下の実施例及び比較例を、本発明の色素増感太陽電池の層構成を示す模式断面図である図1に基づいて説明する。図1において、1、9は支持基板、2、8は透明導電膜、3は白金層、4はキャリア輸送層、5は色素I(吸収ピーク波長が長波長側にある増感色素)、6は色素II(吸収ピーク波長が短波長側にある増感色素)、7は多孔性半導体であり、e-と矢印は電子の流れを示す。なお、透明導電膜2と白金層3とを合わせて対極ともいう。 The following examples and comparative examples will be described based on FIG. 1 which is a schematic cross-sectional view showing the layer structure of the dye-sensitized solar cell of the present invention. In FIG. 1, 1 and 9 are support substrates, 2 and 8 are transparent conductive films, 3 is a platinum layer, 4 is a carrier transport layer, 5 is dye I (sensitizing dye whose absorption peak wavelength is on the long wavelength side), 6 Is Dye II (sensitizing dye whose absorption peak wavelength is on the short wavelength side), 7 is a porous semiconductor, and e and arrows indicate the flow of electrons. The transparent conductive film 2 and the platinum layer 3 are collectively referred to as a counter electrode.

実施例1
・多孔性半導体層の作製
透明導電膜8として膜厚1μmのSnO2膜を蒸着した厚さ1.1mmのガラス板(日本板硝子社製)の支持基板9の透明導電膜8側に、市販の酸化チタンペースト(Solaronix社製、Ti nanoxide D/SP)をスクリーン印刷により、10μm程度の膜厚、10mm×10mm程度の面積で、透明導電膜8の上に塗布した。得られた塗膜を、100℃で30分間予備乾燥した後、大気雰囲気中で500℃にて40分間焼成することで、多孔性半導体層7として膜厚8μmの酸化チタンを得た。
Example 1
-Production of porous semiconductor layer On the transparent conductive film 8 side of the support substrate 9 of a 1.1 mm-thick glass plate (manufactured by Nippon Sheet Glass Co., Ltd.) on which a SnO 2 film having a thickness of 1 μm was deposited as the transparent conductive film 8, A titanium oxide paste (manufactured by Solaronix, Tinanoxide D / SP) was applied on the transparent conductive film 8 with a film thickness of about 10 μm and an area of about 10 mm × 10 mm by screen printing. The obtained coating film was preliminarily dried at 100 ° C. for 30 minutes, and then baked at 500 ° C. for 40 minutes in an air atmosphere, whereby titanium oxide having a thickness of 8 μm was obtained as the porous semiconductor layer 7.

・増感色素の吸着
増感色素5(色素I)としてトリス(イソチオシアナト)−ルテニウム(II)−2,
2’:6’,2’’−ターピリジン−4,4’,4’’−トリカルボン酸のトリス−テトラブチルアンモニウム塩(化合物3、分子量1363、吸収ピーク波長620nm、商品名Ruthenium620−1H3TBA、Solaronix社製)を濃度2×10-4モル/リットルとなるように、アセトニトリル(キシダ化学社製)及び2−ブタノール(キシダ化学社製)の混合溶媒に溶解させた。この溶液に、デオキシコール酸(Aldrich社製)を濃度2×10-2モル/リットルとなるように、加えて溶解させ、色素Iの吸着用溶液を得た。
更に、増感色素6(色素II)としてNKX−2311(化合物5、分子量418、吸収極大波長504nm、林原生物化学研究所製)を濃度2×10-4モル/リットルとなるように色素Iの吸着用溶液に溶解させ、色素I及び色素IIの吸着用溶液を得た。
得られた色素I及び色素IIの吸着用溶液に、上記ガラス板を約20時間浸漬させることにより色素I及び色素IIを多孔性半導体層に吸着させた。その後、約70℃で約10分間乾燥させた。
Adsorption of sensitizing dye Tris (isothiocyanato) -ruthenium (II) -2 as sensitizing dye 5 (dye I),
2 ′: 6 ′, 2 ″ -terpyridine-4,4 ′, 4 ″ -tricarboxylic acid tris-tetrabutylammonium salt (compound 3, molecular weight 1363, absorption peak wavelength 620 nm, trade name Ruthenium 620-1H3TBA, Solaronix) Was dissolved in a mixed solvent of acetonitrile (manufactured by Kishida Chemical Co., Ltd.) and 2-butanol (manufactured by Kishida Chemical Co., Ltd.) so as to have a concentration of 2 × 10 −4 mol / liter. To this solution, deoxycholic acid (manufactured by Aldrich) was added and dissolved at a concentration of 2 × 10 −2 mol / liter to obtain a dye I adsorption solution.
Further, NKX-2311 (compound 5, molecular weight 418, absorption maximum wavelength 504 nm, manufactured by Hayashibara Biochemical Laboratories) was used as sensitizing dye 6 (dye II) so that the concentration of dye I was 2 × 10 −4 mol / liter. It was made to melt | dissolve in the solution for adsorption | suction and the solution for adsorption | suction of the pigment | dye I and the pigment | dye II was obtained.
The glass plate was immersed in the obtained dye I and dye II adsorption solution for about 20 hours to adsorb the dye I and dye II to the porous semiconductor layer. Then, it was dried at about 70 ° C. for about 10 minutes.

・酸化還元性電解液の作製
濃度0.1モル/リットルとなるようにヨウ化リチウム(Aldrich社製)を、濃度0.6モル/リットルとなるようにジメチル−プロピルイミダゾリウムアイオダイド(四国化成製)を、濃度0.05モル/リットルとなるようにヨウ素(Aldrich社製)を、アセトニトリル(Aldrich社製)に溶解させて、キャリア輸送層4として用いる酸化還元性電解液を作製した。
Preparation of redox electrolyte solution Lithium iodide (Aldrich) was added to a concentration of 0.1 mol / liter, and dimethyl-propylimidazolium iodide (Shikoku Chemicals) was adjusted to a concentration of 0.6 mol / liter. Iodine (manufactured by Aldrich) was dissolved in acetonitrile (manufactured by Aldrich) to a concentration of 0.05 mol / liter to prepare a redox electrolyte solution used as the carrier transport layer 4.

・太陽電池の作製
透明導電膜2を備えた支持基板1(上述ガラス板と同じ基板)の透明導電膜2側に白金膜を1μm蒸着して対極としての白金層3を形成した。
この対極と上記で得られた多孔性半導体層を短絡防止のためのスペーサーを挟んで重ねた。酸化還元性電解液を支持基板1と9の間隙より注入し、それらの側面を樹脂でシールした。次いで、各電極にリード線を取り付けることで、太陽電池を得た。
得られた太陽電池に、1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、特性(Jsc、Voc、FF、光電変換効率)を測定した。結果を表1に示す。
-Production of solar cell A platinum film was deposited by 1 μm on the transparent conductive film 2 side of the support substrate 1 (the same substrate as the glass plate) provided with the transparent conductive film 2 to form a platinum layer 3 as a counter electrode.
This counter electrode and the porous semiconductor layer obtained above were stacked with a spacer for preventing a short circuit therebetween. An oxidation-reduction electrolyte was injected from the gap between the support substrates 1 and 9, and the side surfaces thereof were sealed with resin. Subsequently, the solar cell was obtained by attaching a lead wire to each electrode.
The obtained solar cell was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and characteristics (Jsc, Voc, FF, photoelectric conversion efficiency) were measured. The results are shown in Table 1.

実施例2
色素IIにNKX−2569(化合物7、分子量387、吸収極大波長489nm、林原生物化学研究所製)を用いたこと以外は、実施例1と同様にして太陽電池を作製し、特性の測定を行った。結果を表1に示す。
Example 2
A solar cell was produced in the same manner as in Example 1 except that NKX-2569 (compound 7, molecular weight 387, absorption maximum wavelength 489 nm, manufactured by Hayashibara Biochemical Laboratories) was used as the dye II, and the characteristics were measured. It was. The results are shown in Table 1.

実施例3
色素IIにNKX−2554(化合物13、分子量362、吸収極大波長460nm、林原生物化学研究所製)を用いたこと以外は、実施例1と同様にして太陽電池を作製し、特性の測定を行った。結果を表1に示す。
Example 3
A solar cell was prepared and characteristics were measured in the same manner as in Example 1 except that NKX-2554 (Compound 13, molecular weight 362, absorption maximum wavelength 460 nm, manufactured by Hayashibara Biochemical Laboratories) was used as Dye II. It was. The results are shown in Table 1.

実施例4
色素IIにNKX−2718(化合物17、分子量471、吸収極大波長460nm、林原生物化学研究所製)を用いたこと以外は、実施例1と同様にして太陽電池を作製し、特性の測定を行った。結果を表1に示す。
Example 4
A solar cell was prepared and characteristics were measured in the same manner as in Example 1 except that NKX-2718 (compound 17, molecular weight 471, absorption maximum wavelength 460 nm, manufactured by Hayashibara Biochemical Laboratories) was used for Dye II. It was. The results are shown in Table 1.

実施例5
色素IIにNKX−2656(化合物18、分子量607、吸収極大波長490nm、林原生物化学研究所製)を用いたこと以外は、実施例1と同様にして太陽電池を作製し、特性の測定を行った。結果を表1に示す。
Example 5
A solar cell was produced in the same manner as in Example 1 except that NKX-2656 (compound 18, molecular weight 607, absorption maximum wavelength 490 nm, manufactured by Hayashibara Biochemical Laboratories) was used as the dye II, and the characteristics were measured. It was. The results are shown in Table 1.

比較例1
色素IIを用いずに実施例1と同様にして太陽電池を作製し、特性の測定を行った。結果を表1に示す。
Comparative Example 1
A solar cell was produced in the same manner as in Example 1 without using the dye II, and the characteristics were measured. The results are shown in Table 1.

実施例6
図2に示す4個のユニットセルを直列に接続した集積化された色素増感太陽電池モジュールの作製を行った。その製造工程を以下に示す。
支持体21として10cm×10cmの日本板硝子社製SnO2付きガラス基板を用いた(透明導電膜22=フッ素ドープ酸化スズ)。幅10mm、隣り合うユニットセルの間隔を350μmの短冊状になるように、SnO2にレーザー光(YAGレーザー)を照射し、SnO2を蒸発させることによりパターニングを行った。
前記支持体上に、多孔性半導体層23を実施例1と同様の方法で形成し、ユニットセルの半導体層の大きさが、横10mm×縦90mm×膜厚15μmとなるようにした。
Example 6
An integrated dye-sensitized solar cell module in which four unit cells shown in FIG. 2 are connected in series was produced. The manufacturing process is shown below.
A 10 cm × 10 cm glass substrate with SnO 2 manufactured by Nippon Sheet Glass Co., Ltd. was used as the support 21 (transparent conductive film 22 = fluorine-doped tin oxide). Patterning was performed by irradiating SnO 2 with laser light (YAG laser) and evaporating SnO 2 so as to form a strip having a width of 10 mm and an interval between adjacent unit cells of 350 μm.
A porous semiconductor layer 23 was formed on the support by the same method as in Example 1, and the size of the semiconductor layer of the unit cell was 10 mm wide × 90 mm long × 15 μm thick.

色素Iとしてトリス(イソチオシアナト)−ルテニウム(II)−2,2’:6’,2’’−ターピリジン−4,4’,4’’−トリカルボン酸のトリス−テトラブチルアンモニウム塩(商品名Ruthenium620−1H3TBA、Solaronix社製)を濃度2×10-4モル/リットルとなるように、アセトニトリル(キシダ化学社製)及び2−ブタノール(キシダ化学社製)の混合溶媒に溶解させた。この溶液に、デオキシコール酸(Aldrich社製)を濃度2×10-2モル/リットルとなるように、加えて溶解させた。 Tris (isothiocyanato) -ruthenium (II) -2,2 ′: 6 ′, 2 ″ -terpyridine-4,4 ′, 4 ″ -tricarboxylic acid tris-tetrabutylammonium salt (trade name Ruthenium 620-) 1H3TBA (manufactured by Solaronix) was dissolved in a mixed solvent of acetonitrile (manufactured by Kishida Chemical Co., Ltd.) and 2-butanol (manufactured by Kishida Chemical Co., Ltd.) so as to have a concentration of 2 × 10 −4 mol / liter. To this solution, deoxycholic acid (manufactured by Aldrich) was added and dissolved so as to have a concentration of 2 × 10 −2 mol / liter.

更に、色素IIとしてNKX−2554(化合物、吸収極大波長460nm、林原生物化学研究所製)を濃度2×10-4モル/リットルとなるように添加して溶解させ、色素吸着用溶液を作製した。
次に、得られた吸着用溶液に上記ガラス板を約20時間浸漬させることにより増感色素を多孔性半導体層に吸着させた。その後、多孔性半導体層をエタノール(Aldrich社製)で洗浄・乾燥した。
Further, NKX-2554 (compound, absorption maximum wavelength 460 nm, manufactured by Hayashibara Biochemical Laboratories) was added and dissolved as dye II to a concentration of 2 × 10 −4 mol / liter to prepare a dye adsorption solution. .
Next, the sensitizing dye was adsorbed on the porous semiconductor layer by immersing the glass plate in the obtained adsorption solution for about 20 hours. Thereafter, the porous semiconductor layer was washed and dried with ethanol (Aldrich).

更に、パターニングを施した支持体21と同様の透明導電膜26を備えた支持体29を用意し、SnO2と同じパターンが形成されるように、スパッタにより約3000nmの膜厚で白金層25(対極)を成膜した。
絶縁層28としてデュポン社製ハイミラン1855を1mm×95mmで切り出したものを用いて、図2の形状となるように両支持体を貼り合わせ、約100℃のオーブン中で10分間加熱することにより圧着した。その後、絶縁層の間隙に、支持基板29に設けた封入口(図示せず)より市販の導電性ペースト(藤倉化成製、商品名「ドータイト」)を注入し、乾燥させることにより、接続層27を形成した。
Further, a support 29 having a transparent conductive film 26 similar to the patterned support 21 is prepared, and the platinum layer 25 (with a film thickness of about 3000 nm is formed by sputtering so that the same pattern as SnO 2 is formed. (Counter electrode) was formed.
The insulation layer 28 is made of DuPont Himiran 1855 cut out at 1 mm × 95 mm, and the two supports are bonded together in the shape of FIG. 2 and heated in an oven at about 100 ° C. for 10 minutes for pressure bonding. did. Thereafter, a commercially available conductive paste (made by Fujikura Kasei Co., Ltd., trade name “Dotite”) is injected into the gap between the insulating layers from an sealing port (not shown) provided in the support substrate 29 and dried, thereby connecting the connection layer 27. Formed.

濃度0.1モル/リットルとなるようにヨウ化リチウム(Aldrich社製)を、濃度0.6モル/リットルとなるようにジメチル―プロピルイミダゾリウムアイオダイド(四国化成製)を、濃度0.05モル/リットルのヨウ素(Aldrich社製)を、アセトニトリル(Aldrich社製)に溶解させて、キャリア輸送層24として用いる酸化還元性電解液を作製した。   Lithium iodide (manufactured by Aldrich) to a concentration of 0.1 mol / liter, dimethyl-propylimidazolium iodide (manufactured by Shikoku Kasei) to a concentration of 0.6 mol / liter, and a concentration of 0.05 Mole / liter iodine (manufactured by Aldrich) was dissolved in acetonitrile (manufactured by Aldrich) to prepare a redox electrolyte used as the carrier transport layer 24.

酸化還元性電解液を、電解液封入口10よりキャピラリー効果により注入し、周辺部分をエポキシ樹脂にて封止することにより色素増感太陽電池モジュールの作製を行った。
得られた太陽電池に、1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、特性を測定した。結果を表1に示す。
A dye-sensitized solar cell module was manufactured by injecting an oxidation-reduction electrolytic solution by a capillary effect from the electrolytic solution sealing port 10 and sealing the peripheral portion with an epoxy resin.
The obtained solar cell was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and the characteristics were measured. The results are shown in Table 1.

比較例2
色素IIを用いずに実施例6と同様にして色素増感太陽電池モジュールを作製し、特性の測定を行った。結果を表1に示す。
Comparative Example 2
A dye-sensitized solar cell module was produced in the same manner as in Example 6 without using Dye II, and the characteristics were measured. The results are shown in Table 1.

Figure 2006278112
Figure 2006278112

表1に示す結果から、比較例に比べて、本発明の実施例では、開放電圧と短絡電流の向上に伴い、変換効率が向上していることが分かる。よって、本発明により、変換効率の優れた色素増感太陽電池が得られた。   From the results shown in Table 1, it can be seen that in the example of the present invention, the conversion efficiency is improved as the open circuit voltage and the short circuit current are improved as compared with the comparative example. Therefore, according to the present invention, a dye-sensitized solar cell having excellent conversion efficiency was obtained.

本発明の色素増感太陽電池を示す模式図である。It is a schematic diagram which shows the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池モジュールを示す模式図である。It is a schematic diagram which shows the dye-sensitized solar cell module of this invention.

符号の説明Explanation of symbols

1、9、21、29 支持基板
2、8、22、26 透明導電膜
3、25 白金層
4、24 キャリア輸送層
5 増感色素I
6 増感色素II
7、23 半導体層
27 接続層
28 絶縁層(スペーサー)
1, 9, 21, 29 Support substrate 2, 8, 22, 26 Transparent conductive film 3, 25 Platinum layer 4, 24 Carrier transport layer 5 Sensitizing dye I
6 Sensitizing dye II
7, 23 Semiconductor layer 27 Connection layer 28 Insulating layer (spacer)

Claims (10)

導電性基板、該導電性基板上に、増感色素を吸着した多孔性半導体層、キャリア輸送層及び対極をこの順で少なくとも有し、前記増感色素が、吸収スペクトルにおける吸収ピーク波長の異なる2種の増感色素からなり、かつ、吸収ピーク波長を長波長側に有する増感色素の分子量よりも、吸収ピーク波長を短波長側に有する増感色素の分子量が小さいことを特徴とする色素増感太陽電池。   A conductive substrate, a porous semiconductor layer adsorbing a sensitizing dye, a carrier transport layer, and a counter electrode in this order at least on the conductive substrate, wherein the sensitizing dye has different absorption peak wavelengths in the absorption spectrum 2 A dye sensitizing dye comprising a sensitizing dye having a absorption peak wavelength on the short wavelength side and a molecular weight of the sensitizing dye having a absorption peak wavelength on the short wavelength side, which is composed of a seed sensitizing dye and having a absorption peak wavelength on the long wavelength side. Sensitive solar cell. 前記吸収ピーク波長を短波長側に有する増感色素の分子量が、吸収ピーク波長を長波長側に有する増感色素の分子量より、50以上小さいことを特徴とする請求項1に記載の色素増感太陽電池。   The dye sensitizing dye according to claim 1, wherein the molecular weight of the sensitizing dye having the absorption peak wavelength on the short wavelength side is 50 or more smaller than the molecular weight of the sensitizing dye having the absorption peak wavelength on the long wavelength side. Solar cell. 前記吸収ピーク波長を長波長側に有する色素の分子量が、650〜2000であることを特徴とする請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the dye having the absorption peak wavelength on the long wavelength side has a molecular weight of 650 to 2,000. 前記吸収ピーク波長を短波長側に有する色素の分子量が、150〜900であることを特徴とする請求項1に記載の色素増感太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein the dye having the absorption peak wavelength on the short wavelength side has a molecular weight of 150 to 900. 3. 前記吸収ピーク波長を短波長側に有する色素が、300〜510nmの光波長領域に吸収ピーク波長をもつことを特徴とする請求項1〜4のいずれか1つに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the dye having the absorption peak wavelength on the short wavelength side has an absorption peak wavelength in a light wavelength region of 300 to 510 nm. 前記吸収ピーク波長を長波長側に有する色素が、ルテニウムピリジン錯体であることを特徴とする請求項1〜5のいずれか1つに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 5, wherein the dye having the absorption peak wavelength on the long wavelength side is a ruthenium pyridine complex. 前記吸収ピーク波長を長波長側に有する色素が、ターピリジン系ルテニウム錯体であることを特徴とする請求項1〜6のいずれか1つに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the dye having the absorption peak wavelength on the long wavelength side is a terpyridine-based ruthenium complex. 前記多孔性半導体層が、酸化チタンからなることを特徴とする請求項1〜7のいずれか1つに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 7, wherein the porous semiconductor layer is made of titanium oxide. 前記多孔性半導体層が、40〜80%の空隙率を有することを特徴とする請求項8に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 8, wherein the porous semiconductor layer has a porosity of 40 to 80%. 請求項1〜9のいずれか1つに記載の色素増感太陽電池を2つ以上直列接続した色素増感太陽電池モジュール。   A dye-sensitized solar cell module in which two or more dye-sensitized solar cells according to any one of claims 1 to 9 are connected in series.
JP2005094667A 2005-03-29 2005-03-29 Dye-sensitized solar cell and dye-sensitized solar cell module Expired - Fee Related JP5118805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094667A JP5118805B2 (en) 2005-03-29 2005-03-29 Dye-sensitized solar cell and dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094667A JP5118805B2 (en) 2005-03-29 2005-03-29 Dye-sensitized solar cell and dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2006278112A true JP2006278112A (en) 2006-10-12
JP5118805B2 JP5118805B2 (en) 2013-01-16

Family

ID=37212669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094667A Expired - Fee Related JP5118805B2 (en) 2005-03-29 2005-03-29 Dye-sensitized solar cell and dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP5118805B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071535A (en) * 2006-09-12 2008-03-27 Kyushu Institute Of Technology Photoelectric conversion element and its manufacturing method
WO2008114825A1 (en) * 2007-03-20 2008-09-25 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing the same
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
KR101017805B1 (en) * 2008-12-17 2011-02-28 하이디스 테크놀로지 주식회사 Dye-sensitized solar cell and method for preparing the same
WO2012057006A1 (en) 2010-10-29 2012-05-03 株式会社フジクラ Dye-sensitized solar cell module
CN102446631A (en) * 2010-10-13 2012-05-09 明德国际仓储贸易(上海)有限公司 Dye sensitized solar battery and photoelectric anode thereof
JP2012109189A (en) * 2010-10-27 2012-06-07 Daiso Co Ltd Polymer electrolyte for dye sensitized solar cell and use thereof
WO2013008889A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Material for photoelectric conversion element, manufacturing method for photoelectric conversion element, and photoelectric conversion element
WO2013027838A1 (en) 2011-08-25 2013-02-28 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
JP2013157292A (en) * 2012-01-31 2013-08-15 Fujikura Ltd Dye-sensitized solar cell
JP2013196852A (en) * 2012-03-16 2013-09-30 Sekisui Chem Co Ltd Method for manufacturing photoelectrode, photoelectrode, and dye-sensitized solar cell
CN103380535A (en) * 2011-03-02 2013-10-30 株式会社藤仓 Dye-sensitized solar cell for low light intensities
CN103709129A (en) * 2013-12-11 2014-04-09 浙江工业大学 Synthesis and application of diethylamino coumarin dye sensitizer
JP2014181301A (en) * 2013-03-19 2014-09-29 Fujikura Ltd Photosensitizing dye, and dye-sensitized solar cell having the same
JP2016197729A (en) * 2010-09-20 2016-11-24 サンパワー コーポレイション Method of manufacturing solar cell and solar cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
JP2000268892A (en) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd Photoelectric transducer and photo-cell
JP2001160425A (en) * 1999-12-02 2001-06-12 Japan Gore Tex Inc Optical semiconductor electrode and its manufacturing method
JP2003249274A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2004335366A (en) * 2003-05-09 2004-11-25 Sharp Corp Dye-sensitized solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195569A (en) * 1998-12-24 2000-07-14 Toshiba Corp Photochemical battery and its manufacture
JP2000268892A (en) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd Photoelectric transducer and photo-cell
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
JP2001160425A (en) * 1999-12-02 2001-06-12 Japan Gore Tex Inc Optical semiconductor electrode and its manufacturing method
JP2003249274A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2004335366A (en) * 2003-05-09 2004-11-25 Sharp Corp Dye-sensitized solar cell

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071535A (en) * 2006-09-12 2008-03-27 Kyushu Institute Of Technology Photoelectric conversion element and its manufacturing method
WO2008114825A1 (en) * 2007-03-20 2008-09-25 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing the same
JP5171810B2 (en) * 2007-03-20 2013-03-27 シャープ株式会社 Dye-sensitized solar cell module and manufacturing method thereof
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
KR101017805B1 (en) * 2008-12-17 2011-02-28 하이디스 테크놀로지 주식회사 Dye-sensitized solar cell and method for preparing the same
JP2016197729A (en) * 2010-09-20 2016-11-24 サンパワー コーポレイション Method of manufacturing solar cell and solar cell
CN102446631A (en) * 2010-10-13 2012-05-09 明德国际仓储贸易(上海)有限公司 Dye sensitized solar battery and photoelectric anode thereof
JP2012109189A (en) * 2010-10-27 2012-06-07 Daiso Co Ltd Polymer electrolyte for dye sensitized solar cell and use thereof
WO2012057006A1 (en) 2010-10-29 2012-05-03 株式会社フジクラ Dye-sensitized solar cell module
US10325729B2 (en) 2010-10-29 2019-06-18 Fujikura Ltd. Dye-sensitized solar cell module
EP2683019A4 (en) * 2011-03-02 2014-09-03 Fujikura Ltd Dye-sensitized solar cell for low light intensities
CN103380535A (en) * 2011-03-02 2013-10-30 株式会社藤仓 Dye-sensitized solar cell for low light intensities
EP2683019A1 (en) * 2011-03-02 2014-01-08 Fujikura Ltd. Dye-sensitized solar cell for low light intensities
CN103380535B (en) * 2011-03-02 2015-10-14 株式会社藤仓 Low-light (level) DSSC
WO2013008889A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Material for photoelectric conversion element, manufacturing method for photoelectric conversion element, and photoelectric conversion element
JPWO2013027838A1 (en) * 2011-08-25 2015-03-23 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
WO2013027838A1 (en) 2011-08-25 2013-02-28 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
JP2013157292A (en) * 2012-01-31 2013-08-15 Fujikura Ltd Dye-sensitized solar cell
JP2013196852A (en) * 2012-03-16 2013-09-30 Sekisui Chem Co Ltd Method for manufacturing photoelectrode, photoelectrode, and dye-sensitized solar cell
JP2014181301A (en) * 2013-03-19 2014-09-29 Fujikura Ltd Photosensitizing dye, and dye-sensitized solar cell having the same
CN103709129A (en) * 2013-12-11 2014-04-09 浙江工业大学 Synthesis and application of diethylamino coumarin dye sensitizer

Also Published As

Publication number Publication date
JP5118805B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5118805B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5285062B2 (en) Photosensitizer and solar cell using the same
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5084730B2 (en) Dye-sensitized solar cell
JP3717506B2 (en) Dye-sensitized solar cell module
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4448478B2 (en) Dye-sensitized solar cell module
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2004319439A (en) Dye-sensitized solar cell and its manufacturing method
JP2003249275A (en) Dye sensitized solar cell and its manufacturing method
JP2004247104A (en) Titanium oxide fine particles, manufacturing method for photoelectric conversion element, and photoelectric conversion element
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP4455868B2 (en) Dye-sensitized solar cell
JP4537693B2 (en) Dye-sensitized solar cell
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP2005235644A (en) Photoelectric conversion element and solar battery provided with it
JP4537694B2 (en) Dye-sensitized solar cell
JP2006100025A (en) Solar cell module
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2008059851A (en) Dye-sensitized solar cell
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110915

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5118805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees