JP5558779B2 - 反射体制御原子炉 - Google Patents

反射体制御原子炉 Download PDF

Info

Publication number
JP5558779B2
JP5558779B2 JP2009247253A JP2009247253A JP5558779B2 JP 5558779 B2 JP5558779 B2 JP 5558779B2 JP 2009247253 A JP2009247253 A JP 2009247253A JP 2009247253 A JP2009247253 A JP 2009247253A JP 5558779 B2 JP5558779 B2 JP 5558779B2
Authority
JP
Japan
Prior art keywords
reflector
core
neutron
annular space
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009247253A
Other languages
English (en)
Other versions
JP2011095017A (ja
Inventor
光夫 若松
秀雄 小見田
美幸 秋葉
慎一 師岡
久夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009247253A priority Critical patent/JP5558779B2/ja
Publication of JP2011095017A publication Critical patent/JP2011095017A/ja
Application granted granted Critical
Publication of JP5558779B2 publication Critical patent/JP5558779B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、炉心の外側に反射体を配置し、その外側に中性子遮へい体を配置して、反射体を移動して出力制御を行なう反射体制御原子炉に関する。
反射体を微小な速度で移動させて燃料を燃焼させるナトリウム冷却小型炉(4S炉。Super-Safe, Small and Simple)は、高い安全性を有し、長期間(目標30年間)燃料無交換で運転ができる商用原子炉である。この原子炉では、受動的安全性の確保が容易な金属燃料炉心に微小速度で移動する反射体を採用することにより、高い安全性の確保(負またはゼロボイド反応度炉心など)と長い炉心寿命の実現が可能になる。
一般に、反射体制御原子炉においては、反射体を炉心外周で上下方向に移動制御して中性子のストリーミング効果で炉心出力制御を行なう(特許文献1)。反射体制御原子炉(4S炉)は先行炉にない隔壁で区切られた二重容器であり、特に自然循環時に、隔壁の外側にある高速中性子遮へい体領域では炉心側からの熱移行があり、また、中性子照射により複数列ある中性子遮へい体の炉心側の発熱が大きい。さらに、原子炉容器側には空気冷却の原子炉容器補助冷却システム(RVACS:Reactor Vessel Auxiliary Cooling System)があるため中性子遮へい体の外側列では温度が低い。つまり、複数列(例えば5列)ある中性子遮へい体の内側の温度が高く、外側の温度が低くなり、内側に温度上昇による上昇流が発達し、外側では下降流ができる。
特許第3126524号公報
反射体制御原子炉の中性子遮へい体領域には電磁ポンプから低温冷却材を流すため、対流が起こる。対流のために径方向に温度分布ができる。
すなわち、冷却材は中性子遮へい体の周囲を下方へ流れる。中性子遮へい体は二重容器の外側流路に設置されており、内側流路には炉心が設置されている。炉心で発生する熱が外側流路へ移動するため、中性子遮へい体の設置されている外側流路は、径方向内側の温度が高く、外側が低い状態となる。
また、中性子遮へい体は中性子を吸収する際に発熱する。中性子は内側流路の炉心の核分裂で発生するため、中性子遮へい体も内側に設置されたものの方で中性子照射が多く、中性子の吸収量が多くなり、発熱量も多くなる。そのため、中性子遮へい体周囲を流れる冷却材領域では大きな対流ができ、より、内側の温度が高くなり、外側が低くなる温度分布となる。
このため中性子遮へい体の上部支持板の径方向に温度分布ができ、熱応力が発生し熱変形等の不具合が生じる。これは反射体制御原子炉の構造健全性を低下させる要因ともなりうる。
この発明は、かかる事情に鑑みてなされたものであって、反射体制御原子炉の中性子遮へい体周囲を流れる冷却材の半径方向温度分布を均一化することを目的としている。
上記目的を達成するために、本発明に係る反射体制御原子炉の一つの態様は、炉心と、炉心の水平方向の周囲を取り囲むように配置されて軸を鉛直方向とする筒状のコアバレルと、コアバレルの水平方向の周囲を取り囲むように配置されて上下方向に移動制御可能な反射体と、コアバレルと同軸状に反射体の水平方向の周囲を取り囲むように配置された筒状の隔壁と、隔壁の水平方向の周囲を取り囲む環状空間内に配置されてそれぞれに高速中性子吸収材を含む複数個の中性子遮へい体と、炉心、コアバレル、反射体、隔壁および中性子遮へい体を収容する原子炉容器と、を備え、炉心内を上方に通過した冷却材の流れが、環状空間内の複数の中性子遮へい体の周りを下降して炉心の下部に循環するように構成された反射体制御原子炉であって、環状空間内の半径方向の冷却材流れを促進する半径方向流れ促進部材が環状空間内に配置され、半径方向流れ促進部材は、中性子遮へい体の上端と下端の間に設けられていること、を特徴とする。
この発明によれば、反射体制御原子炉の中性子遮へい体周囲を流れる冷却材の半径方向温度分布を均一化することができ、それによって、熱応力の発生や支持板の熱変形を抑制でき、反射体制御原子炉の構造健全性を向上できる。
本発明に係る反射体制御原子炉の第1の実施形態の模式的立断面図。 図1の反射体制御原子炉の右半立断面図。 図2のIII−III線矢視部分平断面図。 図2の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第1の実施形態と従来技術の上部支持板の温度分布を示すグラフ。 本発明に係る反射体制御原子炉の第2の実施形態の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第3の実施形態の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第4の実施形態の中性子遮へい体の一つを示す斜視図。 本発明に係る反射体制御原子炉の第5の実施形態の中性子遮へい体の一つを示す斜視図。 本発明に係る反射体制御原子炉の第6の実施形態の中性子遮へい体を示す斜視図であって、(a)は隔壁に近い側の中性子遮へい体を示す図であり、(b)は隔壁から遠い側の中性子遮へい体を示す図である。 本発明に係る反射体制御原子炉の第7の実施形態の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第8の実施形態の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第9の実施形態の中性子遮へい体付近を示す部分立断面図。 図13のXIV−XIV線矢視1/4部分平断面図。 本発明に係る反射体制御原子炉の第10の実施形態の中性子遮へい体付近を示す部分立断面図。 本発明に係る反射体制御原子炉の第11の実施形態の中性子遮へい体付近を示す1/4部分平断面図。 本発明に係る反射体制御原子炉の第12の実施形態の中性子遮へい体付近を示す1/4部分平断面図。 本発明に係る反射体制御原子炉の第13の実施形態の中性子遮へい体付近を示す1/4部分平断面図。
以下、本発明に係る反射体制御原子炉の実施形態について、図面を参照して説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。
[第1の実施形態]
図1は本発明に係る反射体制御原子炉の第1の実施形態の模式的立断面図である。また、図2は図1の反射体制御原子炉の右半立断面図、図3は図2のIII−III線矢視部分平断面図、図4は図2の中性子遮へい体付近を示す部分立断面図である。
この反射体制御原子炉では、軸を鉛直方向とする円筒状の原子炉容器11内に液体ナトリウムが満たされ、その内部中央に、炉心12が配置されている高速炉として構成されている。炉心12は、鉛直方向に延びる複数の燃料集合体25を備えている。炉心12は原子炉容器11と同軸に配置された円筒状のコアバレル13内に収容され、コアバレル13の水平方向外側に反射体14が配置されている。反射体14の水平方向外側には、原子炉容器11と同軸円筒状の隔壁16が配置されている。
反射体14は、その上方に配置された反射体駆動機構15によって、上下方向に駆動制御され、それによって炉心出力が制御される。すなわち、反射体14が炉心12の周囲にあるときは、核分裂によって放出された高速中性子が反射体14で反射されて炉心12に戻されるので連鎖的に核分裂を継続でき、炉出力を上昇できる。
隔壁16の外壁と原子炉容器11の内壁の間に形成される環状空間17内の上部には中間熱交換器18が配置され、その下方に電磁ポンプ19が配置され、さらにその下方で炉心12を水平方向に囲む位置に中性子遮へい体20が配置されている。中間熱交換器18には、図示しない2次冷却材が原子炉容器11の外側から導入されて原子炉容器11内の液体ナトリウムの熱が2次冷却材に伝達されるようになっている。
コアバレル13および隔壁16の上端および下端はともに開放されていて、それらの上端の上方には上部プレナム21が形成され、同様に、それらの下端の下方には下部プレナム22が形成されている。
原子炉容器11内の液体ナトリウムは、電磁ポンプ19の駆動力と炉心12での発熱による自然対流によって、炉心12内で上昇し環状空間17内で下降するように循環する。すなわち、下部プレナム22内の液体ナトリウムは炉心12の下端から流入して加熱されながら炉心12内を上昇して上部プレナム21に達する。下部プレナム22内の液体ナトリウムの一部はコアバレル13と隔壁16の間の環状部に流入して、反射体14を冷却しながら上昇し、上部プレナム21に達する。
つぎに、上部プレナム21内の液体ナトリウムは環状空間17内を下降する。すなわち、はじめに、中間熱交換器18を通過して2次冷却材に熱を伝達し、つぎに、電磁ポンプ19で加圧されて下方に駆動される。その後、中性子遮へい体20の間を通って中性子遮へい体20を冷却し、下部プレナム22に達する。
図1に示すように、原子炉容器11の外側には空気冷却の原子炉容器補助冷却システム(RVACS)26が配置され、原子炉容器11を外側から冷却している。また、図2に示すように(図1では省略)炉心12の上方に炉上部機構27が配置され、炉心12内に制御棒28を挿入できるようになっている。
中性子遮へい体20は炉心12から放出された中性子を遮へいするためのものであって、多数の円柱状(棒状)の中性子遮へい体20が半径方向に複数列(図2の例では4列)並べられて構成されている。中性子遮へい体20は、上部支持板30、中間支持板30、下部支持板32によって水平方向に互いに間隔をあけて支持されている。上部支持板31は中性子遮へい体20の上端を支持し、その上方にはノズル33が配置されている。ノズル33を下向きに通り抜けた冷却材は、上部支持板31を通過し、中性子遮へい体20の周り、ならびに、中間支持板31および下部支持板32を通過して冷却材がおおむね下方に流れるように構成されている。
図4に示すように、この実施形態では、中性子遮へい体20の周囲に、半径方向流れ促進部材として、複数の水平環状平板35が、互いに鉛直方向の間隔をあけて配置されている。水平環状平板35は、原子炉容器11の内面と隔壁16の外面にはさまれた環状空間17の原子炉容器11の内面側を塞ぎ、隔壁16の外面側には隙間ができるように形成されており、中性子遮へい体20または/および原子炉容器11の内面に溶接、ボルト等によって接続されている。環状空間17の原子炉容器11に近い側に沿って下降する冷却材は水平環状平板35によって妨げられるので、半径方向の冷却材流れが促進される。
中性子遮へい体20が配置された環状空間17内では、炉心12からの熱移行がある。また、中性子照射により複数列ある中性子遮へい体20が中性子を吸収する際に発熱する。中性子遮へい体20では、炉心12に近いほど中性子照射が大きく、中性子吸収による発熱は炉心12に近いほど大きい。さらに、原子炉容器11の外側は空気冷却のRVACS26によって冷却されているので、環状空間17内では、原子炉容器11の内壁に近い側の温度が低い。よって、複数列ある中性子遮へい体20の内側の温度が高く、外側の温度が低くなり、内側に温度上昇による上昇流が発達し、外側では下降流ができる。
この実施形態では、水平環状平板35によって原子炉容器11に近い側の下降流が妨げられ、半径方向の冷却材流れが促進されるので、環状空間17内での冷却材の温度分布が均一化される。この実施形態における上部支持板30の温度分布の計算値を図5の実線aに示す。また、水平環状平板35がない従来の反射体制御原子炉における上部支持板の温度分布の計算値を図5の破線bに示す。図5の横軸は半径方向距離であって、隔壁16の外面位置をR1とし、原子炉容器11の内面位置をR2としている(図3参照)。図5のグラフから明らかなように、この実施形態の水平環状平板35により、上部支持板31の半径方向の温度分布が均一化される。これにより上部支持板31の熱応力や熱変形が抑制され、反射体制御原子炉の構造健全性を保つことができる。
[第2の実施形態]
図6は、本発明に係る反射体制御原子炉の第2の実施形態の中性子遮へい体付近を示す部分立断面図である。この実施形態では、中性子遮へい体20の周囲に、半径方向流れ促進部材として、複数の外周側水平環状平板36と複数の内周側水平環状平板37が、互いに鉛直方向の間隔をあけて交互に配置されている。外周側水平環状平板36は、原子炉容器11の内面と隔壁16の外面にはさまれた環状空間17の原子炉容器11の内面側を塞ぎ、隔壁16の外面側には隙間ができるように形成されており、中性子遮へい体20または/および原子炉容器11の内面に溶接、ボルト等によって接続されている。一方、内周側水平環状平板37は、原子炉容器11の内面と隔壁16の外面にはさまれた環状空間17の隔壁16の外面側を塞ぎ、原子炉容器11の内面側には隙間ができるように形成されており、中性子遮へい体20または/および隔壁16の外面に溶接、ボルト等によって接続されている。その他の構成は第1の実施形態と同様である。
この実施形態によれば、中性子遮へい体20の温度上昇により誘起される高温上昇流と電磁ポンプ19から送られる低温下降流が、外周側水平環状平板36および内周側水平環状平板37のために、半径方向に往復するジグザク流となり、半径方向の冷却材の混合が促進され、中性子遮へい体20の周囲を流れる冷却材流れが斜交流となって乱されることとなる。これにより、冷却材流れに径方向成分が強制的に加えられ、径方向温度分布の均一化を促進することができる。これにより、第1の実施形態と同様な効果、またはそれ以上の効果を得ることができる。
[第3の実施形態]
図7は、本発明に係る反射体制御原子炉の第3の実施形態の中性子遮へい体付近を示す部分立断面図である。この実施形態では、中性子遮へい体20の周囲に、半径方向流れ促進部材として、複数の第1の傾斜板38と複数の第2の傾斜板39が、互いに鉛直方向の間隔をあけて交互に配置されている。第1の傾斜板38は、原子炉容器11の内面と隔壁16の外面にはさまれた環状空間17の半径方向内側から外側に向かって上昇する傾斜を持ち、第2の傾斜板39は、環状空間17の半径方向外側から内側に向かって上昇する傾斜を持っている。第1の傾斜板38および第2の傾斜板39はともに、原子炉容器11の内面および隔壁16の外面との間に間隙を形成している。その他の構成は第1または第2の実施形態と同様である。
この実施形態によれば、中性子遮へい体20の温度上昇により誘起される高温上昇流と電磁ポンプ19から送られる低温下降流が、第1の傾斜板38および複数の第2の傾斜板39のために、半径方向に往復するジグザク流となり、半径方向の冷却材の混合が促進され、中性子遮へい体20の周囲を流れる冷却材流れが斜交流となって乱されることとなる。これにより、冷却材流れに径方向成分が強制的に加えられ、径方向温度分布の均一化を促進することができる。これにより、第2の実施形態と同様な効果、またはそれ以上の効果を得ることができる。
[第4の実施形態]
図8は、本発明に係る反射体制御原子炉の第4の実施形態の中性子遮へい体の一つを示す斜視図である。この実施形態では、半径方向流れ促進部材として、中性子遮へい体20の表面に螺旋状突起40が形成されている。その他の構成はたとえば第1の実施形態と同様である。ただし、第1の実施形態の水平環状平板35(図4)はなくてもよい。
この実施形態によれば、中性子遮へい体20の周囲の冷却材の流れに水平方向の流れ成分が付加され、径方向の流れが促進される。これにより、径方向温度分布の均一化を促進することができる。これにより、第1の実施形態と同様な効果、またはそれ以上の効果を得ることができる。
なお、螺旋状突起40は、複数の中性子遮へい体20の必ずしも全部に形成されていなくても、一部の中性子遮へい体20に形成されていれば効果がある。
[第5の実施形態]
図9は、本発明に係る反射体制御原子炉の第5の実施形態の中性子遮へい体の一つを示す斜視図である。この実施形態では、半径方向流れ促進部材として、中性子遮へい体20の表面に複数のこぶ状突起41が互いに間隔をあけて形成されている。その他の構成は第4の実施形態と同様である。
この実施形態によれば、中性子遮へい体20の周囲の冷却材の流れに水平方向の流れ成分が付加され、径方向の流れが促進される。これにより、径方向温度分布の均一化を促進することができる。これにより、第4の実施形態と同様な効果を得ることができる。
なお、こぶ状突起41は、複数の中性子遮へい体20の必ずしも全部に形成されていなくても、一部の中性子遮へい体20に形成されていれば効果がある。
[第6の実施形態]
図10は、本発明に係る反射体制御原子炉の第6の実施形態の中性子遮へい体を示す斜視図であって、(a)は隔壁に近い側の中性子遮へい体を示す図であり、(b)は隔壁から遠い側の中性子遮へい体を示す図である。
この実施形態は第5の実施形態(図9)の変形であって、隔壁16の外面に近い側(半径方向内側)の中性子遮へい体20aの表面に複数のこぶ状突起41aが互いに間隔をあけて形成され、原子炉容器11の内面に近い側(半径方向外側)の中性子遮へい体20bの表面に複数のこぶ状突起41bが互いに間隔をあけて形成されている。隔壁16の外面に近い側の中性子遮へい体20aの表面に形成されたこぶ状突起41aは、原子炉容器11の内面に近い側の中性子遮へい体20bの表面に形成されたこぶ状突起41bよりも小さいのが特徴である。その他の構成は第5の実施形態と同様である。
この実施形態によれば、こぶ状突起41aと41bの大きさの違いにより、炉心11に近い側の中性子遮へい体20の周りの流動抵抗が相対的に小さくなるので、流動抵抗が小さく発熱の大きい炉心11側の中性子遮へい体20aの周囲に冷却材が多く流れ、流動抵抗が大きく発熱の小さい外側の中性子遮へい体20bの周囲に冷却材が少なく流れる。このため、冷却材流れが乱されることと冷却材流量配分が行なわれ、冷却材流れに径方向成分が強制的に加えられ、径方向温度分布の均一化を促進することができる。これにより、第5の実施形態と同様以上の効果を得ることができる。
[第7の実施形態]
図11は、本発明に係る反射体制御原子炉の第7の実施形態の中性子遮へい体付近を示す部分立断面図である。
この実施形態では、隔壁16と原子炉容器11にはさまれた環状空間17のノズル33の下に、ノズル33から下方に出た冷却材の流れを隔壁16側に向ける偏向板43が取り付けられている。偏向板43は、下方に向かって隔壁16の外面に向かうように傾斜した板である。その他の構成は、たとえば第1の実施形態と同様である。ただし、第1の実施形態の水平環状平板35(図4)はなくてもよく、図11に示す例では、水平環状平板35がない。
この実施形態によれば、環状空間17の電磁ポンプ19で下向きに駆動された冷却材はノズル33内を通り抜けて下方に向かい、その後に偏向板43によって隔壁16側に向けられる。これにより、中性子遮へい体20の周りの冷却材流量分布は、径方向内側の方が多くなる。流量が多いと除熱量が多くなるため、内側温度が上がることを防ぎ、径方向温度分布を均一化することができる。
[第8の実施形態]
図12は、本発明に係る反射体制御原子炉の第8の実施形態の中性子遮へい体付近を示す部分立断面図である。
この実施形態は第7の実施形態(図11)の変形であって、この実施形態では、ノズル44の上部の入口部44aが、隔壁16と原子炉容器11にはさまれた環状空間17の隔壁16側に偏った位置にある。ノズル44の下部の出口部44bは環状空間17全体に開口している。その他の構成は第7の実施形態と同様である。
この実施形態によれば、環状空間17の電磁ポンプ19で下向きに駆動された冷却材はノズル44の入口部44aを通り抜けた後に下方に向かいながら半径方向に広がって、出口部44bからその下方の中性子遮へい体20の周囲に向かって流出する。入口部44aが環状空間17の隔壁16側に偏った位置にあるため、出口部44bから流出する冷却材は隔壁16側に多く偏って流れる。すなわち、中性子遮へい体20の周りの冷却材流量分布は、径方向内側の方が多くなる。これにより、第7の実施形態と同様に、中性子遮へい体20の内側温度が上がることを防ぎ、径方向温度分布を均一化することができる。
[第9の実施形態]
図13は、本発明に係る反射体制御原子炉の第9の実施形態の中性子遮へい体付近を示す部分立断面図であり、図14は図13のXIV−XIV線矢視1/4部分平断面図である。
この実施形態は第1の実施形態の変形であって、隔壁16と原子炉容器11にはさまれた環状空間17の、上部支持板(オリフィス板)50の下方の部分が、同軸状の二つの環状の分割壁45、46によって、同軸状の三つの環状空間17a、17b、17cに分割されている。また、三つの環状空間17a、17b、17cそれぞれに、上部支持板50を上端位置とする複数の中性子遮へい体20が配置されている。上部支持板50には、三つの環状空間17a、17b、17cそれぞれに冷却材を下向きに流通させるための複数の貫通孔47a、47b、47cが形成されている。なおこの第9の実施形態では、第1の実施形態の水平環状平板35(図4)に相当するものはない。
前述のように、中性子遮へい体20の周辺領域では、炉心11からの加熱および原子炉容器11の外側への放熱の影響と、炉心11側から漏洩する中性子による中性子遮へい体20内部での発熱の影響により、半径方向内側の方が温度が高くなりがちである。そこで、この実施形態では、上部支持板(オリフィス板)50に設けた貫通孔47a、47b、47cの口径を調節して、環状空間17a、17b、17cを流れる冷却材の流量配分を調節する。すなわち、環状空間17a、17b、17c内の冷却材の流速が内側の環状空間17aで最も早く、外側の環状空間17cで最も遅くなるように設定する。これにより、環状空間17a、17b、17c内の冷却材の温度を均一化することができる。さらに、第1の実施形態と同様の水平環状平板35(図4)を設ける場合はその効果も加わる。
[第10の実施形態]
図15は、本発明に係る反射体制御原子炉の第10の実施形態の中性子遮へい体付近を示す部分立断面図である。この実施形態は第9の実施形態(図13、図14)の変形である。
この実施形態では、第9の実施形態と同様に、隔壁16と原子炉容器11にはさまれた環状空間17の、上部支持板(オリフィス板)50の下方の部分が、同軸状の二つの環状の分割壁45、46によって、同軸状の三つの環状空間17a、17b、17cに分割されている。また、三つの環状空間17a、17b、17cそれぞれに、複数の中性子遮へい体20が配置されている。上部支持板50には、三つの環状空間17a、17b、17cそれぞれに冷却材を下向きに流通させるための複数の貫通孔47a、47b、47cが形成されている。ただし、この実施形態では、各中性子遮へい体20の上端が上部支持板50より離れた下方にある。その他の構成は第9の実施形態と同様である。
前述の第9の実施形態(図13、図14)では、中性子遮へい体20は、上部支持板(オリフィス板)50により保持されている。このため、貫通孔47a、47b、47cを形成する場所、そして個数が限定され。ここでの、流速が増大し、圧力損失増大を生ずる。一方、この第10の実施形態では、図15に示すように、中性子遮へい体棒20と上部支持板50の間に隙間を設けることにより、貫通孔47a、47b、47cを形成する場所、そして個数が限定されず、ここでの、流速が減少し、圧力損失も減少する。
その他の作用・効果は第9の実施形態と同様である。
[第11の実施形態]
図16は、本発明に係る反射体制御原子炉の第11の実施形態の中性子遮へい体付近を示す1/4部分平断面図である。
この実施形態はたとえば第1の実施形態の変形である。この実施形態では、隔壁16と原子炉容器11にはさまれた環状空間17に配置された複数の円柱状の中性子遮へい体20のうち、隔壁16に近い側(内周側)に配置される中性子遮へい体20aの直径を、原子炉容器11に近い側(外周側)に配置される中性子遮へい体20bの直径よりも大きいものとする。それにより、環状空間17内に配置される中性子遮へい体の密度が、外周側のほうが内周側よりも密になるように構成する。その他の構成は第1の実施形態と同様とする。ただし、第1の実施形態の水平環状平板35(図4)はなくてもよい。
前述のように、一般に中性子の分布が内周側で高く外周側で低くなるので中性子遮へい体内での発熱が、内周側で多く外周側で少なくなる。さらに、炉心11からの伝熱により、内周側の温度が高くなりがちである。それに対してこの実施形態によれば、環状空間17内に配置される中性子遮へい体の密度が、外周側の方が内周側よりも密になっているため、外周側の発熱を相対的に高くでき、温度分布が均一化される。さらに、第1の実施形態と同様の水平環状平板35(図4)を設ける場合はその効果も加わる。
[第12の実施形態]
図17は、本発明に係る反射体制御原子炉の第12の実施形態の中性子遮へい体付近を示す1/4部分平断面図である。
この実施形態は第11の実施形態(図16)の変形であって、この実施形態では、中性子遮へい体55が、隔壁16と原子炉容器11にはさまれた環状空間17内で、隔壁16および原子炉容器11と同軸状に配置された複数の円筒板状になっている。そしてこれらの円筒板状の中性子遮へい体55の厚さ(半径方向厚さ)が、外周側のものほど厚くなっている。その他の構成は第11の実施形態(図16)と同様とする。
この実施形態によれば、第11の実施形態と同様に、環状空間17内に配置される中性子遮へい体の密度が、内周側よりも外周側の方が密になっているため、外周側の発熱を相対的に高くでき、温度分布を均一化させることができる。
[第13の実施形態]
図18は、本発明に係る反射体制御原子炉の第13の実施形態の中性子遮へい体付近を示す1/4部分平断面図である。
この実施形態は第11の実施形態(図16)の変形であって、この実施形態では、隔壁16と原子炉容器11にはさまれた環状空間17に配置された複数の円柱状の中性子遮へい体20のうち、隔壁16に近い側(内周側)に配置される中性子遮へい体20cには比較的高濃度の中性子吸収材(たとえば黒鉛)を用い、原子炉容器11に近い側(外周側)に配置される中性子遮へい体20dには比較的低濃度の中性子吸収材を用いる。その他の構成は第11の実施形態(図16)と同様とする。
この実施形態によれば、第11の実施形態と同様に、環状空間17内に配置される中性吸収材の密度が、外周側の方が内周側よりも密になっているため、外周側の発熱を相対的に高くでき、温度分布が均一化される。
[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらに限定されるものではない。
たとえば、上記各実施形態の特徴を種々に組み合わせることもできる。たとえば、第2ないし第6の実施形態(図6ないし図10)における種々の半径方向流れ促進部材を組み合わせ、またはこれら半径方向流れ促進部材と、第7または第8の実施形態(図11または図12)における入口偏向流路とを組み合わせれば、これらの効果を合わせて奏することができる。さらに、第11ないし第13の実施形態(図16ないし図18)における中性子吸収材の密度分布の調整を組み合わせればその効果も合わせて奏することができる。
11…原子炉容器
12…炉心
13…コアバレル
14…反射体
15…反射体駆動機構
16…隔壁
17、17a、17b、17c…環状空間
18…中間熱交換器
19…電磁ポンプ
20、20a、20b…中性子遮へい体
21…上部プレナム
22…下部プレナム
25…燃料集合体
26…原子炉容器補助冷却システム(RVACS)
27…炉上部機構
28…制御棒
30…上部支持板
31…中間支持板
32…下部支持板
33…ノズル
35…水平環状平板(半径方向流れ促進部材)
36…外周側水平環状平板(半径方向流れ促進部材)
37…内周側水平環状平板(半径方向流れ促進部材)
38…第1の傾斜板(半径方向流れ促進部材)
39…第2の傾斜板(半径方向流れ促進部材)
40…螺旋状突起(半径方向流れ促進部材)
41、41a、41b…こぶ状突起(半径方向流れ促進部材)
43…偏向板
44…ノズル
44a…入口部
44b…出口部
45、46…分割壁
47a、47b、47c…貫通孔
50…上部支持板(オリフィス板)
55…中性子遮へい体

Claims (8)

  1. 炉心と、
    前記炉心の水平方向の周囲を取り囲むように配置されて軸を鉛直方向とする筒状のコアバレルと、
    前記コアバレルの水平方向の周囲を取り囲むように配置されて上下方向に移動制御可能な反射体と、
    前記コアバレルと同軸状に前記反射体の水平方向の周囲を取り囲むように配置された筒状の隔壁と、
    前記隔壁の水平方向の周囲を取り囲む環状空間内に配置されてそれぞれに高速中性子吸収材を含む複数個の中性子遮へい体と、
    前記炉心、コアバレル、反射体、隔壁および中性子遮へい体を収容する原子炉容器と、を備え、
    前記炉心内を上方に通過した冷却材の流れが、前記環状空間内の前記複数の中性子遮へい体の周りを下降して前記炉心の下部に循環するように構成された反射体制御原子炉であって、
    前記環状空間内の半径方向の冷却材流れを促進する半径方向流れ促進部材が前記環状空間内に配置され、
    前記半径方向流れ促進部材は、前記中性子遮へい体の上端と下端の間に設けられていること、を特徴とする反射体制御原子炉。
  2. 前記半径方向流れ促進部材は、前記環状空間内の半径方向外側部分を部分的に塞ぐ複数の水平環状平板が上下方向に互いに間隔をあけて配置されたものを含むこと、を特徴とする請求項1に記載の反射体制御原子炉。
  3. 前記半径方向流れ促進部材は、前記環状空間内の半径方向外側部分を部分的に塞ぐ複数の外周側水平環状平板と、前記環状空間内の半径方向内側部分を部分的に塞ぐ複数の内周側水平環状平板とが、上下方向に互いに間隔をあけて交互に配置されたものを含むこと、を特徴とする請求項1に記載の反射体制御原子炉。
  4. 前記半径方向流れ促進部材は、前記環状空間内の半径方向内側から外側に向かって上昇する傾斜を持って且つ前記隔壁および原子炉容器との間に間隙を形成する少なくとも一つの第1の傾斜板と、前記環状空間内の半径方向内側から外側に向かって下降する傾斜を持って且つ前記隔壁および原子炉容器との間に間隙を形成する少なくとも一つの第2の傾斜板とが、上下方向に互いに間隔をあけて交互に配置されたものを含むこと、を特徴とする請求項1に記載の反射体制御原子炉。
  5. 炉心と、
    前記炉心の水平方向の周囲を取り囲むように配置されて軸を鉛直方向とする筒状のコアバレルと、
    前記コアバレルの水平方向の周囲を取り囲むように配置されて上下方向に移動制御可能な反射体と、
    前記コアバレルと同軸状に前記反射体の水平方向の周囲を取り囲むように配置された筒状の隔壁と、
    前記隔壁の水平方向の周囲を取り囲む環状空間内に配置されてそれぞれに高速中性子吸収材を含む複数個の中性子遮へい体と、
    前記炉心、コアバレル、反射体、隔壁および中性子遮へい体を収容する原子炉容器と、
    を備え、前記炉心内を上方に通過した冷却材の流れが、前記環状空間内の前記複数の中性子遮へい体の周りを下降して前記炉心の下部に循環するように構成された反射体制御原子炉であって、
    前記環状空間内の半径方向の冷却材流れを促進する半径方向流れ促進部材が前記環状空間内に配置され、
    前記複数の中性子遮へい体は鉛直方向に延びる柱状であって、
    前記半径方向流れ促進部材は、前記複数の中性子遮へい体それぞれの外周に沿って設けられた複数の突起を含むこと、を特徴とする反射体制御原子炉。
  6. 前記突起は螺旋状の突起を含むこと、を特徴とする請求項5に記載の反射体制御原子炉。
  7. 前記複数の中性子遮へい体は半径方向に複数列に配置されていて、
    半径方向外側の中性子遮へい体の外周に設けられた前記突起は、半径方向内側の中性子遮へい体の外周に設けられた前記突起よりも大きいこと、を特徴とする請求項5または請求項6に記載の反射体制御原子炉。
  8. 炉心と、
    前記炉心の水平方向の周囲を取り囲むように配置されて軸を鉛直方向とする筒状のコアバレルと、
    前記コアバレルの水平方向の周囲を取り囲むように配置されて上下方向に移動制御可能な反射体と、
    前記コアバレルと同軸状に前記反射体の水平方向の周囲を取り囲むように配置された筒状の隔壁と、
    前記隔壁の水平方向の周囲を取り囲む環状空間内に配置されてそれぞれに高速中性子吸収材を含む複数個の中性子遮へい体と、
    前記炉心、コアバレル、反射体、隔壁および中性子遮へい体を収容する原子炉容器と、
    を備え、前記炉心内を上方に通過した冷却材の流れが、前記環状空間内の前記複数の中性子遮へい体の周りを下降して前記炉心の下部に循環するように構成された反射体制御原子炉であって、
    前記環状空間内の半径方向の冷却材流れを促進する半径方向流れ促進部材が前記環状空間内に配置され、
    前記半径方向流れ促進部材は前記複数の中性子遮へい体の上方に設けられ、前記環状空間のうち半径方向内側に前記冷却材を導く偏向板であり、
    前記偏向板は前記環状空間内の半径方向外側から内側に向かって傾き、前記隔壁との間に間隙を有することを特徴とする反射体制御原子炉。
JP2009247253A 2009-10-28 2009-10-28 反射体制御原子炉 Expired - Fee Related JP5558779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247253A JP5558779B2 (ja) 2009-10-28 2009-10-28 反射体制御原子炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247253A JP5558779B2 (ja) 2009-10-28 2009-10-28 反射体制御原子炉

Publications (2)

Publication Number Publication Date
JP2011095017A JP2011095017A (ja) 2011-05-12
JP5558779B2 true JP5558779B2 (ja) 2014-07-23

Family

ID=44112107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247253A Expired - Fee Related JP5558779B2 (ja) 2009-10-28 2009-10-28 反射体制御原子炉

Country Status (1)

Country Link
JP (1) JP5558779B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395802B2 (ja) * 2013-03-15 2018-09-26 ニュースケール パワー エルエルシー 原子炉システムと方法
CN112331375B (zh) * 2020-11-23 2022-09-20 四川玄武岩纤维新材料研究院(创新中心) 一种纤维蜂窝织物核屏蔽复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180576A (ja) * 1998-12-21 2000-06-30 Toshiba Corp 反射体制御型原子炉
JP4101422B2 (ja) * 1999-12-28 2008-06-18 株式会社東芝 液体金属冷却型原子炉および液体金属冷却型原子力プラント
JP4101424B2 (ja) * 2000-02-25 2008-06-18 株式会社東芝 反射体制御方式の高速増殖炉

Also Published As

Publication number Publication date
JP2011095017A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
US8126105B2 (en) Fast reactor having reflector control system and neutron reflector thereof
KR102200640B1 (ko) 가압 수로형 원자로를 위한 중하중 방사상 중성자 반사체
JP6395802B2 (ja) 原子炉システムと方法
JP4825763B2 (ja) 反射体制御方式の高速炉
GB1563911A (en) Nuclear core region fastener arrangement
JP5558779B2 (ja) 反射体制御原子炉
JP2012042368A (ja) 反射体制御原子炉および反射体
JP7316232B2 (ja) 燃料集合体
JP6345481B2 (ja) 燃料集合体、炉心、及び燃料集合体の作成方法
JP4098732B2 (ja) 反射体制御方式の高速炉およびその中性子反射体
KR20140063733A (ko) 홈이 있는 핵연료 조립체 구성요소 삽입체
JP2012211798A (ja) 燃料集合体
US9773573B2 (en) Pressurized water reactor fuel assembly
JP5322743B2 (ja) 反応度制御装置および高速炉
JP2005274555A (ja) 原子炉燃料集合体における軸方向に長さを変えた部分長燃料ロッド
JP2018526621A (ja) 地震/loca耐性のあるグリッドを有する原子燃料集合体
KR101760328B1 (ko) 반사체 및 이를 포함하는 핵연료 집합체
KR101494782B1 (ko) 핵연료집합체 및 이를 구비하는 고속원자로
JP2018004445A (ja) 高速炉用燃料集合体及びそれを装荷する高速炉の炉心
EP2770508A1 (en) Fuel assembly
JP2008292355A (ja) 高速炉用中間熱交換器
JPH0531118B2 (ja)
JPH022986A (ja) 燃料集合体
JP2012103164A (ja) 高速炉の炉心

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R151 Written notification of patent or utility model registration

Ref document number: 5558779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees