JP4248133B2 - Method for treating copper-containing alloys - Google Patents

Method for treating copper-containing alloys Download PDF

Info

Publication number
JP4248133B2
JP4248133B2 JP2000300831A JP2000300831A JP4248133B2 JP 4248133 B2 JP4248133 B2 JP 4248133B2 JP 2000300831 A JP2000300831 A JP 2000300831A JP 2000300831 A JP2000300831 A JP 2000300831A JP 4248133 B2 JP4248133 B2 JP 4248133B2
Authority
JP
Japan
Prior art keywords
copper
containing alloy
furnace
processing method
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000300831A
Other languages
Japanese (ja)
Other versions
JP2002105547A (en
Inventor
威尚 青木
和明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000300831A priority Critical patent/JP4248133B2/en
Publication of JP2002105547A publication Critical patent/JP2002105547A/en
Application granted granted Critical
Publication of JP4248133B2 publication Critical patent/JP4248133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明が属する技術分野】
この発明は、電気機器に用いられるプリント基板または部品を搭載したプリント基板、および、これらの製造工程で発生する枠材などの成形残(以下、「プリント基板」と総称する)の廃棄物を処理して得た銅含有合金の処理方法に係り、特に、銅の含有量が低いために転炉での処理が不可能な銅含有合金の処理方法に関するものである。
【0002】
【先行技術】
従来、充填材、樹脂、金属などを主要構成成分とするプリント基板や、これに電子部品を搭載した基板の従来の再資源化方法としては、焼却処理し、熱エネルギを回収する方法が一部で実施されている。さらに、プリント基板などの複合材料から有価物を回収する方法としては、これらの複合材料中の樹脂成分を加熱して炭化させた後、銅などの有価物を分離回収する方法がある(特開平2−88725号公報)。また、特開昭63−276509号公報には、樹脂と金属から成る廃棄複合材を、樹脂の脆化温度以下に冷却後、粉砕した後、磁力を利用して金属と樹脂とを分離する再生処理方法が開示されている。
【0003】
従来の焼却処理や炭化処理を用いるプリント基板や部品搭載基板の再資源化方法や有価物回収方法では、さまざまな廃ガスが発生するため、高度な廃ガス処理施設を設置しなければならず、更にプリント基板や部品搭載基板に含まれる有価金属成分が酸化されやすくなり、回収した場合の付加価値が低減することが懸念される。また他の再資源化の方法としては、プリント基板上の銅などをエッチングすることも考えられるが、排水処理や銅の回収に大規模な設備を要するので実用的でない。また、特開昭63−276509号公報に開示されている樹脂と金属から成る廃棄複合材の再生処理方法では、エネルギ消費の大きな冷却設備が必要であるという問題点、および、磁力により金属と樹脂とを分離しているため、この技術では、プリント基板の回路部分で多用される銅やアルミなど非磁性の金属を分離回収することができないという問題点がある。
以上のように、プリント基板や部品搭載基板およびこれらの製造工程での成形残から金属などの有価物を分離回収する方法を確立することは、大きな課題であった。
【0004】
かかる従来技術の課題に鑑み、本発明者等はプリント基板を銅精錬における副原材料とみなして既存の乾式精錬設備を用いた銅回収方法を鋭意研究し、反射炉で硫化鉱を主原料としてスパイスを生産した結果、この銅含有合金が以外に脆く自溶炉の精鉱バーナから投入して処理できる程度の粒度に容易に粉砕できることを発見し、本発明を完成した。
【0005】
【発明が解決しようとする課題】
本発明が解決すべき課題は、高価な廃ガス処理装置や冷却設備を必要とすることなく且つエネルギ消費も少なくてすむ銅含有合金の処理方法を提供することにある。本発明は、上記した課題を解決したもので、プリント基板の廃棄物を処理して、銅10〜25質量%、鉄25〜45質量%を含有する銅含有合金を生成する工程と、銅含有合金を平均粒径1〜0.01mmに粉砕処理する工程と、そして、粉砕した銅含有合金を自溶炉内に導入して処理する工程とを含んで構成されてなることを特徴とする銅含有合金の処理方法を提供する。
【0006】
前述のような金属組成の銅含有合金は、典型的には、硫化鉱とプリント基板とを原材料として反射炉でスパイスを生成することによって得ることができる。かかる銅含有合金は、比較的脆く、平均粒径1〜0.01mmに粉砕処理する。粉砕した銅含有合金は、自溶炉に搬送して銅精鉱と共に炉内に投入され、通常の銅精錬の処理工程に従って回収される。
請求項2に記載の本発明は、請求項1に記載の銅含有合金の処理方法において、粉砕処理した銅含有合金を気流により前記自溶炉まで搬送し処理することを特徴とする。
粉砕された銅含有合金は、平均粒径1〜0.01mmに粉砕処理されているため、自溶炉までダクトを介して気流によって簡単且つ安価に搬送することができる。
【0007】
請求項3に記載の本発明は、請求項1に記載の銅含有合金の処理方法において、粉砕処理工程が、乾式自生粉砕ミルにより行われることを特徴とする。
乾式自生粉砕ミルとしては、例えば、エロフォールミル(商品名:東京都港区三田5−1−12大塚鉄工株式会社)がある。
請求項4に記載の本発明は、請求項3に記載の銅含有合金の処理方法において、粉砕処理工程が、回転数15〜25rpm、処理速度0.5〜2.0トン/時の条件で処理することを特徴とする。
請求項5に記載の本発明は、請求項1に記載の銅含有合金の処理方法において、銅含有合金には、さらに、金が100〜350g/トン及び/又は銀が500〜3000g/トンが含まれていることを特徴とする。
請求項6に記載の本発明は、請求項1に記載の銅含有合金の処理方法において、自溶炉での処理工程が、粉砕された銅含有合金を自溶炉の精鉱バーナを通して炉内に投入することにより行われることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明に係る銅含有合金の処理方法を図示された実施の形態に基づいて、更に詳しく説明する。
図1は、本発明に係る銅含有合金の処理方法の一実施形態を示すフローチャートである。
本発明に係る銅含有合金の処理方法は、概略的に、反射炉におけるスパイス生成工程(ステップ1)と、前記エロフォールミル(商品名:東京都港区三田5−1−12大塚鉄工株式会社)による粉砕工程(ステップ2)と、ダクトを通しての気流による搬送工程(ステップ3)と、そして、自溶炉の精鉱バーナから炉内への投入工程(ステップ4)とを含んで構成されている。
【0009】
本発明で対象とするプリント基板や部品搭載基板およびこれらの製造工程での成形残としては、通常電気機器に使用されているものを指す。プリント基板は樹脂成分、充填材成分および回路などの金属成分からなるものであり、樹脂としてはエポキシ樹脂、フェノール樹脂、ポリイミド樹脂などが挙げられ、充填材としてはガラス繊維、紙、カーボン繊維などが挙げられ、更に金属としては、銅、アルミ、鉄、ニッケル、ハンダ(スズと鉛)、金、銀などが挙げられる。部品搭載基板とは上記のプリント基板にICパッケージなどの電子部品が搭載されたものである。尚、電子部品が搭載されたプリント基板から、電子部品の一部または全部を取り外したものも部品搭載基板に含める。成形残とは、プリント基板製造時の枠材や銅張りプリプレグの不良品、およびこれらの加熱硬化体などを指し、構成成分が製品のプリント基板とほぼ同じものを指す。
【0010】
反射炉におけるスパイス生成工程(ステップ1)では、硫化鉱とプリント基板とを原材料として反射炉でスパイスを生成する。金属以外の物質は、燃焼して廃ガスとして外部に排出されるか、スラグ中に含まれて除去される。なお、反射炉は1900K付近で溶錬するため、各種プラスチックをダイオキシンその他の有害物質を排出することなく燃焼させることができる。このスパイスは、銅10〜25質量%、鉄25〜45質量%を含有する銅含有合金である。なお、かかる銅含有合金であるスパイスには、さらに、金が100〜350g/トン及び/又は銀が500〜3000g/トンが含まれており、通常の銅精錬におけるプロセスを介することにより、前述のような貴金属を同時に回収することもできる。
【0011】
銅含有合金であるスパイスは、比較的脆く、粉砕工程(ステップ2)において、容易に平均粒径1〜0.01mmに粉砕処理することができる。かかる粉砕処理は、乾式自生粉砕ミル例えば、エロフォールミル(商品名:東京都港区三田5−1−12大塚鉄工株式会社)により行うことができる。本発明における粉砕工程の際、スパイス微粉砕物の平均粒径が大きすぎると、気流による搬送が十分に行えなくなるのでダクト内に堆積物として残留してしまう恐れがある。また、平均粒径が小さすぎる場合には、粉砕に時間とエネルギとがかかり過ぎ不経済である欠点がある。そこで、スパイスの平均粒径は、0.01mm(10μm )以上で1.0mm(1000μm)未満であることが望ましい。
【0012】
図2は、かかる乾式自生粉砕ミルの一実施例の概念図である。先ず、硫化鉱とプリント基板とを混在させた原料を反射炉で溶錬しスパイスを生成する。これをストックビン1に貯蔵し、必要に応じてスパイスを乾式自生粉砕ミル3に投入する。ミルの産物は、例えば、ミル周辺のグレート目1mm、或いは、0.5mmといった小孔を通過して排出される。産物に1mm或いは0.5mm以上のものの混入が許されない場合には、ミル周辺産物をスクリーン5で篩分けし、そのスクリーンアンダとクラッシファイヤ7、サイクロン9、バグフィルタ11の捕集物と一緒にして産物とすることもできる。バグフィルタ11は、排気ファン13によって吸引されており、その排気は外部に排出される。なお、サイクロン9で分級された重量の重い成分は、主ファン15に吸引されており、その大部分は乾燥用のエアーヒータ17を介して乾式自生粉砕ミル3に戻される。図示された好ましい実施例では、かかるシステムを用いて銅含有合金であるスパイスを平均粒径1〜0.01mmに粉砕処理する。乾式自生粉砕ミル3は、回転数15〜25rpm、処理速度0.5〜2.0トン/時の条件で処理することができる。
【0013】
ダクトによる気流搬送工程(ステップ3)においては、スパイスが平均粒径1〜0.01mmに粉砕処理されているため、自溶炉までダクトを介して気流によって簡単且つ安価に搬送することができる。また他の方法としては、サイクロン、バグフィルターで回収後自溶炉で処理しても良い。
粉砕されたスパイスの炉内への投入工程(ステップ4)では、ダクトを介して搬送されてきたスパイスが自溶炉の精鉱バーナから炉内へ投入される。スパイスの平均粒径が1〜0.01mmと十分に小さな粒径の粉体とされているため、精鉱バーナから炉内へ投入することによりスパイスは炉内で瞬間的に溶解することができる。
【0014】
図3は、自溶炉の典型例の縦断面図である。
従来周知の方法により得られた銅精鉱と共に、前述のようにして生成された銅含有合金であるスパイスを自溶炉40に酸素富化空気あるいは高温熱風と同時に吹き込んで瞬間的に化学反応を起こさせてマットとスラグに分離する。図3に示すように、自溶炉40は反応シャフト41、セットラ43、アップテイク45から構成され、反応シャフト41には1〜3本の精鉱バーナ47、47が備えられている。精鉱及び粉砕されたスパイスはこの精鉱バーナ47、47から炉内に吹き込まれる。自溶炉は精鉱の酸化反応熱を利用するため他の方法より燃料消費率が低いという特徴がある。尚、酸化反応熱だけでは熱量の不足をきたすおそれがある場合には、精鉱バーナ47、47から重油等で助燃することもできる。
ここで得られたマットには、通常の自溶炉による精錬と同様に、銅が60〜65%含まれる。また、スラグには1%前後の銅が含まれるので錬かん炉49にて錬かんし、銅をマットとして回収し自溶炉40からのマットとあわせて転炉で処理する。
【0015】
【実施例】
反射炉に、硫化鉱200トンと共にプリント基板を400トンを投入し、通常の運転条件と同じ運転条件で溶錬した。平成12年3月中における実験プラントにおいて、反射炉内には、Feが25〜45質量%、Cuが10〜25質量%のスパイス相と、CuSからなるマット相に分かれて得られた。
マットとスパイスは、同時にレードルに回収する。次いで、上部のマットを除いた後、スパイスを磁石で吸着して分離した。スパイスは、Cu品位が低くFe分のある合金であるため、マットよりも比重が重く且つ磁性があるためである。
【0016】
このようにして得られた銅含有合金であるスパイスを、先ず、粗粉砕した後、前述のエロフォールミルで平均粒径0.5mmに微粉砕した。エロフォールミルは、直径が約3mで軸方向の長さが約1mのものに直径80〜100mmの鋼球を30〜40個入れて、回転数15〜25rpm、処理速度0.5〜2.0トン/時の条件で約6時間操業した。これにより、実質的にほぼ全てのスパイスが平均粒径0.5mmに微粉砕できた。
エロフォールミルから自溶炉へは、直径800mmのダクトを介して約20m/秒の速度で気流搬送を行った。この時の吸引容量は、600立方m/分であった。
スパイス中における貴金属の含有量を平成12年4月2日〜4日の期間調べたところ、金、銀、銅がそれぞれ以下の通りとなった。
【0017】
【表1】

Figure 0004248133
【0018】
1日の処理量は概算で4〜5トン/日で、月25日稼動すると、約100トン/月となるから、月産で金が約15〜26Kg、銀が113〜187Kg生産される。
【0019】
【発明の効果】
請求項1記載の発明によれば、銅10〜25質量%、鉄25〜45質量%を含有する銅含有合金を生成する工程と、銅含有合金を平均粒径1〜0.01mmに粉砕処理する工程と、そして、粉砕した銅含有合金を自溶炉内に導入して処理する工程とを含んで構成されてなるため、廃棄物処理を行って得られる銅含有合金を通常の銅精錬の設備を使って効率よく処理回収することができる効果がある。
【0020】
また、本発明によれば、従来の焼却処理や炭化処理を用いる有価物回収方法で必要であった高度な廃ガス処理施設のような大規模な設備を設置する必要がない。また、プリント基板や部品搭載基板に含まれる有価金属成分が銅の精錬設備を利用して高品位な有価物として回収することができる。すなわち、貴金属含有処理物から金、銀等の貴金属を容易に且つ安価に回収することができる。
さらに、鉄と合金化した銅含有合金は、比較的粉砕が容易に出来、それにより、気流運搬により自溶炉に搬送できると共に最適な粒度で自溶炉にて処理することができる。また、自溶炉において、鉄は還元材、発熱材となり有効利用できる。
さらにまた、銅転炉にて処理し難い銅品位の低い、例えば、50質量%未満の銅含有合金をも容易に処理することができる。
【図面の簡単な説明】
【図1】 本発明に係る銅含有合金の処理方法の一実施形態のフローチャートである。
【図2】 図2は、かかる乾式自生粉砕ミルの一実施例の概念図である。
【図3】 図3は、自溶炉の典型例の縦断面図である。
【符号の説明】
1 ストックピン
3 エロフォールミル
5 スクリーン
7 クラッシファイヤ
9 サイクロン
11 バグフィルタ
13 排気ファン
15 主ファン
17 エアーヒータ
40 自溶炉
41 反応シャフト
43 セットラ
45 アップテイク
47 精鉱バーナ
49 錬かん炉[0001]
[Technical field to which the invention belongs]
The present invention treats the waste of molding residue (hereinafter collectively referred to as “printed circuit board” ) such as a printed circuit board mounted with printed circuit boards or components used in electrical equipment, and frame materials generated in these manufacturing processes. In particular, the present invention relates to a method for treating a copper-containing alloy that cannot be processed in a converter because the copper content is low.
[0002]
[Prior art]
Conventionally, as a conventional recycling method for printed circuit boards mainly composed of fillers, resins, metals, etc., and boards with electronic components mounted on them, some methods include incineration and recovering thermal energy. Has been implemented in. Furthermore, as a method of recovering valuable materials from composite materials such as printed circuit boards, there is a method of separating and recovering valuable materials such as copper after heating and carbonizing resin components in these composite materials (Japanese Patent Application Laid-Open No. Hei 11 (1998)). 2-88725). Japanese Laid-Open Patent Publication No. 63-276509 discloses a recycling method in which a waste composite material made of resin and metal is cooled to below the embrittlement temperature of the resin, pulverized, and then separated from metal and resin using magnetic force. A processing method is disclosed.
[0003]
In the conventional methods of recycling printed circuit boards and component mounting boards using incineration and carbonization, and the recovery of valuable resources, various waste gases are generated, so an advanced waste gas treatment facility must be installed. Furthermore, the valuable metal component contained in the printed circuit board or the component mounting board is likely to be oxidized, and there is a concern that the added value when recovered is reduced. Another possible method for recycling is to etch copper or the like on the printed circuit board, but it is not practical because it requires a large-scale facility for wastewater treatment or copper recovery. In addition, in the method of recycling a waste composite material composed of a resin and a metal disclosed in Japanese Patent Laid-Open No. 63-276509, there is a problem that a cooling facility with high energy consumption is required, and the metal and the resin due to magnetic force. In this technology, there is a problem that non-magnetic metals such as copper and aluminum that are frequently used in the circuit portion of the printed circuit board cannot be separated and recovered.
As described above, establishing a method for separating and recovering valuable materials such as metals from printed circuit boards, component mounting boards, and molding residues in these manufacturing processes has been a major issue.
[0004]
In view of the problems of the prior art, the present inventors considered the printed circuit board as a secondary raw material in copper refining and intensively researched a copper recovery method using existing dry-type refining equipment. As a result, it was discovered that this copper-containing alloy is brittle and can be easily pulverized to such a degree that it can be processed from the concentrate burner of the flash smelting furnace, thereby completing the present invention.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a method for treating a copper-containing alloy which does not require an expensive waste gas treatment device or cooling equipment and consumes less energy. The present invention is to solve the problems described above, by processing the waste printed circuit board, copper 10 to 25% by weight, and generating a copper-containing alloy containing 25 to 45 wt% of iron, copper It is characterized by comprising a step of pulverizing the containing alloy to an average particle size of 1 to 0.01 mm, and a step of introducing and processing the pulverized copper-containing alloy into a flash furnace. A method for treating a copper-containing alloy is provided.
[0006]
A copper-containing alloy having a metal composition as described above can be typically obtained by producing spices in a reflection furnace using sulfide ore and a printed circuit board as raw materials. Such copper-containing alloys are relatively brittle and are pulverized to an average particle size of 1 to 0.01 mm. The pulverized copper-containing alloy is conveyed to a flash smelting furnace, put into the furnace together with copper concentrate, and recovered according to a normal copper refining process.
According to a second aspect of the present invention, in the method for treating a copper-containing alloy according to the first aspect, the pulverized copper-containing alloy is conveyed to the flash smelting furnace by an air current and processed.
Since the pulverized copper-containing alloy is pulverized to an average particle size of 1 to 0.01 mm, it can be easily and inexpensively conveyed to the flash furnace through a duct by an air flow.
[0007]
According to a third aspect of the present invention, in the method for treating a copper-containing alloy according to the first aspect, the pulverizing step is performed by a dry self-pulverizing mill.
As a dry-type self-pulverizing mill, for example, there is an erotic fall mill (trade name: 5-1-12 Mita, Minato-ku, Tokyo, Otsuka Iron Works Co., Ltd.).
According to a fourth aspect of the present invention, in the method for treating a copper-containing alloy according to the third aspect, the pulverization step is performed under the conditions of a rotational speed of 15 to 25 rpm and a processing speed of 0.5 to 2.0 ton / hour. It is characterized by processing.
According to a fifth aspect of the present invention, in the method for treating a copper-containing alloy according to the first aspect, the copper-containing alloy further includes 100 to 350 g / ton of gold and / or 500 to 3000 g / ton of silver. It is included.
According to a sixth aspect of the present invention, there is provided the method for treating a copper-containing alloy according to the first aspect, wherein the treatment step in the flash smelting furnace is performed by passing the crushed copper-containing alloy through the concentrate burner of the flash smelting furnace. It is performed by throwing in
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the processing method of the copper containing alloy which concerns on this invention is demonstrated in more detail based on illustrated embodiment.
FIG. 1 is a flowchart showing an embodiment of a method for treating a copper-containing alloy according to the present invention.
The processing method of the copper containing alloy which concerns on this invention is roughly the spice production | generation process (step 1) in a reflective furnace, and the above-mentioned erotic fall mill (brand name: 5-1-12 Mita, Minato-ku, Tokyo Otsuka Iron Works Co., Ltd.) ) Crushing step (step 2), conveying step by airflow through the duct (step 3), and charging step from the concentrate burner into the furnace (step 4). Yes.
[0009]
The printed circuit board and the component mounting board which are the subject of the present invention and the molding residue in these manufacturing processes generally refer to those used in electrical equipment. The printed circuit board is composed of a resin component, a filler component, and a metal component such as a circuit. Examples of the resin include an epoxy resin, a phenol resin, and a polyimide resin. Examples of the filler include glass fiber, paper, and carbon fiber. Furthermore, examples of the metal include copper, aluminum, iron, nickel, solder (tin and lead), gold, and silver. The component mounting board is an electronic component such as an IC package mounted on the printed board. In addition, what removed some or all of electronic components from the printed circuit board in which the electronic component was mounted is also included in a component mounting substrate. The molding residue refers to a frame material or a copper-clad prepreg defective at the time of manufacturing a printed circuit board, a heat-cured body thereof, or the like, and the constituent components are substantially the same as the printed circuit board of the product.
[0010]
In the spice production step (step 1) in the reflection furnace, spices are produced in the reflection furnace using sulfide ore and a printed circuit board as raw materials. Substances other than metals are burned and discharged to the outside as waste gas, or contained in slag and removed. Since the reverberating furnace is smelted at around 1900K, various plastics can be burned without discharging dioxins and other harmful substances. This spice is a copper-containing alloy containing 10 to 25% by mass of copper and 25 to 45% by mass of iron. In addition, the spice which is such a copper-containing alloy further contains 100 to 350 g / ton of gold and / or 500 to 3000 g / ton of silver, and the above-described process is performed through a process in ordinary copper refining. Such precious metals can also be recovered at the same time.
[0011]
Spices, which are copper-containing alloys, are relatively brittle and can be easily pulverized to an average particle size of 1 to 0.01 mm in the pulverization step (step 2). Such pulverization treatment can be performed by a dry-type self-pulverization mill such as an Elo Fall Mill (trade name: 5-1-12 Mita, Minato-ku, Tokyo, Otsuka Iron Works Co., Ltd.). In the pulverization step of the present invention, if the average particle size of the spice finely pulverized product is too large, it cannot be sufficiently conveyed by the air current and may remain as a deposit in the duct. Further, when the average particle size is too small, there is a disadvantage that it takes too much time and energy to grind and is uneconomical. Therefore, it is desirable that the average particle diameter of the spice is 0.01 mm (10 μm) or more and less than 1.0 mm (1000 μm).
[0012]
FIG. 2 is a conceptual diagram of an embodiment of such a dry self-pulverizing mill. First, a raw material in which sulfide ore and a printed circuit board are mixed is smelted in a reflection furnace to generate spices. This is stored in the stock bottle 1, and spices are put into the dry self-pulverizing mill 3 as necessary. The product of the mill is discharged through a small hole such as 1 mm or 0.5 mm around the mill. If the product is not allowed to mix more than 1mm or 0.5mm, the product around the mill is screened with the screen 5, and the screen underer and the crusher 7, cyclone 9, and bag filter 11 are collected. Can also be made into products. The bag filter 11 is sucked by the exhaust fan 13, and the exhaust is discharged outside. The heavy component classified by the cyclone 9 is sucked into the main fan 15, and most of the component is returned to the dry self-pulverizing mill 3 through the air heater 17 for drying. In the preferred embodiment illustrated, such a system is used to grind spices, which are copper-containing alloys, to an average particle size of 1 to 0.01 mm. The dry self-pulverizing mill 3 can be processed under the conditions of a rotational speed of 15 to 25 rpm and a processing speed of 0.5 to 2.0 ton / hour.
[0013]
In the airflow conveyance process (step 3) by the duct, since the spice is pulverized to an average particle size of 1 to 0.01 mm, it can be conveyed easily and inexpensively by the airflow through the duct to the flash smelting furnace. Moreover, as another method, you may process with a flash furnace after collection | recovery with a cyclone and a bag filter.
In the step of charging the pulverized spices into the furnace (step 4), the spices conveyed through the duct are charged into the furnace from the concentrate burner of the flash smelting furnace. Since the average particle size of the spice is a powder having a sufficiently small particle size of 1 to 0.01 mm, the spice can be instantaneously dissolved in the furnace by being charged into the furnace from the concentrate burner. .
[0014]
FIG. 3 is a longitudinal sectional view of a typical example of a flash smelting furnace.
Along with copper concentrate obtained by a conventionally known method, spices, which are copper-containing alloys produced as described above, are blown into the smelting furnace 40 simultaneously with oxygen-enriched air or high-temperature hot air to instantaneously carry out a chemical reaction. Raise and separate into mat and slag. As shown in FIG. 3, the flash smelting furnace 40 includes a reaction shaft 41, a setter 43 and an uptake 45, and the reaction shaft 41 is provided with 1 to 3 concentrate burners 47 and 47. The concentrate and crushed spice are blown into the furnace from the concentrate burners 47 and 47. The flash smelting furnace is characterized by a lower fuel consumption rate than other methods because it uses the heat of oxidation reaction of concentrate. In addition, when there is a possibility that the amount of heat is insufficient only by the oxidation reaction heat, the concentrate burners 47 and 47 can be supplemented with heavy oil or the like.
The mat obtained here contains 60 to 65% of copper as in the case of refining with a normal flash furnace. Moreover, since about 1% of copper is contained in the slag, it is smelted in the smelting furnace 49, recovered as a mat, and processed in the converter together with the mat from the flash smelting furnace 40.
[0015]
【Example】
400 tons of printed circuit boards were put into a reflection furnace together with 200 tons of sulfide ore and smelted under the same operating conditions as normal operating conditions. In the experimental plant in March, 2000, in the reflection furnace, it was obtained by being divided into a spice phase in which Fe was 25 to 45 mass% and Cu was 10 to 25 mass%, and a mat phase consisting of CuS.
Mats and spices are collected in a ladle at the same time. Next, after removing the upper mat, the spice was adsorbed with a magnet and separated. This is because spice is an alloy with low Cu quality and Fe content, and thus has a higher specific gravity and magnetic properties than the mat.
[0016]
The spice, which is a copper-containing alloy thus obtained, was first coarsely pulverized and then finely pulverized to an average particle size of 0.5 mm by the above-mentioned Elofold mill. The Erofol mill has a diameter of about 3 m and an axial length of about 1 m, and 30 to 40 steel balls having a diameter of 80 to 100 mm are put in a rotation speed of 15 to 25 rpm, a processing speed of 0.5 to 2. It operated for about 6 hours at 0 ton / hour. Thereby, substantially all the spices could be finely pulverized to an average particle size of 0.5 mm.
From the Erofol mill to the flash furnace, air flow was performed at a speed of about 20 m / sec through a duct having a diameter of 800 mm. The suction capacity at this time was 600 cubic m / min.
When the content of precious metals in the spices was examined for the period from April 2 to 4, 2000, gold, silver and copper were as follows.
[0017]
[Table 1]
Figure 0004248133
[0018]
The daily processing amount is approximately 4 to 5 tons / day, and if it operates on the 25th of the month, it will be about 100 tons / month. Therefore, about 15 to 26 kg of gold and 113 to 187 kg of silver are produced monthly.
[0019]
【The invention's effect】
According to invention of Claim 1, the process of producing | generating the copper containing alloy containing 10-25 mass% of copper and 25-45 mass% of iron, and a copper-containing alloy are grind | pulverized to the average particle diameter of 1-0.01 mm. And a step of introducing and treating the pulverized copper-containing alloy into the flash smelting furnace, so that the copper-containing alloy obtained by performing the waste treatment can be used for ordinary copper refining. There is an effect that processing and recovery can be efficiently performed using equipment.
[0020]
In addition, according to the present invention, it is not necessary to install large-scale equipment such as an advanced waste gas treatment facility that is necessary for a valuable material recovery method using conventional incineration treatment or carbonization treatment. Further, valuable metal components contained in the printed circuit board and the component mounting board can be recovered as high-quality valuables using a copper refining facility. That is, precious metals such as gold and silver can be easily and inexpensively recovered from the precious metal-containing treated product.
Furthermore, the copper-containing alloy alloyed with iron can be relatively easily pulverized, and thus can be conveyed to the flash smelting furnace by air flow and processed in the flash smelting furnace with an optimum particle size. In the flash furnace, iron can be effectively used as a reducing material and a heat generating material.
Furthermore, a copper-containing alloy having a low copper quality that is difficult to process in a copper converter, for example, less than 50% by mass, can be easily processed.
[Brief description of the drawings]
FIG. 1 is a flowchart of an embodiment of a method for treating a copper-containing alloy according to the present invention.
FIG. 2 is a conceptual diagram of an embodiment of such a dry self-pulverizing mill.
FIG. 3 is a longitudinal sectional view of a typical example of a flash smelting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stock pin 3 Erofol mill 5 Screen 7 Classifier 9 Cyclone 11 Bag filter 13 Exhaust fan 15 Main fan 17 Air heater 40 Flash furnace 41 Reaction shaft 43 Setra 45 Uptake 47 Concentrate burner 49 Refining furnace

Claims (6)

プリント基板または部品を搭載したプリント基板、および、これらの製造工程で発生する枠材などの成形残の廃棄物を処理して、銅10〜25質量%、鉄25〜45質量%を含有する銅含有合金を生成する工程と、
前記銅含有合金を平均粒径1〜0.01mmに粉砕処理する工程と、そして、
前記粉砕した銅含有合金を自溶炉内に導入して処理する工程と、
を含んで構成されてなることを特徴とする銅含有合金の処理方法。
Copper containing 10 to 25% by mass of copper and 25 to 45% by mass of copper by processing printed circuit boards on which printed circuit boards or components are mounted and wastes of molding residue such as frame materials generated in these manufacturing processes Producing a containing alloy;
Crushing the copper-containing alloy to an average particle size of 1 to 0.01 mm, and
Introducing and processing the pulverized copper-containing alloy in a flash furnace; and
The processing method of the copper containing alloy characterized by comprising.
請求項1に記載の銅含有合金の処理方法において、
前記粉砕処理した銅含有合金を気流によりサイクロン、バグフィルターにおいて回収し、前記自溶炉で処理することを特徴とする銅含有合金の処理方法。
In the processing method of the copper containing alloy of Claim 1,
A method for treating a copper-containing alloy, characterized in that the crushed copper-containing alloy is collected by a cyclone or bag filter by an air stream and treated in the flash furnace.
請求項1に記載の銅含有合金の処理方法において、
前記粉砕処理工程は、乾式自生粉砕ミルにより行われることを特徴とする銅含有合金の処理方法。
In the processing method of the copper containing alloy of Claim 1,
The said grinding | pulverization process process is performed by the dry-type self-pulverization mill, The processing method of the copper containing alloy characterized by the above-mentioned.
請求項3に記載の銅含有合金の処理方法において、
前記粉砕処理工程は、回転数15〜25rpm、処理速度0.5〜2.0トン/時の条件で処理することを特徴とする銅含有合金の処理方法。
In the processing method of the copper containing alloy of Claim 3,
The said grinding | pulverization process process is a processing method of the copper containing alloy characterized by processing on the conditions of rotation speed 15-25rpm, and processing speed 0.5-2.0 tons / hour.
請求項1に記載の銅含有合金の処理方法において、
前記銅含有合金には、さらに、金が100〜350g/トン及び/又は銀が500〜3000g/トンが含まれていることを特徴とする銅含有合金の処理方法。
In the processing method of the copper containing alloy of Claim 1,
The copper-containing alloy further includes gold in an amount of 100 to 350 g / ton and / or silver in an amount of 500 to 3000 g / ton.
請求項1に記載の銅含有合金の処理方法において、
前記自溶炉での処理工程は、粉砕された銅含有合金を自溶炉の精鉱バーナを通して炉内に投入することにより行われることを特徴とする銅含有合金の処理方法。
In the processing method of the copper containing alloy of Claim 1,
The treatment process in the flash smelting furnace is performed by putting the pulverized copper-containing alloy into the furnace through a concentrate burner of the flash smelting furnace.
JP2000300831A 2000-09-29 2000-09-29 Method for treating copper-containing alloys Expired - Fee Related JP4248133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000300831A JP4248133B2 (en) 2000-09-29 2000-09-29 Method for treating copper-containing alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000300831A JP4248133B2 (en) 2000-09-29 2000-09-29 Method for treating copper-containing alloys

Publications (2)

Publication Number Publication Date
JP2002105547A JP2002105547A (en) 2002-04-10
JP4248133B2 true JP4248133B2 (en) 2009-04-02

Family

ID=18782455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000300831A Expired - Fee Related JP4248133B2 (en) 2000-09-29 2000-09-29 Method for treating copper-containing alloys

Country Status (1)

Country Link
JP (1) JP4248133B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050222B2 (en) * 2013-12-26 2016-12-21 パンパシフィック・カッパー株式会社 Disposal of electrical and electronic parts waste
JP6228843B2 (en) * 2013-12-26 2017-11-08 パンパシフィック・カッパー株式会社 Disposal of electrical and electronic parts waste in copper smelting
CN106086415B (en) * 2016-06-22 2018-07-24 江西自立环保科技有限公司 The complete set of equipments and method of noble metal are refined in a kind of board waste material from circuit
CN106086416B (en) * 2016-06-22 2018-07-13 江西自立环保科技有限公司 A kind of technology that wiring board waste disposal utilizes
CN112795790A (en) * 2020-12-26 2021-05-14 中国瑞林工程技术股份有限公司 Method for treating waste circuit board by continuous copper smelting process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384270B2 (en) * 1997-02-20 2003-03-10 三菱マテリアル株式会社 Recovery of valuable metals from incinerated ash from municipal waste

Also Published As

Publication number Publication date
JP2002105547A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP6050222B2 (en) Disposal of electrical and electronic parts waste
JP5580326B2 (en) Plasma method and apparatus for recovering precious metals
US8800775B2 (en) Method for recovering metals from electronic waste containing plastics materials
JPH05502187A (en) How to utilize equipment scrap and its equipment
JP2002537992A (en) Apparatus and method for utilizing shredder waste or equivalent composite material and use of rotor crusher
JP2710206B2 (en) How to collect valuables from printed circuit boards
JP6228843B2 (en) Disposal of electrical and electronic parts waste in copper smelting
Barnwal et al. Recovery of copper values from discarded random access memory cards via fluidization and thermal exposure
JP4248133B2 (en) Method for treating copper-containing alloys
JP5270934B2 (en) Method for recovering tantalum from electronic substrates
JPH07178385A (en) Method for recovering valuable matter from printed circuit board
WO2020175350A1 (en) Method for treating waste electronic substrate
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
JPH0760227A (en) Recovery of valuables from printed circuit board
JPH06228667A (en) Method for separating and recovering valuables from printed board
Wen et al. Rapid removal of copper impurity from bismuth-copper alloy melts via super-gravity separation
JP2001279333A (en) Method and apparatus for separating and recovering metal and slag in metal-containing raw material
KR200278865Y1 (en) Powder omitted
JP2001259603A (en) Method for discriminating valuable material from used printed circuit board
JP4224530B2 (en) Disposal method of waste television
US4518423A (en) Method for preparing a low residual alloy steel charge from scrap metal
JP2005307327A (en) Method for treating particulate aluminum oxide
JP2017013066A (en) Method of processing integrated circuit
TW200912008A (en) Method for recycling valuable metals from waste printed circuit boards by plasma roasting
JP2014028347A (en) Method of processing integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees