JP5573547B2 - Ferromagnetic separator - Google Patents

Ferromagnetic separator Download PDF

Info

Publication number
JP5573547B2
JP5573547B2 JP2010214628A JP2010214628A JP5573547B2 JP 5573547 B2 JP5573547 B2 JP 5573547B2 JP 2010214628 A JP2010214628 A JP 2010214628A JP 2010214628 A JP2010214628 A JP 2010214628A JP 5573547 B2 JP5573547 B2 JP 5573547B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
magnetic
particles
separation
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214628A
Other languages
Japanese (ja)
Other versions
JP2011104583A (en
Inventor
匡平 石田
慶晃 西名
成治 榎枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010214628A priority Critical patent/JP5573547B2/en
Priority to CN201080047382.3A priority patent/CN102574129B/en
Priority to PCT/JP2010/068768 priority patent/WO2011049217A1/en
Priority to KR1020127010008A priority patent/KR101354982B1/en
Publication of JP2011104583A publication Critical patent/JP2011104583A/en
Application granted granted Critical
Publication of JP5573547B2 publication Critical patent/JP5573547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/26Magnetic separation acting directly on the substance being separated with free falling material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/16Magnetic separating gases form gases, e.g. oxygen from air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form

Description

本発明は、強磁性体を含む異種混合粉体から強磁性体を分離する技術に関し、例えば、製鉄プロセスで生成されるスラグから鉄分を分離する技術分野に適用される。   The present invention relates to a technique for separating a ferromagnetic material from a heterogeneous mixed powder containing a ferromagnetic material, and is applied, for example, to the technical field of separating iron from slag produced in an iron making process.

製鉄プロセス(特に、溶銑予備処理や転炉工程)においては、膨大なスラグ(製鉄スラグ)が発生する。これらのスラグは溶銑や溶鋼中の不純物や不要元素を除去するために加えられるカルシウム系添加剤が反応、生成したものであり、スラグ中には除去された元素化合物はもちろん、鉄分も多く含まれる。スラグの形態は多くは塊状であり、その大きさは大きいもので数百mmのものもある。   In an iron making process (particularly, hot metal preliminary treatment or converter process), a huge amount of slag (iron slag) is generated. These slags are produced by the reaction and generation of calcium-based additives added to remove impurities and unwanted elements in hot metal and molten steel, and the slag contains a large amount of iron as well as the removed elemental compounds. . Most of the slag forms are massive, and the size of the slag is large and some hundreds of millimeters.

上述したように、スラグには鉄分が多く含まれているため、従来からその再資源化の検討が盛んになされている。またスラグ自体も例えばカルシウム含有素材としての再利用が検討されている。   As described above, since the slag contains a large amount of iron, studies on recycling of the slag have been actively conducted. In addition, reuse of slag itself as, for example, a calcium-containing material has been studied.

例えば、スラグから鉄分を分離・回収して、転炉工程でスクラップと混ぜて冷鉄源化するために、まず、数百mmの大型のスラグ塊をグリスリと呼ばれる篩い(グリスリ型篩い)で形状選別する。次に、グリスリ型篩いを通過した小型のスラグ塊は鉄分塊と非鉄分塊とが固着しているため、ハンマークラッシャやロッドミルで破砕を行って数百μm〜数十mmの大きさにして鉄分と非鉄分との単体分離を促進させる。その後、磁力選別装置によって鉄分と非鉄分を分離する。磁力選別装置は吊り下げ型やドラム型、プーリー型などが用いられる。   For example, in order to separate and collect iron from slag and mix it with scrap in the converter process to make a cold iron source, first, a large slag lump of several hundred mm is shaped with a sieve (grid type sieve) called grits. Sort out. Next, the small slag block that has passed through the grind-type sieve has an iron block and a non-ferrous block fixed, so it is crushed with a Hanmark lasher or a rod mill to a size of several hundred μm to several tens of mm. Promotes the separation of non-ferrous and simple substances. Thereafter, the iron content and the non-ferrous content are separated by a magnetic separator. As the magnetic separator, a hanging type, a drum type, a pulley type, or the like is used.

鉄分を単体分離させるための手段として、スラグを加熱し、その後の冷却時間をコントロールして破砕する場合もある。冷却時間によっては、鉄分塊を破砕せずに固着した非鉄分塊のみを破砕分離することが可能である。あるいは数十μm程度に微粒化することが可能である。   As a means for separating iron, the slag may be heated and crushed by controlling the subsequent cooling time. Depending on the cooling time, it is possible to crush and separate only the non-ferrous lump that is fixed without crushing the iron lump. Or it can be atomized to about several tens of μm.

いずれの方法でも微粒化が進めば、鉄分と非鉄分との単体分離化が進むことはいうまでもない。   Needless to say, if atomization progresses in any of the methods, the separation of iron and non-ferrous metals will progress.

特開2006−142136号公報JP 2006-142136 A 特開平10−130041号公報Japanese Patent Laid-Open No. 10-130041

製鉄スラグからの鉄分の分離濃度を向上させるには、鉄分と非鉄分との単体分離化を進める必要がある。前述したように、微粒化が進めば単体分離化が進むことから、スラグ塊の機械的破砕を繰り返して粒径を小さくすることが行われている。あるいは熱処理によって、小粒径化させる場合もある。   In order to improve the separation concentration of iron from steelmaking slag, it is necessary to advance the separation of iron and non-ferrous. As described above, as the atomization progresses, the separation of the single substance progresses. Therefore, the slag lump is repeatedly mechanically crushed to reduce the particle size. Alternatively, the particle size may be reduced by heat treatment.

一方、一般的に従来の磁力選別装置では粒径が小さくなると、図9に示すように、磁石と鉄分粒子(磁性粒子)との間に非鉄分粒子(非磁性粒子)が挟み込まれる抱き込み現象や、乾式微粒化による凝集現象が発生しやすくなる。そして、これらの現象により非磁性粒子が磁着側に分離されたり、逆に磁性粒子が非磁着側に分離されたりすることが起こり易くなるので、分離濃度(分離精度)を向上させることが困難になる。そのため、磁力選別装置への混合粉体(図9においては磁性粒子と非磁性粒子との混合粉体)の供給速度を極端に遅くし、異種混合粉体の装置上での層厚を薄くするなどの工夫が必要となる。しかし、製鉄スラグは時間あたり数トン〜数十トンを処理する必要があるので、供給速度を極端に遅くせざるを得ない磁力選別装置の利用は現実的ではない。   On the other hand, in general, when the particle size is reduced in the conventional magnetic separator, as shown in FIG. 9, a embracing phenomenon in which non-ferrous particles (non-magnetic particles) are sandwiched between magnets and iron-containing particles (magnetic particles). In addition, agglomeration due to dry atomization tends to occur. And it becomes easy to occur that non-magnetic particles are separated on the magnetized side by these phenomena, or conversely, the magnetic particles are separated on the non-magnetized side, so that the separation concentration (separation accuracy) can be improved. It becomes difficult. Therefore, the supply speed of the mixed powder (mixed powder of magnetic particles and nonmagnetic particles in FIG. 9) to the magnetic separator is extremely slowed to reduce the layer thickness of the different types of mixed powder on the apparatus. Such a device is necessary. However, since it is necessary to process several tons to several tens of tons of iron slag per hour, it is not practical to use a magnetic separation device that must extremely slow the supply speed.

これに対して、特許文献1では、スラグ塊を破砕せずに鉄分と非鉄分を分離する技術が開示されているが、分離工程が複雑な分離となり、処理コスト増加の要因となる。   On the other hand, Patent Document 1 discloses a technique for separating the iron and non-ferrous components without crushing the slag lump, but the separation process is complicated and causes an increase in processing costs.

また、乾式微粒化による凝集を回避できる粒子分離方法としては、特許文献2に開示されているような湿式プロセスも考案されている。しかし、湿式プロセスでは廃液処理費用が莫大となる。   Further, as a particle separation method that can avoid agglomeration due to dry atomization, a wet process as disclosed in Patent Document 2 has been devised. However, the waste liquid treatment cost is enormous in the wet process.

本発明は、上記のような事情に鑑みてなされたものであり、例えば、微粒化した製鉄スラグから鉄分を分離する場合のように、強磁性体を含む異種混合粉体から強磁性体を分離する際に、効率よく強磁性体を分離することができる強磁性体の分離装置を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above. For example, as in the case of separating iron from atomized iron slag, the ferromagnetic material is separated from the heterogeneous mixed powder containing the ferromagnetic material. It is an object of the present invention to provide a ferromagnetic separator that can efficiently separate a ferromagnetic.

前述したように、製鉄スラグからの鉄分の分離濃度を向上させるには、まず、製鉄スラグを微粒化して鉄分と非鉄分との単体分離化を進める必要がある。   As described above, in order to improve the separation concentration of iron from steelmaking slag, first, it is necessary to atomize the ironmaking slag and promote the separation of iron and nonferrous as a single substance.

次に、微粒化した製鉄スラグから鉄分と非鉄分を分離することになるが、製鉄スラグは大量処理(時間あたり数トン〜数十トン)が前提となるため、前述したように、一般的な磁力選別は粒子の抱き込み現象や粒子の凝集現象のために処理速度を遅くせざるを得ず、大量処理を前提としたこのような場合に適用できない。   Next, iron and non-ferrous components will be separated from atomized steelmaking slag, but since ironmaking slag is premised on mass processing (several tons to several tens of tons per hour), as described above, Magnetic sorting has to slow down the processing speed due to particle embracing phenomenon and particle agglomeration phenomenon, and cannot be applied to such a case where large-scale processing is assumed.

そこで、本発明者らは、上記のような、微粒化した製鉄スラグから鉄分を分離する場合等の、強磁性体を含む異種混合粉体から強磁性体を分離する際に生じる問題を解決するために鋭意検討を行った。その結果、強磁性体を含んだ異種混合粉体から強磁性体を分離するに際して、異種混合粉体を分散させた気流あるいは水流を、粉体の質量の違いによって作用する大きさが変化する力(例えば、遠心力)を利用して分離を行う分離室(質量差分離室)に導き、その質量差分離室において、異種混合粉体中の強磁性体に対して、遠心力に加えて磁力を作用させることを想到するに至った。   Therefore, the present inventors solve the problems that occur when separating a ferromagnetic material from a heterogeneous mixed powder containing a ferromagnetic material, such as when separating iron from atomized iron slag as described above. In order to do this, we conducted an intensive study. As a result, when separating a ferromagnetic material from a heterogeneous mixed powder containing a ferromagnetic material, an air flow or water flow in which the heterogeneous mixed powder is dispersed is subjected to a force that changes the magnitude depending on the mass of the powder. (For example, centrifugal force) is used for separation into a separation chamber (mass difference separation chamber) that performs separation, and in the mass difference separation chamber, magnetic force is applied to the ferromagnetic material in the mixed powder of different types in addition to centrifugal force. I came up with the idea of making it work.

すなわち、例えば2種類の粉体が混合した異種混合粉体において、それぞれの種類の粉体での1個の粉体の質量分布に重なっている範囲があると、その範囲の粉体については、質量差分級では適切に分離・回収することが困難であり、各粉体の回収量や回収率が低下せざるを得ない。そこで、一方の粉体が強磁性体であり、他方の粉体が非磁性体等であることを利用して、1個の粉体の質量分布が他方の1個の粉体の質量分布と重なっている範囲の強磁性体については、遠心力に加えて磁力を作用させることによって、強磁性体と非磁性体等を適切に分離・回収することが可能になる。これにより、回収量・回収率を向上させることができる。   That is, for example, in a heterogeneous mixed powder in which two types of powder are mixed, if there is a range that overlaps the mass distribution of one powder in each type of powder, In the mass difference class, it is difficult to properly separate and recover, and the recovery amount and recovery rate of each powder must be reduced. Therefore, using the fact that one powder is a ferromagnetic material and the other powder is a non-magnetic material, the mass distribution of one powder is the same as the mass distribution of the other powder. For the ferromagnetic materials in the overlapping range, it is possible to appropriately separate and collect the ferromagnetic material and the non-magnetic material by applying a magnetic force in addition to the centrifugal force. Thereby, the collection amount / recovery rate can be improved.

上記のことを、スラグの粒子(非磁性体)と鉄の粒子(強磁性体)が混合した異種混合粉体から鉄の粒子を分離・除去して、高純度のスラグの粒子を回収する場合(または/および高純度の鉄粒子を回収する場合)について、図8を用いて説明する。   In the case of recovering high-purity slag particles by separating and removing iron particles from a mixed powder of slag particles (non-magnetic material) and iron particles (ferromagnetic material). (Or / and when collecting high-purity iron particles) will be described with reference to FIG.

まず、図8(a)に示すように、一個の粒子の質量の分布をみたときに、質量が小さいM1の範囲はスラグのみであり、質量が大きいM3の範囲は鉄のみであるが、中間のM2の範囲はスラグと鉄が重なっているものとする。   First, as shown in FIG. 8 (a), when looking at the mass distribution of a single particle, the range of M1 with a small mass is only slag, and the range of M3 with a large mass is only iron. In the range of M2, slag and iron are overlapped.

この場合、高純度のスラグを質量差分離によって回収しようとすると、図8(b)に示すように、質量差分離位置をM1とM2の境界にすれば、質量が小さい側においてM1の範囲のスラグが純度100%で回収できる。ただし、その際にM2のスラグは質量が大きい側に分離されるので、回収されるスラグの量は限定される。   In this case, if high-purity slag is to be recovered by mass difference separation, as shown in FIG. 8 (b), if the mass difference separation position is at the boundary between M1 and M2, the mass is within the range of M1 on the smaller side. Slag can be recovered with 100% purity. However, since the slag of M2 is isolate | separated to the side with larger mass in that case, the quantity of slag collect | recovered is limited.

そこで、スラグの回収量を増やすために、図8(c)に示すように、質量差分離位置を質量が大きい側にΔMだけ移動させることが考えられる。この場合は、図中のS1の領域のスラグも質量が小さい側に回収されてスラグの回収量が増えることになるが、同時に、図中のS2の領域の鉄も質量が小さい側に回収されてしまう。その結果、質量が小さい側に回収されたスラグの純度が大きく低下する。   Therefore, in order to increase the amount of slag recovered, it is conceivable to move the mass difference separation position by ΔM to the side with the larger mass, as shown in FIG. In this case, the slag in the region S1 in the figure is also collected on the smaller mass side and the amount of slag collected is increased. At the same time, the iron in the region S2 in the diagram is also collected on the smaller mass side. End up. As a result, the purity of the slag collected on the smaller mass side is greatly reduced.

これに対して、図8(d)に示すように、質量差分離位置を質量が大きい側にΔMだけ移動させて質量差分離を行う際に、ΔMの範囲にある鉄の粒子に対して磁力を作用させて、図中のS3の領域にある鉄が質量の大きい側に分離・除去されるようにすれば、質量が小さい側に回収される鉄は図中のS4の領域のものだけとなる。その結果、質量が小さい側において高純度のスラグを多量に回収することができる。質量が大きい側において回収される鉄の純度を重視する場合は、例えば質量分離位置をM2とM3の境界にし、同様に磁力を作用させて、M2の鉄の少なくとも一部を質量が大きい側に回収すればよい。   On the other hand, as shown in FIG. 8D, when the mass difference separation is performed by moving the mass difference separation position by ΔM to the larger mass side, the magnetic force is applied to the iron particles in the range of ΔM. When the iron in the region S3 in the figure is separated and removed to the side with the larger mass, the iron recovered on the side with the smaller mass is only that in the region S4 in the figure. Become. As a result, a large amount of high-purity slag can be recovered on the side where the mass is small. When importance is attached to the purity of iron recovered on the large mass side, for example, the mass separation position is set at the boundary between M2 and M3, and the magnetic force is applied in the same manner, so that at least a part of iron of M2 is on the large mass side Collect it.

なお、理想的には、質量差分離位置をM2とM3の境界にし、M2の範囲にある鉄を全て質量が大きい側に分離することができれば、質量の小さい側において全てのスラグを純度100%で回収し、質量の大きい側において全ての鉄を純度100%で回収することができる。   Ideally, if the mass difference separation position is at the boundary between M2 and M3, and all the iron in the range of M2 can be separated to the larger mass side, all the slag is 100% pure on the smaller mass side. And all the iron can be recovered with a purity of 100% on the side of larger mass.

上記のような考え方に基づく方法の一例は、気流あるいは水流の旋回を利用した遠心分離に磁力を付与する方法である。具体的には、気流あるいは水流中に異種混合粉体を分散させ、気流あるいは水流が旋回して粉体に遠心力を作用させる流路を形成するとともに、遠心力の向きに強磁性体が磁力を受けるように磁場発生装置を流路に沿って1箇所以上配設し、強磁性体に遠心力と磁力が作用するようにする方法である。   An example of a method based on the above-described concept is a method of applying a magnetic force to the centrifugal separation using the air current or the swirling of the water flow. Specifically, different types of mixed powders are dispersed in an air flow or water flow, and the air flow or water flow swirls to form a flow path that applies centrifugal force to the powder, and the ferromagnetic material is magnetized in the direction of the centrifugal force. In this method, one or more magnetic field generators are arranged along the flow path so that centrifugal force and magnetic force act on the ferromagnetic material.

すなわち、まず、強磁性体を含んだ異種混合粉体を流体(気流あるいは水流)で搬送することとし、それによって異種混合粉体を分散状態にする。特に、流体が水流の場合は、水流中に異種混合粉体を投与するだけで分散効果が大きい。流体が気流の場合は、拡散板や拡散圧空を利用するなどにより、分散状態を実現させる。そして、搬送中に流体(気流あるいは水流)中の乱流効果で搬送粒子(異種混合粉体)にせん断力が働き、凝集を解いた単体分離状態が実現する。その上で、異種混合粉体を搬送する流体が旋回するように流路を形成して異種混合粉体に遠心力を作用させるとともに、遠心力が作用する方向に磁力が作用するようにする。これにより、分散状態(単体分離状態)となった異種混合粉体の各粒子は遠心力で旋回の外側へ移動し、最終的には流路の壁と接触して減速し捕捉されるが、そこに作用する磁力の効果により、強磁性体粒子にのみ選択的に磁力が遠心力に加わる。よって、強磁性体粒子に対しては分離効果が大きくなり、小径、つまり質量の小さい強磁性体粒子まで分離が可能となる。   That is, first, the heterogeneous mixed powder containing the ferromagnetic material is conveyed by a fluid (air flow or water flow), thereby making the heterogeneous mixed powder dispersed. In particular, when the fluid is a water stream, the dispersion effect is large only by administering the different kinds of mixed powders in the water stream. When the fluid is an air flow, a dispersed state is realized by using a diffusion plate or diffusion compressed air. Then, a shearing force acts on the transport particles (heterogeneous mixed powder) due to a turbulent flow effect in the fluid (air stream or water stream) during transport, and a single separated state in which aggregation is solved is realized. Then, a flow path is formed so that the fluid carrying the different mixed powder swirls to apply a centrifugal force to the different mixed powder, and a magnetic force is applied to the direction in which the centrifugal force is applied. As a result, each particle of the mixed powder of different types in a dispersed state (single separated state) moves to the outside of the swirl by centrifugal force, and finally decelerates and is captured in contact with the wall of the flow path. Due to the effect of the magnetic force acting there, the magnetic force is selectively applied to the centrifugal force only to the ferromagnetic particles. Therefore, the separation effect is increased with respect to the ferromagnetic particles, and the separation can be performed up to the ferromagnetic particles having a small diameter, that is, a small mass.

このように質量の違いによる分離のみでは、強磁性体とそれ以外の粉体である非磁性体の粒子の質量が同じである場合は分離ができない。そこで、磁力を併用して、強磁性体成分のみに磁力を作用させることで強磁性体成分の分離効率を飛躍的に向上させることを可能ならしめたのが本発明である。   As described above, only separation based on the difference in mass cannot be performed when the masses of the ferromagnetic material and the non-magnetic material particles other than the ferromagnetic material are the same. Therefore, the present invention has made it possible to dramatically improve the separation efficiency of the ferromagnetic component by applying the magnetic force only to the ferromagnetic component using the magnetic force in combination.

上記の考え方に基づいて、本発明は以下の特徴を有している。   Based on the above concept, the present invention has the following features.

[1]強磁性体を含んだ異種混合粉体から強磁性体を分離するための強磁性体の分離装置であって、異種混合粉体を分散させた気流あるいは水流が旋回して異種混合粉体に遠心力を作用させる流路と、前記遠心力の向きに強磁性体が磁力を受けるように前記流路に沿って1箇所以上配設された磁場発生装置とを備え、強磁性体に遠心力と磁力が作用するようにしていることを特徴とする強磁性体の分離装置。   [1] A ferromagnetic separation device for separating a ferromagnetic material from a heterogeneous mixed powder containing a ferromagnetic material, wherein an air flow or a water flow in which the heterogeneous mixed powder is dispersed is swirled to dissimilar mixed powder A flow path for applying centrifugal force to the body, and a magnetic field generator disposed at one or more locations along the flow path so that the ferromagnetic body receives a magnetic force in the direction of the centrifugal force. A separator for separating a ferromagnetic material, wherein centrifugal force and magnetic force are applied.

[2]磁場発生装置が、強磁性体が通過する空間に作用する磁束密度の大きさを調節可能な構成を備えていることを特徴とする前記[1]に記載の強磁性体の分離装置。   [2] The ferromagnetic separating apparatus according to [1], wherein the magnetic field generating device has a configuration capable of adjusting a magnitude of magnetic flux density acting on a space through which the ferromagnetic material passes. .

[3]磁場発生装置が、強磁性体が通過する空間に作用する磁束密度の大きさを一定期間ごとに大小を繰り返すように構成されていることを特徴とする前記[2]に記載の強磁性体の分離装置。   [3] The strong magnetic force according to [2], wherein the magnetic field generator is configured to repeat the magnitude of the magnetic flux density acting on the space through which the ferromagnetic material passes at regular intervals. Magnetic material separation device.

[4]分離室に導く異種混合粉体を分散させた気流あるいは水流の流速を小さくした後に、磁束密度の大きさを小さくすることを特徴とする前記[3]に記載の強磁性体の分離装置。   [4] Separation of ferromagnetic material according to [3], wherein the magnetic flux density is reduced after reducing the flow velocity of the air flow or water flow in which the different types of mixed powder guided to the separation chamber are dispersed. apparatus.

[5]気流あるいは水流の流速を大きくする前に、磁束密度の大きさを大きくすることを特徴とする前記[4]に記載の強磁性体の分離装置。   [5] The ferromagnetic separating apparatus according to [4], wherein the magnetic flux density is increased before increasing the flow velocity of the air flow or water flow.

本発明においては、強磁性体を含んだ異種混合粉体から強磁性体を分離(遠心分離)するに際して、強磁性体にのみ作用する磁力を遠心力の向きに作用させるようにしているので、強磁性体の分離精度が格段に向上し、従来のように磁力選別によって分離する場合に比べて、強磁性体を効率よく分離することができる。その結果、大量・高速に強磁性体の再資源化が可能となる。   In the present invention, when the ferromagnetic material is separated (centrifugated) from the heterogeneous mixed powder containing the ferromagnetic material, the magnetic force acting only on the ferromagnetic material is caused to act in the direction of the centrifugal force. The separation accuracy of the ferromagnet is greatly improved, and the ferromagnet can be separated more efficiently than in the conventional case where the ferromagnet is separated by magnetic separation. As a result, the ferromagnetic material can be recycled in large quantities and at high speed.

本発明の実施形態1を示す図である。It is a figure which shows Embodiment 1 of this invention. 本発明の実施形態2を示す図である。It is a figure which shows Embodiment 2 of this invention. 本発明の実施形態3を示す図である。It is a figure which shows Embodiment 3 of this invention. 本発明の実施形態4を示す図である。It is a figure which shows Embodiment 4 of this invention. 本発明の実施形態4を示す図である。It is a figure which shows Embodiment 4 of this invention. 本発明の実施形態4を示す図である。It is a figure which shows Embodiment 4 of this invention. 本発明の実施例1を示す図である。It is a figure which shows Example 1 of this invention. 本発明の基本的な考え方を示す図である。It is a figure which shows the fundamental view of this invention. 従来技術(一般的な磁力選別)の問題点を示す図である。It is a figure which shows the problem of a prior art (general magnetic selection).

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

なお、以下の実施形態においては、微粒化した製鉄スラグから鉄分を分離する場合等のように、強磁性体を含んだ異種混合粉体から強磁性体を分離するのであるが、その強磁性体を含んだ異種混合粉体を得る方法について、製鉄スラグを微粒化する場合を例にして述べる。   In the following embodiments, the ferromagnetic material is separated from the mixed powder containing the ferromagnetic material, as in the case of separating iron from atomized iron slag. A method of obtaining a mixed powder containing different types of iron will be described by taking as an example the case of atomizing iron slag.

製鉄スラグを微粒化の方法として、第一の微粒化の方法は機械的粉砕である。製鉄スラグの機械的粉砕は、粗粉砕機であるハンマークラッシャやジョークラッシャで粗破砕した後、微粒化のためにボールミル、ロッドミル、ジェットミル、ピンミルなどを用いる。第二の微粒化の方法は、熱的粉砕(熱処理粉砕)である。製鉄スラグを1000〜1300℃程度に加熱後、徐冷する。   As a method of atomizing iron slag, the first method of atomization is mechanical pulverization. For mechanical pulverization of iron slag, a ball mill, a rod mill, a jet mill, a pin mill, or the like is used for fine pulverization after rough pulverization with a hammer crusher or jaw crusher as a coarse pulverizer. The second atomization method is thermal pulverization (heat treatment pulverization). The iron slag is heated to about 1000 to 1300 ° C. and then slowly cooled.

このようにして、強磁性体を含んだ異種混合粉体(強磁性体粒子と非磁性体粒子の混合体)を得ることができる。   In this way, a heterogeneous mixed powder (a mixture of ferromagnetic particles and nonmagnetic particles) containing a ferromagnetic material can be obtained.

なお、本発明においては、適正な磁力選別で分離されるような粒子を強磁性体粒子とし、該強磁性体粒子以外は実質的に非磁性体粒子であるとみなしてよい。   In the present invention, particles that can be separated by appropriate magnetic separation may be regarded as ferromagnetic particles, and the particles other than the ferromagnetic particles may be regarded as substantially non-magnetic particles.

そして、以下の実施形態においては、上記のようにして得られた強磁性体を含んだ異種混合粉体(強磁性体粒子と非磁性体粒子の混合体)から強磁性体粒子の分離を行うことにする。なお、ここでは、鉄分と製鉄スラグのように、強磁性体粒子の方が非磁性体粒子に比べて質量が大きいものとする。   In the following embodiments, the ferromagnetic particles are separated from the heterogeneous mixed powder (a mixture of ferromagnetic particles and nonmagnetic particles) containing the ferromagnetic material obtained as described above. I will decide. Here, as in the case of iron and iron slag, it is assumed that the ferromagnetic particles have a larger mass than the non-magnetic particles.

[実施形態1]
本発明の実施形態1を図1に示す。
[Embodiment 1]
Embodiment 1 of the present invention is shown in FIG.

図1(a)に模式的平面図、図1(b)に模式的立面図を示すように、この実施形態1に係る強磁性体分離装置11は、異種混合粉体(強磁性体粒子1と非磁性体粒子2の混合体)を搬送する流体(気流または水流)が旋回して強磁性体粒子1と非磁性体粒子2に遠心力を作用させるようになっている円筒形状の旋回流路12と、その遠心力の向きに強磁性体粒子1が磁力を受けるように円筒形状の旋回流路12に沿って複数箇所に配設された磁場発生装置13とを備えている。   As shown in a schematic plan view in FIG. 1 (a) and a schematic elevation view in FIG. 1 (b), the ferromagnetic separator 11 according to the first embodiment includes a different kind of mixed powder (ferromagnetic particles). Cylindrical swirl in which a fluid (airflow or water stream) carrying a mixture of 1 and nonmagnetic particles 2 swirls to apply a centrifugal force to the ferromagnetic particles 1 and the nonmagnetic particles 2 A flow path 12 and a magnetic field generator 13 disposed at a plurality of locations along the cylindrical swirl flow path 12 are provided so that the ferromagnetic particles 1 receive a magnetic force in the direction of the centrifugal force.

なお、円筒形状旋回流路12としては、一般的に知られているサイクロンを用いることができる。あるいは、それに類似した形状の旋回流路であってもよい。   In addition, as the cylindrical swirl flow path 12, a generally known cyclone can be used. Alternatively, it may be a swirling channel having a shape similar to that.

また、磁場発生装置13は永久磁石か電磁石を用いる。磁場は円筒形状旋回流路12に沿って複数個所発生させればよく、数が多いほど効果が大きいが、例えば2〜6箇所程度配置する。磁場の強さは分離粒径に応じて100G(ガウス)〜20000G(ガウス)程度を選べばよい。   The magnetic field generator 13 uses a permanent magnet or an electromagnet. The magnetic field only needs to be generated at a plurality of locations along the cylindrical swirl flow path 12, and the larger the number, the greater the effect. The strength of the magnetic field may be selected from about 100 G (Gauss) to 20000 G (Gauss) depending on the separated particle size.

上記のように構成された強磁性体分離装置11においては、まず、異種混合粉体(強磁性体粒子1と非磁性体粒子2の混合体)を流体(気流あるいは水流)で搬送するようにしているので、異種混合粉体が分散状態になる。すなわち、搬送中に流体の乱流効果で異種混合粉体にせん断力が働き、凝集を解いた単体分離状態が実現する。   In the ferromagnetic separator 11 configured as described above, first, the different kind mixed powder (mixture of the ferromagnetic particles 1 and the non-magnetic particles 2) is conveyed by a fluid (air flow or water flow). Therefore, the mixed powder of different types is in a dispersed state. That is, a shearing force acts on the different types of mixed powders due to the turbulent flow effect of the fluid during conveyance, and a single separated state in which aggregation is solved is realized.

その上で、円筒形状旋回流路12を流れる流体が旋回して強磁性体粒子1と非磁性体粒子2に遠心力が作用するとともに、遠心力が作用する方向と同じ方向に磁場発生装置13によって強磁性体粒子1に磁力が作用するようになっている。このため、単体分離状態となった強磁性体粒子1と非磁性体粒子2は遠心力で旋回の外側へ移動し、最終的には円筒形状旋回流路12の壁12aと接触して捕捉されるが、そこに作用する磁場発生装置13からの磁力の効果により、強磁性体粒子1にのみ選択的に遠心力に磁力が加わる。   In addition, the fluid flowing through the cylindrical swirl flow path 12 swirls to apply a centrifugal force to the ferromagnetic particles 1 and the non-magnetic particles 2, and a magnetic field generator 13 in the same direction as the centrifugal force acts. Thus, a magnetic force acts on the ferromagnetic particles 1. For this reason, the ferromagnetic particles 1 and the non-magnetic particles 2 in a single separated state move to the outside of the swirl by centrifugal force, and finally come into contact with the wall 12a of the cylindrical swirl flow path 12 and are captured. However, the magnetic force is selectively applied only to the ferromagnetic particles 1 due to the magnetic force from the magnetic field generator 13 acting on the centrifugal force.

なお、強磁性体粒子1は質量が大きいことから、作用する遠心力が大きくなるので、円筒形状旋回流路12の壁12aに近づきやすい。一方、非磁性体粒子2は質量が小さいことから、作用する遠心力が小さくなるので、円筒形状旋回流路12の比較的中央側に位置する。   Since the ferromagnetic particles 1 have a large mass, the acting centrifugal force is increased, so that the ferromagnetic particles 1 are likely to approach the wall 12 a of the cylindrical swirl flow path 12. On the other hand, since the non-magnetic particles 2 have a small mass, the acting centrifugal force is small, so that the non-magnetic particles 2 are positioned relatively on the center side of the cylindrical swirl flow path 12.

その結果、遠心力と磁力の両方が作用する強磁性体粒子1は流路の壁と接触して減速して、円筒形状旋回流路12の下部に設けられた重量側回収ボックス14に分離・回収され、一方、遠心力のみが作用する非磁性体粒子2は、流体に乗ってそのまま搬送されて、円筒形状旋回流路12の上部から軽量側に排出される。   As a result, the ferromagnetic particles 1 on which both centrifugal force and magnetic force act are brought into contact with the walls of the flow path and decelerated and separated into a weight-side collection box 14 provided at the lower part of the cylindrical swirling flow path 12. On the other hand, the non-magnetic particles 2 on which only the centrifugal force acts are carried on the fluid as they are, and discharged from the upper part of the cylindrical swirl flow path 12 to the lightweight side.

ちなみに、通常の遠心分離のみでは流速と旋回直径で遠心力が決定され、分離粒径が決まる。このため、壁12aに捕捉される強磁性体粒子1の分離回収量を上げるために流速を上げると、強磁性体粒子1を含んだ非磁性体粒子2の分離回収量も増加することから、強磁性体粒子1の回収濃度(分離精度)は向上しない。これに対して、この実施形態1では、磁場の強さを調節することにより強磁性体粒子1の回収量を向上させることができるため、強磁性体粒子1の回収濃度を向上させることが可能となる。   Incidentally, the centrifugal force is determined by the flow velocity and the swirl diameter only by ordinary centrifugal separation, and the separation particle size is determined. For this reason, if the flow rate is increased in order to increase the separation / recovery amount of the ferromagnetic particles 1 captured by the wall 12a, the separation / recovery amount of the non-magnetic particles 2 including the ferromagnetic particles 1 also increases. The recovery concentration (separation accuracy) of the ferromagnetic particles 1 is not improved. On the other hand, in the first embodiment, the recovery amount of the ferromagnetic particles 1 can be improved by adjusting the strength of the magnetic field, so that the recovery concentration of the ferromagnetic particles 1 can be improved. It becomes.

[実施形態2]
本発明の実施形態2を図2に示す。この実施形態2は、上記の実施形態1と基本的な考え方は同じである。ただし、実施形態1における円筒形状の旋回流路12に替えて、螺旋配管による旋回流路22を用い、液体として気体を用いている。
[Embodiment 2]
A second embodiment of the present invention is shown in FIG. The basic concept of the second embodiment is the same as that of the first embodiment. However, instead of the cylindrical swirl flow path 12 in the first embodiment, a swirl flow path 22 using a spiral pipe is used, and gas is used as the liquid.

すなわち、図2(a)に模式的平面図、図2(b)に模式的立面図を示すように、この実施形態2に係る強磁性体分離装置21は、異種混合粉体(強磁性体粒子1と非磁性体粒子2の混合体)が投じられた流体(ここでは、気流)が旋回して強磁性体粒子1と非磁性体粒子2に遠心力を作用させるようになっている螺旋配管旋回流路22と、その遠心力の向きに強磁性体粒子1が磁力を受けるように螺旋配管旋回流路22に沿って複数箇所に配設された磁場発生装置23とを備えている。   That is, as shown in the schematic plan view of FIG. 2A and the schematic elevation view of FIG. The fluid (in this case, the airflow) in which the body particles 1 and the non-magnetic particles 2 are cast is swirled to apply centrifugal force to the ferromagnetic particles 1 and the non-magnetic particles 2. The spiral piping swirl flow path 22 and the magnetic field generators 23 arranged at a plurality of locations along the spiral piping swirl flow path 22 are provided so that the ferromagnetic particles 1 receive a magnetic force in the direction of the centrifugal force. .

なお、磁場発生装置23は永久磁石か電磁石を用いる。磁場は螺旋配管旋回流路22に沿って複数個所発生させればよく、数が多いほど効果が大きいが、例えば2〜6箇所程度配置する。磁場の強さは分離粒径に応じて100G(ガウス)〜20000G(ガウス)程度を選べばよい。   The magnetic field generator 23 uses a permanent magnet or an electromagnet. The magnetic field may be generated at a plurality of locations along the spiral piping swirl flow path 22, and the larger the number, the greater the effect. The strength of the magnetic field may be selected from about 100 G (Gauss) to 20000 G (Gauss) depending on the separated particle size.

上記のように構成された強磁性体分離装置21においては、まず、異種混合粉体(強磁性体粒子1と非磁性体粒子2の混合体)を気流で搬送するようにしているので、異種混合粉体が分散状態になる。すなわち、搬送中に気流の乱流効果で異種混合粉体にせん断力が働き、凝集を解いた単体分離状態が実現する。   In the ferromagnetic separator 21 configured as described above, first, the different types of mixed powder (mixture of the ferromagnetic particles 1 and the non-magnetic particles 2) is conveyed by an air flow. The mixed powder becomes dispersed. That is, a shear force acts on the mixed powder of different types due to the turbulent effect of the air flow during conveyance, and a single separated state in which aggregation is solved is realized.

その上で、螺旋配管旋回流路22を流れる気流が旋回して強磁性体粒子1と非磁性体粒子2に遠心力が作用するとともに、遠心力が作用する方向と同じ方向に磁場発生装置23によって強磁性体粒子1に磁力が作用するようになっている。したがって、単体分離状態となった強磁性体粒子1と非磁性体粒子2は遠心力で旋回の外側へ移動し、最終的には螺旋配管旋回流路22の壁22aと接触して捕捉されるが、そこに作用する磁場発生装置23からの磁力の効果により、強磁性体粒子1にのみ選択的に遠心力に磁力が加わる。   In addition, the airflow flowing through the spiral piping swirl passage 22 swirls and centrifugal force acts on the ferromagnetic particles 1 and the nonmagnetic particles 2, and the magnetic field generator 23 extends in the same direction as the centrifugal force acts. Thus, a magnetic force acts on the ferromagnetic particles 1. Accordingly, the ferromagnetic particles 1 and the non-magnetic particles 2 that are in a single separated state move to the outside of the swirl by centrifugal force, and finally come into contact with the wall 22a of the spiral piping swirl flow path 22 and are captured. However, the magnetic force is selectively applied only to the ferromagnetic particles 1 due to the magnetic force from the magnetic field generator 23 acting on the centrifugal force.

その結果、遠心力と磁力の両方が作用する強磁性体粒子1は流路の壁と接触して減速して、螺旋配管旋回流路22の出口に設けられた回収ボックス24に分離・回収され、一方、遠心力のみが作用する非磁性体粒子2は、気流に乗ってそのまま搬送される。   As a result, the ferromagnetic particles 1 on which both centrifugal force and magnetic force act are brought into contact with the walls of the flow path and decelerated, and are separated and collected in a collection box 24 provided at the outlet of the spiral piping swirl flow path 22. On the other hand, the non-magnetic particles 2 on which only the centrifugal force acts are carried as they are on the air current.

ちなみに、通常の遠心分離のみ流速と旋回直径で遠心力が決定され、分離粒径が決まる。このため、壁22aに捕捉される強磁性体粒子1の分離回収量を上げるために流速を上げると、強磁性体粒子1を含んだ非磁性体粒子2の分離回収量も増加することから、強磁性体粒子1の回収濃度は向上しない。これに対して、この実施形態2では、磁場の強さを調節することにより強磁性体粒子1の回収量を向上させることができるため、強磁性体粒子1の回収濃度を向上させることが可能となる。   Incidentally, the centrifugal force is determined by the flow velocity and the swirl diameter only in normal centrifugation, and the separation particle size is determined. For this reason, if the flow rate is increased in order to increase the separation / recovery amount of the ferromagnetic particles 1 trapped by the wall 22a, the separation / recovery amount of the non-magnetic particles 2 including the ferromagnetic particles 1 also increases. The recovery concentration of the ferromagnetic particles 1 is not improved. On the other hand, in the second embodiment, the recovery amount of the ferromagnetic particles 1 can be improved by adjusting the strength of the magnetic field, so that the recovery concentration of the ferromagnetic particles 1 can be improved. It becomes.

なお、流体として液体を用いても良い。   A liquid may be used as the fluid.

[実施形態3]
本発明の実施形態3を図3に示す。
[Embodiment 3]
Embodiment 3 of the present invention is shown in FIG.

この実施形態3では、磁場発生装置が、強磁性体粒子が通過する空間に作用する磁束密度(強磁性体粒子通過空間の磁束密度)の大きさを調節できるようになっており、その磁束密度の大きさを一定期間ごとに大小を繰り返すようにしている。   In the third embodiment, the magnetic field generator can adjust the magnitude of the magnetic flux density acting on the space through which the ferromagnetic particles pass (the magnetic flux density in the ferromagnetic particle passage space). The size of is repeated to be larger and smaller at regular intervals.

前述したように、実施形態1、実施形態2においては、磁場発生装置13、23として永久磁石か電磁石を用いているが、この実施形態3は、特にその内の電磁石を用いた場合である。   As described above, in the first and second embodiments, permanent magnets or electromagnets are used as the magnetic field generators 13 and 23. However, the third embodiment is a case where an electromagnet is used.

すなわち、図3(a)に模式的平面図を示すように、この実施形態3においては、磁場発生装置13、23として、5個の電磁石(第1電磁石〜第5電磁石)が配設されている。   That is, as shown in a schematic plan view in FIG. 3A, in the third embodiment, as the magnetic field generators 13 and 23, five electromagnets (first electromagnet to fifth electromagnet) are arranged. Yes.

このように、磁場発生装置13、23として電磁石を用いた場合は、一定期間ごとに電磁石の励磁(ON)、非励磁(OFF)を繰り返すことによって、磁場発生部の壁に吸引付着した強磁性体粒子1を非励磁時に払い落とすことができるという利点がある。この際に、図3(b)に磁場の操業スケジュールを示すように、隣り合う電磁石の切り替えタイミングをずらせば、ある瞬間には常に幾つかの電磁石が働いている状態を維持でき、強磁性体粒子1の払い落としと磁力の作用を共に行うことが可能となる。   As described above, when electromagnets are used as the magnetic field generators 13 and 23, the ferromagnetic material attracted and adhered to the wall of the magnetic field generation unit by repeating excitation (ON) and non-excitation (OFF) of the electromagnet at regular intervals. There is an advantage that the body particles 1 can be removed when de-excited. At this time, as shown in the magnetic field operation schedule in FIG. 3B, if the switching timing of the adjacent electromagnets is shifted, the state in which several electromagnets are always working can be maintained at a certain moment. It is possible to perform both the removal of particles 1 and the action of magnetic force.

ちなみに、ここでは、一定期間ごとに電磁石の励磁(ON)、非励磁(OFF)を繰り返すことで、強磁性体粒子通過空間の磁束密度の大きさを一定期間ごとに大小を繰り返すようにしているが、完全に非励磁(OFF)とすることに限定されない。すなわち、電磁石の励磁電流の大きさを一定期間ごとに所定のしきい値以下に変更することで、強磁性体粒子通過空間の磁束密度の大きさを一定期間ごとに大小を繰り返すようにしてもよい。以下の実施形態においても同様である。   By the way, here, the magnitude of the magnetic flux density in the space passing through the ferromagnetic particles is repeated at certain intervals by repeating excitation (ON) and non-excitation (OFF) of the electromagnet at certain intervals. However, it is not limited to complete de-excitation (OFF). In other words, by changing the magnitude of the excitation current of the electromagnet to a predetermined threshold value or less every predetermined period, the magnitude of the magnetic flux density in the ferromagnetic particle passage space may be repeatedly increased and decreased every predetermined period. Good. The same applies to the following embodiments.

なお、同様な効果を狙って、電磁石を交流駆動しても良い。周波数は任意であるが、電磁石と駆動装置との特性によっては高周波領域では磁場の強さが不十分となる場合があるので、2kW程度の駆動電源で巻数1000ターン程度の電磁石の場合、50Hz程度とすればよい。上記のような、隣り合う電磁石の切り替える方式と同様に、隣り合う電磁石の位相をずらすことで、ある瞬間には常に幾つかの電磁石が十分な大きさの磁場を発生できていることになる。   Note that the electromagnet may be AC driven for the same effect. Although the frequency is arbitrary, depending on the characteristics of the electromagnet and the driving device, the magnetic field strength may be insufficient in the high frequency region. Therefore, in the case of an electromagnet having about 1000 turns with a driving power source of about 2 kW, about 50 Hz. And it is sufficient. Similar to the method of switching adjacent electromagnets as described above, by shifting the phase of adjacent electromagnets, several electromagnets can always generate a sufficiently large magnetic field at a certain moment.

さらに、場合によっては、磁場発生装置13、23として永久磁石を用いて同様のことを行ってもよい。その場合には、永久磁石の位置を調整可能な機構を設けて、永久磁石の位置を一定期間ごとに磁場発生部の壁に近づけたり、遠ざけたりすることで、強磁性体粒子通過空間の磁束密度の大きさを調節することができ、また、一定期間ごとに磁束密度の大小を繰り返すようにする。   Further, in some cases, the same may be performed using permanent magnets as the magnetic field generators 13 and 23. In such a case, a mechanism capable of adjusting the position of the permanent magnet is provided, and the position of the permanent magnet is moved closer to or away from the wall of the magnetic field generation unit at regular intervals, so that the magnetic flux in the ferromagnetic particle passage space is increased. The magnitude of the density can be adjusted, and the magnitude of the magnetic flux density is repeated at regular intervals.

なお、原理的には励磁・非励磁の間隔を一定期間とする必要は無いが、操業上の複雑化を避け、また安定操業を確保する観点から、一定期間とすることが好ましい。ただし、励磁と非励磁の期間は同じ長さである必要は無く、また電磁石毎に励磁・非励磁の期間が異なっていても良い。   In principle, it is not necessary to set the interval between excitation and de-excitation to a fixed period, but it is preferable to set the fixed period from the viewpoint of avoiding complication of operation and ensuring stable operation. However, the excitation and de-excitation periods do not have to be the same length, and the excitation / de-excitation periods may be different for each electromagnet.

磁場発生装置は、一定期間ごとに強磁性体粒子通過空間の磁束密度の大小を繰り返すために、例えば図3(b)のような操業スケジュールを記憶する記憶手段と、当該操業スケジュールに従って磁場発生装置を制御する(例えば各電磁石に流す電流を制御する、あるいは各永久磁石の位置を制御する)制御手段を有することが好ましい。   In order to repeat the magnitude of the magnetic flux density in the ferromagnetic particle passage space every predetermined period, the magnetic field generator has storage means for storing an operation schedule as shown in FIG. 3B, for example, and the magnetic field generator according to the operation schedule It is preferable to have a control means for controlling (for example, controlling the current flowing through each electromagnet, or controlling the position of each permanent magnet).

[実施形態4]
本発明の実施形態4を図4〜図6に示す。
[Embodiment 4]
A fourth embodiment of the present invention is shown in FIGS.

上記の実施形態3においては、強磁性体粒子通過空間の磁束密度の大きさを一定期間ごとに大小を繰り返すようにしている。しかし、異種混合粉体を分散させた流体(水流、気流)が所定の流速で流れている状態で磁束密度の大きさを小さくした場合、磁力による付着力が作用しなくなった強磁性体粒子が流体力によって流体中に舞い上がり、遠心分離の軽量側に回収される可能性がある。   In the third embodiment, the magnitude of the magnetic flux density in the ferromagnetic particle passage space is repeatedly increased and decreased every certain period. However, when the magnetic flux density is reduced in a state where a fluid (water flow, air flow) in which different types of mixed powders are dispersed flows at a predetermined flow velocity, the ferromagnetic particles in which the adhesion force due to the magnetic force stops working. There is a possibility that the fluid will soar into the fluid and be collected on the lightweight side of the centrifuge.

そこで、この実施形態4においては、異種混合粉体を分散させた流体(水流、気流)の流速を一旦小さくした後に、強磁性体粒子通過空間の磁束密度の大きさを小さくするようにしている。   Therefore, in the fourth embodiment, the flow velocity of the fluid (water flow, air flow) in which the different types of mixed powders are dispersed is once reduced, and then the magnetic flux density in the ferromagnetic particle passage space is reduced. .

あるいは、さらに、流体(水流、気流)の流速を再び大きくする(元の大きさに戻す)前に、強磁性体粒子通過空間の磁束密度の大きさを大きくする(元の大きさに戻す)ようにしている。   Alternatively, the magnetic flux density in the ferromagnetic particle passage space is increased (returned to the original size) before the flow velocity of the fluid (water flow, airflow) is increased again (returned to the original size). I am doing so.

例えば、図4に流体と磁場の操業スケジュールを示すように、磁石を励磁した状態(励磁ON)と、磁石を非励磁にした状態(励磁OFF)を繰り返す場合に、流体を所定の流速で流す状態(流体ON)と、流体の流れを完全に停止する状態(流体OFF)とを繰り返すようにしておき、流体OFFにしてから励磁OFFにするようにしている。   For example, as shown in FIG. 4 showing a fluid and magnetic field operation schedule, when a magnet is excited (excitation ON) and a magnet is not excited (excitation OFF), the fluid is flowed at a predetermined flow rate. The state (fluid ON) and the state of completely stopping the flow of fluid (fluid OFF) are repeated, and the excitation is turned OFF after the fluid is turned OFF.

あるいは、さらに、図5に流体と磁場の別の操業スケジュールを示すように、再び流体ONにする前に励磁ONにするようにしている。言い換えれば、励磁ONにした後で流体ONにしている。   Alternatively, as shown in FIG. 5 showing another operation schedule of the fluid and the magnetic field, the excitation is turned on before the fluid is turned on again. In other words, the fluid is turned on after the excitation is turned on.

なお、図4に替えて、図6に流体と磁場のさらに別の操業スケジュールを示すように、流体の流速にしきい値を設けておき、流体の流速がしきい値以上の状態を流体ONとし、流体の流速がしきい値未満の状態を流体OFFとして、流体OFFにしてから励磁OFFにするようにしてもよい。   Instead of FIG. 4, as shown in FIG. 6 which shows another operation schedule of the fluid and the magnetic field, a threshold value is provided for the fluid flow rate, and the fluid ON state is set to a state where the fluid flow rate is equal to or higher than the threshold value. Alternatively, the state where the fluid flow velocity is less than the threshold value may be set as the fluid OFF, and the excitation OFF may be performed after the fluid is turned OFF.

また、励磁にもしきい値を設けて、そのしきい値に基づいて、励磁ONと励磁OFF(完全な励磁OFFではなく、励磁を前記しきい値以下にする場合を含む。)を定め、流体OFFにしてから励磁OFFにするようにしてもよい。   Further, a threshold value is also provided for excitation, and excitation ON and excitation OFF (including a case where excitation is not equal to the threshold value but not excitation) are determined based on the threshold value. The excitation may be turned off after turning it off.

ちなみに、流体ONと流体OFFの切り替えは、流体の推力(ポンプ、送風機)の調節や、流体の流路に設けられているダンパーの開度の調節によって行うことができる。   Incidentally, switching between fluid ON and fluid OFF can be performed by adjusting the thrust of the fluid (pump, blower) or adjusting the opening of a damper provided in the fluid flow path.

これによって、この実施形態4においては、強磁性体粒子通過空間の磁束密度の大きさを小さくすることによって、強磁性体粒子に磁力による制動力が作用しにくくなった状態であっても、作用する流体力が小さくなっていることによって、強磁性体粒子が流体中に舞い上がることが無くなり、強磁性体粒子が遠心分離の重量側に確実に回収されるようになる。   As a result, in the fourth embodiment, even if the braking force due to the magnetic force is less likely to act on the ferromagnetic particles by reducing the size of the magnetic flux density in the ferromagnetic particle passage space, Since the fluid force to be reduced is reduced, the ferromagnetic particles are prevented from flying into the fluid, and the ferromagnetic particles are reliably recovered on the weight side of the centrifuge.

強磁性体の分離装置は、上記図4〜図6に例示されるような操業を実現するために、(流体および磁場の)操業スケジュールを記憶する記憶手段と、当該操業スケジュールに従って磁場発生装置を制御する(例えば各電磁石に流す電流を制御する、あるいは各永久磁石の位置を制御する)制御手段と、当該操業スケジュールに従って流体の流速を制御する(例えば前述のポンプ等の推力やダンパー開度を制御する)制御手段とを有することが好ましい。   In order to realize the operation illustrated in FIGS. 4 to 6, the ferromagnetic separation device includes a storage unit that stores an operation schedule (fluid and magnetic field), and a magnetic field generator according to the operation schedule. Control means for controlling (for example, controlling the current flowing through each electromagnet, or controlling the position of each permanent magnet), and controlling the flow velocity of the fluid according to the operation schedule (for example, the thrust and damper opening of the aforementioned pump or the like) Control means).

このようにして、上記の実施形態1〜4においては、強磁性体粒子1を含んだ異種混合粉体から強磁性体粒子1を分離(遠心分離)するに際して、強磁性体粒子1にのみ作用する磁力を遠心力の向きに作用させるようにしている。このため、強磁性体粒子1の分離精度が格段に向上し、従来のように磁力選別によって分離する場合に比べて、強磁性体粒子1を効率よく分離することができる。その結果、大量・高速に強磁性体の再資源化が可能となる。   Thus, in Embodiments 1 to 4 described above, when the ferromagnetic particles 1 are separated (centrifugated) from the heterogeneous mixed powder containing the ferromagnetic particles 1, they act only on the ferromagnetic particles 1. The magnetic force is applied in the direction of centrifugal force. For this reason, the separation accuracy of the ferromagnetic particles 1 is remarkably improved, and the ferromagnetic particles 1 can be separated more efficiently than in the case of separation by magnetic separation as in the prior art. As a result, the ferromagnetic material can be recycled in large quantities and at high speed.

なお、上記の実施形態1〜4では、鉄分と製鉄スラグのように、強磁性体粒子の方が非磁性体粒子に比べて質量が大きいものとしたが、逆の場合は、上記の実施形態1〜4を参考に磁場発生装置の配置などを適宜変更すればよい。   In the first to fourth embodiments, the mass of the ferromagnetic particles is larger than that of the non-magnetic particles, such as iron and iron slag, but in the opposite case, the above embodiments are used. What is necessary is just to change suitably the arrangement | positioning etc. of a magnetic field generator with reference to 1-4.

また、本発明において、流体としては気体、液体のいずれもが適合するが、30ミクロン以下の微粉体を多く含む場合においては水流を用いることが好ましい。   In the present invention, either a gas or a liquid is suitable as the fluid. However, when a large amount of fine powder of 30 microns or less is included, it is preferable to use a water stream.

本発明例として、前記の本発明の実施形態4に基づいて、強磁性体粒子(鉄分)と非磁性体粒子(スラグ)の混合体から強磁性体粒子(鉄分)を分離・除去して、非磁性体粒子(スラグ)の回収を行った。   As an example of the present invention, based on Embodiment 4 of the present invention, ferromagnetic particles (iron) are separated and removed from a mixture of ferromagnetic particles (iron) and nonmagnetic particles (slag), Non-magnetic particles (slag) were collected.

なお、製鉄スラグ(鉄分平均約10〜20質量%)は予めボールミルで平均粒径250μm程度に微細化し、分離装置による処理を行った。分離装置は図1に示した強磁性体分離装置11を用いた。   Note that iron slag (iron average: about 10 to 20% by mass) was previously refined to an average particle size of about 250 μm by a ball mill and processed by a separator. As the separator, the ferromagnetic separator 11 shown in FIG. 1 was used.

その際に、前記の図6で示したように、流体の流速にしきい値を設けることとし、図7に示すように、流体の流速が5m/s以上の状態を流体ON、流体の流速が5m/s未満の状態を流体OFFとした。また、2000Gの状態を励磁ON、励磁停止状態を励磁OFFとした。そして、流体OFFになってから励磁OFFになるようにした。流体ONと励磁ONの順番については図4と同様とした。   At that time, as shown in FIG. 6, a threshold value is set for the flow rate of the fluid. As shown in FIG. 7, the fluid is turned on when the flow rate of the fluid is 5 m / s or more. The state of less than 5 m / s was defined as fluid OFF. In addition, the state of 2000G is excitation ON, and the excitation stop state is excitation OFF. The excitation is turned off after the fluid is turned off. The order of fluid ON and excitation ON was the same as in FIG.

なお、比較のために、従来例として、磁場発生装置を備えていない従来の遠心分離装置を用いて、強磁性体粒子(鉄分)と非磁性体粒子(スラグ)の混合体から強磁性体粒子(鉄分)を分離・除去して、非磁性体粒子(スラグ)の回収を行った。従来例も装置構成は磁場発生装置を除けば図1に示した強磁性体分離装置11と同じとした。   For comparison, as a conventional example, a conventional centrifugal separator without a magnetic field generator is used to change a ferromagnetic particle from a mixture of ferromagnetic particles (iron) and nonmagnetic particles (slag). (Iron content) was separated and removed to recover non-magnetic particles (slag). The apparatus configuration of the conventional example is the same as that of the ferromagnetic separator 11 shown in FIG. 1 except for the magnetic field generator.

その結果、従来例では、軽量側回収部における非磁性体粒子(スラグ)への強磁性体粒子(鉄分)の混入率が質量%で0.5%であったのに対して、本発明例では、強磁性体粒子(鉄分)が軽量側に回収される割合が大幅に低下し、軽量側における非磁性体粒子(スラグ)への強磁性体粒子(鉄分)の混入率が質量%で0.2%と分離効率が飛躍的に改善した。   As a result, in the conventional example, the mixing ratio of the ferromagnetic particles (iron) to the non-magnetic particles (slag) in the light-weight side recovery unit was 0.5% by mass, whereas the present invention example In this case, the rate at which the ferromagnetic particles (iron) are recovered on the light side is greatly reduced, and the mixing ratio of the ferromagnetic particles (iron) to the non-magnetic particles (slag) on the light side is 0% by mass. The separation efficiency improved dramatically by 2%.

1 強磁性体粒子
2 非磁性体粒子
11 強磁性体分離装置
12 円筒形状の旋回流路(円筒形状旋回流路)
12a 円筒形状旋回流路の壁
13 磁場発生装置
14 重量側回収ボックス
21 強磁性体分離装置
22 螺旋配管による旋回流路(螺旋配管旋回流路)
22a 螺旋配管旋回流路の壁
23 磁場発生装置
24 回収ボックス
DESCRIPTION OF SYMBOLS 1 Ferromagnetic particle 2 Non-magnetic particle 11 Ferromagnetic separator 12 Cylindrical swirl flow path (cylindrical swirl flow path)
12a Wall of cylindrical swirl flow path 13 Magnetic field generator 14 Weight side recovery box 21 Ferromagnetic material separation apparatus 22 Swirl flow path by spiral pipe (spiral pipe swirl flow path)
22a Wall of spiral piping swirl flow path 23 Magnetic field generator 24 Collection box

Claims (2)

強磁性体を含んだ異種混合粉体から強磁性体を分離するための強磁性体の分離装置であって、異種混合粉体を分散させた気流あるいは水流が旋回して異種混合粉体に遠心力を作用させる流路と、前記遠心力の向きに強磁性体が磁力を受けるように前記流路に沿って1箇所以上配設された磁場発生装置とを備え、強磁性体に遠心力と磁力が作用するようにしており、
磁場発生装置が、強磁性体が通過する空間に作用する磁束密度の大きさを調節可能な構成を備えていて、強磁性体が通過する空間に作用する磁束密度の大きさを一定期間ごとに大小を繰り返すように構成されており、分離室に導く異種混合粉体を分散させた気流あるいは水流の流速を小さくした後に、磁束密度の大きさを小さくすることを特徴とする強磁性体の分離装置。
A ferromagnetic separation device for separating a ferromagnetic material from a heterogeneous mixed powder containing a ferromagnetic material, wherein an air flow or a water flow in which the heterogeneous mixed powder is dispersed is swirled and centrifuged into the heterogeneous mixed powder. And a magnetic field generator disposed at one or more locations along the flow path so that the ferromagnetic material receives a magnetic force in the direction of the centrifugal force. Magnetic force is acting ,
The magnetic field generator has a configuration capable of adjusting the magnitude of the magnetic flux density acting on the space through which the ferromagnetic material passes, and the magnitude of the magnetic flux density acting on the space through which the ferromagnetic material passes is set at regular intervals. Separation of ferromagnetic material, characterized in that it is configured to repeat large and small, and after reducing the flow velocity of the air or water flow in which the different types of mixed powder guided to the separation chamber are reduced, the magnetic flux density is reduced. apparatus.
気流あるいは水流の流速を大きくする前に、磁束密度の大きさを大きくすることを特徴とする請求項に記載の強磁性体の分離装置。 Before increasing the velocity of the air current or water flow, ferromagnetic separation apparatus according to claim 1, characterized in that increasing the magnitude of the magnetic flux density.
JP2010214628A 2009-10-22 2010-09-27 Ferromagnetic separator Active JP5573547B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010214628A JP5573547B2 (en) 2009-10-22 2010-09-27 Ferromagnetic separator
CN201080047382.3A CN102574129B (en) 2009-10-22 2010-10-18 Ferromagnetic material separation apparatus
PCT/JP2010/068768 WO2011049217A1 (en) 2009-10-22 2010-10-18 Ferromagnetic material separation apparatus
KR1020127010008A KR101354982B1 (en) 2009-10-22 2010-10-18 Ferromagnetic material separation apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009243230 2009-10-22
JP2009243230 2009-10-22
JP2010214628A JP5573547B2 (en) 2009-10-22 2010-09-27 Ferromagnetic separator

Publications (2)

Publication Number Publication Date
JP2011104583A JP2011104583A (en) 2011-06-02
JP5573547B2 true JP5573547B2 (en) 2014-08-20

Family

ID=43900440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214628A Active JP5573547B2 (en) 2009-10-22 2010-09-27 Ferromagnetic separator

Country Status (4)

Country Link
JP (1) JP5573547B2 (en)
KR (1) KR101354982B1 (en)
CN (1) CN102574129B (en)
WO (1) WO2011049217A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246515B2 (en) * 2009-12-18 2013-07-24 株式会社日立プラントテクノロジー Waste water treatment equipment
EP2792412A4 (en) 2011-12-12 2016-04-20 Ube Industries Mixture separation method and separation device
DE202012013256U1 (en) 2012-02-09 2015-09-14 Akai Gmbh & Co. Kg Device for separating non-magnetic constituents from a mixture of metal scrap
US9016477B2 (en) * 2012-03-19 2015-04-28 Mid-American Gunite, Inc. Method and system for processing slag material
CN104736249A (en) * 2012-10-16 2015-06-24 杰富意钢铁株式会社 Magnetic sorting apparatus, magnetic sorting method, and method for manufacturing iron source
KR102084241B1 (en) * 2013-05-16 2020-03-03 대우조선해양 주식회사 Pipe wall-thinning preventing method and system thereof
CN104658737B (en) * 2013-11-22 2018-07-06 海洋王(东莞)照明科技有限公司 Magnet separation device
BR112019012611B1 (en) * 2016-12-20 2023-09-26 Cyclomag Pty Limited FLAT MAGNETIC SEPARATOR
CN111372686B (en) * 2017-11-21 2022-05-13 Dh科技发展私人贸易有限公司 Three-dimensional mixing and particle transport via movable electromagnet assembly
CN109663665A (en) * 2019-01-14 2019-04-23 山东省物化探勘查院 Spiral laboratory Armco magnetic iron automatic electric magnetic separation instrument and magnetic selection method
KR102237818B1 (en) * 2019-09-02 2021-04-09 한국에너지기술연구원 Electromagnetic Field Cyclone using Dual Coil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131867A (en) * 1976-04-23 1977-11-05 Masahiko Izumi Fine selection method and device for grain
JPS53138582A (en) * 1977-05-10 1978-12-04 Nippon Steel Corp Device for separating dust including magnetic particles
CA2123328A1 (en) * 1993-12-13 1995-06-14 Kimberly-Clark Worldwide, Inc. Magnetic deinking
JP2005021835A (en) * 2003-07-04 2005-01-27 Takahashi:Kk Magnetic particle recovery apparatus
JP2005028244A (en) 2003-07-09 2005-02-03 Takahashi:Kk Filtering device
CA2748064A1 (en) * 2005-03-25 2006-09-28 Institut National De La Recherche Scientifique Method and apparatus for recovering carbon filamentary structures
JP2009050825A (en) 2007-08-29 2009-03-12 Okano Kiko Kk Magnetic granule separator
JP2009166009A (en) * 2008-01-21 2009-07-30 Okano Kiko Kk Magnetic fluid separator
CN201308859Y (en) * 2008-11-18 2009-09-16 长沙矿冶研究院 Permanent magnet centrifugal magnetic separator

Also Published As

Publication number Publication date
KR101354982B1 (en) 2014-01-24
CN102574129B (en) 2014-11-26
CN102574129A (en) 2012-07-11
JP2011104583A (en) 2011-06-02
KR20120068029A (en) 2012-06-26
WO2011049217A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5573547B2 (en) Ferromagnetic separator
JP5573546B2 (en) Ferromagnetic separator
JP5773089B2 (en) Magnetic sorting apparatus, magnetic sorting method, and iron source manufacturing method
Zhang et al. Application of electromagnetic (EM) separation technology to metal refining processes: a review
JP2017516656A (en) System and method for recovering metals from waste logistics
JPH0422976B2 (en)
Chen et al. A wet belt permanent high gradient magnetic separator for purification of non-metallic ores
JP5625313B2 (en) Separation method of steel slag
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
Chelgani et al. Dry mineral processing
JP6056617B2 (en) Method and apparatus for separating ferromagnetic material
Lungu Separation of small nonferrous particles using an angular rotary drum eddy-current separator with permanent magnets
JP2006218357A (en) Air sorting apparatus and air sorting method
JP5862735B2 (en) Separation method of steel slag
JP6015335B2 (en) Magnetic sorting method and magnetic sorting equipment
RU2326173C2 (en) Method of direct reduction of metals from dispersed crude ore and device for its implementation
JPH0947739A (en) Treatment of shredder dust
JP6252438B2 (en) Apparatus and method for separating iron from high temperature slag
Takaki et al. Separation of steelmaking slag with mechanical stirring by fluctuated magnetic field
WO2010048773A1 (en) Magnetic mechanical equipment, method for separating solid particles from each other in dust, system and method for recycling metal component
RU2777313C1 (en) Способ сухой магнитной сепарации магнетитсодержащих руд
JP2006068647A (en) Magnetic separation apparatus for granular substance
CN114392828B (en) Comprehensive recycling treatment method for waste incineration power plant slag
Chelgani et al. Magnetic Separation
JPH0510926Y2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250