WO2023228912A1 - Separation method for stainless steel and processing method for electrical/electronic component scraps - Google Patents

Separation method for stainless steel and processing method for electrical/electronic component scraps Download PDF

Info

Publication number
WO2023228912A1
WO2023228912A1 PCT/JP2023/019001 JP2023019001W WO2023228912A1 WO 2023228912 A1 WO2023228912 A1 WO 2023228912A1 JP 2023019001 W JP2023019001 W JP 2023019001W WO 2023228912 A1 WO2023228912 A1 WO 2023228912A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
sorting
coarse
magnetic
coarse waste
Prior art date
Application number
PCT/JP2023/019001
Other languages
French (fr)
Japanese (ja)
Inventor
琢真 武井
英俊 笹岡
健太郎 田辺
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2023228912A1 publication Critical patent/WO2023228912A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B4/00Separating by pneumatic tables or by pneumatic jigs
    • B03B4/02Separating by pneumatic tables or by pneumatic jigs using swinging or shaking tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/08Separating solids from solids by subjecting their mixture to gas currents while the mixtures are supported by sieves, screens, or like mechanical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals

Definitions

  • the present invention relates to a method for separating stainless steel and a method for disposing of electrical/electronic component waste.
  • Patent Document 1 electrical/electronic component scraps containing copper are crushed into a predetermined size, and the crushed electrical/electronic component scraps are used in a copper smelting furnace (flash furnace). It is stated that it should be processed.
  • Patent Document 2 describes a process of pulverizing electrical/electronic component scraps containing copper, and classifying the pulverized electrical/electronic component scraps using air classification. A method for recovering fine powder from electrical and electronic component scraps is described. The recovered fine powder of the electrical/electronic parts scraps is introduced into a smelting furnace and processed, and the unrecovered granules are processed in an oxidation smelting furnace (converter).
  • the pulverized electrical/electronic component scraps contain organic substances such as resins, and these organic substances such as resins contain components such as carbon components that act as reducing agents in the flash furnace. If these components cannot sufficiently react with the combustion air, problems such as overreduction may occur.
  • pulverized waste obtained by pulverizing electrical/electronic component waste contains stainless steel containing nickel (Ni), chromium (Cr), etc., which are substances that inhibit smelting. Therefore, it is preferable to efficiently remove stainless steel from the pulverized waste before introducing the pulverized waste into the furnace.
  • the present disclosure discloses a stainless steel separation method that can efficiently separate stainless steel from electrical/electronic component scraps, particularly pulverized waste obtained by pulverizing electrical/electronic component scraps, and a method for separating stainless steel from electrical/electronic component scraps. Provide a processing method.
  • the second step is the airflow classification process to obtain coarse waste stones that are larger than a specified size from the waste stones.
  • a method for separating stainless steel is provided, which includes a first magnetic sorting step to obtain a kimono.
  • the pulverized material obtained in the air classification step is charged into a smelting furnace for processing. and an oxidation smelting furnace treatment step of charging at least a portion of the non-magnetized material obtained in the first magnetic separation step into an oxidation smelting furnace for treatment. be done.
  • a method for separating stainless steel and a method for disposing of electrical/electronic parts that can efficiently separate stainless steel from electrical/electronic parts scraps, particularly pulverized waste obtained by pulverizing electrical/electronic parts scraps. Can be provided.
  • 1 is a flowchart showing an example of a method for separating stainless steel according to an embodiment of the present invention.
  • 1 is a schematic diagram showing a configuration example of a rigid roller mill that can be used in a stainless steel separation method according to an embodiment of the present invention. It is a schematic diagram showing an example of an eddy current sorter. It is a schematic diagram showing an example of an air table.
  • the method for separating stainless steel includes a crushing step S2 for crushing electrical/electronic component scraps, a crushing product obtained in the crushing step S2 is classified by air flow, and a heavy material is an airflow classification step S3 to obtain waste stones containing stainless steel, a coarse waste stone sorting step S4 to sort and recover coarse waste stones of a predetermined size or more from the waste stones, magnetically sorting coarse waste stones of a predetermined size or more,
  • the step S6 includes a first magnetic separation step S6 for obtaining coarse waste stones containing stainless steel as a magnetized material from coarse waste stones.
  • an incineration step S1 for incinerating at least a portion, preferably all, of the electrical/electronic component waste.
  • incinerating the electrical/electronic parts waste in the incineration process S1 before the crushing process S2 at least a part of the organic matter such as resin contained in the electrical/electronic parts waste can be removed by incineration, and at the same time, it is possible to remove The volume of the object can be reduced.
  • incinerating at least a portion of the organic matter such as resin contained in electrical and electronic component scraps can be avoided.
  • Incineration removes volatile components from electrical and electronic component scraps, which also prevents fluorine, chlorine, bromine, etc., which are some of the smelting inhibitors, from entering the smelting furnace.
  • the specific conditions of the incineration step S1 are not particularly limited, for example, the electrical/electronic component waste is incinerated at about 550 to 1000° C. in a rotary kiln, and then cooled.
  • the incinerated material after the incineration treatment may be further sieved, for example, using a sieve with an opening of 10 mm to 20 mm.
  • step S2 electrical/electronic component scraps are crushed using a crusher.
  • a crusher for example, a flash furnace
  • unburned carbon content is oxidized.
  • the Cu component reacts with the S component in the copper concentrate to form matte
  • the Fe component reacts with oxygen to crush electrical and electronic component waste to a particle size that can be turned into slag.
  • the particle size of the concentrate charged into the smelting furnace is generally 10 to 150 ⁇ m as a volume-based D50 (median diameter). It is preferable to grind until the standard D50 is 150 ⁇ m or less. Further, electrical/electronic component scraps may be pulverized until the volume-based D80 becomes 250 ⁇ m or less.
  • the powder with a D50 of 150 ⁇ m or less and the granule with a D80 of 250 ⁇ m or less are fine like powder, and are much finer than a sand-like material with the size of a grain of sand. . It is preferable to obtain a pulverized product by pulverizing the material into fine particles such as powder.
  • the electrical/electronic component scraps may be mixed with silicate ore charged together with the copper concentrate in a smelting furnace and crushed.
  • a solvent such as silicate ore is charged into the smelting furnace together with the raw material concentrate to improve the fluidity of the slag, but when purchasing the solvent, it is purchased in cheap lump form.
  • the powder is ground in-house using a ball mill or the like. Therefore, if there is sufficient capacity in the solvent mill, it is possible to mix electrical and electronic component scraps with silicate ore charged with copper concentrate in a smelting furnace and crush them, without requiring the cost of introducing crushing equipment. It can be implemented.
  • the pulverized material obtained in the pulverization step S2 is divided into light and heavy materials by adjusting the air volume using the airflow classification effect, and the pulverized material of electrical/electronic component scraps is separated into light and heavy materials. Control granularity. That is, in the airflow classification step S3, if the pulverized materials in the electrical/electronic component scraps have a high specific gravity and are not finely pulverized, they cannot be carried upward by the airflow. The finely pulverized material is carried upward by the air current and collected on the light material side, and the pulverized material with a large particle size that cannot be collected on the light material side is separated as waste stone to the heavy material side.
  • the pulverizing step S2 and the air classification step S3 be performed at the same time using a vertical roller mill as shown in FIG.
  • a vertical roller mill In processing using a vertical roller mill, first, electrical/electronic component scraps to be pulverized are fed through a screw feeder to the center of a horizontally rotating table. A recessed portion is formed along the outer circumferential side of the table. Electrical/electronic component scraps supplied to the center of the table are moved toward the outer circumference of the table by centrifugal force. At this time, electrical/electronic component waste is crushed between the table and rollers (2 to 3 pieces) attached along the upper surface of the recessed part of the table.
  • the pulverization step S2 and the air classification step S3 may be performed separately using separate devices without using a vertical roller mill. Moreover, before processing the pulverized material with the vertical roller mill, it may be roughly crushed with a hammer crusher or the like.
  • the coarse waste stone sorting step S4 coarse waste stones of a predetermined size or larger are sorted from the waste stones obtained in the airflow classification step S3.
  • the method is not particularly limited as long as it is possible to sort the coarse waste stones for each predetermined particle size, but there is no particular limitation on the method. It is preferable to include a step.
  • Table 1 shows examples of chemical analysis values of valuable metals contained in waste rock of each size when waste rock is sieved using various sieves with different openings. Component analysis of valuable metals was evaluated using ICP optical emission spectrometry (ICP-OES). Further, the size of each waste stone shown in Table 1 represents the size of the nominal opening W (mm) of the sieve based on JIS Z8801-1. In addition, “%” described as a unit of each element means the weight % of the target element in the waste rock of each size. Since the concentrations of Au and Ag are small, they are evaluated in terms of "g/t (equivalent to ppm)".
  • grain sizes of more than 5.6 mm to 6.7 mm, grain sizes of more than 6.7 mm to 9.5 mm, and grain sizes of more than 9.5 mm to 16 We focused on the five main metallic elements contained in coarse waste stone with a grain size of more than 16.0 mm, Cu, Fe, Al, SUS, and other metals, and examined the composition ratio of SUS among them. . Analysis of Cu, Fe, Al, SUS, and other metals was performed by hand sorting, and a comprehensive judgment was made based on the magnetism of the raw material, the color, hardness, and weight of the polished surface when the raw material was polished with a file.
  • the SUS ratio contained in the coarse waste stone with a grain size of more than 5.6 mm to 6.7 mm was 11.4%
  • the SUS ratio contained in the coarse waste stone with a grain size of more than 6.7 mm to 9.5 mm was 16. 5%
  • the SUS ratio contained in the coarse waste stone with a grain size of more than 9.5 mm to 16.0 mm is 17.2%
  • the SUS ratio contained in the coarse waste stone with a grain size of more than 16.0 mm is about 27.4%. It was found that the larger the particle size, the higher the proportion of SUS in the composition.
  • the size of coarse waste stone to efficiently recover stainless steel is determined by the nominal opening W. It is preferable to use a sieve with a diameter of 5.6 mm or more, more preferably 6.7 mm or more, and even more preferably 9.5 mm or more to collect waste rock of a size that can be sorted into sieve material. Although there is no particular upper limit to the size of the crushed stone, it is typically 100 mm or less, and further 50 mm or less.
  • the sieving step is preferably performed after the air classification step S3. If the pulverized material after the pulverization step S2 is directly sieved without performing the air classification step S3, there is a risk that the finely pulverized material adhering to the surface of the pulverized material having a large particle size will be separated as sieved material. Since the finely pulverized material has a high grade of copper and precious metals, it causes a loss of valuable materials when recovering coarse stone containing stainless steel. After the air classification step S3 is performed on the crushed material after the crushing step S2, coarse waste stones of a predetermined size or more are sorted out in the sieving step, so that the finely crushed materials are separated from the waste stones in the air classification step S3. Since it can be separated and recovered, the amount of pulverized material adhering to waste stone can be minimized.
  • the first magnetic sorting step S6 rough waste stones containing stainless steel are obtained as a magnetized material (magnetized material 2) from the coarse waste stones collected in the coarse waste stone sorting step S4. Most of the copper, aluminum, etc. that constitute the coarse waste stone are sorted to the non-magnetic material side (non-magnetic material 2).
  • coarse waste stones containing stainless steel can be selectively and efficiently recovered to the magnetic object side while separating the coarse waste stones containing copper-aluminum etc. to the non-magnetic object side.
  • the coarse waste stones are magnetically sorted with a lower magnetic force than the first magnetic force sorting step S6, and the coarse waste stones containing iron are preliminarily treated as the magnetic material side (magnetic material 1). It is more preferable to include a second magnetic force sorting step S5 in which the non-magnetic substances 1 are obtained. Iron is easier to magnetize with a lower magnetic force than stainless steel, so by performing processing with a lower magnetic force than in the first magnetic force sorting step S6, almost 100% of the coarse waste stone containing iron can be sorted to the magnetic object side. .
  • the second magnetic force sorting step it is preferable to perform low magnetic force sorting with a magnetic flux density of 200 to 600 G using, for example, a hanging magnetic separator.
  • a hanging magnetic separator By removing in advance the iron that is magnetically attracted to the magnetic object side in the second magnetic sorting step S5, in the first magnetic sorting step S6, it is possible to prevent coarse waste stones containing iron from being mixed in, and Exhaust stone can be efficiently concentrated on the magnetic object side.
  • the magnetic material obtained in the first magnetic sorting step S6 is subjected to eddy current sorting, and coarse waste stone containing stainless steel is obtained as a non-repellent material from the magnetic material obtained in the first magnetic sorting step S6.
  • a sorting process using an eddy current sorter shown in FIG. 3 can be performed.
  • An eddy current sorter for example, includes a belt conveyor stretched between a tail pulley (not shown) and a head pulley, an eccentric magnet placed inside the head pulley, and a drive device (not shown) that rotates the belt conveyor. ), a non-repulsion object collection section provided below the head pulley to collect non-repulsion objects that have flown up from the belt conveyor, and a repulsion object collection section located below the head pulley and in front of the non-repulsion object recovery section. and a damper that is provided between the non-repulsion object recovery section and the repulsion object recovery section and separates the flying repulsion object from the non-repulsion object.
  • the rotation speed of the rotor provided in the eddy current separator is preferably set to 2000 to 2700 rpm, for example. is 2250 to 2500 rpm, and the speed of the belt conveyor is 90 to 110 m/min, preferably 95 to 105 m/min. Further, in order to efficiently separate the coarse waste stone containing stainless steel to the non-repellent side, it is preferable to appropriately adjust the angle of the damper (angle ⁇ in FIG. 3).
  • the angle of the damper is preferably 55° or more, more preferably 60° or more.
  • the angle of the damper is preferably adjusted to about 50 to 70 degrees, more preferably adjusted to about 55 to 67 degrees, and even more preferably adjusted to about 58 to 65 degrees.
  • the angle of the damper is preferably adjusted to about 58 to 65 degrees, more than 90% of the stainless steel in the coarse waste can be recovered on the non-repellent side.
  • the non-repellent materials obtained in the eddy current sorting step S7 are shape sorted to obtain coarse waste stone containing stainless steel as a heavy product.
  • the shape sorting step S8 is provided after the eddy current sorting step S7, but for example, the eddy current sorting step S7 is omitted and the shape sorting step S8 is The order of the processing may be changed so that the magnetic material is sorted by shape and coarse waste stone containing stainless steel is obtained as a heavy product.
  • the shape sorter various kinds of sorters that utilize differences in specific gravity and shape of the objects to be sorted can be used, and the type thereof is not particularly limited.
  • a sorting machine that rolls and sorts raw materials can typically be used, and for example, an air table or the like is preferably used.
  • the rough waste stone containing stainless steel separated in the first magnetic sorting step S6 often has a plate-like shape.
  • other coarse waste stones containing copper, aluminum, etc. are often close to spherical in shape. Therefore, in the shape sorting step S8, by using shape sorting that utilizes the specific gravity difference and shape difference of the objects to be sorted, it is possible to more efficiently collect coarse waste stone containing plate-shaped stainless steel.
  • a single-axis air table sorter can be used.
  • an air table sorter as shown in FIG. 4 can be used.
  • the air table sorter is installed to separate light products and heavy products by dry specific gravity sorting, and is inclined at a predetermined angle and has a plurality of small vent holes (not shown) for passing air.
  • a vibration table that vibrates in the direction of the vibration table; a holding part (not shown) that holds the vibration table; a blower blower (not shown) that is provided below the holding part and supplies air from the bottom surface of the vibration table to the top surface; It is equipped with a hopper (not shown) for feeding raw materials into the vibrating table.
  • the plate-shaped coarse waste stone containing stainless steel supplied onto the vibrating table receives a force that moves it toward the heavy product side due to the vibration of the vibrating table.
  • light objects or spherical objects are strongly affected by the slope and are recovered on the light product side.
  • the inclination angle of the vibration table is 10 degrees or less with respect to the horizontal plane, and is 9 degrees or less. It is more preferable to incline the angle at an angle of 8° or less. If the angle of inclination is too small, the separation efficiency between light products and heavy products may not be improved. Therefore, the inclination angle of the vibrating table is preferably 5 degrees or more, more preferably 6 degrees or more, and even more preferably 7 degrees or more.
  • the frequency at which the vibration table vibrates can be adjusted as appropriate. Typically, the frequency is adjusted between 50 and 60 Hz, more preferably between 55 and 60 Hz. Furthermore, air may be supplied from a blow-up blower if necessary.
  • the heavy products obtained in the shape sorting process S8 are metal-sorted using a metal sorter including a sensor capable of detecting the strength of the metal reaction, and are separated from coarse waste stones containing copper and brass to those containing stainless steel. Separate and collect the coarse waste stone.
  • the metal sorter used in the metal sorting step S9 requires sensing technology that can selectively detect stainless steel from mixed metals including stainless steel, copper, brass, etc.
  • metal sorters can sense transmitted X-rays (XRT), fluorescent X-rays (XRF), laser-excited plasma (LIBS), near-infrared (NIR), visible light (VIS), electromagnetic induction (ISS), Raman spectroscopy, etc.
  • XRT transmitted X-rays
  • XRF fluorescent X-rays
  • LIBS laser-excited plasma
  • NIR near-infrared
  • VIS visible light
  • ISS electromagnetic induction
  • Raman spectroscopy etc.
  • One example is a metal sorter that uses technology.
  • a metal sorter using electromagnetic induction (ISS) type sensing technology.
  • ISS electromagnetic induction
  • metal reaction detection methods there are two types of metal reaction detection methods: one that detects the presence or absence of metal, and the other that detects the strength of the metal reaction.
  • metal sorter in order to efficiently separate and sort waste stones containing stainless steel, it is more preferable to use a metal sorter that utilizes a detection method that detects the strength of a metal reaction. Thereby, the stainless steel in the coarse waste stone can be efficiently separated and recovered.
  • the metal sorter includes a pair of pulleys that hold a belt conveyor, a metal object recovery section and a non-metal object recovery section provided below the belt conveyor, and a belt conveyor.
  • a detection section is placed on the bottom surface of the belt conveyor and detects the metal reaction of raw materials by generating electromagnetic waves from a predetermined area on the bottom surface of the belt conveyor. It is possible to include a sorting device such as an air nozzle for distributing the objects to the object recovery section.
  • the particle size of the coarse waste stone supplied to the metal sorter is set so that it has a particle size that is equal to or larger than the lower limit of the particle size that can be sorted by the metal sorter.
  • the size of the coarse stone in advance so that it has a particle size equal to or larger than the lower limit of the particle size that can be sorted by a metal sorter, it is possible to The metal sorting efficiency in the sorting step S9 can be improved.
  • the specific lower limit of the particle size of coarse ore that can be sorted by a metal sorter is not particularly limited, but is, for example, about 5 mm, more preferably a particle size of 8.0 mm or more, and even more preferably a particle size of 10.0 mm. It is 0 mm or more.
  • Table 2 shows the SUS recovery rate (weight ratio) and concentration ratio when coarse waste stones with various particle sizes are sorted using a metal sorter that uses ISS type sensing technology that detects the strength of metal reactions. represent.
  • the size of each coarse stone shown in Table 2 corresponds to the nominal opening W (mm) of the sieve based on JIS Z8801-01.
  • the concentration ratio shown in Table 2 represents the concentration ratio of SUS contained in the recovered coarse stone after sorting to the weight of SUS contained in the coarse stone before sorting.
  • the SUS ratio is 90% or more in all cases. That is, by sorting coarse waste stones with a grain size of 8.0 mm or more using a metal sorter, it is possible to improve the SUS ratio in the recovered material after the sorting process.
  • the sieved material separated in the rough waste stone sorting step S4 in FIG. 1, the magnetic material 1 separated in the second magnetic separation step S5, the non-magnetic material 2 separated in the first magnetic separation step S6, and the eddy current Table 3 shows an example of the measurement results of the composition ratio and distribution ratio of the main components in the coarse waste stone contained in the repulsion separated in the sorting step S7 and the heavy products and light products separated in the shape sorting step S8. .
  • a sieve with a nominal opening size of 5.6 mm was used.
  • the damper angle was 62°
  • the rotor rotation speed was 2250 rpm
  • the belt conveyor speed was 103 m/min.
  • the inclination angle was 8°
  • the table frequency was 50 Hz
  • the wind speed was 0 mm/s.
  • the composition ratio of stainless steel, copper/brass, iron, and aluminum is analyzed comprehensively based on the magnetism of the raw material, the color, hardness, and weight of the polished surface when the raw material is sanded. The selection was done by hand.
  • the composition ratio (%) means the weight ratio of the target substance in each sorted material.
  • the distribution ratio was calculated by setting each component of the sieve as 100%, and calculating the weight ratio of each component separated as magnetic material 1, non-magnetic material 2, repellent material, light product, and heavy product. As shown in Table 3, it can be seen that more than 70% of the stainless steel in the sieved material can be recovered as a heavy product in the shape sorting step S8.
  • most of the heavy products separated in the shape sorting step S8 are coarse waste stones containing stainless steel and coarse waste stones containing copper or brass. Therefore, by performing metal sorting on heavy products using a metal sorter that uses sensing technology that can selectively detect stainless steel from mixed metals, the concentration of stainless steel in the separated and recovered material can be increased, and stainless steel can be recovered. It can be seen that the efficiency can be further increased.
  • waste stones are collected from the crushed waste obtained by pulverizing electrical/electronic parts waste, and the above-mentioned method for separating and recovering stainless steel from the waste stones is performed.
  • the above-mentioned method for separating and recovering stainless steel from the waste stones is performed.
  • stainless steel can be selectively and efficiently separated and recovered while suppressing a decrease in recovery efficiency of valuable metals.
  • the method for treating electrical/electronic component scraps involves charging the separated materials obtained in each step of the stainless steel separation method shown in FIG. 1 into a smelting furnace such as a flash furnace. It can include a smelting furnace treatment step in which the material is treated in a smelting furnace, and an oxidation smelting furnace treatment step in which the material is charged into an oxidation smelting furnace such as a converter.
  • the method for treating electrical/electronic component scraps includes a smelting furnace treatment step in which the pulverized material obtained in the airflow classification step S3 is charged into a smelting furnace and treated;
  • An oxidation smelting furnace treatment step is included in which at least a portion of the non-magnetized material 2 obtained in the magnetic separation step S6 is charged into an oxidation smelting furnace and treated.
  • the type of smelting furnace does not matter, it is composed of, for example, a shaft (not shown), a settler, and an uptake, and the shaft is equipped with a concentrate burner at its ceiling. From the concentrate burner, the finely pulverized material obtained in the air classification step S3, copper concentrate, a solvent (flux), and oxygen-enriched air are blown simultaneously to cause an oxidation reaction to occur instantaneously. The finely ground material that has undergone the oxidation reaction is separated into matte and slag in a settler. In addition, the exhaust gas generated in the smelting furnace is sent to the uptake.
  • the smelting furnace should be operated under the same known operating conditions regardless of whether or not electrical/electronic parts scraps are input.
  • the treatment conditions are not particularly limited.
  • a furnace port is provided at the top of a furnace body (not shown), and tuyeres are provided at the lower side of the furnace body.
  • At least a portion of the non-magnetized material 2 obtained in the first magnetic separation step S6, the matte separated in the smelting furnace, and a solvent (flux) are charged into the furnace from the furnace mouth. Further, oxygen-enriched air is blown from the tuyere to oxidize at least a portion of the non-magnetized material 2 obtained in the first magnetic separation step S6.
  • any known operating method may be used in order to operate the oxidation smelting furnace to the extent that the original intended function of the oxidation smelting furnace is not lost.
  • the coarse waste stone separated as magnetic material 1 in the second magnetic separation step S5 the coarse waste stone separated as non-magnetic material 2 in the first magnetic separation step S6, and the eddy current separation step
  • the coarse waste stone separated as a repulsion material in S7, the coarse waste stone separated as a light product in the shape sorting process S8, and the coarse waste stone other than stainless steel separated as a coarse waste stone that does not contain stainless steel in the metal sorting process S9 is preferably charged into an oxidation smelting furnace.
  • metal sorting is further performed using a metal sorter on the magnetic objects 1 in the second magnetic sorting step S5 and the non-magnetic objects 2 obtained in the first magnetic sorting step S6, and coarse waste stones containing stainless steel are separated into metals.
  • the recovery efficiency of stainless steel may be improved by separating the stainless steel into materials and inputting this separated material into any of the eddy current sorting step S7, shape sorting step S8, and metal sorting step S9.
  • stainless steel containing smelting inhibiting substances such as Ni and Cr is removed in advance from the raw material supplied to an oxidation smelting furnace such as a converter.
  • an oxidation smelting furnace such as a converter.
  • various operational troubles due to the contamination of smelting inhibiting substances in the oxidation smelting furnace treatment process can be suppressed, and efficient processing can be performed.
  • stainless steel can be reused by collecting waste stone containing stainless steel.
  • the processing flow shown in FIG. 1 is an example, and it goes without saying that various other processing procedures can be adopted.
  • the eddy current sorting step S7, the shape sorting step S8, and the metal sorting step S9 may be omitted or their order may be changed as appropriate.
  • the eddy current sorting step S7 and the shape sorting step S8 can be omitted. It is also possible to change the order of the eddy current sorting step S7 and the magnetic sorting step (first magnetic sorting step S6 and second magnetic sorting step S5).

Abstract

Provided is: a separation method for stainless steel capable of efficiently separating stainless steel from electrical/electronic component scraps, in particular, crushed scraps obtained by subjecting electrical/electronic component scraps to a crushing processing; and a processing method for electrical/electronic component scraps. The separation method for stainless steel includes: a crushing step S2 for crushing electrical/electronic components; an air flow classification step S3 for classifying the crushed substance obtained in the crushing step by air flow and obtaining, as a heavy substance, excluded stones that include stainless steel; a coarse excluded stone sorting step S4 for sorting and collecting, from the excluded stones, coarse excluded stones having at least a predetermined size; and a first magnetic sorting step S6 for magnetically sorting coarse excluded stones and obtaining, as a magnetized substance, coarse excluded stones that include stainless steel, from the coarse excluded stones.

Description

ステンレスの分離方法及び電気・電子部品屑の処理方法Method of separating stainless steel and processing of electrical/electronic parts waste
 本発明は、ステンレスの分離方法及び電気・電子部品屑の処理方法に関する。 The present invention relates to a method for separating stainless steel and a method for disposing of electrical/electronic component waste.
 近年の資源保護の観点から、廃家電製品・PCや携帯電話等の電気・電子部品屑から有価金属を回収することが行われてきており、その効率的な回収方法が検討されている。例えば、特許第6050222号公報(特許文献1)には、銅を含む電気・電子部品屑を所定のサイズに粉砕し、粉砕された電気・電子部品屑を銅の溶錬炉(自溶炉)で処理することが記載されている。 In recent years, from the perspective of resource conservation, valuable metals have been recovered from discarded home appliances and electrical/electronic parts scraps such as PCs and mobile phones, and efficient methods of recovery are being considered. For example, in Japanese Patent No. 6050222 (Patent Document 1), electrical/electronic component scraps containing copper are crushed into a predetermined size, and the crushed electrical/electronic component scraps are used in a copper smelting furnace (flash furnace). It is stated that it should be processed.
 また、特許第6228843号公報(特許文献2)には、銅を含む電気・電子部品屑を粉砕する工程と、粉砕された電気・電子部品屑を気流分級を用いて分級し、粉砕された前記電気・電子部品屑の微粉を回収する方法が記載されている。回収された前記電気・電子部品屑の微粉は、溶錬炉に導入して処理し、回収がされなかった粒状物は、酸化製錬炉(転炉)にて処理される。 Furthermore, Japanese Patent No. 6228843 (Patent Document 2) describes a process of pulverizing electrical/electronic component scraps containing copper, and classifying the pulverized electrical/electronic component scraps using air classification. A method for recovering fine powder from electrical and electronic component scraps is described. The recovered fine powder of the electrical/electronic parts scraps is introduced into a smelting furnace and processed, and the unrecovered granules are processed in an oxidation smelting furnace (converter).
特許第6050222号公報Patent No. 6050222 特許第6228843号公報Patent No. 6228843
 特許文献1及び2に記載されるように、電気・電子部品屑を自溶炉等の溶錬炉で処理するためには、電気・電子部品屑を予め粉砕する処理が必要である。しかしながら、粉砕された電気・電子部品屑には、樹脂等の有機物が含まれており、この樹脂等の有機物には、炭素成分といった自溶炉内で還元剤として働く成分が含まれている。これらの成分が燃焼用空気と十分反応できない場合には、過還元などのトラブルが発生することがある。 As described in Patent Documents 1 and 2, in order to process electrical/electronic component scraps in a smelting furnace such as a flash furnace, it is necessary to crush the electrical/electronic component scraps in advance. However, the pulverized electrical/electronic component scraps contain organic substances such as resins, and these organic substances such as resins contain components such as carbon components that act as reducing agents in the flash furnace. If these components cannot sufficiently react with the combustion air, problems such as overreduction may occur.
 一方、電気・電子部品屑の処理量は近年益々増大しており、原料となる電気・電子部品屑に含まれる物質の種類によっては、その後の銅製錬工程での処理に好ましくない物質(製錬阻害物質)が、従来よりも多量に炉内へ投入されることがある。 On the other hand, the amount of electrical and electronic component scraps processed has been increasing in recent years. (inhibiting substances) may be introduced into the reactor in larger quantities than before.
 例えば、転炉の場合、電気・電子部品屑の処理量の増大に伴い転炉へ投入される製錬阻害物質の量が多くなると、転炉において不純物が分離しきれない状況が生じ、電解用のアノードを製造する際に不純物が多くなることがある。このような状況を改善するためには、転炉に投入される電気・電子部品屑の中から、製錬阻害物質を予め除去しておくことが望ましい。例えば、電気・電子部品屑を粉砕処理した粉砕屑には、製錬阻害物質となるニッケル(Ni)、クロム(Cr)等を含むステンレスが含まれている。よって、そのような粉砕屑を炉内へ投入する前に、粉砕屑からステンレスを効率良く除去しておくことが好ましい。 For example, in the case of a converter, when the amount of smelting inhibiting substances introduced into the converter increases as the amount of electrical and electronic parts scrap increases, a situation arises in which the impurities cannot be completely separated in the converter, and the electrolytic When manufacturing anodes, impurities may increase. In order to improve this situation, it is desirable to remove smelting inhibiting substances in advance from the electrical/electronic component scraps that are fed into the converter. For example, pulverized waste obtained by pulverizing electrical/electronic component waste contains stainless steel containing nickel (Ni), chromium (Cr), etc., which are substances that inhibit smelting. Therefore, it is preferable to efficiently remove stainless steel from the pulverized waste before introducing the pulverized waste into the furnace.
 上記課題を鑑み、本開示は、電気・電子部品屑、特に、電気・電子部品屑を粉砕処理した粉砕屑からステンレスを効率良く分離することが可能なステンレスの分離方法及び電気・電子部品屑の処理方法を提供する。 In view of the above problems, the present disclosure discloses a stainless steel separation method that can efficiently separate stainless steel from electrical/electronic component scraps, particularly pulverized waste obtained by pulverizing electrical/electronic component scraps, and a method for separating stainless steel from electrical/electronic component scraps. Provide a processing method.
 上記課題を解決するために、本開示の一側面によれば、電気・電子部品屑を粉砕する粉砕工程と、粉砕工程で得られる粉砕物を気流で分級し、重量物としてステンレスを含む排石を得る気流分級工程と、排石から所定サイズ以上の粗排石を選別して回収する粗排石選別工程と、粗排石を磁力選別し、粗排石からステンレスを含む粗排石を磁着物として得る第1の磁力選別工程とを含むステンレスの分離方法が提供される。 In order to solve the above problems, according to one aspect of the present disclosure, a pulverization step of pulverizing electrical/electronic component scraps, a pulverized material obtained in the pulverization step is classified by air flow, and waste stone containing stainless steel as a heavy object is provided. The second step is the airflow classification process to obtain coarse waste stones that are larger than a specified size from the waste stones. A method for separating stainless steel is provided, which includes a first magnetic sorting step to obtain a kimono.
 本開示の別の一側面によれば、上記ステンレスの分離方法を含む電気・電子部品屑の処理方法において、気流分級工程で得られる微粉砕物を溶錬炉に投入して処理する溶錬炉処理工程と、第1の磁力選別工程で得られる非磁着物の少なくとも一部を酸化製錬炉に投入して処理する酸化製錬炉処理工程とを含む電気・電子部品屑の処理方法が提供される。 According to another aspect of the present disclosure, in the method for treating electrical/electronic parts scraps including the above method for separating stainless steel, the pulverized material obtained in the air classification step is charged into a smelting furnace for processing. and an oxidation smelting furnace treatment step of charging at least a portion of the non-magnetized material obtained in the first magnetic separation step into an oxidation smelting furnace for treatment. be done.
 本開示によれば、電気・電子部品屑、特に、電気・電子部品屑を粉砕処理した粉砕屑からステンレスを効率良く分離することが可能なステンレスの分離方法及び電気・電子部品屑の処理方法が提供できる。 According to the present disclosure, there is provided a method for separating stainless steel and a method for disposing of electrical/electronic parts that can efficiently separate stainless steel from electrical/electronic parts scraps, particularly pulverized waste obtained by pulverizing electrical/electronic parts scraps. Can be provided.
本発明の実施の形態に係るステンレスの分離方法の一例を示すフローチャートである。1 is a flowchart showing an example of a method for separating stainless steel according to an embodiment of the present invention. 本発明の実施の形態に係るステンレスの分離方法に利用可能な堅型ローラーミルの構成例を表す概略図である。1 is a schematic diagram showing a configuration example of a rigid roller mill that can be used in a stainless steel separation method according to an embodiment of the present invention. 渦電流選別機の一例を示す概略図である。It is a schematic diagram showing an example of an eddy current sorter. エアテーブルの一例を示す概略図である。It is a schematic diagram showing an example of an air table.
 以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 Embodiments of the present invention will be described below with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of this invention. It is not specific.
(ステンレスの分離方法)
 本発明の実施の形態に係るステンレスの分離方法は、図1に示すように、電気・電子部品屑を粉砕する粉砕工程S2と、粉砕工程S2で得られる粉砕物を気流で分級し、重量物としてステンレスを含む排石を得る気流分級工程S3と、排石から所定サイズ以上の粗排石を選別して回収する粗排石選別工程S4と、所定サイズ以上の粗排石を磁力選別し、粗排石からステンレスを含む粗排石を磁着物として得る第1の磁力選別工程S6とを含む。
(Stainless steel separation method)
As shown in FIG. 1, the method for separating stainless steel according to an embodiment of the present invention includes a crushing step S2 for crushing electrical/electronic component scraps, a crushing product obtained in the crushing step S2 is classified by air flow, and a heavy material is an airflow classification step S3 to obtain waste stones containing stainless steel, a coarse waste stone sorting step S4 to sort and recover coarse waste stones of a predetermined size or more from the waste stones, magnetically sorting coarse waste stones of a predetermined size or more, The step S6 includes a first magnetic separation step S6 for obtaining coarse waste stones containing stainless steel as a magnetized material from coarse waste stones.
 粉砕工程S2の前には、電気・電子部品屑の少なくとも一部、好ましくは全部を焼却するための焼却工程S1を行うことが好ましい。粉砕工程S2の前に焼却工程S1において電気・電子部品屑の焼却処理を行うことにより、電気・電子部品屑に含まれる樹脂等の有機物の少なくとも一部を、焼却により除去できるとともに、処理すべき対象物の容量を小さくできる。また、電気・電子部品屑に含まれる樹脂等の有機物の少なくとも一部を焼却により除去することで、溶錬炉の処理等での電気・電子部品屑に含まれる炭素成分による過還元トラブルの発生を抑制し、炉体レンガおよびジャケットの損傷等を抑制できる。さらに、電気・電子部品屑に含まれている金属が脆くなり、後段の粉砕工程S2での粉砕も容易になる。焼却することで、電気・電子部品屑中の揮発成分が除去されるため、製錬阻害物質の一部を構成するフッ素、塩素、臭素等の溶錬炉への混入も抑制できる。 Before the crushing step S2, it is preferable to perform an incineration step S1 for incinerating at least a portion, preferably all, of the electrical/electronic component waste. By incinerating the electrical/electronic parts waste in the incineration process S1 before the crushing process S2, at least a part of the organic matter such as resin contained in the electrical/electronic parts waste can be removed by incineration, and at the same time, it is possible to remove The volume of the object can be reduced. In addition, by incinerating at least a portion of the organic matter such as resin contained in electrical and electronic component scraps, over-reduction problems caused by carbon components contained in electrical and electronic component scraps during processing in smelting furnaces, etc. can be avoided. It is possible to suppress damage to the furnace bricks and jacket. Furthermore, the metal contained in the electric/electronic component scraps becomes brittle, making it easier to crush them in the subsequent crushing step S2. Incineration removes volatile components from electrical and electronic component scraps, which also prevents fluorine, chlorine, bromine, etc., which are some of the smelting inhibitors, from entering the smelting furnace.
 焼却工程S1の具体的条件は、特に限定されないが、例えば、ロータリーキルンによって、電気・電子部品屑を550~1000℃程度で焼却した後、冷却する。焼却処理後の焼却物を、例えば10mm~20mmの目開きの篩で更に篩い分けしてもよい。 Although the specific conditions of the incineration step S1 are not particularly limited, for example, the electrical/electronic component waste is incinerated at about 550 to 1000° C. in a rotary kiln, and then cooled. The incinerated material after the incineration treatment may be further sieved, for example, using a sieve with an opening of 10 mm to 20 mm.
 粉砕工程S2では、電気・電子部品屑を、粉砕機を用いて粉砕処理する。この粉砕処理では、焼却部品屑が溶錬炉(例えば自溶炉)セットラー底部まで沈降する前に、又は、マットやスラグの排出部から排出されるまでに、未燃焼カーボン分が酸化し、Cu分は銅精鉱中のS分と反応してマットとなり、Fe分は酸素と反応してスラグ化させることが可能な粒度まで、電気・電子部品屑を粉砕する。 In the crushing step S2, electrical/electronic component scraps are crushed using a crusher. In this pulverization process, before the incinerated parts waste settles to the bottom of the settler of a smelting furnace (for example, a flash furnace), or before it is discharged from the mat or slag discharge section, unburned carbon content is oxidized. The Cu component reacts with the S component in the copper concentrate to form matte, and the Fe component reacts with oxygen to crush electrical and electronic component waste to a particle size that can be turned into slag.
 具体的には、溶錬炉に装入される精鉱の粒径が一般的には体積基準のD50(メディアン径)として10~150μmであることから、例えば、電気・電子部品屑を、体積基準のD50が150μm以下になるまで粉砕するのが好ましい。また、電気・電子部品屑を、体積基準のD80が250μm以下になるまで粉砕してもよい。ここで、D50が150μm以下である粉体、及び、D80が250μm以下である粒体は、パウダーのように細かいものであり、砂粒の大きさの砂状体よりもずっと細かな粒体である。このようなパウダーのように細かな粒体となるまで粉砕し、粉砕物を得ることが好ましい。 Specifically, the particle size of the concentrate charged into the smelting furnace is generally 10 to 150 μm as a volume-based D50 (median diameter). It is preferable to grind until the standard D50 is 150 μm or less. Further, electrical/electronic component scraps may be pulverized until the volume-based D80 becomes 250 μm or less. Here, the powder with a D50 of 150 μm or less and the granule with a D80 of 250 μm or less are fine like powder, and are much finer than a sand-like material with the size of a grain of sand. . It is preferable to obtain a pulverized product by pulverizing the material into fine particles such as powder.
 粉砕工程S2では、電気・電子部品屑を、溶錬炉にて銅精鉱と共に装入する珪酸鉱と混ぜて粉砕してもよい。通常、非鉄製錬炉においてはスラグの流動性を良好にするために珪酸鉱などの溶剤を原料精鉱とともに溶錬炉に装入するが、溶剤を購入する際には安価な塊状で購入する場合が多く、ボールミルなどを用いて自社で粉砕している場合が多い。したがって、溶剤ミルの能力に余裕がある場合は、電気・電子部品屑を溶錬炉にて銅精鉱と共に装入する珪酸鉱と混ぜて粉砕処理することで、破砕設備導入コストを要することなく実施することができる。 In the crushing step S2, the electrical/electronic component scraps may be mixed with silicate ore charged together with the copper concentrate in a smelting furnace and crushed. Normally, in nonferrous smelting furnaces, a solvent such as silicate ore is charged into the smelting furnace together with the raw material concentrate to improve the fluidity of the slag, but when purchasing the solvent, it is purchased in cheap lump form. In many cases, the powder is ground in-house using a ball mill or the like. Therefore, if there is sufficient capacity in the solvent mill, it is possible to mix electrical and electronic component scraps with silicate ore charged with copper concentrate in a smelting furnace and crush them, without requiring the cost of introducing crushing equipment. It can be implemented.
 気流分級工程S3では、粉砕工程S2で得られた粉砕物を、気流分級効果を利用して風量を調節し、軽量物と重量物とに分け、電気・電子部品屑の粉砕物の粉砕後の粒度を制御する。即ち、気流分級工程S3では、電気・電子部品屑中の比重の大きい粉砕物は、細かく粉砕されていなければ、気流によって上方へ運べないため、この作用を利用して、所定の大きさ以下の微粉砕物を、気流で上方へ運んで軽量物側に回収し、軽量物側で回収できなかった粒径の大きな粉砕物を排石として重量物側へ分離する。 In the airflow classification step S3, the pulverized material obtained in the pulverization step S2 is divided into light and heavy materials by adjusting the air volume using the airflow classification effect, and the pulverized material of electrical/electronic component scraps is separated into light and heavy materials. Control granularity. That is, in the airflow classification step S3, if the pulverized materials in the electrical/electronic component scraps have a high specific gravity and are not finely pulverized, they cannot be carried upward by the airflow. The finely pulverized material is carried upward by the air current and collected on the light material side, and the pulverized material with a large particle size that cannot be collected on the light material side is separated as waste stone to the heavy material side.
 粉砕工程S2及び気流分級工程S3は、図2に示すような竪型ローラーミルを用いて一度に処理することが好ましい。竪型ローラーミルを用いた処理としては、まず、粉砕対象の電気・電子部品屑を、スクリューフィーダを通して水平回転するテーブル中央へ供給する。テーブルには、外周側に沿って設けられた凹部が形成されている。テーブル中央に供給された電気・電子部品屑は、遠心力でテーブル外周方向に移動する。このとき、テーブルの凹部上面に沿うように取り付けられたローラ(2~3個)と、テーブルとの間で電気・電子部品屑が粉砕される。 It is preferable that the pulverizing step S2 and the air classification step S3 be performed at the same time using a vertical roller mill as shown in FIG. In processing using a vertical roller mill, first, electrical/electronic component scraps to be pulverized are fed through a screw feeder to the center of a horizontally rotating table. A recessed portion is formed along the outer circumferential side of the table. Electrical/electronic component scraps supplied to the center of the table are moved toward the outer circumference of the table by centrifugal force. At this time, electrical/electronic component waste is crushed between the table and rollers (2 to 3 pieces) attached along the upper surface of the recessed part of the table.
 粉砕されて微粉となった電気・電子部品屑は、外周方向に移動して、下方から上方へと流れる上昇気流(大気を利用)で吹き上げられ、分級(気流分級)されて上方に設けられたロータ内へと運ばれて回収される。一方、比重の大きい粉砕物は、下方へ落ち、再びローラとテーブルで粉砕されてまた吹き上げられてロータ内へと運ばれて回収される。テーブルの周囲には、軽量物側に分級されなかった粒径又は比重の大きい粉砕物が残存する。このテーブル周囲に残存する重量物を排石と呼ぶ。この排石には、銅等の他に、Ni、Cr等の製錬阻害物質を構成するステンレスが含まれている。この排石からステンレスを分離することにより、ステンレスを効率良く回収して有効利用できるとともに、転炉又は自溶炉等の製錬工程へ投入される製錬阻害物質の量を低減できる。 Electrical and electronic component waste that has been crushed into fine powder moves toward the outer periphery, is blown up by an upward airflow (using the atmosphere) that flows from below to above, is classified (airflow classification), and is placed above. It is carried into the rotor and collected. On the other hand, pulverized materials with a high specific gravity fall downward, are crushed again by the rollers and table, are blown up again, are carried into the rotor, and are collected. Around the table, pulverized materials with large particle sizes or specific gravity that have not been classified into lightweight materials remain. The heavy objects remaining around the table are called waste stones. This waste rock contains stainless steel, which constitutes smelting inhibiting substances such as Ni and Cr, in addition to copper and the like. By separating stainless steel from this waste rock, stainless steel can be efficiently recovered and used effectively, and the amount of smelting inhibiting substances introduced into a smelting process such as a converter or flash furnace can be reduced.
 なお、粉砕工程S2及び気流分級工程S3は、竪型ローラーミルを用いずに、それぞれ別の装置で、分けて処理してもよい。また、竪型ローラーミルで粉砕物を処理する前に、ハンマークラッシャー等で粗破砕してもよい。 Note that the pulverization step S2 and the air classification step S3 may be performed separately using separate devices without using a vertical roller mill. Moreover, before processing the pulverized material with the vertical roller mill, it may be roughly crushed with a hammer crusher or the like.
 粗排石選別工程S4では、気流分級工程S3で得られた排石から、所定サイズ以上の粗排石を選別する。粗排石選別工程S4では、所定の粒径毎に粗排石を選別することが可能な方法であれば特に限定されないが、篩を用いて所定サイズ以上の排石を篩別処理する篩別工程を備えることが好ましい。 In the coarse waste stone sorting step S4, coarse waste stones of a predetermined size or larger are sorted from the waste stones obtained in the airflow classification step S3. In the coarse waste stone sorting step S4, the method is not particularly limited as long as it is possible to sort the coarse waste stones for each predetermined particle size, but there is no particular limitation on the method. It is preferable to include a step.
 目開きが異なる種々の篩を用いて、排石を篩別処理した場合の各サイズの排石中に含まれる有価金属の化学分析値の例を表1に示す。有価金属の成分分析は、ICP発光分光分析法(ICP-OES)を用いて評価した。また、表1に示す各排石のサイズは、JIS Z8801-1に基づく篩の公称目開きW(mm)のサイズを表している。なお、各元素の単位として記載されている「%」は、各サイズの排石中に占める対象元素の重量%を意味する。Au、Agについては濃度が小さいため「g/t(ppmに相当)」で評価をしている。 Table 1 shows examples of chemical analysis values of valuable metals contained in waste rock of each size when waste rock is sieved using various sieves with different openings. Component analysis of valuable metals was evaluated using ICP optical emission spectrometry (ICP-OES). Further, the size of each waste stone shown in Table 1 represents the size of the nominal opening W (mm) of the sieve based on JIS Z8801-1. In addition, "%" described as a unit of each element means the weight % of the target element in the waste rock of each size. Since the concentrations of Au and Ag are small, they are evaluated in terms of "g/t (equivalent to ppm)".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ステンレスを構成するCr、Niは、排石のサイズが大きくなるほど含有率が高いことが新たに分かった。ステンレスを効率良く回収するためには、公称目開きWが3.35mm以上、好ましくは5.6mm以上、更に好ましくは9.5mm以上の篩を用いて、篩上物側に選別された排石をステンレス回収のための粗排石として採取することが好ましい。ここで、例えば1.0mm超~3.35mmというサイズは、公称目開きが3.35mmの篩を用いて篩下物側に選別され、かつ公称目開きが1.0mmの篩を用いて篩上物側に選別された排石を意味する。 As shown in Table 1, it has been newly found that the content of Cr and Ni, which constitute stainless steel, increases as the size of the waste stone increases. In order to efficiently recover stainless steel, a sieve with a nominal opening W of 3.35 mm or more, preferably 5.6 mm or more, and more preferably 9.5 mm or more is used, and the waste stone that has been sorted to the sieve upper material side is used. It is preferable to collect it as coarse waste stone for recovering stainless steel. Here, for example, the size of more than 1.0 mm to 3.35 mm is sorted to the bottom side of the sieve using a sieve with a nominal opening of 3.35 mm, and is sieved using a sieve with a nominal opening of 1.0 mm. This refers to waste stone that has been sorted to the high quality side.
 更に、表1に示す所定のサイズ毎に篩別された粗排石について、粒径5.6mm超~6.7mm、粒径6.7mm超~9.5mm、粒径9.5mm超~16.0mm、粒径16.0mm超の粗排石に含まれる主要な金属元素として、Cu、Fe、Al、SUS、その他金属の5つの成分に着目し、その中のSUSの構成比率について検討した。Cu、Fe、Al、SUS、その他金属の分析は手選別で行い、原料の磁性、原料をやすりで磨いた際の研磨面の色、固さ、重さを判断基準として総合的に判断した。その結果、粒径5.6mm超~6.7mmの粗排石に含まれるSUS比率は11.4%、粒径6.7mm超~9.5mmの粗排石に含まれるSUS比率は16.5%、粒径9.5mm超~16.0mmの粗排石に含まれるSUS比率は17.2%、粒径16.0mm超の粗排石に含まれるSUS比率は27.4%程度であり、大粒径になるほど、構成物中に占めるSUSの比率が高くなることが分かった。 Furthermore, regarding the coarse waste stone that has been sieved according to the predetermined sizes shown in Table 1, grain sizes of more than 5.6 mm to 6.7 mm, grain sizes of more than 6.7 mm to 9.5 mm, and grain sizes of more than 9.5 mm to 16 We focused on the five main metallic elements contained in coarse waste stone with a grain size of more than 16.0 mm, Cu, Fe, Al, SUS, and other metals, and examined the composition ratio of SUS among them. . Analysis of Cu, Fe, Al, SUS, and other metals was performed by hand sorting, and a comprehensive judgment was made based on the magnetism of the raw material, the color, hardness, and weight of the polished surface when the raw material was polished with a file. As a result, the SUS ratio contained in the coarse waste stone with a grain size of more than 5.6 mm to 6.7 mm was 11.4%, and the SUS ratio contained in the coarse waste stone with a grain size of more than 6.7 mm to 9.5 mm was 16. 5%, the SUS ratio contained in the coarse waste stone with a grain size of more than 9.5 mm to 16.0 mm is 17.2%, and the SUS ratio contained in the coarse waste stone with a grain size of more than 16.0 mm is about 27.4%. It was found that the larger the particle size, the higher the proportion of SUS in the composition.
 以上の分析結果より、粗排石からステンレスを効率よく回収するには、粗排石の中でも所定以上のサイズを対象にして回収する工程を行うことが有効であることが分かった。ステンレスの回収効率と、後述するメタルソータ等の選別装置を用いた場合における選別対象物の取扱容易性とを考慮すると、ステンレスを効率良く回収するための粗排石のサイズとしては、公称目開きWが5.6mm以上、更には、6.7mm以上、より更には9.5mm以上の篩を用いて、篩上物に選別されるサイズの排石を採取することが好ましい。粗排石のサイズの上限は特にないが、典型的には100mm以下、更には50mm以下である。 From the above analysis results, it was found that in order to efficiently recover stainless steel from coarse waste stones, it is effective to carry out a process of collecting coarse waste stones that are larger than a predetermined size. Considering the recovery efficiency of stainless steel and the ease of handling of the objects to be sorted when using a sorting device such as a metal sorter, which will be described later, the size of coarse waste stone to efficiently recover stainless steel is determined by the nominal opening W. It is preferable to use a sieve with a diameter of 5.6 mm or more, more preferably 6.7 mm or more, and even more preferably 9.5 mm or more to collect waste rock of a size that can be sorted into sieve material. Although there is no particular upper limit to the size of the crushed stone, it is typically 100 mm or less, and further 50 mm or less.
 篩別工程は、気流分級工程S3の後に行うことが好ましい。気流分級工程S3を行わずに、粉砕工程S2後の粉砕物をそのまま篩別すると、粒径の大きな粉砕物の表面に付着した微粉砕物が篩上物として分離されてしまうおそれがある。微粉砕物は銅や貴金属品位が高いため、ステンレスを含む粗排石を回収する上で、有価物ロスの原因となる。粉砕工程S2の後の粉砕物に対して気流分級工程S3を行った後に、篩別工程で所定サイズ以上の粗排石の選別を行うことにより、気流分級工程S3で微粉砕物を排石から分離して回収することができるため、排石に付着する微粉砕物の量を極力少なくできる。 The sieving step is preferably performed after the air classification step S3. If the pulverized material after the pulverization step S2 is directly sieved without performing the air classification step S3, there is a risk that the finely pulverized material adhering to the surface of the pulverized material having a large particle size will be separated as sieved material. Since the finely pulverized material has a high grade of copper and precious metals, it causes a loss of valuable materials when recovering coarse stone containing stainless steel. After the air classification step S3 is performed on the crushed material after the crushing step S2, coarse waste stones of a predetermined size or more are sorted out in the sieving step, so that the finely crushed materials are separated from the waste stones in the air classification step S3. Since it can be separated and recovered, the amount of pulverized material adhering to waste stone can be minimized.
 次いで、第1の磁力選別工程S6において、粗排石選別工程S4で回収された粗排石からステンレスを含む粗排石を磁着物(磁着物2)として得る。粗排石を構成する銅、アルミ等の大部分は非磁着物側(非磁着物2)に選別される。ステンレスを含む粗排石を磁着物として効率良く得るためには、第1の磁力選別工程では、例えば、マグネットプーリを用いて、磁束密度を3000~7000Gとする高磁力選別を行うことが好ましい。これにより、銅アルミ等を含む粗排石を非磁着物側へ選別しながら、ステンレスを含む粗排石を磁着物側へ選択的に効率良く回収できる。 Next, in the first magnetic sorting step S6, rough waste stones containing stainless steel are obtained as a magnetized material (magnetized material 2) from the coarse waste stones collected in the coarse waste stone sorting step S4. Most of the copper, aluminum, etc. that constitute the coarse waste stone are sorted to the non-magnetic material side (non-magnetic material 2). In order to efficiently obtain coarse waste stone containing stainless steel as a magnetized material, it is preferable to perform high magnetic force sorting with a magnetic flux density of 3000 to 7000 G using, for example, a magnetic pulley in the first magnetic force sorting step. As a result, coarse waste stones containing stainless steel can be selectively and efficiently recovered to the magnetic object side while separating the coarse waste stones containing copper-aluminum etc. to the non-magnetic object side.
 なお、第1の磁力選別工程S6の前に、第1の磁力選別工程S6よりも低磁力で粗排石を磁力選別し、鉄を含む粗排石を磁着物側(磁着物1)として予め除去し、非磁着物1を得る第2の磁力選別工程S5を備えることがより好ましい。鉄はステンレスに比べて低磁力で磁着させやすいため、第1の磁力選別工程S6よりも低磁力で処理を行うことにより、ほぼ100%、鉄を含む粗排石を磁着物側へ選別できる。例えば、第2の磁力選別工程では、例えば、吊下げ式磁選機を用いて磁束密度を200~600Gとする低磁力選別を行うことが好ましい。第2の磁力選別工程S5で磁着物側に磁着される鉄を予め除去しておくことで、第1の磁力選別工程S6において、鉄を含む粗排石の混入を防ぎ、ステンレスを含む粗排石を磁着物側に効率良く濃縮できる。 In addition, before the first magnetic sorting step S6, the coarse waste stones are magnetically sorted with a lower magnetic force than the first magnetic force sorting step S6, and the coarse waste stones containing iron are preliminarily treated as the magnetic material side (magnetic material 1). It is more preferable to include a second magnetic force sorting step S5 in which the non-magnetic substances 1 are obtained. Iron is easier to magnetize with a lower magnetic force than stainless steel, so by performing processing with a lower magnetic force than in the first magnetic force sorting step S6, almost 100% of the coarse waste stone containing iron can be sorted to the magnetic object side. . For example, in the second magnetic force sorting step, it is preferable to perform low magnetic force sorting with a magnetic flux density of 200 to 600 G using, for example, a hanging magnetic separator. By removing in advance the iron that is magnetically attracted to the magnetic object side in the second magnetic sorting step S5, in the first magnetic sorting step S6, it is possible to prevent coarse waste stones containing iron from being mixed in, and Exhaust stone can be efficiently concentrated on the magnetic object side.
 次いで、渦電流選別工程S7では、第1の磁力選別工程S6で得られる磁着物を渦電流選別し、第1の磁力選別工程S6の磁着物からステンレスを含む粗排石を非反発物として得る。渦電流選別工程S7では、例えば、図3に示す渦電流選別機を用いた選別処理が行える。 Next, in the eddy current sorting step S7, the magnetic material obtained in the first magnetic sorting step S6 is subjected to eddy current sorting, and coarse waste stone containing stainless steel is obtained as a non-repellent material from the magnetic material obtained in the first magnetic sorting step S6. . In the eddy current sorting step S7, for example, a sorting process using an eddy current sorter shown in FIG. 3 can be performed.
 渦電流選別機は、例えば、テールプーリ(不図示)とヘッドプーリとの間に張設されたベルトコンベアと、ヘッドプーリの内部に配置された偏心マグネットと、ベルトコンベアを回転させる駆動装置(不図示)と、ヘッドプーリの下方に設けられ、ベルトコンベアから飛上した非反発物を回収する非反発物回収部と、ヘッドプーリの下方において非反発物回収部よりも前方に配置された反発物回収部と、非反発物回収部と反発物回収部との間に設けられ、飛上した反発物と非反発物とを分離するダンパーとを備える。図3に示すように、プーリの回転軸と偏心マグネットの回転軸とが一致しない偏心型の渦電流選別装置を用いることで、磁性物の巻き込みを少なくし、ステンレスを含む粗排石の分離を効率良く行うことができる。 An eddy current sorter, for example, includes a belt conveyor stretched between a tail pulley (not shown) and a head pulley, an eccentric magnet placed inside the head pulley, and a drive device (not shown) that rotates the belt conveyor. ), a non-repulsion object collection section provided below the head pulley to collect non-repulsion objects that have flown up from the belt conveyor, and a repulsion object collection section located below the head pulley and in front of the non-repulsion object recovery section. and a damper that is provided between the non-repulsion object recovery section and the repulsion object recovery section and separates the flying repulsion object from the non-repulsion object. As shown in Figure 3, by using an eccentric type eddy current sorting device in which the rotation axis of the pulley and the rotation axis of the eccentric magnet do not match, it is possible to reduce the entrainment of magnetic materials and to separate coarse waste stone containing stainless steel. It can be done efficiently.
 第1の磁力選別工程S6の磁着物2からステンレスを含む粗排石を非反発物側へ効率良く分離させるためには、例えば、渦電流選別機が備えるロータの回転数を2000~2700rpm、好ましくは2250~2500rpmとし、ベルトコンベアの速度を90~110m/min、好ましくは95~105m/minとする。また、ステンレスを含む粗排石を非反発物側へ効率良く分離させるためには、ダンパーの角度(図3における角度θ)を適切に調節することが好ましい。 In order to efficiently separate coarse debris containing stainless steel from the magnetized material 2 in the first magnetic separation step S6 to the non-repellent material, the rotation speed of the rotor provided in the eddy current separator is preferably set to 2000 to 2700 rpm, for example. is 2250 to 2500 rpm, and the speed of the belt conveyor is 90 to 110 m/min, preferably 95 to 105 m/min. Further, in order to efficiently separate the coarse waste stone containing stainless steel to the non-repellent side, it is preferable to appropriately adjust the angle of the damper (angle θ in FIG. 3).
 例えば、ダンパーの角度は、55°以上とすることが好ましく、60°以上とすることがより好ましい。一方、ダンパーの角度が大きすぎると、銅、アルミ等を含む粗排石が非反発物側へ混入するおそれがある。本実施形態において、ダンパーの角度は、50~70°程度に調節することが好ましく、55~67°程度に調節することがより好ましく、58~65°程度に調節することが更に好ましい。例えば、ダンパーの角度を58~65°程度に調節することで、粗排石中のステンレスを90%以上、非反発物側で回収することができる。 For example, the angle of the damper is preferably 55° or more, more preferably 60° or more. On the other hand, if the angle of the damper is too large, there is a risk that coarse debris containing copper, aluminum, etc. will be mixed into the non-repellent side. In this embodiment, the angle of the damper is preferably adjusted to about 50 to 70 degrees, more preferably adjusted to about 55 to 67 degrees, and even more preferably adjusted to about 58 to 65 degrees. For example, by adjusting the angle of the damper to about 58 to 65 degrees, more than 90% of the stainless steel in the coarse waste can be recovered on the non-repellent side.
 次いで、形状選別工程S8では、渦電流選別工程S7で得られる非反発物を形状選別し、ステンレスを含む粗排石を重産物として得る。図1の例では、形状選別工程S8が、渦電流選別工程S7の後に設けられる例が示されているが、例えば、渦電流選別工程S7を省略し、第1の磁力選別工程S6で得られる磁着物を形状選別し、ステンレスを含む粗排石を重産物として得るように、処理の順番が変更されてもよい。形状選別機としては、対象選別物の比重差、形状差を利用した種々の選別機を用いることができ、その種類は特に限定されない。例えば、原料を転がして選別する転選機を典型的に利用することができ、例えばエアテーブル等が好適に用いられる。 Next, in the shape sorting step S8, the non-repellent materials obtained in the eddy current sorting step S7 are shape sorted to obtain coarse waste stone containing stainless steel as a heavy product. In the example of FIG. 1, an example is shown in which the shape sorting step S8 is provided after the eddy current sorting step S7, but for example, the eddy current sorting step S7 is omitted and the shape sorting step S8 is The order of the processing may be changed so that the magnetic material is sorted by shape and coarse waste stone containing stainless steel is obtained as a heavy product. As the shape sorter, various kinds of sorters that utilize differences in specific gravity and shape of the objects to be sorted can be used, and the type thereof is not particularly limited. For example, a sorting machine that rolls and sorts raw materials can typically be used, and for example, an air table or the like is preferably used.
 第1の磁力選別工程S6に分離されたステンレスを含む粗排石は、その形状が板状を有するものが多い。一方、銅、アルミ等を含むその他の粗排石は、その形状が球状に近いものが多い。そのため、形状選別工程S8において、対象選別物の比重差、形状差を利用した形状選別を使用することによって、板状を有するステンレスを含む粗排石をより効率良く回収できる。 The rough waste stone containing stainless steel separated in the first magnetic sorting step S6 often has a plate-like shape. On the other hand, other coarse waste stones containing copper, aluminum, etc. are often close to spherical in shape. Therefore, in the shape sorting step S8, by using shape sorting that utilizes the specific gravity difference and shape difference of the objects to be sorted, it is possible to more efficiently collect coarse waste stone containing plate-shaped stainless steel.
 形状選別機は、1軸型のエアテーブル選別機を用いることが可能である。以下に限定されるものではないが、例えば、図4に示すようなエアテーブル選別機が使用できる。エアテーブル選別機は、乾式比重選別によって軽産物と重産物とに分離するために設けられ、所定の傾斜角で傾斜し、空気を通過させる複数の小通気口(不図示)を有すると共に、所定の方向に振動する振動テーブルと、振動テーブルを保持する保持部(不図示)と、保持部の下方に設けられ、振動テーブルの下面から上面へと空気を供給する吹上送風機(不図示)と、振動テーブルへ原料を投入するホッパ(不図示)とを備える。 As the shape sorter, a single-axis air table sorter can be used. For example, but not limited to, an air table sorter as shown in FIG. 4 can be used. The air table sorter is installed to separate light products and heavy products by dry specific gravity sorting, and is inclined at a predetermined angle and has a plurality of small vent holes (not shown) for passing air. a vibration table that vibrates in the direction of the vibration table; a holding part (not shown) that holds the vibration table; a blower blower (not shown) that is provided below the holding part and supplies air from the bottom surface of the vibration table to the top surface; It is equipped with a hopper (not shown) for feeding raw materials into the vibrating table.
 振動テーブル上に供給されたステンレスを含む板状の粗排石は、振動テーブルの振動により重産物側へ移動する力を受ける。一方、軽量物又は球状物は、傾斜の影響を強く受けて軽産物側で回収される。 The plate-shaped coarse waste stone containing stainless steel supplied onto the vibrating table receives a force that moves it toward the heavy product side due to the vibration of the vibrating table. On the other hand, light objects or spherical objects are strongly affected by the slope and are recovered on the light product side.
 形状選別工程S8において、ステンレスを含む粗排石をより効率良く回収するためには、振動テーブルの傾斜角度が水平面に対して10°以下となるように傾斜させることが好ましく、9°以下となるように傾斜させることがより好ましく、8°以下となるように傾斜させることが更に好ましい。傾斜角度が小さすぎると軽産物と重産物との分離効率が向上しないことがある。よって、振動テーブルの傾斜角度を5°以上とすることが好ましく、6°以上とすることがより好ましく、7°以上とすることが更に好ましい。本実施形態では、例えば、振動テーブルの傾斜角度を6~10°に調整することで、ステンレスを含む粗排石に対して、ステンレスを85%以上、一実施態様では92%以上重産物側へ分配させることができ、これにより効率のよいステンレスの分離回収が行える。なお、振動テーブルが振動する振動数は、適宜調整可能である。典型的には、振動数50~60Hz、より好ましくは55~60Hz間で調整する。また、必要に応じて吹上送風機から空気を供給してもよい。 In the shape sorting step S8, in order to more efficiently collect the coarse waste stone containing stainless steel, it is preferable that the inclination angle of the vibration table is 10 degrees or less with respect to the horizontal plane, and is 9 degrees or less. It is more preferable to incline the angle at an angle of 8° or less. If the angle of inclination is too small, the separation efficiency between light products and heavy products may not be improved. Therefore, the inclination angle of the vibrating table is preferably 5 degrees or more, more preferably 6 degrees or more, and even more preferably 7 degrees or more. In this embodiment, for example, by adjusting the inclination angle of the vibrating table to 6 to 10 degrees, 85% or more of the stainless steel, and in one embodiment, 92% or more of the stainless steel, is transferred to the heavy product side with respect to the coarse waste stone containing stainless steel. This allows efficient separation and recovery of stainless steel. Note that the frequency at which the vibration table vibrates can be adjusted as appropriate. Typically, the frequency is adjusted between 50 and 60 Hz, more preferably between 55 and 60 Hz. Furthermore, air may be supplied from a blow-up blower if necessary.
 次いで、金属選別工程S9では、形状選別工程S8で得られる重産物を、金属反応の強弱を検知可能なセンサを含むメタルソータを用いて金属選別し、銅や真鍮を含む粗排石からステンレスを含む粗排石を分離して、回収する。金属選別工程S9を備えることにより、分離回収物中のステンレスの濃度を高め、ステンレスの回収効率を更に高くできる。 Next, in the metal sorting process S9, the heavy products obtained in the shape sorting process S8 are metal-sorted using a metal sorter including a sensor capable of detecting the strength of the metal reaction, and are separated from coarse waste stones containing copper and brass to those containing stainless steel. Separate and collect the coarse waste stone. By providing the metal sorting step S9, the concentration of stainless steel in the separated and recovered material can be increased, and the stainless steel recovery efficiency can be further increased.
 金属選別工程S9で用いられるメタルソータとしては、ステンレス、銅、真鍮等を含むミックスメタルからステンレスを選択的に検知可能なセンシング技術が必要である。例えば、メタルソータとしては、透過X線(XRT)、蛍光X線(XRF)、レーザ励起プラズマ(LIBS)、近赤外線(NIR)、可視光(VIS)、電磁誘導(ISS)、ラマン分光等のセンシング技術を用いた金属選別機が挙げられる。 The metal sorter used in the metal sorting step S9 requires sensing technology that can selectively detect stainless steel from mixed metals including stainless steel, copper, brass, etc. For example, metal sorters can sense transmitted X-rays (XRT), fluorescent X-rays (XRF), laser-excited plasma (LIBS), near-infrared (NIR), visible light (VIS), electromagnetic induction (ISS), Raman spectroscopy, etc. One example is a metal sorter that uses technology.
 中でも、本実施形態に係る電気・電子部品屑の中からステンレスを含む粗排石を効率良く分離回収するためには、電磁誘導(ISS)型のセンシング技術を用いたメタルソータを用いることが好ましい。このような電磁誘導(ISS)型のセンシング技術を用いたメタルソータにおいては、金属反応の検知方法として、金属の有無を検知するタイプと、金属の反応の強弱を検知する2種類の検知方法がある。本実施形態では、ステンレスを含む排石を効率良く分離し選別するために、金属反応の強弱を検知する検知方法を利用したメタルソータを用いることがより好ましい。これにより、粗排石中のステンレスを効率良く分離回収することができる。 Among these, in order to efficiently separate and recover coarse waste stones containing stainless steel from the electrical/electronic component scraps according to this embodiment, it is preferable to use a metal sorter using electromagnetic induction (ISS) type sensing technology. In metal sorters that use electromagnetic induction (ISS) type sensing technology, there are two types of metal reaction detection methods: one that detects the presence or absence of metal, and the other that detects the strength of the metal reaction. . In the present embodiment, in order to efficiently separate and sort waste stones containing stainless steel, it is more preferable to use a metal sorter that utilizes a detection method that detects the strength of a metal reaction. Thereby, the stainless steel in the coarse waste stone can be efficiently separated and recovered.
 以下に限定されるものではないが、メタルソータとしては、図示しないが、ベルトコンベアを保持する一対のプーリと、ベルトコンベアの下方に設けられた金属物回収部及び非金属物回収部と、ベルトコンベアの下面に配置され、ベルトコンベアの下面の所定の領域から電磁波を発生することにより、原料の金属反応を検知する検知部と、検知部によって検知された対象物を、金属物回収部又は非金属物回収部へと振り分けるエアノズル等の振り分け装置とを備えることができる。 Although not limited to the following, the metal sorter includes a pair of pulleys that hold a belt conveyor, a metal object recovery section and a non-metal object recovery section provided below the belt conveyor, and a belt conveyor. A detection section is placed on the bottom surface of the belt conveyor and detects the metal reaction of raw materials by generating electromagnetic waves from a predetermined area on the bottom surface of the belt conveyor. It is possible to include a sorting device such as an air nozzle for distributing the objects to the object recovery section.
 電磁誘導(ISS)型のセンシング技術を用いたメタルソータにおいては、メタルソータに供給される原料の粒径が小さすぎると、振り分け部が効率良く原料を振り分けることができず、回収効率が低下することがある。よって、金属選別機へ供給される粗排石は、メタルソータで選別可能な粒径の下限値以上の粒径を有するように、その粒径が設定されていることが好ましい。例えば、上述の粗排石選別工程S4において、メタルソータで選別可能な粒径の下限値以上の粒径を有するように、予め粗排石のサイズを決定しておくことにより、その後に行われる金属選別工程S9での金属選別効率を高めることができる。メタルソータで選別可能な粗鉱石の粒径の下限値の具体的条件は、特に限定されないが、例えば5mm程度であり、より好ましくは粒径8.0mm以上であり、より更に好ましくは粒径10.0mm以上である。 In metal sorters that use electromagnetic induction (ISS) type sensing technology, if the particle size of the raw materials supplied to the metal sorter is too small, the sorting section will not be able to efficiently sort the raw materials, which may reduce recovery efficiency. be. Therefore, it is preferable that the particle size of the coarse waste stone supplied to the metal sorter is set so that it has a particle size that is equal to or larger than the lower limit of the particle size that can be sorted by the metal sorter. For example, in the above-mentioned coarse stone sorting step S4, by determining the size of the coarse stone in advance so that it has a particle size equal to or larger than the lower limit of the particle size that can be sorted by a metal sorter, it is possible to The metal sorting efficiency in the sorting step S9 can be improved. The specific lower limit of the particle size of coarse ore that can be sorted by a metal sorter is not particularly limited, but is, for example, about 5 mm, more preferably a particle size of 8.0 mm or more, and even more preferably a particle size of 10.0 mm. It is 0 mm or more.
 表2は、金属反応の強弱を検知するISS型のセンシング技術を用いたメタルソータを用いて、種々の粒径を有する粗排石を選別処理した場合におけるSUS回収率(重量比)と濃度比を表す。表2に示す各粗排石のサイズはJIS Z8801-01に基づく篩の公称目開きW(mm)に対応する。表2に示す濃度比は選別前の粗排石に含まれるSUS重量に対する選別後の粗排石の回収物に含まれるSUSの濃度比を表す。表2に示すように、公称目開きWが8.0mm超の篩を用いて篩上物側に選別される粒径8.0mm以上の粗排石の場合、選別処理後の回収物中のSUS比率がいずれも90%以上となっていることが分かる。即ち、粒径8.0mm以上の粗排石をメタルソータで選別処理することにより、選別処理後の回収物中のSUS比率を向上させることができる。 Table 2 shows the SUS recovery rate (weight ratio) and concentration ratio when coarse waste stones with various particle sizes are sorted using a metal sorter that uses ISS type sensing technology that detects the strength of metal reactions. represent. The size of each coarse stone shown in Table 2 corresponds to the nominal opening W (mm) of the sieve based on JIS Z8801-01. The concentration ratio shown in Table 2 represents the concentration ratio of SUS contained in the recovered coarse stone after sorting to the weight of SUS contained in the coarse stone before sorting. As shown in Table 2, in the case of coarse waste stone with a particle size of 8.0 mm or more that is sorted to the sieve top side using a sieve with a nominal opening W of more than 8.0 mm, the It can be seen that the SUS ratio is 90% or more in all cases. That is, by sorting coarse waste stones with a grain size of 8.0 mm or more using a metal sorter, it is possible to improve the SUS ratio in the recovered material after the sorting process.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1の粗排石選別工程S4で分離された篩上物、第2の磁力選別工程S5で分離された磁着物1、第1の磁力選別工程S6で分離された非磁着物2、渦電流選別工程S7で分離された反発物、形状選別工程S8で分離された重産物及び軽産物に含まれる粗排石中の主要な成分の構成比率及び分配率の測定結果の例を表3に示す。このとき、粗排石選別工程S4では、公称目開きのサイズが5.6mmの篩を用いた。第2の磁力選別工程S5では、吊下げ式磁選機を用いて磁束密度を400Gとし、第1の磁力選別工程S6では、マグネットプーリを用いて磁束密度を7000Gとした。渦電流選別工程S7では、ダンパー角度を62°、ロータ回転数を2250rpm、ベルトコンベアの速度を103m/minとした。形状選別工程S8では、傾斜角度を8°、テーブルの振動数を50Hz、風速を0mm/sとした。表3において、ステンレス、銅・真鍮、鉄、アルミの構成比率の分析は、原料の磁性、原料をやすりで磨いた際の研磨面の色、固さ、重さを判断基準として総合的に判断し、手選別で行った。構成比率(%)は、各選別物中に占める対象物質の重量比率を意味する。分配率の計算は、篩上物の各成分をそれぞれ100%とし、磁着物1、非磁着物2、反発物、軽産物、重産物として分離される各成分の重量比率を算出した。表3に示すように、篩上物中のステンレスの7割以上を形状選別工程S8の重産物として回収できることが分かる。また、形状選別工程S8で分離された重産物の多くは、ステンレスを含む粗排石と、銅又は真鍮を含む粗排石である。このことから、ミックスメタルからステンレスを選択的に検知可能なセンシング技術を用いたメタルソータを用いて重産物に対して金属選別を行うことで、分離回収物中のステンレスの濃度を高め、ステンレスの回収効率を更に高くできることが分かる。 The sieved material separated in the rough waste stone sorting step S4 in FIG. 1, the magnetic material 1 separated in the second magnetic separation step S5, the non-magnetic material 2 separated in the first magnetic separation step S6, and the eddy current Table 3 shows an example of the measurement results of the composition ratio and distribution ratio of the main components in the coarse waste stone contained in the repulsion separated in the sorting step S7 and the heavy products and light products separated in the shape sorting step S8. . At this time, in the coarse waste stone sorting step S4, a sieve with a nominal opening size of 5.6 mm was used. In the second magnetic sorting step S5, a hanging magnetic separator was used to set the magnetic flux density to 400G, and in the first magnetic sorting step S6, a magnetic pulley was used to set the magnetic flux density to 7000G. In the eddy current sorting step S7, the damper angle was 62°, the rotor rotation speed was 2250 rpm, and the belt conveyor speed was 103 m/min. In the shape selection step S8, the inclination angle was 8°, the table frequency was 50 Hz, and the wind speed was 0 mm/s. In Table 3, the composition ratio of stainless steel, copper/brass, iron, and aluminum is analyzed comprehensively based on the magnetism of the raw material, the color, hardness, and weight of the polished surface when the raw material is sanded. The selection was done by hand. The composition ratio (%) means the weight ratio of the target substance in each sorted material. The distribution ratio was calculated by setting each component of the sieve as 100%, and calculating the weight ratio of each component separated as magnetic material 1, non-magnetic material 2, repellent material, light product, and heavy product. As shown in Table 3, it can be seen that more than 70% of the stainless steel in the sieved material can be recovered as a heavy product in the shape sorting step S8. Further, most of the heavy products separated in the shape sorting step S8 are coarse waste stones containing stainless steel and coarse waste stones containing copper or brass. Therefore, by performing metal sorting on heavy products using a metal sorter that uses sensing technology that can selectively detect stainless steel from mixed metals, the concentration of stainless steel in the separated and recovered material can be increased, and stainless steel can be recovered. It can be seen that the efficiency can be further increased.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、本発明の実施の形態に係るステンレスの分離方法によれば、電気・電子部品屑を粉砕処理した粉砕屑から排石を回収し、この排石からステンレスを分離回収するための上述の工程を行うことで、ステンレスを効率良く分離することが可能となる。これにより、転炉等の酸化製錬炉へ供給されるステンレス由来のNi、Cr等の製錬阻害物質の供給量を低減することができ、酸化製錬炉での不純物混入による処理阻害等の影響を極力小さくすることができる。分離回収したステンレスを含む粗排石は、気流分級工程S3において微粉体等が除去されているため、有価金属成分を含む微粉体の付着による有価金属の回収ロス等の影響も小さくできる上、粉末状のものに比べて取り扱いが容易である。よって、本発明の実施の形態に係るステンレスの分離方法によれば、有価金属の回収効率の低下を抑制しながら、ステンレスを選択的に効率良く分離して回収することができる。 As described above, according to the stainless steel separation method according to the embodiment of the present invention, waste stones are collected from the crushed waste obtained by pulverizing electrical/electronic parts waste, and the above-mentioned method for separating and recovering stainless steel from the waste stones is performed. By performing this process, it becomes possible to efficiently separate stainless steel. As a result, it is possible to reduce the amount of smelting inhibiting substances such as Ni and Cr derived from stainless steel supplied to the oxidation smelting furnace such as a converter, and prevent processing inhibition due to impurities in the oxidation smelting furnace. The impact can be minimized. Since fine powder etc. have been removed from the separated and recovered coarse waste stone containing stainless steel in the air classification step S3, the influence of recovery loss of valuable metals due to adhesion of fine powder containing valuable metal components can be reduced, and the powder It is easier to handle than the shaped ones. Therefore, according to the stainless steel separation method according to the embodiment of the present invention, stainless steel can be selectively and efficiently separated and recovered while suppressing a decrease in recovery efficiency of valuable metals.
(電気・電子部品屑の処理方法)
 本発明の実施の形態に係る電気・電子部品屑の処理方法は、図1に示すステンレスの分離方法を構成する各工程において得られた分離物を、自溶炉等の溶錬炉に投入して処理する溶錬炉処理工程と、転炉等の酸化製錬炉へ投入して処理する酸化製錬炉処理工程とを含むことができる。即ち、本発明の実施の形態に係る電気・電子部品屑の処理方法は、気流分級工程S3で得られる微粉砕物を溶錬炉に投入して処理する溶錬炉処理工程と、第1の磁力選別工程S6で得られる非磁着物2の少なくとも一部を酸化製錬炉に投入して処理する酸化製錬炉処理工程とを含む。
(Method for disposing of electrical/electronic parts waste)
The method for treating electrical/electronic component scraps according to the embodiment of the present invention involves charging the separated materials obtained in each step of the stainless steel separation method shown in FIG. 1 into a smelting furnace such as a flash furnace. It can include a smelting furnace treatment step in which the material is treated in a smelting furnace, and an oxidation smelting furnace treatment step in which the material is charged into an oxidation smelting furnace such as a converter. That is, the method for treating electrical/electronic component scraps according to the embodiment of the present invention includes a smelting furnace treatment step in which the pulverized material obtained in the airflow classification step S3 is charged into a smelting furnace and treated; An oxidation smelting furnace treatment step is included in which at least a portion of the non-magnetized material 2 obtained in the magnetic separation step S6 is charged into an oxidation smelting furnace and treated.
 溶錬炉は、その種類は問わないが、例えば、図示しないシャフト、セットラー及びアップテイクから構成され、シャフトにはその天井部において精鉱バーナーが装備されている。精鉱バーナーから、気流分級工程S3で得られる微粉砕物と、銅精鉱と、溶剤(フラックス)と、酸素富化空気とが同時に吹き込まれ、瞬間的に酸化反応を起こさせる。酸化反応を生じた微粉砕物等は、セットラーにてマットとスラグとに分離される。また、溶錬炉で発生した排ガスは、アップテイクへ送られる。溶錬炉処理工程における溶錬炉の操業条件については、過還元現象が発生しない状態であれば、電気・電子部品屑の投入の有無にかかわらず、公知である同様の操業条件で実施されればよく、処理条件は特に限定されない。 Although the type of smelting furnace does not matter, it is composed of, for example, a shaft (not shown), a settler, and an uptake, and the shaft is equipped with a concentrate burner at its ceiling. From the concentrate burner, the finely pulverized material obtained in the air classification step S3, copper concentrate, a solvent (flux), and oxygen-enriched air are blown simultaneously to cause an oxidation reaction to occur instantaneously. The finely ground material that has undergone the oxidation reaction is separated into matte and slag in a settler. In addition, the exhaust gas generated in the smelting furnace is sent to the uptake. Regarding the operating conditions of the smelting furnace in the smelting furnace treatment process, as long as the overreduction phenomenon does not occur, the smelting furnace should be operated under the same known operating conditions regardless of whether or not electrical/electronic parts scraps are input. The treatment conditions are not particularly limited.
 酸化製錬炉は、その種類は問わないが、例えば、図示しない炉体の上部に炉口が設けられ、炉体の側面下方に羽口が設けられている。炉口から、第1の磁力選別工程S6で得られる非磁着物2の少なくとも一部と、溶錬炉で分離されたマットと、溶剤(フラックス)とが炉内に投入される。更に羽口から酸素富化空気が吹き込まれ、第1の磁力選別工程S6で得られる非磁着物2の少なくとも一部等を酸化させる。酸化製錬炉処理工程における酸化製錬炉の操業においても、酸化製錬炉の本来の目的の機能を失わない範囲の実施のため、公知の操業方法でよい。 Although the type of oxidation smelting furnace does not matter, for example, a furnace port is provided at the top of a furnace body (not shown), and tuyeres are provided at the lower side of the furnace body. At least a portion of the non-magnetized material 2 obtained in the first magnetic separation step S6, the matte separated in the smelting furnace, and a solvent (flux) are charged into the furnace from the furnace mouth. Further, oxygen-enriched air is blown from the tuyere to oxidize at least a portion of the non-magnetized material 2 obtained in the first magnetic separation step S6. In the operation of the oxidation smelting furnace in the oxidation smelting furnace treatment step, any known operating method may be used in order to operate the oxidation smelting furnace to the extent that the original intended function of the oxidation smelting furnace is not lost.
 図1に示すように、第2の磁力選別工程S5で磁着物1として分離された粗排石、第1の磁力選別工程S6で非磁着物2として分離された粗排石、渦電流選別工程S7で反発物として分離された粗排石、形状選別工程S8で軽産物として分離された粗排石、及び金属選別工程S9でステンレスを含まない粗排石として分離されたステンレス以外の粗排石は、酸化製錬炉へ投入することが好ましい。また、第2の磁力選別工程S5の磁着物1及び第1の磁力選別工程S6で得られた非磁着物2に対して更にメタルソータを用いた金属選別を行い、ステンレスを含む粗排石を金属物側へ分離させ、この分離物を渦電流選別工程S7、形状選別工程S8、金属選別工程S9の任意の工程へ投入することによって、ステンレスの回収効率を向上させるようにしてもよい。 As shown in FIG. 1, the coarse waste stone separated as magnetic material 1 in the second magnetic separation step S5, the coarse waste stone separated as non-magnetic material 2 in the first magnetic separation step S6, and the eddy current separation step The coarse waste stone separated as a repulsion material in S7, the coarse waste stone separated as a light product in the shape sorting process S8, and the coarse waste stone other than stainless steel separated as a coarse waste stone that does not contain stainless steel in the metal sorting process S9 is preferably charged into an oxidation smelting furnace. In addition, metal sorting is further performed using a metal sorter on the magnetic objects 1 in the second magnetic sorting step S5 and the non-magnetic objects 2 obtained in the first magnetic sorting step S6, and coarse waste stones containing stainless steel are separated into metals. The recovery efficiency of stainless steel may be improved by separating the stainless steel into materials and inputting this separated material into any of the eddy current sorting step S7, shape sorting step S8, and metal sorting step S9.
 本発明の実施の形態に係る電気・電子部品屑の処理方法によれば、転炉等の酸化製錬炉へ供給される原料から製錬阻害物質であるNi、Cr等を含むステンレスを予め除去する処理を行うことができるため、例えば、酸化製錬炉処理工程での製錬阻害物質の混入による種々の操業トラブルを抑制し、効率の良い処理を行うことができる。また、ステンレスを含む排石を回収することにより、ステンレスを再利用することができる。 According to the method for processing electrical/electronic component scraps according to the embodiment of the present invention, stainless steel containing smelting inhibiting substances such as Ni and Cr is removed in advance from the raw material supplied to an oxidation smelting furnace such as a converter. For example, various operational troubles due to the contamination of smelting inhibiting substances in the oxidation smelting furnace treatment process can be suppressed, and efficient processing can be performed. Furthermore, stainless steel can be reused by collecting waste stone containing stainless steel.
 本発明は上記の実施形態を用いて説明したが、各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態の構成要素を適宜組み合わせてもよい。 Although the present invention has been described using the above embodiments, it is not limited to each embodiment, and the components can be modified and embodied without departing from the gist thereof. Moreover, various inventions can be formed by appropriately combining a plurality of components disclosed in each embodiment. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components of different embodiments may be combined as appropriate.
 また、図1に示す処理フローは一例であり、他にも種々の処理手順が採用できることは勿論である。例えば、渦電流選別工程S7、形状選別工程S8、及び金属選別工程S9は適宜省略又は順序を入れ替えても良いことは勿論である。例えば、渦電流選別工程S7及び形状選別工程S8は省略することが可能である。渦電流選別工程S7と磁力選別工程(第1の磁力選別工程S6及び第2の磁力選別工程S5)の順序を入れ替えることもまた可能である。さらに、上述の実施の形態では、メタルソータとして、ISS型のセンシング技術を用いたメタルソータを用いる例について説明したが、X線ソータ、LIBSソータなどのその他のセンシング技術を用いたメタルソータを利用してもよいことは勿論である。 Further, the processing flow shown in FIG. 1 is an example, and it goes without saying that various other processing procedures can be adopted. For example, it goes without saying that the eddy current sorting step S7, the shape sorting step S8, and the metal sorting step S9 may be omitted or their order may be changed as appropriate. For example, the eddy current sorting step S7 and the shape sorting step S8 can be omitted. It is also possible to change the order of the eddy current sorting step S7 and the magnetic sorting step (first magnetic sorting step S6 and second magnetic sorting step S5). Further, in the above-described embodiment, an example is explained in which a metal sorter using ISS type sensing technology is used as the metal sorter, but a metal sorter using other sensing technology such as an X-ray sorter or LIBS sorter may also be used. Of course it's a good thing.
S1…焼却工程
S2…粉砕工程
S3…気流分級工程
S4…粗排石選別工程
S5…第2の磁力選別工程
S6…第1の磁力選別工程
S7…渦電流選別工程
S8…形状選別工程
S9…金属選別工程
S1...Incineration process S2...Crushing process S3...Airflow classification process S4...Rough waste stone sorting process S5...Second magnetic force sorting process S6...First magnetic force sorting process S7...Eddy current sorting process S8...Shape sorting process S9...Metal Sorting process

Claims (9)

  1.  電気・電子部品屑を粉砕する粉砕工程と、
     前記粉砕工程で得られる粉砕物を気流で分級し、重量物としてステンレスを含む排石を得る気流分級工程と、
     前記排石から所定サイズ以上の粗排石を選別して回収する粗排石選別工程と、
     前記粗排石を磁力選別し、前記粗排石からステンレスを含む粗排石を磁着物として得る第1の磁力選別工程と
     を含むステンレスの分離方法。
    A pulverizing process for pulverizing electrical and electronic component scraps;
    an airflow classification step in which the pulverized material obtained in the pulverization step is classified with an airflow to obtain waste rock containing stainless steel as a heavy object;
    a coarse waste stone sorting step of sorting and recovering coarse waste stones of a predetermined size or more from the waste stones;
    A method for separating stainless steel, comprising: a first magnetic sorting step of magnetically sorting the coarse waste stone, and obtaining coarse waste stone containing stainless steel from the coarse waste stone as a magnetic substance.
  2.  前記第1の磁力選別工程の前に、前記第1の磁力選別工程よりも低磁力で前記粗排石を磁力選別し、前記粗排石から鉄を含む粗排石を除去する第2の磁力選別工程と、
     前記第1の磁力選別工程で得られる前記磁着物を渦電流選別し、ステンレスを含む粗排石を非反発物として得る渦電流選別工程と
     を更に含む請求項1に記載のステンレスの分離方法。
    Before the first magnetic sorting step, a second magnetic force for magnetically sorting the coarse waste stones with a lower magnetic force than in the first magnetic force sorting step and removing coarse waste stones containing iron from the coarse waste stones. A sorting process;
    2. The stainless steel separation method according to claim 1, further comprising an eddy current sorting step of eddy current sorting the magnetic material obtained in the first magnetic sorting step to obtain coarse waste stone containing stainless steel as a non-repellent material.
  3.  前記第1の磁力選別工程で得られる前記磁着物を形状選別し、ステンレスを含む粗排石を重産物として得る形状選別工程を更に含む請求項1に記載のステンレスの分離方法。 2. The method for separating stainless steel according to claim 1, further comprising a shape sorting step of sorting the shape of the magnetic material obtained in the first magnetic sorting step to obtain coarse waste stone containing stainless steel as a heavy product.
  4.  前記渦電流選別工程で得られる前記非反発物を形状選別し、ステンレスを含む粗排石を重産物として得る形状選別工程を更に含む請求項2に記載のステンレスの分離方法。 3. The method for separating stainless steel according to claim 2, further comprising a shape sorting step of sorting the shape of the non-repellent material obtained in the eddy current sorting step to obtain coarse waste stone containing stainless steel as a heavy product.
  5.  前記形状選別工程で得られる重産物を、金属反応の強弱を検知可能なセンサを含むメタルソータを用いて金属選別し、ステンレスを含む粗排石を金属物として選別して回収する金属選別工程を更に含む請求項3又は4に記載のステンレスの分離方法。 Further, a metal sorting step is carried out in which the heavy products obtained in the shape sorting step are sorted for metal using a metal sorter including a sensor capable of detecting the strength of metal reaction, and coarse waste stones containing stainless steel are sorted and recovered as metal objects. The method for separating stainless steel according to claim 3 or 4.
  6.  前記粗排石選別工程は、前記メタルソータで選別可能な粒径の下限値以上の粗排石を選別して回収する請求項5に記載のステンレスの分離方法。 6. The stainless steel separation method according to claim 5, wherein the coarse waste stone sorting step involves sorting and recovering coarse waste stones having a particle size equal to or larger than the lower limit of the particle size that can be sorted by the metal sorter.
  7.  前記粗排石選別工程が、篩を用いて前記排石を篩別処理する篩別工程を含み、該篩別工程において、公称目開きが3.35mm以上の篩を用いて篩別した篩上物を、前記粗排石として得ることを含む請求項1~4のいずれか1項に記載のステンレスの分離方法。 The coarse waste stone sorting step includes a sieving step of sieving the waste stone using a sieve, and in the sieving step, the sieve surface is sieved using a sieve with a nominal opening of 3.35 mm or more. The method for separating stainless steel according to any one of claims 1 to 4, which comprises obtaining the stainless steel as the coarse waste stone.
  8.  前記粉砕工程の前に、前記電気・電子部品屑を焼却する焼却工程を更に含む請求項1~4のいずれか1項に記載のステンレスの分離方法。 The stainless steel separation method according to any one of claims 1 to 4, further comprising an incineration step of incinerating the electrical/electronic component waste before the pulverization step.
  9.  請求項1~4のいずれか1項のステンレスの分離方法を含む電気・電子部品屑の処理方法において、
     前記気流分級工程で得られる微粉砕物を溶錬炉に投入して処理する溶錬炉処理工程と、
     前記第1の磁力選別工程で得られる非磁着物の少なくとも一部を酸化製錬炉に投入して処理する酸化製錬炉処理工程と
     を含む電気・電子部品屑の処理方法。
    A method for processing electrical/electronic parts waste, including a method for separating stainless steel according to any one of claims 1 to 4,
    a smelting furnace treatment step in which the pulverized material obtained in the airflow classification step is charged into a smelting furnace and treated;
    and an oxidation smelting furnace treatment step of charging at least a portion of the non-magnetized material obtained in the first magnetic separation step into an oxidation smelting furnace.
PCT/JP2023/019001 2022-05-23 2023-05-22 Separation method for stainless steel and processing method for electrical/electronic component scraps WO2023228912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022084113 2022-05-23
JP2022-084113 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228912A1 true WO2023228912A1 (en) 2023-11-30

Family

ID=88919302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019001 WO2023228912A1 (en) 2022-05-23 2023-05-22 Separation method for stainless steel and processing method for electrical/electronic component scraps

Country Status (1)

Country Link
WO (1) WO2023228912A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232340A (en) * 2000-02-22 2001-08-28 Ishikawajima Harima Heavy Ind Co Ltd Method and device for treating dry distillation residue of shredder dust
WO2019177176A1 (en) * 2018-03-16 2019-09-19 Jx金属株式会社 Method for processing electronic and electrical device component scrap
WO2021157483A1 (en) * 2020-02-06 2021-08-12 Dowaエコシステム株式会社 Separation method for valuable resources
JP2021159794A (en) * 2020-03-30 2021-10-11 Jx金属株式会社 Treating method for coated copper wire waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232340A (en) * 2000-02-22 2001-08-28 Ishikawajima Harima Heavy Ind Co Ltd Method and device for treating dry distillation residue of shredder dust
WO2019177176A1 (en) * 2018-03-16 2019-09-19 Jx金属株式会社 Method for processing electronic and electrical device component scrap
WO2021157483A1 (en) * 2020-02-06 2021-08-12 Dowaエコシステム株式会社 Separation method for valuable resources
JP2021159794A (en) * 2020-03-30 2021-10-11 Jx金属株式会社 Treating method for coated copper wire waste

Similar Documents

Publication Publication Date Title
JP6375205B2 (en) Valuable metal recovery method and valuable metal recovery system
JP7017855B2 (en) Incinerator ash treatment equipment and treatment method
JP6465825B2 (en) Method and apparatus for recovering precious metals from incinerated ash
JP6638719B2 (en) How to treat steel slag
JP7297019B2 (en) Processing method of electronic and electrical equipment parts waste
TW202045271A (en) Processing method and processing device for electronic/electrical device component scrap
JP6502274B2 (en) Incineration ash sorting method and apparatus
JP2018090477A (en) Method for processing steel slag
WO2018061545A1 (en) Incinerated-ash treatment device and treatment method
WO2020203918A1 (en) Method for processing electronic/electrical device component scraps
WO2023228912A1 (en) Separation method for stainless steel and processing method for electrical/electronic component scraps
JP2003320311A (en) Treatment method for waste household electric appliance
JP2003171954A (en) Counterweight and its recycling method
CA2279964C (en) Metal recovery from salt cake and other compositions
JP5409269B2 (en) Dust recovery method in scrap shredder equipment
JP2019025395A (en) Valuable metal recovery method and recovery system
JP6938414B2 (en) How to dispose of parts waste
JPH0975853A (en) Treatment method for shredder dust incineration ash
RU2795301C1 (en) Scrap recycling method
RU2365642C2 (en) Method of recycling of steelmaking slag
JP7461167B2 (en) Bottom ash treatment equipment
CN113613801A (en) Method for treating electronic and electrical equipment component scraps
JP2000037664A (en) Method and apparatus for recovering metal from metal- containing mixture
JP7095708B2 (en) Shredder dust treatment method and treatment equipment
JP7101637B2 (en) Combustible waste treatment equipment and treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811784

Country of ref document: EP

Kind code of ref document: A1