JP6228843B2 - Disposal of electrical and electronic parts waste in copper smelting - Google Patents
Disposal of electrical and electronic parts waste in copper smelting Download PDFInfo
- Publication number
- JP6228843B2 JP6228843B2 JP2013270177A JP2013270177A JP6228843B2 JP 6228843 B2 JP6228843 B2 JP 6228843B2 JP 2013270177 A JP2013270177 A JP 2013270177A JP 2013270177 A JP2013270177 A JP 2013270177A JP 6228843 B2 JP6228843 B2 JP 6228843B2
- Authority
- JP
- Japan
- Prior art keywords
- electronic component
- electrical
- component waste
- smelting furnace
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002699 waste material Substances 0.000 title claims description 123
- 238000003723 Smelting Methods 0.000 title claims description 82
- 239000010949 copper Substances 0.000 title claims description 57
- 229910052802 copper Inorganic materials 0.000 title claims description 53
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 50
- 238000000034 method Methods 0.000 claims description 49
- 238000010298 pulverizing process Methods 0.000 claims description 28
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 13
- 239000012141 concentrate Substances 0.000 claims description 12
- 238000003672 processing method Methods 0.000 claims description 5
- 239000013618 particulate matter Substances 0.000 claims description 4
- 239000011236 particulate material Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 150000002739 metals Chemical class 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/82—Recycling of waste of electrical or electronic equipment [WEEE]
Landscapes
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、電気・電子部品屑の処理方法に関する。特に、銅製錬炉を用いた電気・電子部品屑の処理方法に関する。 The present invention relates to a method for treating electrical / electronic component waste. In particular, it is related with the processing method of the electrical / electronic component waste using a copper smelting furnace.
近年、電気・電子部品製造業やそれら電気・電子部品を利用する製品および産業から発生するスクラップ類(電線屑、リードフレーム、ICチップ、樹脂付き基板屑、超小型コイル、スイッチ等々)の発生量が大幅に増大する傾向にある。これらスクラップ類は、金属、樹脂、セラミック等を含む複合材料であり、具体的には電気導体として使われる銅や、接点、メッキ皮膜等に使用された金、銀、白金、パラジウム等の有価金属が含まれている。この有価金属の回収は、資源のリサイクルによる省資源の観点からも重要である。 In recent years, the amount of scraps (electric wire scrap, lead frame, IC chip, substrate scrap with resin, ultra-small coil, switch, etc.) generated from the electrical / electronic component manufacturing industry and products and industries that use these electrical / electronic components Tend to increase significantly. These scraps are composite materials including metals, resins, ceramics, and more specifically, copper used as electrical conductors, and valuable metals such as gold, silver, platinum, and palladium used for contacts and plating films. It is included. This recovery of valuable metals is also important from the viewpoint of resource saving through resource recycling.
上記のようなスクラップ類はもちろん以前からも発生しており、そのリサイクル方法は多様であるが、スクラップ類には銅分が多く含まれるため、銅を製錬する工程にスクラップ類を投入し、銅を回収する方法は、有効な方法の一つである。また、銅の製錬工程では、原料の鉱石中には他の有価金属(貴金属)が付随し、銅の製錬では、銅の回収ともにそれらの有価金属を回収する工程を有するため、他の有価金属(貴金属)の回収においても銅を製錬する工程に、スクラップ類を投入することは有効な方法である。 Of course, such scraps have been generated for a long time, and their recycling methods are diverse, but since scraps contain a large amount of copper, scraps are put into the process of smelting copper, The method of recovering copper is an effective method. In addition, in the copper smelting process, other valuable metals (noble metals) are attached to the raw ore, and in the copper smelting process, both the recovery of copper and the recovery of those valuable metals are included. In the recovery of valuable metals (noble metals), it is an effective method to put scraps into the process of smelting copper.
銅製錬における電気・電子部品屑から銅および有価金属を回収する方法としては、転炉のような酸化製錬炉にスクラップ類を投入する場合(例えば、特許文献1)、自溶炉のような銅の溶錬炉に投入する場合(例えば、特許文献2)がある。転炉のような酸化製錬炉にスクラップ類を投入する方法では、比較的大きなスクラップをボート等の治具を用いてそのままスクラップ類を投入できる。しかしながら、電気・電子部品屑には銅、その他の有価金属も含まれるが、不純物も含まれている。そのため、不純物についてはこの工程で除かれることが望ましいが、溶錬炉に比べて不純物を分離する能力が酸化製錬炉は劣っている。したがって、処理量を増加させると、最終的に電解用のアノードを製造する際に不純物が多くなるという問題が発生する可能性がある。 As a method of recovering copper and valuable metals from scraps of electric and electronic parts in copper smelting, when scraps are put into an oxidation smelting furnace such as a converter (for example, Patent Document 1), There is a case where it is put into a copper smelting furnace (for example, Patent Document 2). In the method of throwing scraps into an oxidation smelting furnace such as a converter, a relatively large scrap can be thrown in as it is using a jig such as a boat. However, the electrical / electronic component waste contains copper and other valuable metals, but also contains impurities. Therefore, it is desirable to remove impurities in this step, but the oxidation smelting furnace is inferior in the ability to separate impurities compared to the smelting furnace. Therefore, when the amount of treatment is increased, there may be a problem that impurities are increased when an anode for electrolysis is finally produced.
特許文献2には、有価金属を含有するスクラップ類を銅鉱石溶錬用自溶炉へシャフト天井部から装入し、有価金属を炉内に滞留するマットへ回収することを特徴とするスクラップ類からの有価金属のリサイクル方法が開示されている。そして、このような構成によれば、銅溶錬自溶炉での銅製錬にスクラップ処理を組み合わせるため、有価金属含有率が低いスクラップ類からでも、低コストで有価金属を回収することができると記載されている。しかしながら、有価金属を含有するスクラップ類を銅鉱石溶錬用自溶炉へシャフト天井部から装入するためには、破砕する必要がある。また、電気・電子部品屑は、純金属や樹脂等の有機物を構成する炭素成分等の還元剤として働く成分が含まれているため、溶錬炉において電気・電子部品屑を処理する場合には還元剤が増加し、これらの成分が燃焼用空気と十分反応できない場合、処理時に過還元によるトラブルが発生する可能性がある。そのため、これまでは溶錬炉において処理量を増加させることができない。
また、このような問題は他の溶錬炉でも同様に発生することが十分に考えられる。
In Patent Document 2, scraps containing valuable metals are charged into a copper ore smelting flash furnace from the ceiling of the shaft, and the valuable metals are collected in a mat that stays in the furnace. Discloses a method for recycling valuable metals. And according to such a configuration, since scrap processing is combined with copper smelting in a copper smelting flash furnace, valuable metals can be recovered at low cost even from scraps having a low valuable metal content. Have been described. However, scraps containing valuable metals need to be crushed in order to charge the copper ore smelting flash furnace from the shaft ceiling. In addition, since electrical and electronic component waste contains components that act as reducing agents such as carbon components that constitute organic substances such as pure metals and resins, when processing electrical and electronic component waste in a smelting furnace, If the reducing agent increases and these components cannot sufficiently react with the combustion air, troubles due to overreduction may occur during processing. Therefore, until now, the throughput cannot be increased in the smelting furnace.
In addition, such a problem can be considered to occur in other smelting furnaces as well.
一方、近年、PC、携帯電話等の普及により、電気・電子部品屑のリサイクルの需要が増加し、それに伴い電気・電子部品屑の処理量が増加する傾向にある。
上述したような問題点から従来の乾式製錬工程における電気・電子部品屑の処理方法では、近年のリサイクル需要を満足させるだけの電気・電子部品屑の処理効率が得られていない。
On the other hand, in recent years, with the widespread use of PCs, mobile phones, etc., the demand for recycling of electric / electronic component waste has increased, and accordingly, the amount of processing of electric / electronic component waste tends to increase.
Due to the above-described problems, the conventional method for treating electrical / electronic component waste in the dry smelting process has not been able to obtain electrical / electronic component waste processing efficiency sufficient to satisfy recent recycling demands.
そこで、本発明は、銅製錬における電気・電子部品屑の処理において、電気・電子部品屑をできる限り多く効率的に処理することができる電気・電子部品屑の処理方法を提供することを課題とする。 Accordingly, the present invention has an object to provide a method for treating electrical / electronic component waste that can efficiently process as much electrical / electronic component waste as possible in the treatment of electrical / electronic component waste in copper smelting. To do.
本発明者らは、上記課題を解決するために鋭意検討した結果、銅製錬における電気・電子部品屑の処理において、効率良く破砕するため、所定のサイズ以下の電気・電子部品屑については溶錬炉で処理し、所定のサイズを超える電気・電子部品屑は酸化製錬炉で処理することで上記課題を解決することができることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have smelted electrical / electronic component scraps of a predetermined size or less in order to efficiently crush in processing of electrical / electronic component scraps in copper smelting. It has been found that the above-mentioned problems can be solved by treating electrical / electronic component scraps that exceed a predetermined size in an furnace and treat them in an oxidation smelting furnace.
従って、本発明は一側面において、銅を含む電気・電子部品屑を粉砕する工程と、粉砕された電気・電子部品屑を気流分級を用いて分級し、体積基準のD50が150μm以下の粉砕された前記電気・電子部品屑の微粉を回収する工程とを備え、前記体積基準のD50が150μm以下の回収された前記電気・電子部品屑の微粉は溶錬炉に導入して処理し、前記回収がされなかった粒状物は酸化製錬炉にて処理する電気・電子部品屑の処理方法である。 Accordingly, in one aspect of the present invention, the step of pulverizing electrical / electronic component waste containing copper and the pulverized electrical / electronic component waste are classified using airflow classification, and the volume-based D50 is pulverized to 150 μm or less. Recovering the fine powder of the electric / electronic component waste, the volume-based D50 of the collected electric / electronic component waste fine powder of 150 μm or less being introduced into a smelting furnace for treatment, and the recovery The particulate matter that has not been damaged is a method for treating electrical and electronic component waste that is treated in an oxidation smelting furnace.
本発明の電気・電子部品屑の処理方法は別の一側面において、銅を含む電気・電子部品屑を粉砕する工程と、粉砕された電気・電子部品屑を気流分級を用いて分級し、体積基準のD80が250μm以下の粉砕された前記電気・電子部品屑の微粉を回収する工程とを備え、前記体積基準のD80が250μm以下の回収された前記電気・電子部品屑の微粉は溶錬炉に導入して処理し、前記回収がされなかった粒状物は酸化製錬炉にて処理する電気・電子部品屑の処理方法である。 In another aspect of the method for treating electrical / electronic component waste according to the present invention, the step of pulverizing electrical / electronic component waste containing copper, and classifying the crushed electrical / electronic component waste using airflow classification, the volume Recovering the pulverized fine powder of the electric / electronic component waste having a reference D80 of 250 μm or less, and the recovered fine powder of the electric / electronic component waste having a volume reference D80 of 250 μm or less is a smelting furnace The particulate matter that has been introduced into and treated and not recovered is treated in an oxidation smelting furnace in a method for treating electrical / electronic component waste.
本発明の電気・電子部品屑の処理方法は更に別の一実施形態において、粉砕する工程前に前記銅を含む電気・電子部品屑を一部または全量焼却する工程を備える。 In still another embodiment, the method for treating electrical / electronic component waste of the present invention comprises a step of incinerating part or all of the electrical / electronic component waste containing copper before the step of pulverizing.
本発明の電気・電子部品屑の処理方法は更に別の一実施形態において、前記粉砕工程後の前記回収がされなかった粒状物の電気・電子部品屑の粉砕する前の電気・電子部品屑に対する比が、2〜10質量%である。 In yet another embodiment of the method for treating electrical / electronic component waste according to the present invention, the electrical / electronic component waste before the pulverization of the granular electrical / electronic component waste that has not been collected after the pulverization step is provided. The ratio is 2 to 10% by mass.
本発明の電気・電子部品屑の処理方法は別の一実施形態において、前記溶錬炉において、前記回収された電気・電子部品屑/銅精鉱の重量比率を1%以上で混合して処理する。 In another embodiment of the method for treating electrical / electronic component waste according to the present invention, in the smelting furnace, the recovered electrical / electronic component waste / copper concentrate is mixed at a weight ratio of 1% or more. To do.
本発明の電気・電子部品屑の処理方法は更に別の一実施形態において、前記粉砕工程において、前記電気・電子部品屑の少なくとも一部を、竪型ローラーミルを用いて粉砕する。 In still another embodiment of the method for treating electrical / electronic component waste according to the present invention, in the pulverization step, at least a part of the electrical / electronic component waste is pulverized using a vertical roller mill.
本発明は少なくとも以下の効果を有している:
(1)所定のサイズ以下の電気・電子部品屑を溶錬炉に装入し、所定のサイズを超える電気・電子部品屑を酸化製錬炉に装入することでできる限り多く効率的に処理することができる。
(2)電気・電子部品屑の破砕をすべて所定のサイズ以下にするのではなく、所定のサイズを超える電気・電子部品屑を残すことで破砕の効率化を図ることができる。
(3)前に電気・電子部品屑の少なくとも一部を予め焼却しておくことで、電気・電子部品屑に含まれる有機物の炭素成分を二酸化炭素として除去し、これによって溶練炉における炭素成分による過還元トラブルを防ぐことができる。
(4)電気・電子部品屑を溶錬炉で処理する前に焼却を行うため、電気・電子部品屑に含まれている金属が脆くなり、後段の粉砕工程で粉砕が容易になる。
The present invention has at least the following effects:
(1) Dispose of electrical and electronic component scraps of a predetermined size or less into a smelting furnace, and process electrical and electronic component scraps exceeding a predetermined size into an oxidation smelting furnace as efficiently as possible. can do.
(2) The crushing efficiency of crushing can be improved by leaving the crushing of electric / electronic component waste not exceeding a predetermined size and leaving the electric / electronic component waste exceeding a predetermined size.
(3) By previously incinerating at least a part of the electric / electronic component waste, the carbon component of the organic matter contained in the electric / electronic component waste is removed as carbon dioxide, thereby the carbon component in the melting furnace Can prevent over-reduction troubles.
(4) Since the incineration is performed before the electric / electronic component waste is treated in the smelting furnace, the metal contained in the electric / electronic component waste becomes brittle and is easily pulverized in the subsequent pulverization step.
以下に、本発明に係る電気・電子部品屑の処理方法の実施形態を、図を参照しながら説明する。 Embodiments of a method for treating electrical / electronic component waste according to the present invention will be described below with reference to the drawings.
図1に、本発明の実施形態に係る電気・電子部品屑の処理方法のフローチャートを示す。本発明に係る電気・電子部品屑の処理方法は、銅を含む電気・電子部品屑を焼却する工程と、焼却された電気・電子部品屑を粉砕する工程と、粉砕された電気・電子部品屑を銅の溶錬炉で処理する工程とを備える。 In FIG. 1, the flowchart of the processing method of the electrical / electronic component waste which concerns on embodiment of this invention is shown. The method for treating electrical / electronic component waste according to the present invention includes a step of incinerating electrical / electronic component waste containing copper, a step of pulverizing the incinerated electrical / electronic component waste, and a crushed electrical / electronic component waste With a copper smelting furnace.
(1)焼成工程
本発明ではこのように、粉砕及び溶錬炉での処理の前に、まず電気・電子部品屑を焼却してもよい。焼成工程をいれることで、電気・電子部品屑に含まれている樹脂等の有機物の少なくとも一部を焼却し、容量を小さくすることができる。このため、効率的な処理を行うことができる。また、電気・電子部品屑に含まれている樹脂等の有機物の少なくとも一部を焼却により除去することで、溶錬炉の処理等での電気・電子部品屑に含まれる炭素成分による過還元トラブルの発生を抑制し、炉体レンガおよびジャケットの損傷等を抑制することができる。さらに、電気・電子部品屑に含まれている金属が脆くなり、後段の粉砕工程で粉砕が容易になる。また、焼却することで、電気・電子部品屑中の揮発成分を除去することができる。このため、溶錬炉にフッ素、塩素、臭素等の好ましくない成分が混入することを抑制することができる。
(1) Firing step In the present invention, the electric / electronic component waste may be first incinerated before pulverization and treatment in the smelting furnace. By including the firing step, at least a part of the organic matter such as resin contained in the electrical / electronic component waste can be incinerated, and the capacity can be reduced. For this reason, efficient processing can be performed. In addition, by removing at least part of the organic substances such as resin contained in electrical / electronic component waste by incineration, over-reduction troubles caused by carbon components contained in electrical / electronic component waste during smelting furnace treatment, etc. Generation | occurrence | production can be suppressed and damage etc. of a furnace body brick and a jacket can be suppressed. Furthermore, the metal contained in the electrical / electronic component waste becomes brittle, and pulverization becomes easy in the subsequent pulverization step. Moreover, the volatile component in electrical / electronic component waste can be removed by incineration. For this reason, it can suppress that undesirable components, such as a fluorine, chlorine, a bromine, mix in a smelting furnace.
焼却工程は、特に限定されないが、例えば、ロータリーキルンによって電気・電子部品屑を550〜650℃程度で焼却した後、冷却し、10mm〜20mmの篩目で篩い分けしてもよい。 Although an incineration process is not specifically limited, For example, after incinerating electric / electronic component waste at about 550-650 degreeC with a rotary kiln, you may cool and sieve through 10 mm-20 mm sieve mesh.
また、従来は、特許文献1に記載のように溶錬炉で処理するために電気・電子部品屑を珪酸鉱と共にボールミルで粉砕することもあったが、メタルやガラス繊維のような粉砕困難物も含まれるため、このときの電気・電子部品屑の珪酸鉱に対する比率は約1/10以下に混合し、これを例えば自溶炉へ装入しており、自溶炉の部品屑処理量が少量であった。また、従来の他の方法としては、部品屑処理量を増加させるために粒径10mm以下または20mm以下に篩い分けした部品屑を粉砕せずに自溶炉へ装入していた。これに対し、本発明では焼却した電気・電子部品屑をさらに粉砕して自溶炉で処理するため、電気・電子部品屑の処理量が増加する。 Conventionally, as described in Patent Document 1, electrical and electronic component waste was sometimes pulverized with a silicate ore in a ball mill for treatment in a smelting furnace, but difficult to grind such as metal and glass fiber. Therefore, the ratio of electrical / electronic component scrap to silicate ore at this time is mixed to about 1/10 or less, and this is charged into, for example, a flash smelting furnace. It was a small amount. Further, as another conventional method, in order to increase the processing amount of the part waste, the part waste which has been sieved to a particle size of 10 mm or less or 20 mm or less has been charged into the flash furnace without being pulverized. On the other hand, in the present invention, the incinerated electrical / electronic component waste is further pulverized and processed in the flash smelting furnace, so that the processing amount of electrical / electronic component waste increases.
(2)粉砕工程
本発明の破砕工程の目的は、銅の溶錬炉に投入するために所定サイズ以下に破砕することが目的である。詳細は後述するが、所定のサイズ以下まで粉砕した電気・電子部品屑を自溶炉に装入することにより、従来以上に電気・電子部品屑の処理量を増加させることができるからである。
ただし、すべて又は必要以上に電気・電子部品屑を所定のサイズ以下にしようとすると、破砕の処理時間が長くなってしまい、効率的とは言えない。
所定サイズをこえる未破砕の電気・電子部品屑を残した状態で破砕を終了できれば、破砕においては効率的である。本発明の特徴はそこにある。そして、破砕の段階において所定のサイズ以下の破砕物と未破砕物が容易に分離でき、特に、未破砕物を容易に取り出せることも特徴の一つである。なお、もちろん、未破砕物が処理できなければ、残しても意味がない。本発明の意義は、未破砕物を酸化製錬炉で処理することにもある。
所定サイズとしては、より具体的には、体積基準のD50(メディアン径)が150μm以下まで粉砕するのが好ましい。また、体積基準のD80が250μm以下まで粉砕してもよい。このような構成によれば、焼却電気・電子部品屑を体積基準のD50が150μm以下又は体積基準のD80が250μm以下となるサイズ(粒度)まで粉砕して自溶炉処理することができるため、自溶炉内の過還元によるトラブルがより低減する。ここで、D50が150μm以下である粉体、及び、D80が250μm以下である粒体は、パウダーのように細かいものであり、砂粒の大きさの砂状体よりもずっと細かな粒体である。電気・電子部品屑の処理において、本発明の好ましい形態では、このようなパウダーのように細かな粒体となるまで粉砕する。
当該D50は120μm以下、100μm以下、80μm以下としてもよい。また、当該D80は220μm以下、200μm以下、180μm以下としてもよい。
粉砕工程後の所定のサイズを超える粒状物は酸化製錬炉で処理されるが、酸化製錬炉の処理量が増えるとアノードの不純物が増加するため、可能な限り粒状物の酸化製錬炉処理量は少ない方が良い。このため、粉砕工程後の所定のサイズを超える粒状物の電気・電子部品屑の粉砕する前の電気・電子部品屑に対する比が、2〜10質量%であるのが好ましい。当該比は、2〜5質量%であるのがより好ましい。
(2) Crushing process The purpose of the crushing process of the present invention is to crush to a predetermined size or less for introduction into a copper smelting furnace. Although details will be described later, it is possible to increase the processing amount of electric / electronic component waste more than before by charging the electric / electronic component waste pulverized to a predetermined size or less into a flash smelting furnace.
However, if all or more than necessary electrical / electronic component scraps are made to have a predetermined size or less, the processing time for crushing becomes longer, which is not efficient.
If crushing can be completed in a state in which uncrushed electric / electronic component waste exceeding a predetermined size is left, it is efficient in crushing. There is a feature of the present invention. In the crushing stage, a crushed product having a predetermined size or less and an uncrushed product can be easily separated, and in particular, the uncrushed product can be easily taken out. Of course, if the uncrushed material cannot be treated, there is no point in leaving it. The significance of the present invention is also to treat uncrushed material in an oxidation smelting furnace.
More specifically, the predetermined size is preferably pulverized until the volume-based D50 (median diameter) is 150 μm or less. The volume-based D80 may be pulverized to 250 μm or less. According to such a configuration, the incineration electric / electronic component waste can be crushed to a size (granularity) in which the volume-based D50 is 150 μm or less or the volume-based D80 is 250 μm or less. Troubles caused by over-reduction in the flash furnace are further reduced. Here, the powder having a D50 of 150 μm or less and the granule having a D80 of 250 μm or less are fine like powder and are much finer than a sandy body having the size of a sand grain. . In the treatment of electrical / electronic component waste, in a preferred form of the present invention, the powder is pulverized until it becomes a fine particle such as powder.
The D50 may be 120 μm or less, 100 μm or less, or 80 μm or less. The D80 may be 220 μm or less, 200 μm or less, or 180 μm or less.
Granules exceeding the prescribed size after the pulverization process are processed in an oxidation smelting furnace, but as the amount of oxidation smelting furnace increases, the impurities in the anode increase. Smaller throughput is better. For this reason, it is preferable that the ratio with respect to the electrical / electronic component waste before the grinding | pulverization of the granular material exceeding the predetermined size after a grinding | pulverization process is 2-10 mass%. The ratio is more preferably 2 to 5% by mass.
破砕の方法は特に限定されるものではないが、まず、所定のサイズ以下になるような破砕方法でなければならない。たとえば、一軸や二軸等のせん断による破砕装置では、粉砕物について1mm以下のサイズとすることは困難である。また、例えば、従来は電気・電子部品屑を破砕するのにボールミルを用いていたが、電気・電子部品屑のみにはボールミルで粉砕されずに滞留する粉砕困難物が含まれるため、珪酸鉱を混ぜて粉砕していた。しかしながら、珪酸鉱に対する電気・電子部品屑の投入比率を高くしてボールミルに導入すると、メタルや、メタルのような比重の大きいもの等の粉砕困難物がボールミル内に蓄積しボールミルの容積を徐々に減少させ効率の悪いものとなっている。 Although the crushing method is not particularly limited, the crushing method must be such that the size is not more than a predetermined size. For example, in a crushing apparatus using shear such as uniaxial or biaxial, it is difficult to reduce the size of the pulverized product to 1 mm or less. In addition, for example, a ball mill was conventionally used to crush electrical / electronic component waste, but only electrical / electronic component waste contains difficult-to-crush materials that remain without being pulverized by the ball mill. It was mixed and crushed. However, if the ratio of the electric and electronic component waste to the silicate ore is increased and introduced into the ball mill, difficult to grind materials such as metal and high specific gravity such as metal accumulate in the ball mill, gradually increasing the volume of the ball mill. Reduced and inefficient.
そこで、本発明の電気・電子部品屑の処理方法においては、粉砕工程において、電気・電子部品屑の少なくとも一部を、竪型ローラーミルを用いて粉砕するのが好ましい。図2は、竪型ローラーミルの模式図である。竪型ローラーミルを用いた粉砕方式としては、まず、粉砕対象の電気・電子部品屑をスクリューフィーダを通して水平回転するテーブル中央へ供給する。テーブルには、外周側に沿って設けられた凹部が形成されている。テーブル中央に供給された電気・電子部品屑は、遠心力でテーブル外周方向に移動する。このとき、テーブルの凹部上面に沿うように取り付けられたローラ(2〜3個)と、テーブルとの間で電気・電子部品屑が粉砕される。粉砕されて微粉となった電気・電子部品屑は、さらに外周方向に移動して、下方から上方へと流れる上昇気流(大気を利用)で吹き上げられ、分級(気流分級)されて上方に設けられたロータ内へ運ばれて回収される。
竪型ローラーミルを用いた粉砕方式によれば、気流分級効果を利用して風量を調節することにより、電気・電子部品屑の粉砕後の粒度を制御することができる。また、未粉砕物はテーブル下に落ちて溜まるため、未粉砕物が発生する場合は定期的に排出運転をすることによって未粉砕物を排出することができる。また、熱風を導入することができるため、乾燥粉砕が可能である。また、動力源単位が小さく、高効率な粉砕が可能である。また、電気・電子部品屑の粉砕で発生するメタル等の比重の大きい未粉砕物を自動排出することで、連続的な運転が可能である。
Therefore, in the method for treating electrical / electronic component waste according to the present invention, it is preferable that at least a part of the electrical / electronic component waste is pulverized using a vertical roller mill in the pulverization step. FIG. 2 is a schematic view of a vertical roller mill. As a pulverization method using a vertical roller mill, first, electric / electronic component waste to be pulverized is supplied through a screw feeder to the center of a table that rotates horizontally. The table is formed with a recess provided along the outer peripheral side. The electrical / electronic component waste supplied to the center of the table moves in the direction of the outer periphery of the table by centrifugal force. At this time, electrical / electronic component waste is pulverized between the table (2 to 3 rollers) attached along the upper surface of the concave portion of the table and the table. The electric and electronic component waste that has been pulverized into fine powder moves further in the outer peripheral direction, and is blown up by an updraft (using the atmosphere) that flows from below to above, and is classified (airflow classification) and provided above. It is transported into the rotor and collected.
According to the pulverization method using the vertical roller mill, the particle size after pulverization of the electric / electronic component waste can be controlled by adjusting the air volume using the airflow classification effect. Moreover, since the unground product falls and accumulates under the table, when the unground product is generated, the unground product can be discharged by periodically performing a discharging operation. Further, since hot air can be introduced, dry pulverization is possible. In addition, the power source unit is small, and highly efficient pulverization is possible. Moreover, continuous operation is possible by automatically discharging unpulverized material having a large specific gravity, such as metal, generated by pulverization of electrical / electronic component waste.
なお、本発明の電気・電子部品屑の処理方法においても、粉砕工程において、電気・電子部品屑を、溶錬炉にて銅精鉱と共に装入する珪酸鉱と混ぜて粉砕してもよい。通常、非鉄製錬炉においてはスラグの流動性を良好にするために珪酸鉱などの溶剤を原料精鉱とともに溶錬炉に装入するが、溶剤を購入する際には安価な塊状で購入する場合が多く、ボールミルなどを用いて自社で粉砕している場合が多い。したがって、溶剤ミルの能力に余裕がある場合は、電気・電子部品屑を溶錬炉にて銅精鉱と共に装入する珪酸鉱と混ぜて粉砕処理することで、破砕設備導入コストを要することなく実施することができる。 In the method for treating electrical / electronic component waste according to the present invention, the electrical / electronic component waste may be mixed and pulverized in a smelting furnace with silicate ore charged together with copper concentrate in a smelting furnace. Usually, in non-ferrous smelting furnaces, silicate ore and other solvents are charged into the smelting furnace together with the raw material concentrate in order to improve the slag fluidity. In many cases, they are pulverized in-house using a ball mill. Therefore, when there is a margin in the capacity of the solvent mill, electric and electronic parts scraps are mixed with silicate ore charged with copper concentrate in a smelting furnace and pulverized, so there is no need to introduce crushing equipment. Can be implemented.
(3)銅の溶錬炉
銅製錬における電気・電子部品屑の処理において、電気・電子部品屑をできる限り多く効率的に処理するには、銅の溶錬炉においてより多く処理することである。しかしながら、多く処理しようとすると過還元現象の発生で多く処理することができず、課題であった。その課題を解決したのが本発明である。
即ち、過還元現象を抑えて電気・電子部品屑を多く処理するには、電気・電子部品屑の大きさを所定のサイズ以下にすることが必要である。具体的には、溶錬炉に装入する精鉱と同等かそれ以下の粒度であればよい。より具体的には、溶錬炉に装入される精鉱は一般的には体積基準のD50として10〜150μmであることから、例えば、電気・電子部品屑を体積基準のD50が150μm以下であればよい。また、体積基準のD80が250μm以下であってもよい。
電気・電子部品屑が所定のサイズ以下であれば、焼却部品屑が溶錬炉(例えば自溶炉)セットラー底部まで沈降する前に、又は、マットやスラグの排出部から排出されるまでに、未燃焼カーボン分が酸化し、Cu分は銅精鉱中のS分と反応してマットとなり、Fe分は酸素と反応してスラグ化させることが可能であると考えられるからである。
(3) Copper smelting furnace In the treatment of electrical / electronic component waste in copper smelting, the most efficient treatment of electrical / electronic component waste is to process more in the copper smelting furnace. . However, if a large amount of treatment is attempted, a large amount of treatment cannot be performed due to the occurrence of an overreduction phenomenon, which is a problem. The present invention has solved this problem.
That is, in order to suppress the excessive reduction phenomenon and process a large amount of electrical / electronic component waste, it is necessary to make the size of the electrical / electronic component waste smaller than a predetermined size. Specifically, the grain size may be equal to or less than that of the concentrate charged in the smelting furnace. More specifically, the concentrate charged in the smelting furnace is generally 10 to 150 μm as the volume-based D50, and therefore, for example, when the volume-based D50 is 150 μm or less, the volume-based D50 is less than 150 μm. I just need it. Further, the volume-based D80 may be 250 μm or less.
If the electrical / electronic component scrap is less than the specified size, before the incinerated component scrap settles to the bottom of the smelting furnace (for example, flash furnace) or before it is discharged from the mat or slag discharge section This is because the unburned carbon content is oxidized, the Cu content reacts with the S content in the copper concentrate to form a mat, and the Fe content reacts with oxygen and can be slagged.
ここで、本発明における電気・電子部品屑をできる限り多く処理するとは、具体的には、粉砕された電気・電子部品屑/銅精鉱の重量比率が2%以上で混合して処理することである。現在銅精鉱の処理量が200ton/hを超える処理量が可能であるが、2%以上混入できれば、焼却前の電気・電子部品屑を5,000ton/月の処理量で処理することが可能であるからである。 Here, to process as much of the electrical / electronic component waste as possible in the present invention is specifically to mix and process the crushed electrical / electronic component waste / copper concentrate at a weight ratio of 2% or more. It is. The processing amount of copper concentrate currently exceeds 200 ton / h, but if it can be mixed 2% or more, it is possible to process the electrical and electronic component waste before incineration at a processing amount of 5,000 ton / month. Because.
また、溶錬炉装入前に焼却することも過還元現象を抑制する方法としては有効である。電気・電子部品屑に含まれている樹脂等の有機物の炭素成分の一部を焼却により除去することで、溶錬炉の処理等での電気・電子部品屑に含まれる炭素成分による過還元トラブルの発生を抑制することができるからである。ただし、溶錬炉装入前に焼却しても残存するCu分やFe分にはメタル状のものが存在し、このメタル状のものが炭素成分と同様に炉体ベコのような酸化物を還元させ、過還元トラブルを発生させることがある。メタル状のCu分、Fe分を炉体や排出樋と接触する前にCu分は原料中のS分と反応させてマットとし、Fe分は酸素と反応させてスラグ化させるためには粒度を小さくして溶錬炉に装入することが望ましい。 Incineration before charging the smelting furnace is also effective as a method for suppressing the overreduction phenomenon. Over-reduction trouble due to carbon components contained in electrical / electronic component waste during smelting furnace treatment, etc. by removing a part of organic carbon components such as resin contained in electrical / electronic component waste by incineration. It is because generation | occurrence | production of this can be suppressed. However, even if it is incinerated before charging into the smelting furnace, there is a metal-like component remaining in Cu and Fe, and this metal-like component contains an oxide like a furnace body as well as a carbon component. May cause over-reduction troubles. Before contacting the metal-like Cu and Fe components with the furnace body and the discharge soot, the Cu component reacts with the S component in the raw material to form a mat, and the Fe component reacts with oxygen to form a slag. It is desirable to make it small and insert it into the smelting furnace.
なお、自溶炉内の過還元によるトラブルとしては、例えば、自溶炉の内壁にセルフコーティングとしての炉体ベコ(例えば、マグネタイトを主成分とする酸化物)が形成されているが、これが過還元によって融解して除去されてしまい、炉体レンガおよびジャケットの損傷等が発生するもの等が挙げられる。
銅の溶錬炉としては、自溶炉が挙げられる。また、溶錬炉の操業については、過還元現象が発生しない状態であれば、電気・電子部品屑の投入の有無にかかわらず、公知である同様の操業条件で実施されればよい。
In addition, as a trouble due to overreduction in the flash smelting furnace, for example, a furnace body beco (eg, an oxide containing magnetite as a main component) is formed on the inner wall of the flash smelting furnace. Examples include those that are melted and removed by reduction and cause damage to furnace bricks and jackets.
An example of the copper smelting furnace is a flash smelting furnace. Further, the operation of the smelting furnace may be carried out under the same known operating conditions regardless of whether or not waste of electric / electronic parts is input as long as the over-reduction phenomenon does not occur.
(4)銅の酸化製錬炉
銅製錬における電気・電子部品屑の処理において、電気・電子部品屑をできる限り多く効率的に処理するには、銅の溶錬炉においてより多く処理する必要があり、より多く処理するためには、電気・電子部品屑を所定のサイズ以下に粉砕することが好ましい。しかしながら、全て或いは必要以上に所定のサイズに粉砕することは粉砕時間を必要以上に長くすることとなる。そこで発明は、あえて、所定のサイズを超える未破砕物を残し、未破砕物を銅の酸化製錬炉で処理することを特徴としている。
なお、酸化製錬炉の操業は、酸化製錬炉の本来の目的の機能を失わない範囲の実施のため、公知の操業方法でよい。
(4) Copper oxidation smelting furnace In the treatment of electrical / electronic component waste in copper smelting, in order to treat as much electrical / electronic component waste as efficiently as possible, it is necessary to treat more in the copper smelting furnace. In order to process more, it is preferable to grind the electric / electronic component waste to a predetermined size or less. However, crushing to a predetermined size all or more than necessary increases the crushing time more than necessary. Therefore, the invention is characterized by leaving uncrushed material exceeding a predetermined size and processing the uncrushed material in a copper oxidation smelting furnace.
Note that the operation of the oxidation smelting furnace may be a known operation method in order to perform the operation within a range not losing the original intended function of the oxidation smelting furnace.
以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.
以下に示すように、本発明の電気・電子部品屑の処理方法を実操業で実施するための模擬試験を行った。
Cu:30質量%、Fe:4.2質量%、SiO2:20質量%、:Al2O3:10質量%を含む電気・電子部品屑を準備し、当該電気・電子部品屑をロータリーキルンによって550〜650℃で焼却した後、冷却し、10mmの篩目で篩い分けした。焼却後の電気・電子部品屑は、焼却前の電気・電子部品屑に対して25体積%減少していた。当該減少分は、電気・電子部品屑に含まれていた有機物の炭素成分がCO2となって除去されたものと考えられる。
次に、篩い分け後の篩下の電気・電子部品屑を図2に示すような竪型ローラーミルを用いて体積基準のD50が100μm以下まで粉砕した。体積基準のD50は日機装社製マイクロトラックMT3300にて測定した。ミル内のテーブルは1200mm径、ローラ数を3つ、駆動方式を竪型減速機(カップリング直結型)、電動機の出力を340kW(ミル本体)とした。
粉砕されて微粉となった電気・電子部品屑は、ミル内において下方から上方へと流れる上昇気流(大気を利用)で吹き上げ、風量を調節することで分級(気流分級)して、上方に設けたロータ内へ運んで回収した。この際の未破砕の電気・電子部品屑は、5%であった。
回収後の電気・電子部品屑の組成は、Cu:27質量%、Fe:4.1質量%、SiO2:21質量%、:Al2O3:11質量%であった。一方、未破砕の電気・電子部品屑はCuが80%であった。
As shown below, a simulation test for carrying out the method for treating electrical / electronic component waste according to the present invention in actual operation was performed.
Electrical / electronic component waste containing Cu: 30% by mass, Fe: 4.2% by mass, SiO 2 : 20% by mass, and Al 2 O 3 : 10% by mass is prepared, and the electrical / electronic component waste is removed by a rotary kiln. After incineration at 550 to 650 ° C., the mixture was cooled and sieved with a 10 mm sieve mesh. The electrical / electronic component waste after incineration was reduced by 25% by volume with respect to the electrical / electronic component waste before incineration. The decrease is considered to be due to the removal of the organic carbon component contained in the electrical / electronic component waste as CO 2 .
Next, the electric / electronic component waste under the sieve after sieving was pulverized to a volume-based D50 of 100 μm or less using a vertical roller mill as shown in FIG. The volume-based D50 was measured with a Nikkiso Microtrack MT3300. The table in the mill had a diameter of 1200 mm, the number of rollers was 3, the drive system was a vertical reduction gear (coupled type), and the output of the motor was 340 kW (mill main body).
The electric and electronic component waste that has been pulverized into fine powder is blown up by an updraft (using the atmosphere) that flows from the bottom to the top in the mill, and is classified (airflow classification) by adjusting the air volume, and provided above It was collected in the rotor. In this case, uncrushed electric / electronic component waste was 5%.
The composition of the electric / electronic component waste after the recovery was Cu: 27 mass%, Fe: 4.1 mass%, SiO 2 : 21 mass%, and: Al 2 O 3 : 11 mass%. On the other hand, the uncrushed electrical / electronic component waste was 80% Cu.
次に、粉砕後、気流分級によって回収した電気・電子部品屑を銅の溶錬炉の1種である自溶炉で処理した。自溶炉の原料処理条件は、銅精鉱処理量が215ton/hであり、電気・電子部品屑処理量が銅精鉱処理量に対して2.0%であった。このとき、自熔炉において過還元が発生することなく電気・電子部品屑を良好に処理することができた。溶錬炉で生成したマットを転炉の酸化製錬炉で粗銅とした後、電解用アノードを製造した。このように、上述したような、特許文献1に記載の従来の電気・電子部品屑スクラップの処理方法で、銅鉱石処理量65ton/hに対して電気・電子部品屑のスクラップ装入量が0.55ton/hと銅鉱石に対して1%未満であったものに比べて、処理効率が大きく向上した結果となった。
一方、未破砕の電気・電子部品屑2tonは、転炉で処理された。
以上から、電気・電子部品屑を、効率的に粉砕によって所定のサイズ以下の電気・電子部品屑を95%得て、過還元のトラブルなく、溶錬炉にて処理することができ、一方、未破砕の電気・電子部品屑を酸化製錬炉で処理することで、電気・電子部品屑について効率よく破砕し、多く処理することができた。
Next, after pulverization, the electrical / electronic component waste recovered by airflow classification was treated in a flash smelting furnace which is a kind of copper smelting furnace. The raw material treatment conditions of the flash smelting furnace were a copper concentrate treatment amount of 215 ton / h, and an electrical / electronic component waste treatment amount of 2.0% with respect to the copper concentrate treatment amount. At this time, it was possible to satisfactorily treat the electrical / electronic component waste without causing excessive reduction in the auto-smelting furnace. After the mat produced in the smelting furnace was made into crude copper in the oxidation smelting furnace of the converter, an anode for electrolysis was produced. Thus, in the conventional method for treating scraps of electrical / electronic parts scrap described in Patent Document 1 as described above, the scrap charge amount of scraps of electrical / electronic parts is 0 with respect to a copper ore throughput of 65 ton / h. As a result, the treatment efficiency was greatly improved as compared with .55 ton / h and less than 1% with respect to copper ore.
On the other hand, untoned electric / electronic component waste 2ton was processed in a converter.
From the above, it is possible to obtain 95% of the electric / electronic component waste of a predetermined size or less by efficiently crushing the electric / electronic component waste and treat it in the smelting furnace without trouble of over-reduction, By treating uncrushed electrical and electronic component scraps in an oxidation smelting furnace, the electrical and electronic component scraps were efficiently crushed and processed in large quantities.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270177A JP6228843B2 (en) | 2013-12-26 | 2013-12-26 | Disposal of electrical and electronic parts waste in copper smelting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270177A JP6228843B2 (en) | 2013-12-26 | 2013-12-26 | Disposal of electrical and electronic parts waste in copper smelting |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017131538A Division JP2017190529A (en) | 2017-07-04 | 2017-07-04 | Method of processing electric/electronic parts scrap in copper smelting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015124413A JP2015124413A (en) | 2015-07-06 |
JP6228843B2 true JP6228843B2 (en) | 2017-11-08 |
Family
ID=53535348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013270177A Active JP6228843B2 (en) | 2013-12-26 | 2013-12-26 | Disposal of electrical and electronic parts waste in copper smelting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6228843B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017013024A (en) * | 2015-07-04 | 2017-01-19 | 宇部興産株式会社 | Method for recovering metal pieces from mixed waste including plastic and metal pieces |
JP6605378B2 (en) * | 2016-03-25 | 2019-11-13 | Jx金属株式会社 | Vertical pulverizer and method of operating vertical pulverizer |
JP6888965B2 (en) * | 2017-02-01 | 2021-06-18 | Jx金属株式会社 | How to process recycled materials |
JP2019202319A (en) * | 2019-08-21 | 2019-11-28 | Jx金属株式会社 | Vertical pulverizing apparatus and method for operation of vertical pulverizing apparatus |
JP7095708B2 (en) * | 2020-01-09 | 2022-07-05 | Jfeスチール株式会社 | Shredder dust treatment method and treatment equipment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311627A (en) * | 1986-06-30 | 1988-01-19 | Nippon Mining Co Ltd | Method for recovering valuable metal |
JPH0288725A (en) * | 1988-09-27 | 1990-03-28 | Nippon Mining Co Ltd | Method for separating and recovering copper from waste printed board |
JPH02198648A (en) * | 1989-01-25 | 1990-08-07 | Kawasaki Steel Corp | Controlling method for layer thickness and surface shape of material to be ground in vertical type roller mill |
JP3535629B2 (en) * | 1995-09-12 | 2004-06-07 | 日鉱金属株式会社 | Recycling of valuable metals from scraps |
JP2000104126A (en) * | 1998-09-30 | 2000-04-11 | Shin Meiwa Ind Co Ltd | Recovering method of valuable metals containing copper from waste printed circuit board and system for recovery of valuable metal containing copper and separation of slag component from waste printed circuit board |
JP4595065B2 (en) * | 2000-09-27 | 2010-12-08 | Jx日鉱日石金属株式会社 | Processing method by solidification of copper concentrate and solidified copper concentrate |
JP4248133B2 (en) * | 2000-09-29 | 2009-04-02 | 日鉱金属株式会社 | Method for treating copper-containing alloys |
-
2013
- 2013-12-26 JP JP2013270177A patent/JP6228843B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015124413A (en) | 2015-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6050222B2 (en) | Disposal of electrical and electronic parts waste | |
KR100795288B1 (en) | Scrap and/or sludge treatment method containing copper, precious metals | |
JP6228843B2 (en) | Disposal of electrical and electronic parts waste in copper smelting | |
WO2007031825A2 (en) | Processing metallurgical slag | |
JP2009226302A (en) | Method for treating waste printed circuit board | |
CN101098031A (en) | Environmental protection recovery processing method for waste lead acid accumulator | |
JP2019131871A (en) | Metal recovery method | |
CN101633983B (en) | Method for enhancing recovery rate of zinc fusion casting | |
JP2017190529A (en) | Method of processing electric/electronic parts scrap in copper smelting | |
CN107470016A (en) | A kind of method that chemical industry iron powder is prepared using zinc kiln slag as raw material | |
KR102153185B1 (en) | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore | |
JP4248133B2 (en) | Method for treating copper-containing alloys | |
JP2017154134A (en) | Pulverization method of printed circuit board scrap, and recovery method of valuable metal from printed circuit board scrap | |
JP7009710B2 (en) | How to recover valuables from steelmaking slag | |
JP2018021215A (en) | Method for producing reduced iron and production device therefor | |
JP5532823B2 (en) | Method for recovering valuable metals from waste batteries | |
JP2012021218A (en) | Method for recovering tantalum | |
TWM603468U (en) | Combined steel slag iron resource recovery system | |
JP4112523B2 (en) | Dissolution treatment method of hydrous fine iron-containing material in copper PS converter | |
JP2021088746A (en) | Method for reusing desulfurization slag | |
KR200278865Y1 (en) | Powder omitted | |
JP6188022B2 (en) | Slag manufacturing method and slag manufacturing system | |
JP4907284B2 (en) | Method for processing ferrous waste materials | |
TWI787969B (en) | Bu Zuolan material, its manufacturing method and manufacturing system | |
TWM621815U (en) | Pozzolanic material manufacturing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170704 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171016 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6228843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |