JP5558172B2 - 電力安定化システム - Google Patents

電力安定化システム Download PDF

Info

Publication number
JP5558172B2
JP5558172B2 JP2010085245A JP2010085245A JP5558172B2 JP 5558172 B2 JP5558172 B2 JP 5558172B2 JP 2010085245 A JP2010085245 A JP 2010085245A JP 2010085245 A JP2010085245 A JP 2010085245A JP 5558172 B2 JP5558172 B2 JP 5558172B2
Authority
JP
Japan
Prior art keywords
power
active power
command value
frequency component
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010085245A
Other languages
English (en)
Other versions
JP2011217563A (ja
Inventor
保幸 宮崎
康夫 高木
常治 亀田
正宏 爪長
秀樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010085245A priority Critical patent/JP5558172B2/ja
Publication of JP2011217563A publication Critical patent/JP2011217563A/ja
Application granted granted Critical
Publication of JP5558172B2 publication Critical patent/JP5558172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統を安定化する電力安定化システムに関する。
一般に、温暖化ガス排出量の低減や環境保全等を目的に太陽光発電や風力発電等の自然エネルギーを利用した分散電源の系統連系量が増大している。このような自然エネルギーを利用した発電は、日照や風速等の不規則な自然条件の変化により、その発電出力が不安定に変動する。このため、自然エネルギーを利用した分散電源の系統連系量の増大は、系統周波数変動や電圧変動などの電力品質に大きく影響すると予想されている。
自然エネルギーを利用した分散電源の系統連系による電力品質への影響の軽減や電力安定化を目的に、充電および放電可能な二次電池を用いた電力安定化システムが提案されている。電力安定化システムは、自然エネルギーを利用した分散電源の不安定な電力出力の増減変動を補償するように電力安定化システムの二次電池の充放電を制御する。このように制御された電力安定化システムの二次電池による出力と自然エネルギーを利用した分散電源の出力とを合成することで、負荷に変動が小さい電力を供給する。
このような電力安定化の制御において、次のような提案がされている。
一つ目の制御として、電力貯蔵システムは、電力貯蔵電池の開放端子電圧を検出し、その検出結果に基づいて電池の充電電力又は放電電力の上限値又は下限値を設定する。電力貯蔵電池への充電電力又は放電電力を指令する指令値が上限値よりも大きい場合は、上限値の電力を指令値とする。指令値が下限値よりも小さい場合は、下限値の電力を指令値とする。これにより、電力貯蔵電池の過充電又は過放電を防止する(特許文献1参照)。
二つ目の制御として、電力安定化システムは、補償目標値の算出において上限閾値と下限閾値で、演算または演算値を制限する内部リミッタをもつローパスフィルタを有している。運転状態が運転許容範囲の上下限に達した場合、内部リミッタにより補償目標値の演算値自体が運転許容範囲に収まる信号レベルに制限する。これにより、運転状態が運転許容範囲の上下限に張り付き電力補償ができない時間を短縮する(特許文献2参照)。
三つ目の制御として、電力安定化システムは、有効電力変動成分抽出フィルタにより、交流電力系統の有効電力からフィルタ時定数に応じた所定の周波数領域における有効電力変動成分を抽出する。有効電力変動成分の大きさに応じた電力変動補償量によって、電力貯蔵装置の双方向電力変換器の変換動作を制御する。フィルタ時定数は、有効電力変動成分の絶対値が大きいほど有効電力変動成分抽出フィルタにおける周波数領域が狭くなるように設定することで、カットする周波数領域が広くなるようにする。これにより、過大な長周期の電力変動に対しては立ち上がり(または立ち下り)のみ補償する。その後、長周期変動成分を補償領域から外すことで、過大な長周期電力変動に対する補償量のみを減少させ、短周期の電力変動に対する補償量を確保する(特許文献3参照)。
特開2001−298872号公報 特開2007−306669号公報 特開2007−129803号公報
しかしながら、先行技術文献に開示された電力安定化の制御では、以下のような問題がある。
一つ目の制御では、急速で過大な自然エネルギー発電の電力変動が発生して、端子電圧が上限値又は下限値に保持され、放電電力又は充電電力が制限された期間では、電力変動を充分に補償できなくなる。
二つ目の制御では、電力貯蔵装置の運転状態が運転許容範囲の上下限に達した場合にのみ機能するものである。このため、急速で過大な自然エネルギー発電の電力変動が発生した場合には、運転状態が運転許容範囲の上下限値へ達することが避けられない。
三つ目の制御では、有効電力変動成分の大きさに応じてフィルタ時定数を過敏に大きく設定変更すると、フィルタ時定数の変更自体が外乱となり電力貯蔵装置の電力出力に変動を生じて電力補償効果が低下する。逆にフィルタ時定数を低速で小さく変化させるとフィルタ時定数の設定変更による電力補償効果が小さくなる。このため、有効電力変動成分の大きさに対するフィルタ時定数の設定が難しい。
そこで、本発明の目的は、急速で過大な電力変動が発生した場合でも、効率的で効果的な電力安定化を図ることのできる電力安定化システムを提供することにある。
本発明の観点に従った電力安定化システムは、交流電力系統に供給する有効電力の変動を抑制し、二次電池及び前記二次電池と前記交流電力系統との間で電力を双方向に変換する双方向インバータを備えた電力安定化システムを制御する電力安定化システムの制御装置であって、前記交流電力系統に供給する有効電力を計測する有効電力計測手段と、前記有効電力計測手段により計測された有効電力から所定周波数以下の周波数成分を抽出する第1の周波数成分抽出手段と、前記交流電力系統に供給する有効電力の目標となる目標指令値を生成する目標指令値生成手段と、前記双方向インバータから出力される有効電力を制御するための有効電力指令値から所定周波数以下の周波数成分を抽出する第2の周波数成分抽出手段と、前記第1の周波数成分抽出手段の出力と前記目標指令値生成手段の出力と前記第2の周波数成分抽出手段の出力を加減算する加減算手段と、前記加減算手段により出力された周波数成分に基づいて、前記有効電力計測手段により計測された有効電力から所定周波数以上の周波数成分を抑制するための前記有効電力指令値を生成する高周波数成分抑制指令値生成手段と、前記有効電力指令値を入力し、前記双方向インバータの出力可能範囲に制限した制限付有効電力指令値を出力する有効電力指令値生成手段と、前制限付有効電力指令値に基づいて、前記双方向インバータを制御する制御手段とを備えている。
本発明によれば、急速で過大な電力変動が発生した場合でも、効率的で効果的な電力安定化を図ることのできる電力安定化システムを提供することができる。
本発明の実施形態に係る電力安定化システム及び制御装置が適用された電力系統システムの構成を示すブロック図。 実施形態に係る電力安定化システムの制御装置の加減算器における伝達関数の直線近似ゲイン線図。 実施形態に係る出力中心目標算出器の構成を示すブロック構成図。 実施形態に係る出力中心目標算出器の出力値と移動平均値との関係を示すグラフ図。 実施形態に係る低周波数変動抑制器の構成を示すブロック図。 実施形態に係る電力安定化システムの制御装置を簡易的に示したブロック図。 実施形態に係る電力安定化システムの制御装置の簡易構成における第1の折線近似ゲイン線図。 実施形態に係る電力安定化システムの制御装置の簡易構成における第2の折線近似ゲイン線図。 実施形態に係る電力安定化システムの制御装置の簡易構成における第3の折線近似ゲイン線図。 実施形態に係る電力安定化システムの制御装置の簡易構成における第4の折線近似ゲイン線図。
以下図面を参照して、本発明の実施形態を説明する。
(実施形態)
図1は、本発明の実施形態に係る電力安定化システム7及び制御装置10が適用された電力系統システム20の構成を示すブロック図である。
電力系統システム20は、自然エネルギー発電装置1と、交流送電線2と、交流電力系統3と、変圧器6と、電力安定化システム7と、電流検出器8と、有効電力検出器9と、制御装置10とを備えている。電力安定化システム7は、二次電池4と、双方向インバータ5とを備えている。
自然エネルギー発電装置1は、自然エネルギーを利用して発電する発電装置である。自然エネルギー発電装置1は、交流送電線2を介して、発電した有効電力Pgを交流電力系統3に供給する。
交流送電線2は、自然エネルギー発電装置1により発電された三相交流電力を交流電力系統3に送電する。
二次電池4は、化学反応を利用して充放電する電池である。例えば、二次電池4は、NAS(ナトリウム硫黄)電池、鉛電池、リチウムイオン電池、レッドクスフロー電池などである。
双方向インバータ5の直流側は、二次電池4と接続されている。双方向インバータ5の交流側は、変圧器6を介して交流送電線2と接続されている。双方向インバータ5は、制御装置10から受信する信号Pbat_refに従って、二次電池4の充電又は放電を制御する。例えば、双方向インバータ5は、PWM(Pulse Width Modulation)制御方式のインバータである。
信号Pbat_refのレベルが正の場合は、双方向インバータ5は、二次電池4の直流電圧を、信号Pbat_refに応じたレベルの交流電圧に変換する。双方向インバータ5は、変換した交流電圧を変圧器6に供給する。これにより、双方向インバータ5は、二次電池4に蓄えられたエネルギーを変換して、変圧器6を介して、交流送電線2に有効電力Pbatを供給する。
信号Pbat_refのレベルが負の場合は、双方向インバータ5は、変圧器6を介して、交流送電線2から供給された有効電力Pgを、信号Pbat_refに応じたレベルの直流電圧に変換して、二次電池4に充電する。
電流検出器8は、二次電池4の出力電流Ibatを検出する。電流検出器8は、検出した出力電流Ibatの検出値を制御装置10に出力する。
有効電力検出器9は、自然エネルギー発電装置1の出力端の電圧及び電流に基づいて、有効電力Pgを検出する。有効電力検出器9は、検出した有効電力Pgの検出値を制御装置10に出力する。
交流電力系統3には、自然エネルギー発電装置1から出力された有効電力Pgと二次電池4から出力された有効電力Pbatとを合成した有効電力が供給される。
制御装置10は、電流検出器8による出力電流Ibatの検出値及び有効電力検出器9による有効電力Pgの検出値に基づいて、電力安定化システム7を制御する。
次に、制御装置10の構成について説明する。
制御装置10は、電力計測部21と、ローパスフィルタ22と、加減算器23と、出力中心目標算出器24と、低周波数変動抑制器25と、SOC算出器27と、SOC目標設定器28と、加減算器29と、ゲイン30と、加減算器31と、リミッタ32とを備えている。
電力計測部21は、有効電力検出器9による検出値に基づいて有効電力Pgを計測する。電力計測部21は、計測した有効電力計測値Pgdetを、ローパスフィルタ22、出力中心目標算出器24、及び加減算器31に出力する。電力計測部21により計測された有効電力計測値Pgdetは、有効電力検出器9及び電力計測部21により定まる時定数をTg、ラプラス演算子をsとすると、交流送電線2に流れる有効電力Pgを用いて、次式のように表される。
Figure 0005558172
ローパスフィルタ22には、電力計測部21から有効電力計測値Pgdetが入力される。ローパスフィルタ22は、有効電力計測値Pgdetの変動成分から時定数T1に対応する低周波数領域の変動成分ΔPgdetを抽出する。ローパスフィルタ22は、抽出した低周波数領域の変動成分ΔPgdetを加減算器23に出力する。
出力中心目標算出器24は、電力計測部21により計測された有効電力計測値Pgdetに基づいて、交流電力系統3に供給する有効電力の目標値を増減させるための値を演算する。出力中心目標算出器24は、演算した値を加減算器23に出力する。
低周波数変動抑制器25は、双方向インバータ5から出力される有効電力Pbatの目標値Pbat_ref0に含まれる低周波数領域成分を演算する。低周波数変動抑制器25は、演算した値を加減算器23に出力する。低周波数変動抑制器25が演算した演算値を、加減算器23により減算することで、目標値Pbat_ref0から低周波数領域成分が抑制される。
加減算器23には、ローパスフィルタ22により抽出された低周波数領域の変動成分ΔPgdet、出力中心目標算出器24による演算値、及び低周波数変動抑制器25による演算値が入力される。加減算器23は、低周波数領域の変動成分ΔPgdetに、出力中心目標算出器24による演算値を加算し、低周波数変動抑制器25による演算値を減算する。加減算器23は、演算結果(低周波数領域の変動成分ΔPgdet+出力中心目標算出器24による演算値−低周波数変動抑制器25による演算値)を加減算器31に出力する。この演算結果は、自然エネルギー発電装置1の有効電力出力Pgと電力安定化システム7の有効電力出力Pbatとを合成した交流電力系統3への有効電力の目標値となる。
SOC算出器27は、電流検出器8により検出された出力電流Ibatの検出値を積分して、二次電池4の電力貯蔵量SOCを演算する。SOC算出器27は、演算した電力貯蔵量SOCを加減算器29に出力する。
SOC目標設定器28には、二次電池4の電力貯蔵量の目標値SOCrefが設定されている。SOC目標設定器28は、目標値SOCrefを加減算器29に出力する。
加減算器29には、SOC算出器27により演算された電力貯蔵量SOC及びSOC目標設定器28に設定された電力貯蔵量の目標値SOCrefが入力される。加減算器29は、目標値SOCrefから電力貯蔵量SOCを減算する。加減算器29は、演算結果(電力貯蔵量SOC−目標値SOCref)をゲイン30に出力する。
ゲイン30には、ゲインG1が設定されている。ゲイン30は、加減算器29による演算結果(電力貯蔵量SOC−目標値SOCref)にゲインG1を乗じる。ゲイン30は、演算結果を信号SOCcompとして加減算器31に出力する。
加減算器31には、加減算器23による演算値、ゲイン30により演算された信号SOCcomp、及び電力計測部21により計測された有効電力計測値Pgdetが入力される。加減算器31は、加減算器23による演算値に、信号SOCcompを加算し、電力計測部21により計測された有効電力計測値Pgdetを減算する。加減算器31は、演算結果である演算値Pbat_ref0(加減算器23による演算値+信号SOCcomp−有効電力計測値Pgdet)をリミッタ32に出力する。
リミッタ32には、加減算器31による演算値Pbat_ref0が入力される。リミッタ32には、上限値及び下限値が設定されている。これらの上限値及び下限値は、双方向インバータ5が出力可能な範囲の上限値及び下限値と同じに設定されている。リミッタ32は、加減算器31による演算値Pbat_ref0を、上限値及び下限値の範囲内に制限する。リミッタ32は、制限した値を出力指令Pbat_refとして双方向インバータ5に出力する。
次に、制御装置10による制御の内容について説明する。
始めに、出力中心目標算出器24の出力と低周波数変動抑制器25の出力がゼロの場合について説明する。
電力計測部21は、自然エネルギー発電装置1から出力された有効電力Pgを計測して有効電力計測値Pgdetを得る。ローパスフィルタ22は、有効電力計測値Pgdetから低周波数変動成分ΔPgdetを抽出する。
一方、制御装置10は、SOC算出器27により検出した二次電池4の電力貯蔵量SOCとSOC目標設定器28に設定された二次電池4の電力貯蔵量の目標値SOCrefとの差分にゲインG1を乗じた値を信号SOCcompとして算出する。
加減算器31は、「低周波数変動成分ΔPgdet−有効電力計測値Pgdet+信号SOCcomp」を演算し、演算値Pbat_ref0を求める。制御装置10は、演算値Pbat_ref0をリミッタ32の制限範囲内に制限し、双方向インバータ5に出力指令Pbat_refとして送信する。双方向インバータ5は、出力指令Pbat_refに応じた有効電力Pbatを出力する。
ここで、加減算器31により演算される演算値Pbat_ref0(低周波数変動成分ΔPgdet−有効電力計測値Pgdet+信号SOCcomp)について説明する。
まず、「低周波数変動成分ΔPgdet−有効電力計測値Pgdet」について説明する。
ローパスフィルタ22の出力である低周波数変動成分ΔPgdetは、ローパスフィルタ22の時定数をT1とした場合、有効電力計測値Pgdetを用いて、次式のように表される。
Figure 0005558172
さらに、「低周波数変動成分ΔPgdet−有効電力計測値Pgdet」は、次式のように表される。
Figure 0005558172
図2は、本実施形態に係る加減算器31における式(3)で表される伝達関数の直線近似ゲイン線図である。
「低周波数変動成分ΔPgdet−有効電力計測値Pgdet」は、図2に示すように、自然エネルギー発電装置1から出力された有効電力Pgの計測値Pgdetから時定数T1に対応する角周波数1/T1以上の高周波数成分を、有効電力出力Pgに対して位相差180度(正負の符号反転と同意)で抽出したものとなる。「低周波数変動成分ΔPgdet−有効電力計測値Pgdet」は、最終的に、双方向インバータ5から出力される有効電力Pbatの出力指令Pbat_refとなる。
従って、双方向インバータ5から出力される有効電力Pbatには、「低周波数変動成分ΔPgdet−有効電力計測値Pgdet」相当である自然エネルギー発電装置1の有効電力出力Pgの角周波数1/T1以上の高周波数成分が有効電力出力Pgに対して位相差180度で含まれる。交流電力系統3には、自然エネルギー発電装置1から出力された有効電力Pgと電力安定化システム7(双方向インバータ5)から出力された有効電力Pbatとを合成した有効電力(Pg+Pbat)が供給される。よって、交流電力系統3に供給される有効電力では、角周波数1/T1以上の高周波数成分は打ち消される。
次に、加減算器31の出力に含まれる信号SOCcompについて説明する。
信号SOCcompは、次式のように表される。
SOCcomp = G1×(SOC−SOCref) 式(4)
信号SOCcompは、双方向インバータ5への出力指令Pbat_refに含まれる。電力貯蔵量SOCが電力貯蔵量の目標値SOCrefより小さい場合は、信号SOCcompは、負値になる。よって、電力貯蔵量SOCが不足の場合には、双方向インバータ5への出力指令Pbat_refは、小さくなる。従って、双方向インバータ5は、有効電力Pbatの出力を減少させる動作をすることで、二次電池4の放電を減少させ又は充電を増加させる。これにより、二次電池4の電力貯蔵量SOCは、電力貯蔵量の目標値SOCrefに近づく。
一方、電力貯蔵量SOCが電力貯蔵量の目標値SOCrefより大きい場合は、信号SOCcompは、正値となる。よって、電力貯蔵量SOCが過多の場合には、双方向インバータ5への出力指令Pbat_refは、大きくなる。従って、双方向インバータ5は、有効電力Pbatの出力を増加させる動作をすることで、二次電池4の充電を減少させ又は放電を増加させる。これにより、二次電池4の電力貯蔵量SOCは、電力貯蔵量の目標値SOCrefに近づく。
このようにして、信号SOCcompにより、二次電池4の電力貯蔵量は、SOC目標設定器28で設定した二次電池4の電力貯蔵量の目標値SOCref付近に維持される。
図3を参照して、出力中心目標算出器24について説明する。
図3は、出力中心目標算出器24の構成を示すブロック構成図である。
出力中心目標算出器24は、移動平均算出器241と、出力中心設定器242と、加減算器243と、ゲイン244と、リミッタ245とを備えている。
移動平均算出器241には、電力計測部21により計測された有効電力計測値Pgdetが入力される。移動平均算出器241は、設定されている時間幅に区切られた時間帯毎に、有効電力計測値Pgdetの移動平均値Pgdet_centを演算する。移動平均算出器241は、演算した移動平均値Pgdet_centを加減算器243に出力する。
出力中心設定器242には、自然エネルギー発電装置1から出力される有効電力Pgの平均値又は中心値と考える出力中心設定値Pgcentが設定されている。出力中心設定器242は、設定されている出力中心設定値Pgcentを加減算器243に出力する。
加減算器243には、出力中心設定器242から入力された出力中心設定値Pgcent及び移動平均算出器241により演算された移動平均値Pgdet_centが入力される。加減算器243は、出力中心設定値Pgcentから移動平均値Pgdet_centを減算する。加減算器243は、演算結果「出力中心設定値Pgcent−移動平均値Pgdet_cent」をゲイン244に出力する。
ゲイン244には、ゲインG2が設定されている。ゲイン244は、加減算器243による演算結果に、ゲインG2を乗じる。ゲイン244は、ゲインG2を乗じた演算結果「ゲインG2×(出力中心設定値Pgcent−移動平均値Pgdet_cent)」をリミッタ245に出力する。
リミッタ245には、上限値及び下限値が設定されている。リミッタ245は、ゲイン244による演算結果「ゲインG2×(出力中心設定値Pgcent−移動平均値Pgdet_cent)」を上限値及び下限値の範囲内に制限する。リミッタ245は、制限した値を加減算器23に出力する。
図4は、本実施形態に係る出力中心目標算出器24の出力値と移動平均値Pgdet_centとの関係を示すグラフ図である。図4において、縦軸は、出力中心目標算出器24の出力値を表している。横軸は、移動平均値Pgdet_centを表している。リミッタ245の上限値及び下限値により制限されない部分の直線の傾きは、ゲインG2である。
出力移動平均値Pgdet_centが出力中心設定値Pgcentより小さい場合には、出力中心目標算出器24の出力値は、正値となる。出力移動平均値Pgdet_centと出力中心設定値Pgcentが同値の場合には、出力中心目標算出器24の出力値は、ゼロとなる。出力移動平均値Pgdet_centが出力中心設定値Pgcentより大きい場合には、出力中心目標算出器24の出力値は、負値となる。
出力中心目標算出器24の出力値は、加減算器23により加算される。加減算器23の演算値は、上述したように、自然エネルギー発電装置1から出力される有効電力Pgと二次電池4から出力される有効電力Pbatとを合成した交流電力系統3への有効電力の目標値である。従って、出力中心目標算出器24の出力値が正値であれば、交流電力系統3への有効電力の目標値は増加する。出力中心目標算出器24の出力値が負値であれば、交流電力系統3への有効電力の目標値は減少する。
加減算器23の演算値は、加減算器31により加算される。従って、出力中心目標算出器24の出力値が正値の場合、加減算器31の演算値Pbat_ref0は増加するため、双方向インバータ5は、有効電力Pbatが増加するように制御される。このため、二次電池4は、放電増加又は充電減少となる。出力中心目標算出器24の出力値が負値の場合、加減算器31の演算値Pbat_ref0は減少するため、双方向インバータ5は、有効電力Pbatが減少するように制御される。このため、二次電池4は、放電減少又は充電増加となる。
出力移動平均値Pgdet_centは、自然エネルギー発電装置1の有効電力Pgを計測した有効電力計測値Pgdetの設定時間幅での移動平均値である。このため、出力移動平均値Pgdet_centは、自然エネルギー発電装置1の有効電力Pgの設定時間幅での平均値を表す。
即ち、自然エネルギー発電装置1の設定時間幅での有効電力出Pgの平均値が、出力中心設定値Pgcentより小さい場合には、二次電池4は、放電増加又は充電減少となるように制御される。一方、自然エネルギー発電装置1の設定時間幅での有効電力出Pgの平均値が、出力中心設定値Pgcentより大きい場合には、二次電池4は、放電減少又は充電増加となるように制御される。
出力中心目標算出器24は、次のような考えに基づいて、双方向インバータ5の制御をするための演算処理を行う。
自然エネルギー発電装置1により発電される有効電力Pgは、ランダムに変化すると考えられる。従って、自然エネルギー発電装置1の設定時間幅での有効電力Pgの平均値が小さい場合、今後、自然エネルギー発電装置1の有効電力Pgは増加する確率が高くなる。自然エネルギー発電装置1により発電された有効電力Pgが小さい値から増加した場合、交流電力系統3への有効電力の変動を小さくするためには、この有効電力Pgの増加分を、電力安定化システム7(双方向インバータ5)から出力される有効電力Pbatにより補償する必要がある。
従って、自然エネルギー発電装置1の有効電力Pgが低く推移している場合、有効電力Pgが増加する前に、二次電池4の放電減少幅又は充電増加幅を大きく確保するように、双方向インバータ5から出力される有効電力Pbatを放電出力側で運転することが望まれる。よって、出力中心目標算出器24は、自然エネルギー発電装置1の有効電力Pgの設定時間幅での平均値が小さい場合は、電力安定化システム7(双方向インバータ5)の有効電力Pbatは、二次電池4の放電増加又は充電減少となるように制御される。これにより、電力安定化システム7は、充電方向の出力変動幅が大きくなるように運転される。
一方、自然エネルギー発電装置1の設定時間幅での有効電力Pgの平均値が大きい場合、今後、自然エネルギー発電装置1の有効電力Pgは減少する確率が高くなる。自然エネルギー発電装置1により発電された有効電力Pgが大きい値から減少した場合、交流電力系統3への有効電力の変動を小さくするためには、この有効電力Pgの減少分を、電力安定化システム7(双方向インバータ5)から出力される有効電力Pbatにより補償する必要がある。
従って、自然エネルギー発電装置1の有効電力Pgが高く推移している場合、有効電力Pgが減少する前に、二次電池4の放電増加幅又は充電減少幅を大きく確保するように、双方向インバータ5から出力される有効電力Pbatを充電側で運転することが望まれる。よって、出力中心目標算出器24は、自然エネルギー発電装置1の有効電力Pgの設定時間幅での平均値が大きい場合は、電力安定化システム7(双方向インバータ5)の有効電力Pbatは、二次電池4の放電減少又は充電増加となるように制御される。これにより、電力安定化システム7は、放電方向の出力変動幅が大きくなるように運転される。
図5は、本実施形態に係る低周波数変動抑制器25の構成を示すブロック図である。
低周波数変動抑制器25は、ローパスフィルタ251を備えている。ここで、ローパスフィルタ251の時定数をT2とする。時定数T2は、ローパスフィルタ22の時定数T1との関係において、「T1/2 ≧ T2」又は「T1 ≧ T2 ≧ T1/2」のいずれかを満たすように設定されている。
ローパスフィルタ251には、加減算器31による演算値Pbat_ref0が入力される。入力された演算値Pbat_ref0は、ローパスフィルタ251を介して、加減算器23に入力される。これにより、双方向インバータ5から出力される有効電力Pbatの目標値となる演算値Pbat_ref0から低周波数領域成分が減じられる。
図6は、本実施形態に係る電力安定化システムの制御装置10を簡易的に示したブロック図である。図6では、説明を簡単にするために、出力中心目標算出器24の出力値及びゲイン30の出力値SOCcompをそれぞれゼロと見なして、制御装置10の構成を簡易的に示している。
図6に示す制御装置10の構成において、計測した有効電力計測値Pgdetを入力信号として、加減算器31による演算値Pbat_ref0を出力信号とした場合の伝達関数は、次式のように表される。
Figure 0005558172
なお、ローパスフィルタ251の無い場合(即ち、低周波数変動抑制器25が無い場合)の伝達関数は、前述の式(3)で表される。
次に、時定数T1と時定数T2との大小関係による式(3)の伝達関数と式(5)の伝達関数の直線近似ゲイン線図の違いについて説明する。
式(5)の伝達関数及び式(3)の伝達関数において、時定数T1と時定数T2との大小関係により、入力信号を通過させる0dB領域に相違が生じる。
図7は、「T1/2 ≧ T2」の場合における式(3)の伝達関数と式(5)の伝達関数のそれぞれの折線近似ゲイン線図である。図7において、実線は、式(5)の伝達関数の直線近似ゲイン線図を、点線は、式(3)の伝達関数の直線近似ゲイン線図をそれぞれ表している。
図8は、「T1 ≧ T2 ≧ T1/2」の場合における式(3)の伝達関数と式(5)の伝達関数のそれぞれの折線近似ゲイン線図である。図8において、実線は、式(5)の伝達関数の直線近似ゲイン線図を、点線は、式(3)の伝達関数の直線近似ゲイン線図をそれぞれ表している。
図7及び図8に示すように、「T1/2 ≧ T2」又は「T1 ≧ T2 ≧ T1/2」のいずれかの条件を満たしている場合では、低周波数変動抑制器25が無い場合(点線で示す式(3)の伝達関数の直線近似ゲイン線図)は、角周波数領域が1/T1以上の入力信号成分をゲイン0dBで通過させる。
一方、低周波数変動抑制器25が有る場合(実線で示す式(5)の伝達関数の直線近似ゲイン線図)には、2/T2以上の角周波数領域で0dBとなる。さらに、1/T1から2/T2の角周波数領域のゲインは、0dB以下であるので、この角周波数領域の入力信号の振幅を減衰させる。但し、入力信号を除去する程度までには、ゲインの大きな低下はしない。
次に、時定数T1と時定数T2との大小関係が上記の「T1/2 ≧ T2」及び「T1 ≧ T2 ≧ T1/2」のいずれも満たさない場合における式(5)の伝達関数及び式(3)の伝達関数について説明する。
図9は、「T2/2 ≧ T1」の場合における式(3)の伝達関数と式(5)の伝達関数のそれぞれの折線近似ゲイン線図である。図9において、実線は、式(5)の伝達関数の直線近似ゲイン線図を、点線は、式(3)の伝達関数の直線近似ゲイン線図をそれぞれ表している。
図10は、「T2 ≧ T1 ≧ T2/2」の場合における式(3)の伝達関数と式(5)の伝達関数のそれぞれの折線近似ゲイン線図である。図10において、実線は、式(5)の伝達関数の直線近似ゲイン線図を、点線は、式(3)の伝達関数の直線近似ゲイン線図をそれぞれ表している。
図9及び図10のそれぞれが示す直線近似ゲイン線図では、式(3)及び式(5)のそれぞれの伝達関数で入力信号を通過させる0dB領域の差異は小さい。このため、低周波数変動抑制器25の有無による差異はほとんど無く、この場合の時定数T1,T2の関係条件時における低周波数変動抑制器25では、図7及び図8に示す条件のときの効果は期待できない。
本実施形態によれば、以下の作用効果を得ることができる。
電力安定化システム7及び制御装置10による構成では、自然エネルギー発電装置1の有効電力出力Pgに含まれる特定周波数(角周波数1/T1)以上の有効電力変動に対して、位相反転した有効電力出力Pbatを出力する。これにより、自然エネルギー発電装置1の有効電力出力Pgに含まれる特定周波数以上の有効電力変動を打ち消すことができる。従って、自然エネルギー発電装置1の有効電力変動による交流電力系統3の電圧変動や周波数変動の電力品質の低下を抑制することができる。
また、制御装置10では、安定化システム7内の二次電池4の電力貯蔵量を設定された目標値SOCref付近に維持するように制御する。このため、二次電池4の電力貯蔵量が満充電又は充電量がゼロとなって、電力安定化システム7から出力される有効電力Pbatに制限が掛かったり、運転停止になったりすることがない。このため、電力安定化システム7は、自然エネルギー発電装置1の有効電力Pgの変動の補償制御を長く継続することができる。
さらに、制御装置10には、出力中心目標算出器24が設けられている。出力中心目標算出器24は、自然エネルギー発電装置1の有効電力Pgの設定時間幅での平均値が小さい場合は、電力安定化システム7の有効電力Pbatを放電増加又は充電減少となるように制御する。これにより、双方向インバータ5は、充電方向の出力変動幅が大きくなるように運転される。一方、自然エネルギー発電装置1の有効電力Pgの設定時間幅での平均値が大きい場合は、電力安定化システム7の有効電力Pbatを充電増加又は放電減少となるように制御する。これにより、双方向インバータ5は、放電方向の出力変動幅が大きくなるように運転される。このため、電力安定化システム7の有効電力Pbatの出力容量が小さくても、自然エネルギー発電装置1の有効電力Pgの変動抑制効果を高くできる。従って、電力安定化システム7の容量を小さくすることができる。
また、自然エネルギー発電装置1の有効電力出力Pgがステップ上に急速に大きく変動した場合、有効電力出力Pgを検出した検出値Pgdetには、広い周波数範囲に大きな振幅の成分が含まれる。
このような場合、制御装置10の入力である検出値Pgdetから出力である演算値Pbat_ref0までの伝達関数で、ゲイン0dB以上の周波数領域が広い程、演算値Pbat_ref0の絶対値が大きくなる。演算値Pbat_ref0の絶対値が大きくなると、制御装置10により制御される双方向インバータ5の出力が大きくなるため、この出力が上下限値に張り付くことになる。この場合、結果的に、自然エネルギー発電装置1の有効電力出力Pgの変動を補償できなくなる。
そこで、制御装置10では、ローパスフィルタ22の時定数T1と低周波数変動抑制器25のローパスフィルタ251の時定数T2の関係を「T1/2 ≧ T2」又は「T1 ≧ T2 ≧ T1/2」のいずれかを満足するようにしている。この場合には、制御装置10の入力Pgdetから出力Pbat_ref0までの伝達関数で、低周波数側(角周波数が1/T1から2/T2)のゲインが0dBより小さくなる。
このため、自然エネルギー発電装置1の有効電力出力Pgがステップ上に急速に大きく変動した場合でも、電力安定化システム7への電力出力指令Pbat_refの絶対値が過度に大きくなることがない。
これにより、制御装置10内の制御定数等を自然エネルギー発電装置1の有効電力Pgの変動に応じて可変にすることなく、急速で過大な自然エネルギー発電装置1の有効電力Pgの変動が発生した場合でも、電力安定化システム7の有効電力Pbatが上下限値に張り付くことを抑制することができる。よって、自然エネルギー発電装置1は、有効電力Pgの変動の抑制効果を高くすることができる。
従って、電力系統システムに、電力安定化システム7及び制御装置10を適用することで、急速で過大な電力変動が発生した場合でも、効率的で効果的な電力安定化を図ることができる。
なお、本実施形態では、双方向インバータ5を、変圧器6を介して、交流送電線2に接続しているが、変圧器6を取り除き、双方向インバータ5を交流送電線2に直接接続してもよい。
また、本実施形態では、SOC算出器27は、二次電池4の出力電流Ibatを検出して、電力貯蔵量SOCを算出しているが、これに限らない。SOC算出器27は、二次電池4の端子電圧を検出して、電力貯蔵量SOCを算出してもよいし、その他のどのような方法で、電力貯蔵量SOCを算出してもよい。
さらに、本実施形態では、交流電力系統3に電力を供給する電源を、自然エネルギーを利用する発電装置としたが、これに限らない。電力安定化を目的として設置されるのであれば、電力安定化システム7及び制御装置10は、自然エネルギーを利用する発電装置に限らず、他の電源装置を備えた電力系統システムでも適用することができる。
また、本実施形態では、出力中心目標算出器24において、設定時間幅での有効電力の平均値を用いたが、その設定時間幅での有効電力の高低の傾向を示す値であれば、他のどのような統計的な値を用いてもよい。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1…自然エネルギー発電装置、2…交流送電線、3…交流電力系統、4…二次電池、5…双方向インバータ、6…変圧器、7…電力安定化システム、8…電流検出器、9…有効電力検出器、10…制御装置、20…電力系統システム、21…電力計測部、22…ローパスフィルタ、23…加減算器、24…出力中心目標算出器、25…低周波数変動抑制器、27…SOC算出器、28…SOC目標設定器、29…加減算器、30…ゲイン、31…加減算器、32…リミッタ。

Claims (9)

  1. 交流電力系統に供給する有効電力の変動を抑制し、二次電池及び前記二次電池と前記交流電力系統との間で電力を双方向に変換する双方向インバータを備えた電力安定化システムを制御する電力安定化システムの制御装置であって、
    前記交流電力系統に供給する有効電力を計測する有効電力計測手段と、
    前記有効電力計測手段により計測された有効電力から所定周波数以下の周波数成分を抽出する第1の周波数成分抽出手段と、
    前記交流電力系統に供給する有効電力の目標となる目標指令値を生成する目標指令値生成手段と、
    前記双方向インバータから出力される有効電力を制御するための有効電力指令値から所定周波数以下の周波数成分を抽出する第2の周波数成分抽出手段と、
    前記第1の周波数成分抽出手段の出力と前記目標指令値生成手段の出力と前記第2の周波数成分抽出手段の出力を加減算する加減算手段と、
    前記加減算手段により出力された周波数成分に基づいて、前記有効電力計測手段により計測された有効電力から所定周波数以上の周波数成分を抑制するための前記有効電力指令値を生成する高周波数成分抑制指令値生成手段と、
    前記有効電力指令値を入力し、前記双方向インバータの出力可能範囲に制限した制限付有効電力指令値を出力する有効電力指令値生成手段と、
    制限付有効電力指令値に基づいて、前記双方向インバータを制御する制御手段と
    を備えたことを特徴とする電力安定化システムの制御装置。
  2. 前記目標指令値生成手段は、
    前記有効電力計測手段により計測された有効電力に基づいて、所定の時間幅毎に時間帯の有効電力を演算する時間幅有効電力演算手段と、
    前記時間幅有効電力演算手段により演算された前記時間帯の有効電力が所定電力よりも小さい場合、前記目標指令値を増加させ、前記時間幅有効電力演算手段により演算された前記時間帯の有効電力が前記所定電力よりも大きい場合、前記目標指令値を減少させる目標指令値増減手段とを備えたこと
    を特徴とする請求項1に記載の電力安定化システムの制御装置。
  3. 前記二次電池の蓄電量を計測する蓄電量計測手段と、
    前記蓄電量計測手段により計測された蓄電量に基づいて、前記高周波数成分抑制指令値生成手段により生成された前記有効電力指令値を増減させる蓄電量制御手段と
    を備えたことを特徴とする請求項1又は請求項2に記載の電力安定化システムの制御装置。
  4. 前記第1の周波数成分抽出手段の時定数をT1とし、前記第2の周波数成分抽出手段の時定数をT2とすると、T1>T2の関係が成り立つこと
    を特徴とする請求項1から請求項3のいずれか1項に記載の電力安定化システムの制御装置。
  5. 前記第1の周波数成分抽出手段の時定数をT1とし、前記第2の周波数成分抽出手段の時定数をT2とすると、T1/2≧T2の関係が成り立つこと
    を特徴とする請求項1から請求項4のいずれか1項に記載の電力安定化システムの制御装置。
  6. 交流電力系統に供給する有効電力の変動を抑制する電力安定化システムであって、
    二次電池と、
    前記二次電池と前記交流電力系統との間で電力を双方向に変換する双方向インバータと、
    前記交流電力系統に供給する有効電力を計測する有効電力計測手段と、
    前記有効電力計測手段により計測された有効電力から所定周波数以下の周波数成分を抽出する第1の周波数成分抽出手段と、
    前記交流電力系統に供給する有効電力の目標となる目標指令値を生成する目標指令値生成手段と、
    前記双方向インバータから出力される有効電力を制御するための有効電力指令値から所定周波数以下の周波数成分を抽出する第2の周波数成分抽出手段と、
    前記第1の周波数成分抽出手段の出力と前記目標指令値生成手段の出力と前記第2の周波数成分抽出手段の出力を加減算する加減算手段と、
    前記加減算手段により出力された周波数成分に基づいて、前記有効電力計測手段により計測された有効電力から所定周波数以上の周波数成分を抑制するための前記有効電力指令値を生成する高周波数成分抑制指令値生成手段と、
    前記有効電力指令値を入力し、前記双方向インバータの出力可能範囲に制限した制限付有効電力指令値を出力する有効電力指令値生成手段と、
    制限付有効電力指令値に基づいて、前記双方向インバータを制御する制御手段と
    を備えたことを特徴とする電力安定化システム。
  7. 前記目標指令値生成手段は、
    前記有効電力計測手段により計測された有効電力に基づいて、所定の時間幅毎に時間帯の有効電力を演算する時間幅有効電力演算手段と、
    前記時間幅有効電力演算手段により演算された前記時間帯の有効電力が所定電力よりも小さい場合、前記目標指令値を増加させ、前記時間幅有効電力演算手段により演算された前記時間帯の有効電力が所定電力よりも大きい場合、前記目標指令値を減少させる目標指令値増減手段とを備えたこと
    を特徴とする請求項6に記載の電力安定化システム。
  8. 前記二次電池の蓄電量を計測する蓄電量計測手段と、
    前記蓄電量計測手段により計測された蓄電量に基づいて、前記高周波数成分抑制指令値生成手段により生成された前記有効電力指令値を増減させる蓄電量制御手段と
    を備えたことを特徴とする請求項6又は請求項7に記載の電力安定化システム。
  9. 交流電力系統に供給する有効電力の変動を抑制し、二次電池及び前記二次電池と前記交流電力系統との間で電力を双方向に変換する双方向インバータを備えた電力安定化システムを制御する電力安定化システムの制御方法であって、
    前記交流電力系統に供給する有効電力を計測するステップと、
    計測された有効電力から所定周波数以下の第1の周波数成分を抽出するステップと、
    前記交流電力系統に供給する有効電力の目標となる目標指令値を生成するステップと、
    前記双方向インバータから出力される有効電力を制御するための有効電力指令値から所定周波数以下の第2の周波数成分を抽出するステップと、
    抽出された第1の周波数成分と前記目標指令値と抽出された第2の周波数成分を加減算するステップと、
    加減算して出力された周波数成分に基づいて、前記計測された有効電力から所定周波数以上の周波数成分を抑制するための前記有効電力指令値を出力するステップと、
    前記有効電力指令値を入力し、前記双方向インバータの出力可能範囲に制限した制限付有効電力指令値を出力するステップと
    を含むことを特徴とする電力安定化システムの制御方法。
JP2010085245A 2010-04-01 2010-04-01 電力安定化システム Active JP5558172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085245A JP5558172B2 (ja) 2010-04-01 2010-04-01 電力安定化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085245A JP5558172B2 (ja) 2010-04-01 2010-04-01 電力安定化システム

Publications (2)

Publication Number Publication Date
JP2011217563A JP2011217563A (ja) 2011-10-27
JP5558172B2 true JP5558172B2 (ja) 2014-07-23

Family

ID=44946714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085245A Active JP5558172B2 (ja) 2010-04-01 2010-04-01 電力安定化システム

Country Status (1)

Country Link
JP (1) JP5558172B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100487A (ja) * 2010-11-04 2012-05-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力系統安定化装置
WO2015097842A1 (ja) * 2013-12-27 2015-07-02 株式会社日立製作所 回転電機システム
JP6397688B2 (ja) * 2014-08-07 2018-09-26 株式会社東芝 蓄電池制御装置および蓄電池制御方法
JP6331998B2 (ja) * 2014-12-01 2018-05-30 日本工営株式会社 自然エネルギー発電システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298872A (ja) * 2000-04-13 2001-10-26 Sumitomo Electric Ind Ltd 電力貯蔵システム
JP4256833B2 (ja) * 2004-11-10 2009-04-22 三菱重工業株式会社 電力貯蔵装置及びハイブリッド型分散電源システム
JP4715624B2 (ja) * 2006-05-09 2011-07-06 富士電機システムズ株式会社 電力安定化システム、電力安定化制御プログラム、電力安定化制御方法
JP4665831B2 (ja) * 2006-05-24 2011-04-06 富士電機システムズ株式会社 電力安定化システム、制御装置およびその制御プログラム
JP5391598B2 (ja) * 2008-07-10 2014-01-15 株式会社明電舎 分散型電源の安定化制御方式

Also Published As

Publication number Publication date
JP2011217563A (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5613447B2 (ja) 蓄電池制御システム及び蓄電池制御方法
JP4715624B2 (ja) 電力安定化システム、電力安定化制御プログラム、電力安定化制御方法
JP5354840B2 (ja) 新エネルギー発電システム出力変動緩和装置
JP6232899B2 (ja) 電力補償装置
CN112840520A (zh) 体系系统、控制装置以及体系系统的控制方法
JP6455661B2 (ja) 自立運転システム
JP2008182859A (ja) 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
JP2010022122A (ja) 分散型電源の安定化制御方式
JP6187377B2 (ja) 車両の充電装置
JP5562504B1 (ja) 交流モータ駆動システム
JP5125274B2 (ja) 新エネルギー発電システム出力変動緩和装置
JP5558172B2 (ja) 電力安定化システム
JP2012100487A (ja) 電力系統安定化装置
JP5767895B2 (ja) 分散電源の出力変動抑制装置および分散電源の出力変動抑制方法
JP6124241B2 (ja) 複数蓄電デバイスを用いた電力変動抑制装置
JP6281742B2 (ja) パワーコンディショナシステム
KR101490547B1 (ko) 출력 전력 제어 장치
KR101464483B1 (ko) 출력안정화를 통한 배터리 용량 저감 시스템.
WO2009136639A1 (ja) 系統安定化装置
JP2018152943A (ja) 制御装置、制御方法およびコンピュータプログラム
JP2018191393A (ja) 並列接続蓄電池システムおよびその制御装置
JP2015033307A (ja) 複数蓄電デバイスを用いた電力変動抑制装置およびその制御方法
JP5901495B2 (ja) 分散型電源装置の出力安定化制御装置
JP5964080B2 (ja) 出力平滑化装置、出力平滑化方法及びプログラム
JP5537302B2 (ja) 電力貯蔵装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R151 Written notification of patent or utility model registration

Ref document number: 5558172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151