JP5625313B2 - Separation method of steel slag - Google Patents

Separation method of steel slag Download PDF

Info

Publication number
JP5625313B2
JP5625313B2 JP2009243229A JP2009243229A JP5625313B2 JP 5625313 B2 JP5625313 B2 JP 5625313B2 JP 2009243229 A JP2009243229 A JP 2009243229A JP 2009243229 A JP2009243229 A JP 2009243229A JP 5625313 B2 JP5625313 B2 JP 5625313B2
Authority
JP
Japan
Prior art keywords
iron
specific gravity
slag
airflow
gravity separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243229A
Other languages
Japanese (ja)
Other versions
JP2011088063A (en
Inventor
石田 匡平
匡平 石田
西名 慶晃
慶晃 西名
榎枝 成治
成治 榎枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009243229A priority Critical patent/JP5625313B2/en
Publication of JP2011088063A publication Critical patent/JP2011088063A/en
Application granted granted Critical
Publication of JP5625313B2 publication Critical patent/JP5625313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、製鉄プロセス(特に、溶銑予備処理や転炉工程)で発生するスラグ(製鉄スラグ)の再資源化に関するものであって、製鉄スラグを鉄分とそれ以外のスラグ成分(非鉄分)に分離するためのスラグの分離方法に関するものである。   The present invention relates to the recycling of slag (iron slag) generated in the iron making process (especially hot metal pretreatment and converter process), and the iron slag is converted into iron and other slag components (non-iron). The present invention relates to a method for separating slag for separation.

製鉄プロセス、特に溶銑予備処理や転炉工程においては、膨大なスラグ(製鉄スラグ)が発生する。これらのスラグは溶銑や溶鋼中の不純物や不要元素を除去するために加えられるカルシウム系添加剤が反応、生成したものであり、スラグ中には除去された元素化合物はもちろん、鉄分も多く含まれる。スラグの形態は多くは塊状であり、その大きさは大きいもので数百mmのものもある。   Enormous slag (iron slag) is generated in the iron making process, particularly in the hot metal pretreatment and the converter process. These slags are produced by the reaction and generation of calcium-based additives added to remove impurities and unwanted elements in hot metal and molten steel, and the slag contains a large amount of iron as well as the removed elemental compounds. . Most of the slag forms are massive, and the size of the slag is large and some hundreds of millimeters.

上述したように、スラグには鉄分が多く含まれているため、従来からその再資源化の検討が盛んになされている。   As described above, since the slag contains a large amount of iron, studies on recycling of the slag have been actively conducted.

例えば、スラグから鉄分を分離・回収して、転炉工程でスクラップと混ぜて冷鉄源化するために、まず、数百mmの大型のスラグ塊をグリスリと呼ばれる篩い(グリスリ型篩い)で形状選別する。次に、グリスリ型篩いを通過した小型のスラグ塊は鉄分塊と非鉄分塊とが固着しているため、ハンマークラッシャやロッドミルで破砕を行って数百μm〜数十mmの大きさにして鉄分と非鉄分との単体分離を促進させた上で、磁力選別装置によって鉄分と非鉄分を分離する。磁力選別装置は吊り下げ型やドラム型、プーリー型などが用いられる。   For example, in order to separate and collect iron from slag and mix it with scrap in the converter process to make a cold iron source, first, a large slag lump of several hundred mm is shaped with a sieve (grid type sieve) called grits. Sort out. Next, the small slag block that has passed through the grind-type sieve has an iron block and a non-ferrous block fixed to each other. After promoting the simple separation of iron and non-ferrous component, the magnetic component is separated from iron and non-ferrous component. As the magnetic separator, a hanging type, a drum type, a pulley type, or the like is used.

鉄分を単体分離させるために加熱し、その後の冷却時間をコントロールして破砕する場合もある。冷却時間によっては、鉄分塊を破砕せずに固着した非鉄分塊のみを破砕分離することが可能である。あるいは数十μm程度に微粒化することが可能である。   In some cases, heating is performed to separate iron, and the subsequent cooling time is controlled for crushing. Depending on the cooling time, it is possible to crush and separate only the non-ferrous lump that is fixed without crushing the iron lump. Or it can be atomized to about several tens of μm.

いずれの方法でも微粒化が進めば、鉄分と非鉄分との単体分離化が進むことはいうまでもない。   Needless to say, if atomization progresses in any of the methods, the separation of iron and non-ferrous metals will progress.

特開2006−142136号公報JP 2006-142136 A 特開平10−130041号公報Japanese Patent Laid-Open No. 10-130041

製鉄スラグからの鉄分の分離濃度を向上させるには、鉄分と非鉄分との単体分離化を進める必要があるので、前述したように、微粒化が進めば単体分離化が進むことから、スラグ塊の機械的破砕を繰り返して粒径を小さくすることになる。あるいは熱処理によって、小粒径化させる場合もある。   In order to improve the separation concentration of iron from steelmaking slag, it is necessary to proceed with the separation of iron and non-ferrous as a single substance. The particle size is reduced by repeating mechanical crushing. Alternatively, the particle size may be reduced by heat treatment.

一方、一般的に従来の磁力選別装置では粒径が小さくなると、図4に示すように、磁石と鉄分粒子(磁性粒子)との間に非鉄分粒子(非磁性粒子)が挟み込まれる抱き込み現象や、乾式微粒化による凝集現象によって、分離濃度を向上させることが困難になる。そのため、磁力選別装置への供給速度を極端に遅くし、層厚を薄くするなどの工夫が必要となる。しかし、製鉄スラグは時間あたり数トン〜数十トンを処理する必要があるので、供給速度を極端に遅くせざるを得ない磁力選別装置の利用は現実的ではない。   On the other hand, in general, when the particle size is reduced in a conventional magnetic separator, as shown in FIG. 4, a embracing phenomenon in which non-ferrous particles (non-magnetic particles) are sandwiched between magnets and iron-containing particles (magnetic particles). In addition, it is difficult to improve the separation concentration due to the aggregation phenomenon caused by dry atomization. Therefore, it is necessary to devise measures such as extremely slowing the supply speed to the magnetic separator and reducing the layer thickness. However, since it is necessary to process several tons to several tens of tons of iron slag per hour, it is not practical to use a magnetic separation device that must extremely slow the supply speed.

これに対して、特許文献1では、スラグ塊を破砕せずに鉄分と非鉄分を分離することも検討されているが、複雑な分離フロー構成となり、処理コスト増加の要因となる。   On the other hand, in Patent Document 1, it is also considered to separate the iron and non-ferrous components without crushing the slag lump, but it has a complicated separation flow configuration, which causes an increase in processing costs.

また、特許文献2では、乾式微粒化による凝集をさけるため、湿式プロセスも考案されているものの廃液処理費用が莫大となる。   Moreover, in patent document 2, in order to avoid agglomeration by dry atomization, although a wet process is devised, the waste liquid processing cost becomes enormous.

本発明は、上記のような事情に鑑みてなされたものであり、製鉄プロセス(特に、溶銑予備処理や転炉工程)で発生する製鉄スラグの再資源化を図るために、製鉄スラグを鉄分(鉄成分)と非鉄分(非鉄成分)に効率よく分離することができる製鉄スラグの分離方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in order to recycle iron slag generated in the iron making process (particularly, hot metal preliminary treatment and converter process), the iron slag is made of iron ( It is an object of the present invention to provide a method for separating iron slag that can be efficiently separated into an iron component) and a non-ferrous component (non-ferrous component).

前述したように、製鉄スラグからの鉄分の分離濃度を向上させるには、まず、製鉄スラグを微粒化して鉄分と非鉄分との単体分離化を進める必要がある。   As described above, in order to improve the separation concentration of iron from steelmaking slag, first, it is necessary to atomize the ironmaking slag and promote the separation of iron and nonferrous as a single substance.

次に、微粒化した製鉄スラグから鉄分と非鉄分を分離することになるが、製鉄スラグは大量処理(時間あたり数トン〜数十トン)が前提となるため、乾式処理が好ましい。しかし、乾式処理の場合、一般に30μm以下の粉体は互いに凝集しあうため分離が困難と言われる。また、前述したように、一般的に磁力選別は粒子の抱き込み現象や粒子の凝集現象のために処理速度を遅くせざるを得ず、大量処理を前提とした場合に適用できない。   Next, the iron and non-ferrous components are separated from the atomized iron slag. Since the iron slag is premised on a large amount of processing (several tons to several tens of tons per hour), dry processing is preferable. However, in the case of dry processing, powders of 30 μm or less are generally said to be difficult to separate because they aggregate with each other. In addition, as described above, generally, magnetic force sorting has to be slowed down due to particle embrace phenomenon and particle agglomeration phenomenon, and cannot be applied when large-scale processing is assumed.

そこで、本発明者らは、上記の問題を解決するために鋭意検討を行った結果、微粒化した製鉄スラグを気流搬送した後、鉄分と非鉄分の比重差(鉄分の比重は7.6程度、非鉄分の比重は2.8程度)に基づく比重分離によって鉄分と非鉄分に分離することを着想した。すなわち、気流搬送によって、微粒化した製鉄スラグを攪拌して凝集を解いておき、その状態で、微粒化した製鉄スラグの比重分離を行えば、分離濃度を良好に保つことが可能となり、効率的に製鉄スラグの分離を行うことができるわけである。   Therefore, as a result of intensive investigations to solve the above problems, the present inventors have carried out air-flow transportation of atomized iron slag, and then the specific gravity difference between iron and non-iron (specific gravity of iron is about 7.6). The specific gravity separation based on the non-ferrous specific gravity was about 2.8). That is, if the atomized iron slag is agitated by air current conveyance to break up the agglomeration, and the specific gravity separation of the atomized iron slag is performed in that state, the separation concentration can be kept good and efficient. In addition, it is possible to separate steel slag.

上記の考え方に基づいて、本発明は以下の特徴を有している。   Based on the above concept, the present invention has the following features.

[1]製鉄スラグを微粒化する微粒化工程と、前記微粒化された製鉄スラグを気流搬送する気流搬送工程と、前記気流搬送された製鉄スラグを比重分離によって鉄分と非鉄分に分離する比重分離工程とを備えていることを特徴とする製鉄スラグの分離方法。   [1] Atomization step for atomizing iron slag, an air current conveyance step for air conveying the atomized iron slag, and a specific gravity separation for separating the iron slag conveyed by air current into iron and non-ferrous components by specific gravity separation A method for separating iron slag, comprising a step.

[2]気流搬送工程において、気流搬送経路を曲げることを特徴とする前記[1]に記載の製鉄スラグの分離方法。   [2] The method for separating iron slag according to [1], wherein the airflow conveyance path is bent in the airflow conveyance step.

[3]気流搬送工程において、気流搬送経路内に邪魔板を設置することを特徴とする前記[1]または[2]に記載の製鉄スラグの分離方法。   [3] The method for separating iron slag according to [1] or [2], wherein a baffle plate is installed in the airflow conveyance path in the airflow conveyance step.

[4]気流搬送工程において、気流搬送経路の途中に開口を設け、その開口から補助気流を気流搬送経路内に送入することを特徴とする前記[1]〜[3]のいずれかに記載の製鉄スラグの分離方法。   [4] In any one of the above [1] to [3], in the airflow conveying step, an opening is provided in the middle of the airflow conveying path, and an auxiliary airflow is sent into the airflow conveying path from the opening. Steel slag separation method.

[5]比重分離工程において、気流遠心分離装置を用いて比重分離を行うことを特徴とする前記[1]〜[4]のいずれかに記載の製鉄スラグの分離方法。   [5] The method for separating iron slag according to any one of [1] to [4], wherein in the specific gravity separation step, specific gravity separation is performed using an airflow centrifugal separator.

[6]比重分離工程において、水平重力分離装置を用いて比重分離を行うことを特徴とする前記[1]〜[4]のいずれかに記載の製鉄スラグの分離方法。   [6] The method for separating iron slag according to any one of [1] to [4], wherein in the specific gravity separation step, specific gravity separation is performed using a horizontal gravity separation device.

[7]比重分離工程において、慣性差分離装置を用いて比重分離を行うことを特徴とする前記[1]〜[4]のいずれかに記載の製鉄スラグの分離方法。   [7] The method for separating iron slag according to any one of [1] to [4], wherein in the specific gravity separation step, specific gravity separation is performed using an inertial difference separation device.

本発明においては、製鉄スラグを鉄分と非鉄分に分離するに際して、微粒化した製鉄スラグを気流搬送した後、比重分離によって分離するようにしているので、従来のように磁力選別によって分離する方法に比べて、製鉄スラグを効率よく鉄分と非鉄分に分離することができる。その結果、大量・高速に製鉄スラグの再資源化が可能となる。   In the present invention, when separating iron-making slag into iron and non-iron, the atomized iron-making slag is separated by specific gravity separation after being conveyed by air flow, so that it is separated by magnetic separation as in the past. In comparison, iron slag can be efficiently separated into iron and non-ferrous components. As a result, it is possible to recycle iron slag in large quantities and at high speed.

本発明の実施形態における基本的な処理手順を示す図である。It is a figure which shows the basic process sequence in embodiment of this invention. 本発明の実施形態1における処理手順を示す図である。It is a figure which shows the process sequence in Embodiment 1 of this invention. 本発明の実施形態2における処理手順を示す図である。It is a figure which shows the process sequence in Embodiment 2 of this invention. 従来技術(磁力選別)の問題点を示す図である。It is a figure which shows the problem of a prior art (magnetic force selection).

本発明の一実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における基本的な処理手順を示すフロー図である。図1に示すように、本発明の一実施形態においては、(S1)製鉄スラグを微粒化する微粒化工程と、(S2)微粒化された製鉄スラグを気流搬送・攪拌する気流搬送(攪拌)工程と、(S3)気流攪拌された製鉄スラグを比重分離によって鉄分(重量側)と非鉄分(軽量側)に分離する比重分離工程とを備えている。   FIG. 1 is a flowchart showing a basic processing procedure in an embodiment of the present invention. As shown in FIG. 1, in one embodiment of the present invention, (S1) atomization step of atomizing iron slag, (S2) air current conveyance (stirring) for conveying and agitating atomized iron slag. And (S3) a specific gravity separation step of separating the iron-made slag, which has been stirred by airflow, into iron (weight side) and non-ferrous content (light side) by specific gravity separation.

以下、各工程について説明する。   Hereinafter, each step will be described.

(S1)微粒化工程
微粒化工程においては、製鉄スラグを微粒化し、鉄分を単体分離する。微粒化が不十分だと後工程での分離濃度が向上しない。このため、平均粒径で数十μm〜数百μm程度まで微粒化する必要がある。
(S1) Atomization process In an atomization process, iron-making slag is atomized and iron content is separated into single elements. If the atomization is insufficient, the separation concentration in the subsequent process is not improved. For this reason, it is necessary to atomize to an average particle size of about several tens of μm to several hundreds of μm.

微粒化の方法として、第一の微粒化の方法は機械的粉砕である。製鉄スラグの機械的粉砕は、粗粉砕機であるハンマークラッシャやジョークラッシャで粗破砕した後、微粒化のためにボールミル、ロッドミル、ジェットミル、ピンミルなどを用いる。第二の微粒化の方法は、熱的粉砕(熱処理粉砕)である。製鉄スラグを1000〜1300℃程度に加熱後、徐冷する。   As the atomization method, the first atomization method is mechanical pulverization. For mechanical pulverization of iron slag, a ball mill, a rod mill, a jet mill, a pin mill, or the like is used for fine pulverization after rough pulverization with a hammer crusher or jaw crusher as a coarse pulverizer. The second atomization method is thermal pulverization (heat treatment pulverization). The iron slag is heated to about 1000 to 1300 ° C. and then slowly cooled.

(S2)気流搬送(攪拌)工程
気流搬送(攪拌)工程においては、前記微粒化工程で微粒化された製鉄スラグ(微粒体)を気流搬送する。この気流搬送によって微粒体が気流内に分散し、微粒体の凝集が解かれる。すなわち、攪拌の効果が得られる。この効果で単体分離状態が実現する。
(S2) Airflow transfer (stirring) step In the airflow transfer (stirring) step, the iron slag (fine particles) atomized in the atomization step is airflow transferred. By this air flow conveyance, the fine particles are dispersed in the air flow, and the aggregation of the fine particles is released. That is, the effect of stirring is obtained. This effect realizes a single separated state.

その際に、気流は微粒体を運搬するために必要な流速があれば十分であるが、気流搬送での攪拌効果を向上させるために、乱流を発生させることが好ましい。そのためには、気流搬送経路を曲げる(気流搬送経路として曲管を用いる)方法や、気流搬送経路内に邪魔板を設置する方法や、気流搬送経路の途中に開口を設けて補助気流(2次気流)を気流搬送経路内に送入する(開口から補助気流を気流搬送経路内に吸い込ます、あるいは、開口から補助気流を気流搬送経路内に噴射する)方法といった簡便な方法でよい。また、それらの方法を適宜組み合わせてもよい。   At that time, it is sufficient that the airflow has a flow velocity necessary for carrying the fine particles, but it is preferable to generate a turbulent flow in order to improve the stirring effect in the airflow conveyance. For this purpose, a method of bending the airflow conveyance path (using a curved pipe as the airflow conveyance path), a method of installing a baffle plate in the airflow conveyance path, or providing an auxiliary airflow (secondary) in the middle of the airflow conveyance path A simple method such as a method of sending an airflow) into the airflow conveyance path (sucking the auxiliary airflow into the airflow conveyance path from the opening or injecting the auxiliary airflow into the airflow conveyance path from the opening) may be used. Moreover, you may combine those methods suitably.

(S3)比重分離工程
比重分離工程においては、前記気流搬送(攪拌)工程で気流攪拌された製鉄スラグ(微粒体)に対して比重分離を行い、重量側に鉄分を分離し、軽量側に非鉄分を分離する。
(S3) Specific gravity separation step In the specific gravity separation step, specific gravity separation is performed on the iron-making slag (fine particles) stirred in the air flow (stirring) step to separate iron on the weight side and non-ferrous on the light side. Separate the minutes.

その際に、前記気流搬送(攪拌)工程で気流により攪拌されたままの状態で比重分離を行うことが好適であるので、比重分離装置は気流を利用したものを用いる。気流を利用した比重分離装置(気流式乾式比重分離装置)としては、サイクロンをはじめとする気流遠心分離装置や、重力を利用する水平重力分離装置や、粉体の着地点差を利用する慣性差分離装置などの、気流を搬送媒体とする乾式比重分離装置であれば何でも良い。   At that time, since it is preferable to perform the specific gravity separation while being stirred by the air flow in the air flow conveyance (stirring) step, the specific gravity separation device uses an air flow. Specific gravity separators that use airflow (airflow dry specific gravity separators) include cyclone and other airflow centrifuges, horizontal gravity separators that use gravity, and inertia differences that use the difference in the landing point of powder. Any dry specific gravity separator that uses an air flow as a carrier medium, such as a separator, may be used.

気流遠心分離装置の場合、流速と分離装置の直径で分離粒径が決定される。分離装置の直径は容易に調整できないため、流速を調整して適切な分離粒径での分離を実現させる。   In the case of an airflow centrifuge, the separation particle size is determined by the flow rate and the diameter of the separation device. Since the diameter of the separation device cannot be easily adjusted, the flow rate is adjusted to achieve separation with an appropriate separation particle size.

慣性差分離装置も同様であり、粉体をチャンバー内に放出する速度で適切な分離粒径を決定する。   The inertia difference separation apparatus is the same, and an appropriate separation particle size is determined at a rate at which the powder is discharged into the chamber.

上記のような気流式乾式比重分離方法以外の比重分離方法、たとえばジグ選別のような湿式比重分離方法では、高精度な分離が狙えるものの、大量・高速処理は難しい。また廃液処理の問題が生じる。   A specific gravity separation method other than the above-described airflow-type dry specific gravity separation method, for example, a wet specific gravity separation method such as jig sorting, can achieve high-precision separation, but is difficult to process in large quantities and at high speed. Moreover, the problem of waste liquid treatment arises.

このようにして、この実施形態においては、製鉄スラグを鉄分と非鉄分に分離するに際して、微粒化した製鉄スラグを気流搬送・攪拌した後、気流式乾式比重分離によって分離するようにしているので、従来のように磁力選別によって分離する方法に比べて、製鉄スラグを効率よく鉄分と非鉄分に分離することができる。その結果、大量・高速に製鉄スラグの再資源化が可能となる。   Thus, in this embodiment, when separating steelmaking slag into iron and non-iron, after atomized ironmaking slag is conveyed and stirred, it is separated by airflow dry specific gravity separation. Compared with the conventional method of separating by magnetic separation, iron slag can be efficiently separated into iron and non-ferrous components. As a result, it is possible to recycle iron slag in large quantities and at high speed.

次に、上記のような本発明の一実施形態における基本的な処理手順を具体化したものを、実施形態1、実施形態2として、それぞれ図2、図3に示す。   Next, what actualized the basic processing procedure in one embodiment of the present invention as described above is shown in FIGS. 2 and 3 as Embodiment 1 and Embodiment 2, respectively.

[実施形態1]
この実施形態1における処理手順を示すフロー図を図2(a)に示し、その処理手順の模式図を図2(b)、(c)に示す。以下、この実施形態1の各工程について述べる。
[Embodiment 1]
FIG. 2A shows a flowchart showing the processing procedure in the first embodiment, and FIGS. 2B and 2C show schematic diagrams of the processing procedure. Hereinafter, each process of this Embodiment 1 is described.

(S1)微粒化工程
図2(a)に示すように、熱処理粉砕によって製鉄スラグの微粒化を行う。すなわち、製鉄スラグを1200℃に加熱後、徐冷することで、平均粒径30μmに微粒化する。
(S1) Atomization step As shown in FIG. 2A, the iron slag is atomized by heat treatment pulverization. That is, the steelmaking slag is heated to 1200 ° C. and then gradually cooled to be atomized to an average particle size of 30 μm.

(S2)気流搬送(攪拌)工程
図2(a)に示すように、前記微粒化工程で微粒化された製鉄スラグ(微粒体)を気流搬送して攪拌する。その際に、図2(b)に示すように、曲がった流路にして攪拌するようにしている。あるいは、図2(c)に示すように、流路に邪魔板を設置して攪拌するようにしている。
(S2) Airflow conveyance (stirring) step As shown in FIG. 2 (a), the iron slag (fine particles) atomized in the atomization step is airflow conveyed and stirred. At that time, as shown in FIG. 2B, the flow path is bent and stirred. Alternatively, as shown in FIG. 2 (c), a baffle plate is installed in the flow path and stirred.

(S3)比重分離工程
図2(a)、(b)に示すように、前記気流搬送・攪拌工程で気流攪拌された製鉄スラグ(微粒体)をサイクロンによって比重分離し、重量側に鉄分を分離し、軽量側に非鉄分を分離する。
(S3) Specific gravity separation step As shown in FIGS. 2 (a) and 2 (b), the iron-making slag (fine particles) stirred in the airflow conveyance / stirring step is separated by gravity with a cyclone, and the iron content is separated on the weight side. And separate non-ferrous components on the lightweight side.

そして、重量側に分離された鉄分は、転炉工程でスクラップと混ぜて冷鉄源化する。一方、軽量側に分離された非鉄分は、バグフィルタ等で捕捉した後、リサイクルに活用する。   And the iron part isolate | separated to the weight side is mixed with a scrap in a converter process, and becomes a cold iron source. On the other hand, the non-ferrous material separated on the lightweight side is captured by a bag filter and used for recycling.

[実施形態2]
この実施形態2における処理手順を示すフロー図を図3(a)に示し、その処理手順の模式図を図3(b)に示す。以下、この実施形態2の各工程について述べる。
[Embodiment 2]
FIG. 3A shows a flowchart showing the processing procedure in the second embodiment, and FIG. 3B shows a schematic diagram of the processing procedure. Hereinafter, each process of Embodiment 2 will be described.

(S1)微粒化工程
図3(a)に示すように、機械的粉砕によって製鉄スラグの微粒化を行う。すなわち、製鉄スラグをハンマークラッシャで粗破砕した後、ロッドミルで細破砕することによって、平均粒径30μmに微粒化する。
(S1) Atomization step As shown in FIG. 3A, the iron slag is atomized by mechanical pulverization. That is, iron slag is roughly crushed with a Hanmark lasher, and then finely crushed with a rod mill to be atomized to an average particle size of 30 μm.

(S2)気流搬送(攪拌)工程
図3(a)に示すように、前記微粒化工程で微粒化された製鉄スラグ(微粒体)を気流搬送して攪拌する。その際に、図3(b)に示すように、流路の途中に開口を設けて2次エアを流路内に吸い込ますことで、攪拌を強化するようにしている。
(S2) Airflow conveyance (stirring) step As shown in FIG. 3A, the iron slag (fine particles) atomized in the atomization step is airflow conveyed and stirred. At that time, as shown in FIG. 3B, an opening is provided in the middle of the flow path, and the secondary air is sucked into the flow path to enhance the stirring.

(S3)比重分離工程
図3(a)、(b)に示すように、前記気流搬送・攪拌工程で気流攪拌された製鉄スラグ(微粒体)を水平重力分離装置によって比重分離し、重量側に鉄分を分離し、軽量側に非鉄分を分離する。
(S3) Specific gravity separation step As shown in FIGS. 3 (a) and 3 (b), the steelmaking slag (fine particles) stirred in the air flow conveyance / stirring step is separated by specific gravity using a horizontal gravity separation device, Separate the iron content and non-ferrous content on the lightweight side.

そして、重量側に分離された鉄分は、転炉工程でスクラップと混ぜて冷鉄源化する、一方、軽量側に分離された非鉄分は、リサイクルに活用する。   The iron component separated on the weight side is mixed with scrap in the converter process to produce a cold iron source, while the non-ferrous component separated on the lightweight side is utilized for recycling.

上記の本発明の一実施形態に基づいて、製鉄スラグの分離を行った。   Based on one embodiment of the present invention, iron slag was separated.

すなわち、鉄分:非鉄分=30:70の重量比の製鉄スラグを平均粒径30μmに微粒化した後、気流搬送・攪拌と気流式乾式比重分離によって重量側に鉄分を分離し、軽量側に非鉄分を分離するようにした。   That is, iron slag with a weight ratio of iron: nonferrous = 30: 70 is atomized to an average particle size of 30 μm, and then iron is separated on the weight side by airflow conveyance / stirring and airflow dry specific gravity separation, and nonferrous on the light side The minutes were separated.

その結果、重量側:軽量側=35:65の重量比となり、重量側の鉄分純度は86%、軽量側の非鉄分純度は92%と極めて良好な結果が得られた。また、この際の処理量は約30トン/時間であり、所望の処理速度での分離が実施できた。   As a result, the weight ratio of weight side: light weight side = 35: 65 was obtained, and the iron content purity on the weight side was 86%, and the non-ferrous purity on the light side was 92%. Moreover, the processing amount at this time was about 30 tons / hour, and separation at a desired processing speed could be carried out.

Claims (7)

製鉄スラグを微粒化する微粒化工程と、前記微粒化された製鉄スラグを気流搬送する気流搬送工程と、前記気流搬送された製鉄スラグを比重分離によって鉄分と非鉄分に分離する比重分離工程とを備えていて、気流搬送工程において、気流搬送経路の途中に開口を設け、その開口から補助気流を気流搬送経路内に送入することを特徴とする製鉄スラグの分離方法。 An atomization step for atomizing iron slag, an air current conveyance step for air conveying the atomized iron slag, and a specific gravity separation step for separating the iron slag conveyed by air flow into iron and non-ferrous components by specific gravity separation. A method of separating iron slag, comprising: providing an opening in the middle of the airflow conveyance path and feeding an auxiliary airflow into the airflow conveyance path from the opening in the airflow conveyance step . 製鉄スラグを微粒化する微粒化工程と、前記微粒化された製鉄スラグを気流搬送する気流搬送工程と、前記気流搬送された製鉄スラグを比重分離によって鉄分と非鉄分に分離する比重分離工程とを備えていて、比重分離工程において、気流遠心分離装置を用いて比重分離を行うことを特徴とする製鉄スラグの分離方法。 An atomization step for atomizing iron slag, an air current conveyance step for air conveying the atomized iron slag, and a specific gravity separation step for separating the iron slag conveyed by air flow into iron and non-ferrous components by specific gravity separation. A method for separating steelmaking slag, comprising: separating specific gravity using an airflow centrifugal separator in the specific gravity separation step . 製鉄スラグを微粒化する微粒化工程と、前記微粒化された製鉄スラグを気流搬送する気流搬送工程と、前記気流搬送された製鉄スラグを比重分離によって鉄分と非鉄分に分離する比重分離工程とを備えていて、比重分離工程において、水平重力分離装置を用いて比重分離を行うことを特徴とする製鉄スラグの分離方法。 An atomization step for atomizing iron slag, an air current conveyance step for air conveying the atomized iron slag, and a specific gravity separation step for separating the iron slag conveyed by air flow into iron and non-ferrous components by specific gravity separation. A method for separating steelmaking slag, characterized in that, in the specific gravity separation step, specific gravity separation is performed using a horizontal gravity separation device . 製鉄スラグを微粒化する微粒化工程と、前記微粒化された製鉄スラグを気流搬送する気流搬送工程と、前記気流搬送された製鉄スラグを比重分離によって鉄分と非鉄分に分離する比重分離工程とを備えていて、比重分離工程において、慣性差分離装置を用いて比重分離を行うことを特徴とする製鉄スラグの分離方法。 An atomization step for atomizing iron slag, an air current conveyance step for air conveying the atomized iron slag, and a specific gravity separation step for separating the iron slag conveyed by air flow into iron and non-ferrous components by specific gravity separation. A method for separating steelmaking slag, characterized in that, in the specific gravity separation step, specific gravity separation is performed using an inertial difference separation device . 気流搬送工程において、気流搬送経路の途中に開口を設け、その開口から補助気流を気流搬送経路内に送入することを特徴とする請求項のいずれかに記載の製鉄スラグの分離方法。 In pneumatic conveying step, an opening is provided in the middle of the pneumatic conveying path, a method of separating iron slag according to any one of claims 2 to 4 for the auxiliary air flow through the opening, characterized in that fed into the pneumatic conveying path . 気流搬送工程において、気流搬送経路を曲げることを特徴とする請求項1〜5のいずれかに記載の製鉄スラグの分離方法。 The method for separating iron slag according to any one of claims 1 to 5, wherein in the airflow conveying step, the airflow conveying path is bent. 気流搬送工程において、気流搬送経路内に邪魔板を設置することを特徴とする請求項1〜6のいずれかに記載の製鉄スラグの分離方法。 The method for separating iron slag according to any one of claims 1 to 6 , wherein a baffle plate is installed in the airflow conveyance path in the airflow conveyance step.
JP2009243229A 2009-10-22 2009-10-22 Separation method of steel slag Active JP5625313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243229A JP5625313B2 (en) 2009-10-22 2009-10-22 Separation method of steel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243229A JP5625313B2 (en) 2009-10-22 2009-10-22 Separation method of steel slag

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014184146A Division JP5862735B2 (en) 2014-09-10 2014-09-10 Separation method of steel slag

Publications (2)

Publication Number Publication Date
JP2011088063A JP2011088063A (en) 2011-05-06
JP5625313B2 true JP5625313B2 (en) 2014-11-19

Family

ID=44106839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243229A Active JP5625313B2 (en) 2009-10-22 2009-10-22 Separation method of steel slag

Country Status (1)

Country Link
JP (1) JP5625313B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276193B (en) * 2013-06-21 2015-07-08 山东鲁铭高温材料科技有限公司 Method and device for preparing powdered iron through magnetizing low-iron red mud
JP6252438B2 (en) * 2014-11-06 2017-12-27 Jfeスチール株式会社 Apparatus and method for separating iron from high temperature slag
CN104561563A (en) * 2014-12-29 2015-04-29 河南豫光锌业有限公司 Indium-rich slag reduction presoaking technology and device thereof
CN105112676B (en) * 2015-09-09 2018-03-30 中南大学 A kind of method of pyrite roasting fayalite class metallurgical slag recovery iron
AU2017299295B2 (en) * 2016-07-19 2019-11-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for improving iron grade of iron ore

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627480A (en) * 1985-06-13 1987-01-14 株式会社日本アルミ Method and device for separating froth
JPS62234582A (en) * 1985-10-30 1987-10-14 日本磁力選鉱株式会社 Manufacture of iron flake
JPS63123479A (en) * 1986-11-13 1988-05-27 新日鐵化学株式会社 Manufacture of superfine blast-furnace granulated slag
JP2502099Y2 (en) * 1991-07-04 1996-06-19 川崎重工業株式会社 Vertical mill
JP2666097B2 (en) * 1991-08-02 1997-10-22 宇部興産株式会社 Slag crushing equipment
JPH0680460A (en) * 1992-08-27 1994-03-22 Sumitomo Metal Ind Ltd High-strength cement composition and production of ultrafine powder of granulated blast furnace slag for the composition
JP3927283B2 (en) * 1997-07-09 2007-06-06 新日本製鐵株式会社 Method for analysis of fine-grained metallic iron in molten steel slag
JP2000140764A (en) * 1998-11-11 2000-05-23 Dowa Karufain:Kk Feeding dispersion pipe for dry powder classifying machine
JP2005087790A (en) * 2003-09-12 2005-04-07 Kawasaki Heavy Ind Ltd Classification apparatus, classification method, grinding equipment and grinding method

Also Published As

Publication number Publication date
JP2011088063A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5573546B2 (en) Ferromagnetic separator
JP5573547B2 (en) Ferromagnetic separator
JP5625313B2 (en) Separation method of steel slag
JP6050222B2 (en) Disposal of electrical and electronic parts waste
JP6638719B2 (en) How to treat steel slag
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
JP2018090477A (en) Method for processing steel slag
JP6228843B2 (en) Disposal of electrical and electronic parts waste in copper smelting
JP6604346B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
JP5862735B2 (en) Separation method of steel slag
TWI748364B (en) Disposal of scraps of electronic and electrical machine parts
Yi et al. Development of a centrifugal dry magnetic separator for separation of fine magnetite ore
JP2003171954A (en) Counterweight and its recycling method
JP6015335B2 (en) Magnetic sorting method and magnetic sorting equipment
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
JP6601482B2 (en) Steel slag treatment method and equipment
JP6252438B2 (en) Apparatus and method for separating iron from high temperature slag
JP5306136B2 (en) Method of charging ore raw material and solvent into smelting furnace
KR200278865Y1 (en) Powder omitted
JP2021088746A (en) Method for reusing desulfurization slag
WO2023228912A1 (en) Separation method for stainless steel and processing method for electrical/electronic component scraps
RU2326173C2 (en) Method of direct reduction of metals from dispersed crude ore and device for its implementation
Yi et al. Centrifugal dry magnetic separation of fine magnetic minerals
JP2017213481A (en) Valuable recovery method from dephosphorization slag
Takaki et al. Separation of steelmaking slag with mechanical stirring by fluctuated magnetic field

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250