WO2015097842A1 - 回転電機システム - Google Patents

回転電機システム Download PDF

Info

Publication number
WO2015097842A1
WO2015097842A1 PCT/JP2013/085036 JP2013085036W WO2015097842A1 WO 2015097842 A1 WO2015097842 A1 WO 2015097842A1 JP 2013085036 W JP2013085036 W JP 2013085036W WO 2015097842 A1 WO2015097842 A1 WO 2015097842A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
rotating
electrical machine
rotating electrical
converter
Prior art date
Application number
PCT/JP2013/085036
Other languages
English (en)
French (fr)
Inventor
順弘 楠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53477777&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015097842(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015554428A priority Critical patent/JP6272355B2/ja
Priority to EP13900249.7A priority patent/EP3089353A4/en
Priority to PCT/JP2013/085036 priority patent/WO2015097842A1/ja
Publication of WO2015097842A1 publication Critical patent/WO2015097842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a rotating electrical machine system.
  • the kinetic energy of a fluid medium such as air or seawater is converted into rotational energy by a wing, and the rotational energy is transmitted to the generator via a rotating mechanism such as a shaft or a gearbox. Converts kinetic energy of fluid media to electrical energy. The generated electrical energy is converted into a power system frequency by a power converter, and output as power to the power system.
  • Patent Document 2 Furthermore, there are a technique described in Patent Document 2 and a technique described in Patent Document 3 as a method for suppressing fluctuations in generated power caused by fluctuations in kinetic energy of a fluid medium that is input.
  • JP 2005-45849 A Japanese Patent Laid-Open No. 2003-134892 JP 2011-137393 A
  • the wing is installed in an upwind type wind turbine that operates by generating power by being positioned on the windward side of the support structure member such as a tower with respect to the wind direction.
  • an upwind type wind turbine that operates by generating power by being positioned on the windward side of the support structure member such as a tower with respect to the wind direction.
  • downwind wind turbines that perform power generation operation by being located on the leeward side of the support structure member such as a tower.
  • the amount of energy that is converted from the kinetic energy of the fluid medium to the rotational energy of the blades depends on the velocity change of the flow velocity flowing into and out of the blade. Regardless of the upwind type or downwind type, the flow velocity around the support structure member such as a tower is disturbed by the influence of the support structure member, so the rotational energy converted when the wing passes around the support structure member is Decrease. This is generally called the tower shadow effect.
  • the flow velocity disturbed by the support structure members such as towers upstream of the blades is used as the input of the blades, so the rotational energy is greatly reduced by the effect, and the normal wind speed is about 5%. It is known to decrease by about 20% below.
  • This tower shadow effect fluctuates the input torque input to the rotating shaft, causing shaft torsion and vibration of the rotating mechanism and deteriorating the service life of components constituting the rotating mechanism. Moreover, since the electric energy output from the generator also fluctuates, the power output to the power system also fluctuates, which may reduce power quality.
  • components that can be applied to one or a plurality of wind power generation systems and ocean current power generation systems suppress shaft torsion caused by a change in kinetic energy of a fluid medium such as wind or ocean current, and constitute a rotation mechanism Even when the kinetic energy that becomes the input of the power generation system fluctuates, the overcharge and overdischarge of the energy storage device in the direct current part of the power converter that controls the generator is suppressed, and the output
  • An object of the present invention is to provide a rotating electrical machine system that can suppress fluctuations in electric power.
  • a rotating electrical machine system is a rotating electrical machine system in which a rotating machine rotates through a rotating mechanism rotated by blades to generate electric power, and includes an energy storage device that stores the generated electric power. It is characterized in that the electric power leveled is output in a time width corresponding to the number of blades and the rotational speed thereof.
  • Permanent magnet type rotating electrical machine system Command value calculation logic of permanent magnet type rotating electrical machine system A figure explaining the time change of the calculated command value Command value calculation logic when the power converter that controls the rotating machine is torque control Secondary excitation type rotating electrical machine system Command value calculation logic for secondary excitation type rotating electrical machine system Rotating electrical machine system with built-in power converter in the rotor Command value calculation logic of a rotating electrical machine system with a built-in power converter in the rotor Further, a rotating electrical machine system according to another embodiment Schematic of downwind type windmill
  • FIG. 1 shows the overall configuration of the rotating electrical machine system according to the present embodiment.
  • the rotational energy of the wing (14) is transmitted to the rotating machine (7) through the shaft (12) of the rotating mechanism.
  • the rotational energy may be transmitted to the rotating machine (7) via a speed increaser, a plurality of rotating shafts and joints, and the effects of the present invention are exhibited even if they are installed.
  • the rotor (10) of the rotating machine (7) has a permanent magnet embedded therein, and the stator winding (9) and the rotor (10) of the stator (8) of the rotating machine (7) rotate by rotating. AC power is generated according to the rotation speed.
  • the forward converter (3) of the power converter (2) is electrically connected to the stator winding (9), and the generated AC power is converted into DC power by the forward converter (3).
  • the forward converter (3) is connected to the inverse converter (4) through a DC power storage device such as a smoothing capacitor (5), and is converted into a commercial frequency such as 50 Hz and 60 Hz by the inverse converter (4). It is output to the electric power system (1).
  • FIG. 1 illustrates the case where the rotor (10) of the rotating machine (1) is configured by a permanent magnet
  • the rotor may be magnetized by supplying DC power to the winding, and is not limited thereto.
  • Any rotating electrical machine system in which AC power depending on the rotational speed of the rotating mechanism generated in the machine is supplied to the power system (1) via the power converter (2) can be regarded as the same as the present embodiment. .
  • the control device (6) for controlling the power converter (2) includes the rotating machine (7) and the AC / DC converter (3) so that a desired power is generated from the rotating machine (7) according to the rotation speed. Control the current and voltage between the power converters (2).
  • the control device (6) that controls the power converter (2) controls the DC voltage of the smoothing capacitor (5) to be substantially constant by the inverse converter (4).
  • the power input to the smoothing capacitor (5) by the action of the forward converter (3) is changed from the action of the inverse converter (4) controlling the DC voltage of the smoothing capacitor (5) to be substantially constant. Without being stored in the power system (1).
  • the loss due to the operation of the rotating machine (7) and the power converter (2) is not included.
  • the forward converter (3) and the reverse converter (4) of the power converter (2) in the rotating electrical machine system are both constituted by an AC / DC converter, and perform both AC and DC power conversion.
  • One AC / DC converter (corresponding to the inverse converter (3) described above) controls the power of the AC unit according to the active power command or torque command, and the other AC / DC converter (described above)
  • the forward converter (corresponding to the forward converter (4)) controls the power of the direct current section in accordance with the direct current section voltage command value, and any AC / DC converter controls the reactive power of the alternating current section as necessary.
  • control method for these active power, reactive power, and direct current section voltage will not affect the manifestation of the effect of the present invention, so the description thereof will be omitted.
  • active power command value or the torque command for the AC power fluctuation for the tower shadow effect Only the method for calculating the value and the method for calculating the DC part voltage command value for making the power output to the power system substantially constant will be described in detail.
  • FIG. 2 illustrates a command value calculation block for obtaining the above-described effects of the present invention.
  • the rotation speed ( ⁇ ) signal from the rotation speed detector (13) is input to the low-pass filter (15), and the fluctuation period component not caused by the tower shadow effect such as noise is removed. Thereby, the high frequency component by the play in machining of the component of a rotation mechanism can be removed.
  • the low-pass filter (15) is not essential.
  • the rotational speed ( ⁇ ) signal processed by the low-pass filter (15) is input to the input torque estimation device (16).
  • the input torque estimating device (16) calculates the rotational speed change rate from the rotational speed ( ⁇ ) signal and the rotational speed ( ⁇ ) signal before one sampling. Also, the load torque of the rotating machine is calculated by dividing the measured value (P in ) of the rotating machine generated by the control device (19) of the power converter that controls the AC side by the rotation speed ( ⁇ ) signal. The input torque that is input to the rotating mechanism is estimated from the rate of change in the rotational speed, the load torque of the rotating machine, and the inertia constant of the parts that constitute the rotating mechanism that is set in advance. An active power command (P in * ) for the power converter that controls the AC side is calculated by multiplying the estimated input torque by the filtered rotational speed ( ⁇ ). Active power command (P in *) is input to the AC side converter control apparatus for controlling (19) and subsequent leveling generated power computation unit (17) and DC voltage calculation unit (18).
  • the leveled generated power calculation device calculates the level of generated power output to the power system by statistically processing the input for the time width corresponding to the number of constituent blades (14) and their rotational speed. . For example, when the rotation speed is X [min -1 ] with three blades, the tower shadow effect occurs at a time interval of 1 / (3X) [min], so the input signal corresponding to this time width (P in ) Is averaged sequentially to calculate the leveled power generation command value (P out * ).
  • the moving average time width is fixed to a time width corresponding to the lower limit of the operating speed range of the rotating electrical machine system in order to reduce the calculation load for sequentially changing the moving average time width. Also good.
  • the power system can be obtained by sequentially moving and averaging a fixed number of input samplings equal to or more than the time width obtained by converting the time required for one blade to rotate at the lower limit of the operating speed range of the rotating machine per blade.
  • the leveled generated power command value to be output is calculated.
  • the calculated leveled generated power command value (P out * ) is input to the DC voltage calculation device (18).
  • the level of the calculated generated power is determined to be a level that is completely leveled.
  • the calculated value of the generated power may be made uniform even a little more than the active power command value (P in * ) of the source. If smoothing processing is performed, the effect of stabilizing the power output to the power system can be obtained.
  • the description computed leveling power generation command value is (P out *) is active power command value (P in *) based on was computed, based on the active power command value (P in *) is controlled in place You may calculate using the measured value of the electric power actually converted by the converter (3).
  • the DC voltage calculation device (18) calculates the difference ⁇ P between the control cycle generated power command value (P in * ) and the leveled generated power command value (P out * ) for each moving average time width, The DC voltage command value (V * ) is calculated using it. The calculated DC voltage command value (V * ) is input to the control device (20) of the power converter that controls the DC side.
  • the power converter (3) for controlling the AC side and the power converter (4) for controlling the DC side are respectively connected to the AC side control device (19) and the DC side control provided in the power converter control device (6).
  • the AC control side operates following the torque fluctuation input to the rotating mechanism, thereby suppressing the shaft torsional vibration due to the tower shadow effect, and suppressing the input to the power converter.
  • the DC control side can operate to make the output to the power system substantially constant by charge / discharge control of the DC section.
  • FIG. 3 shows the behavior of the calculation value in the above-described control device.
  • FIG. 10 is a schematic view of a downwind type wind turbine that receives the wind 102 from the side opposite to the wing 14 of the nacelle 103.
  • the wing 14 passes in the vicinity of the tower 101, the wind received by the wing is disturbed, and a tower shadow effect occurs in which the lift is reduced.
  • the wind turbulence is not only in the back of the tower, but also around it.
  • it is necessary to consider the influence of the rotation range with a width that is roughly symmetrical.
  • the following configuration is conceivable as a controller of a wind power plant having a large number of windmills.
  • Windmill group control (farm controller): Controls the total output of the windmill group. For the total output value, the output command value of the power to be output to each wind turbine is calculated from the sum of the predicted output values from the anemometer of each wind turbine and the output command value of the host system operator.
  • Windmill controller In order to control the output of the windmill from the output command value from the host controller (farm controller) and the current wind speed and anemometer information, control the windmill nacelle direction and blade angle to control the windmill. Controls rotation and output.
  • ⁇ Converter controller Operates the generator in accordance with the given power command.
  • the effect of input fluctuations due to tower shadows becomes particularly noticeable by performing power output control that prioritizes the suppression of shaft torsion.
  • the power supplied to the power system follows the amount of energy supplied from the wings after the energy storage device installed in the direct current section of the power converter becomes a buffer. If there is a large input fluctuation that cannot be absorbed by the buffer, the fluctuation may be output directly to the power system. In order to cope with this, it is necessary to increase the capacity of the energy storage device.
  • a power command value output to the power system is calculated in advance at an optimal leveling period in accordance with a predictable input fluctuation that occurs periodically.
  • Electric power generated by the rotating machine is output to the electric power system after leveling the electric power generated by the number of blades and the time width according to the rotation speed.
  • the optimum leveling cycle is preferably a multiple of one third of the rotation cycle, which is the time for one blade rotation.
  • Example 1 is the AC side power converter is described for the case of operating in accordance with power generation command (P in *), in order to follow directly to the input torque fluctuation of the rotating mechanism, the generated power control on the AC side power converter Instead, torque control may be performed, and the control device (19) of the AC side power converter may control the load torque of the rotating machine (7) with the torque command value (Tin *) as an input.
  • the control logic of the present invention shown in FIG. 2 can be rearranged as shown in FIG.
  • the measurement value input from the control device (19) of the AC power converter to the input torque estimation device (16) is the load torque (Tin) estimated from the electrical measurement value.
  • the torque command value (Tin *) calculated so as to suppress the shaft twist by the input torque estimating device (16) is directly input to the control device (19) of the AC power converter.
  • the difference between load torque and input torque can be measured directly by measuring the torsional displacement of the shaft with a shaft torsion sensor such as light or a strain gauge without estimating the load torque. You can also. In that case, a shaft twist sensor is installed instead of the rotation speed detector (13), and the torque measurement value is directly input to the input torque estimation device (16).
  • the stator winding (9) shown in FIG. 5 is electrically connected to the power system (1), and a rotating magnetic field is generated in the stator depending on the frequency of the power system and the stator winding (9).
  • the power converter (2) generates AC power corresponding to the difference (generally called slip (s)) between the physical rotational speed of the rotor (10) and the rotational speed of the rotating magnetic field of the stator (21). )
  • slip ring (22) to the rotor winding (11) can be applied to a wound secondary excitation rotating electrical machine system that generates electric power.
  • the input energy input to the rotor (10) according to the slip (s) is uniquely distributed to the stator (8) and the rotor (10), and energy is exchanged. Is also uniquely determined by the slip (s). Therefore, the power converter for controlling the AC side (3), the power provided stator windings in response to the slip (s) from (9) to the power system (1) P in * / ( 1-s ) To control the power provided from the power converter (3) to the rotor winding (10). Therefore, the command value calculation block for obtaining the effect of the present invention shown in FIG. 2 needs to be rearranged as shown in FIG. 6 in consideration of the slip (s).
  • a slip calculator (23) is newly added, and the slip (s) is calculated from the rotation speed ( ⁇ ) signal measured by the rotation speed detector (13).
  • the shaft output computing unit (25) of the rotating machine calculates the power generation output (P in ), and the input torque estimating device ( 16).
  • P in * the power generation output
  • P in * the input torque estimating device
  • the DC voltage calculation unit (18) is power generation command value (P in *) and leveling power generation command The calculation is performed based on the difference between the values (P out * ), but the specific calculation contents are slightly different from those in the first embodiment.
  • the power supplied to the power system (1) is the sum of the power from the stator winding (9) and the power from the power converter (4) controlling the DC side. It will be a thing.
  • Power provided from the previously described stator winding (9) to the power system (1) is a P in * / (1-s ), the total power output to the power system (1) is leveling power generation command Since it is necessary to make the value (P out * ), the DC voltage command value (V * ) is calculated based on the difference between them.
  • the rotors of the two wound secondary excitation generators shown in FIG. 7 are connected so as to rotate coaxially, and the power converter (2) is mounted on the rotor, whereby the winding shown in FIG.
  • the present invention can also be applied to a rotating electrical machine system that does not require the brush (21) and the slip ring (22) in the linear secondary excitation generator system.
  • the point that the energy input / output to / from the rotating machine is uniquely determined according to the slip is the same as that of the winding type secondary excitation rotating electrical machine system, but the rotating machine (7) and the auxiliary rotating machine (26) are each wound.
  • the number of poles of the rotating machine (7) may be different, and the sliding (s) of the rotating machine (7) and the sliding (s') of the auxiliary rotating machine (26) must be considered.
  • the slip calculator (23) calculates a slip (s) and a slip (s') according to the number of winding poles of each rotating machine, and an axis output calculator (25) and a stator output calculator. Enter in (24). Since the power generation output of the auxiliary rotating machine is also necessary for input torque estimation, the power generation output (P in ') is input to the shaft output calculator (25) from the control device (20) of the power converter that controls the DC side. In addition, since the command value to the control device (19) of the AC side power converter needs to be coordinated with the command value to the auxiliary rotating machine, the leveled generated power command value (P out * ) is It inputs also to a stator output calculating unit (24).
  • the DC voltage command value (V * ) calculated based on the difference between the generated power command value (P in * ) and the leveled generated power command value (P out * ) is used to control the DC side. It inputs into the control apparatus (20) of a converter.
  • FIG. 9 shows an overall configuration of a rotating electrical machine system showing another embodiment according to the present invention.
  • This is a configuration in which a rotational speed detector (31) is newly provided on the blade side with respect to the permanent magnet type rotating electrical machine system of FIG.
  • the shaft rotational phase of the rotational mechanism at the position where the rotational speed detector is provided is known. Can do.
  • the input torque estimation device (16) the input torque is determined from the difference in shaft rotation phase and the torsion spring constant of the shaft. The estimation system can be improved. Further, since the strength of direct shaft torsion can be determined, it is possible to calculate the generated power command value (P in * ) for controlling the torsion strength at a constant level or keeping it within a constant fluctuation range.
  • the tower shadow effect is almost the same for any wing. It can be regarded as the same as the input torque fluctuation when crossing. As a result, it is expected that the calculation processing is divided and the speed of the control is increased by using the past calculation values at the rotational symmetry point of the blade rotation phase.
  • Embodiments 1 to 4 described above relate to a rotating electrical machine system in which the input torque to the generator depends on the natural environment such as wind power or ocean current, and the load output from the rotating electrical machine to the rotating mechanism as a reaction force of the generated power.
  • This is a description of device configurations such as a control device necessary for variable torque control and constant output control of generated power output to the power system, and a detection device necessary for control.
  • the generator is controlled so that the electric output of the generator is increased by the power converter connected to the generator. There is a way to do it. As a result, the load torque that is the reaction force of the input torque of the generator also increases, and as a result, the rotation speed of the rotation mechanism can be reduced.
  • the generator is controlled so that the electric output of the generator is decreased by the power converter connected to the generator. As a result, the load torque that is the reaction force of the input torque of the generator is also reduced, and as a result, the rotation speed of the rotation mechanism can be increased.
  • the rotational speed of the rotating mechanism is kept constant, thereby suppressing the shaft torsional resonance.
  • the rotational speed is always kept constant according to the increase / decrease in the rotational speed, so that when the input torque from the blade to the rotational mechanism increases and the rotational speed of the rotational mechanism increases.
  • the load torque in the direction opposite to the input torque is increased so that the rotation speed is reduced, and the input torque from the blade to the rotation mechanism is decreased and the rotation speed of the rotation mechanism is decreased, the rotation speed is reduced.
  • the load torque fluctuation in the direction opposite to the input torque fluctuation due to the tower shadow effect is always applied to the rotating mechanism. This corresponds to repeatedly applying a shaft torsion load to the shaft. For this reason, the problem which accelerates
  • a fluctuation countermeasure method 2 other than the embodiment for example, by controlling charging / discharging of the power storage device provided in the DC unit of the power converter according to the increase / decrease in the generator output, the increase / decrease in the generator output is controlled.
  • a method 3 for dealing with fluctuations other than the embodiment for example, several specific windmills are selected from the windmills according to the driving situation of a plurality of windmills, and the blade angle (pitch angle) of the selected windmills is selected. There is a method of controlling the blade rotation speed and leveling the total output of a plurality of wind turbines by controlling.
  • a plurality of wind turbines are indispensable for leveling the generated power output to the power system by the above-described fluctuation coping control method 3, and a control device that controls the plurality of wind turbines and those Therefore, the cost of the power generation system is increased.
  • the configuration described in the embodiment that solves the above-described problem can be applied to a single wind power generation system or ocean current power generation system. Even if the kinetic energy that is the input of the power generation system fluctuates, the shaft torsion caused by changes in the kinetic energy of the medium and the tower shadow effect is suppressed, the life of the components that make up the rotation mechanism is extended, and It is possible to provide a rotating electrical machine system capable of leveling output power without causing overcharge and overdischarge of an energy storage device in a direct current section of a power converter that controls the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 慣性定数の大きな回転電気システムの軸捩れ振動抑制と発電出力の平準化を両立されるシステムを提供する為、回転機構の回転速度から回転機構の入力トルクを推定する入力トルク推定装置を備え、推定された入力トルクもしくは推定された入力トルクに回転速度を乗じることで推定される発電機出力に従って発電機から出力される発電出力を制御する電力変換器を備え、かつ、推定される発電機出力を入力として、翼の構成枚数とその回転速度に応じた時間幅分の入力を統計処理することで電力系統に出力する平準化された発電電力を演算する平準化発電電力演算装置を備え、演算された平準化発電電力と推定された発電機出力から電力変換器の直流部の平滑コンデンサ等のエネルギー貯蔵装置の充電電圧指令値を演算する直流電圧演算装置を備え、演算された電圧に従って電力系統と接続される電力変換器のエネルギー貯蔵装置の充電電圧を制御する。

Description

回転電機システム
 本発明は、回転電機システムに関するものである。
 近年、エネルギー資源問題や地球温暖化防止への関心の高まりから、風力発電システムや海流発電システム等の自然エネルギーを利用した発電システムが急速に普及している。
 このような発電システムでは、翼によって空気や海水等の流動性媒体の運動エネルギーを回転エネルギーに変換し、回転エネルギーを軸や増速機等の回転機構を介して発電機に伝達することで、流動性媒体の運動エネルギーを電気エネルギーに変換する。発電された電気エネルギーは電力変換器によって電力系統の系統周波数に変換され、電力として電力系統に出力される。
 流動性媒体は自然の物であるがゆえにこのような発電システムへの入力トルクは変動する。それに起因する問題として、入力となる流動性媒体の運動エネルギーの変動による翼回転速度の変動周期と回転機構の機械的固有振動数の共振による回転機構の軸捩れ共振がある。この軸捩れ共振による回転機構の破損や劣化を抑制する方法として、例えば特許文献1に記載の技術がある。
 さらに、入力となる流動性媒体の運動エネルギーの変動に起因する発電電力の変動を抑制する方法として、特許文献2に記載の技術および、特許文献3に記載の技術がある。
特開2005-45849号公報 特開2003-134892号公報 特開2011-137393号公報
 風力発電システムでは、流動性媒体の運動エネルギーの変動要因としてタワーシャドウ効果がある。
 翼の設置形態は、風力発電システムを例にすると、風向に対してタワー等の支持構造部材より風上側に位置することで発電運転をするアップウィンド型風車と、それとは逆に、風向に対してタワー等の支持構造部材よりも風下側に位置することで発電運転をするダウンウィンド型風車の、2種類の形態がある。
 流動性媒体の運動エネルギーから翼の回転エネルギーへ変換されるエネルギー量は、翼に流入する流速と流出する流速の速度変化に依存する。アップウィンド型でもダウンウィンド型でも、タワー等の支持構造部材周辺の流速は、その支持構造部材の影響で乱れているため、翼が支持構造部材の周辺を通過する際に変換される回転エネルギーは減少する。これを一般にタワーシャドウ効果と呼ぶ。
 特にダウンウィンド型風車の場合、翼の上流でタワー等の支持構造部材に乱された流速を翼の入力とするため、その効果による回転エネルギーの減少が大きく、通常風速で約5%、強風速下では約20%程度減少することが知られている。
 このタワーシャドウ効果により、回転軸に入力される入力トルクが変動するため、回転機構の軸捩れや振動の原因になり、回転機構を構成する部品寿命を劣化させる。また、発電機から出力される電気エネルギーも変動するため、電力系統に出力される電力も変動するため、電力品質を低下させる恐れがある。
 さらに、複数台の風車がほぼ同一のタイミングで翼がタワー等の支持構造部材の周辺を通過すると、それら風車のタワーシャドウ効果が同期し、電力系統に出力される合計出力の変動幅が大きくなる。強風速下では、時として風車一台分以上の変動幅になることもあり得る。
 そこで本発明では、一つ若しくは複数の風力発電システムや海流発電システムに適応可能で、風力や海流等の流動性媒体の運動エネルギーの変化に起因する軸捩れを抑制し、回転機構を構成する部品の寿命を長期化させ、かつ、発電システムの入力となる運動エネルギーが変動した場合にも、発電機を制御する電力変換器の直流部のエネルギー貯蔵装置の過充電および過放電を抑制し、出力電力の変動を抑制することができる、回転電機システムを提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲の記載の構成を採用する。
 本発明に係る回転電機システムは、翼によって回転される回転機構を介して回転機が回転し発電する回転電機システムであって、前記発電された電力を貯蔵するエネルギー貯蔵装置を有し、前記発電された電力を前記翼の枚数とその回転速度に応じた時間幅で平準化した電力を出力することを特徴とする。
 本発明によれば、単一の回転電機システムで、軸捩れを抑制することで回転機構を構成する部品の寿命を長期化させると同時に、発電出力を平準化することができる。
永久磁石型回転電機システム 永久磁石型回転電機システムの指令値演算ロジック 演算した指令値の時間変化を説明する図 回転機を制御する電力変換器がトルク制御の場合の指令値演算ロジック 二次励磁型回転電機システム 二次励磁型回転電機システムの指令値演算ロジック 回転子に電力変換器を内蔵した回転電機システム 回転子に電力変換器を内蔵した回転電機システムの指令値演算ロジック 更に他の実施例に係る回転電機システム ダウンウィンド型風車の概略図
 以下、本発明に係る回転電機システムの実施形態について各図を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。下記はあくまでも実施例に過ぎず、発明の実施態様が下記態様に限定されるものではない。
 本実施例に係る回転電機システムの全体構成を図1に示す。翼(14)の回転エネルギーは回転機構の軸(12)を介して回転機(7)に伝達される。陽に図示しないが、回転エネルギーは増速機や複数の回転軸と継手等を介して回転機(7)に伝達されても良く、それらが設置されていても、本発明の効果は発現する。回転機(7)の回転子(10)は永久磁石が埋め込まれており、回転することで、回転機(7)の固定子(8)の固定子巻線(9)と回転子(10)の回転速度に応じた交流電力を発生させる。固定子巻線(9)に電力変換器(2)の順変換器(3)が電気的に接続され、発生した交流電力は順変換器(3)によって直流電力に変換される。順変換器(3)は平滑コンデンサ(5)等の直流電力貯蔵装置を介して逆変換器(4)に接続しており、逆変換器(4)によって50Hzや60Hz等の商用周波数に変換され電力系統(1)に出力される。
 図1では、回転機(1)の回転子(10)が永久磁石により構成される場合を図示したが、巻線に直流電力を供給することで磁化しても良く、これに限らず、回転機で発生する回転機構の回転速度に依存した交流電力が電力変換器(2)を介して電力系統(1)に供給される回転電機システムであれば、本実施例と同一と見なすことができる。
 電力変換器(2)を制御する制御装置(6)は、交直変換器(3)によって回転機(7)からその回転速度に応じて所望の電力を発生するように、回転機(7)と電力変換器(2)の間の電流および電圧を制御する。また、電力変換器(2)を制御する制御装置(6)は、逆変換器(4)によって平滑コンデンサ(5)の直流電圧を略一定にするように制御する。これにより、順変換器(3)の作用によって平滑コンデンサ(5)へ入力される電力は、逆変換器(4)が平滑コンデンサ(5)の直流電圧を略一定に制御する作用から、直流部に貯蔵されることなく電力系統(1)に出力される。ただし、前述の動作説明は、簡素化のために、回転機(7)や電力変換器(2)の動作に伴う損失は含めないものとした。
 また、特に断らない限り、回転電機システムにおける電力変換器(2)の順変換器(3)および逆変換器(4)は、いずれも交直変換器で構成され、交流と直流の電力変換を双方向に実行できるものとし、一方の交直変換器(前述の逆変換器(3)に相当)が、有効電力指令もしくはトルク指令に従って交流部の電力を制御し、もう片方の交直変換器(前述の順変換器(4)に相当)が、直流部電圧指令値に従って直流部の電力を制御し、いずれの交直変換器も必要に応じて交流部の無効電力を制御するものとする。
 さらに、これら有効電力、無効電力および直流部電圧の制御方式は、本発明の効果の発現に影響しないため説明は省略し、以下に、タワーシャドウ効果に対する交流電力変動に対する有効電力指令値もしくはトルク指令値の算出方法および、電力系統に出力する電力を略一定にするための直流部電圧指令値の算出方法についてのみ詳述する。
 図2に、前述の本発明の効果を得るための指令値演算ブロックを図示する。回転速度検出器(13)からの回転速度(ω)信号はローパスフィルタ(15)に入力され、ノイズ等タワーシャドウ効果に起因しない変動周期成分を除去する。これにより、回転機構の構成部品の機械加工上の遊びによる高周波成分を除去することができる。ただし、ローパスフィルタ(15)は必須ではない。ローパスフィルタ(15)によって処理された回転速度(ω)信号は、入力トルク推定装置(16)に入力される。
 入力トルク推定装置(16)は、回転速度(ω)信号および1サンプリング前の回転速度(ω)信号から、回転速度変化率を算出する。また、交流側を制御する電力変換器の制御装置(19)によって得られる回転機の発電電力計測値(Pin)を回転速度(ω)信号で割ることで、回転機の負荷トルクを算出し、回転数速度変化率と回転機の負荷トルクおよび予め設定した回転機構を構成する部品群の慣性定数から、回転機構に入力される入力トルクを推定する。推定された入力トルクにフィルタ処理された回転速度(ω)を乗じることで交流側を制御する電力変換器に対する有効電力指令(Pin *)を算出する。有効電力指令(Pin *)は、交流側を制御する電力変換器の制御装置(19)と後段の平準化発電電力演算装置(17)および直流電圧演算装置(18)にそれぞれ入力される。
 平準化発電電力演算装置(15)は、翼(14)の構成枚数とその回転速度に応じた時間幅分の入力を統計処理することで電力系統に出力する平準化された発電電力を演算する。例えば、3枚翼で回転速度がX[min-1]の場合、タワーシャドウ効果は1/(3X)[min]の時間間隔で発生するため、この時間幅に相当する入力信号(Pin)を逐次移動時間平均することで、平準化発電電力指令値(Pout *)を演算することができる。
 なお、翼の回転速度は逐次変動するため、逐次移動平均時間幅を変更する演算負荷を低減するため、移動平均時間幅を回転電機システムの運転速度範囲下限に相当する時間幅以上に固定しても良い。翼1枚に対するタワーシャドウ効果が表れる最小時間以上の固定時間幅で平準化処理演算することにより、逐次時間幅を演算しなくても、常にタワーシャドウ効果による入力トルクの減少が発生する時間周期一つ分以上をカバーする時間幅で平均化することができる。言い換えると、回転機の運転速度範囲の下限値で翼が1回転するのに要する時間を翼1枚あたりに換算した時間幅分以上の固定の入力サンプリング数を逐次移動平均することで電力系統に出力する平準化された発電電力指令値を演算する。演算された平準化発電電力指令値(Pout *)は、直流電圧演算装置(18)に入力される。
 ここで、平準化された発電電力の演算値は、完全に平準化されたある値を決定するのが望ましいが、演算元の有効電力指令値(Pin *)より少しでも均一化されるような平準化処理がされれば、電力系統に出力する電力の安定化効果を奏する。
 また、上記説明では演算された平準化発電電力指令値(Pout *)は有効電力指令値(Pin *)に基づき演算したが、代わりに有効電力指令値(Pin *)に基づき制御される変換器(3)で実際に変換された電力の計測値を用いて演算してもよい。
 直流電圧演算装置(18)は、前段の処理で得られた発電電力指令値(Pin *)と平準化発電電力指令値(Pout *)、直流側を制御する電力変換器の制御装置(20)によって得られる直流部の直流電圧計測値(V)および直流部のエネルギー貯蔵装置定数(本実施例では平滑コンデンサ(5)の静電容量)から、直流部のエネルギー貯蔵装置で逐次充放電すべきエネルギーを演算し、これにより直流電圧指令値(V*)を演算する。具体的には、直流電圧演算装置(18)では、移動平均時間幅ごとに制御周期発電電力指令値(Pin *)と平準化発電電力指令値(Pout *)の差分ΔPを演算し、それを用いて直流電圧指令値(V*)を演算する。演算された直流電圧指令値(V*)は、直流側を制御する電力変換器の制御装置(20)に入力される。
 以上によって、交流側を制御する電力変換器(3)および直流側を制御する電力変換器(4)は、それぞれ電力変換器制御装置(6)に備わる交流側制御装置(19)および直流側制御装置(20)によって制御され、交流制御側は回転機構に入力されるトルク変動に追随して動作することで、タワーシャドウ効果による軸捩れ振動を抑制し、抑制することで電力変換器への入力電力が変動するが、直流制御側は直流部を充放電制御することで、電力系統への出力を略一定にするように動作することができる。
 前述の制御装置内の演算値の振る舞いを図3に図示する。移動平均幅をタワーシャドウ効果を含む時間幅にすることで、発電電力指令値(Pin *)の変動が平準化され、平準化発電電力指令値(Pout *)は略一定値となる。直流電圧指令値は、発電電力指令値(Pin *)と平準化発電電力指令値(Pout *)の差分を直流部の電圧としてエネルギー貯蔵するため、翼がタワー構造部材を横切るタイミングを基点に奇対称のように振舞う。
 図10に、風102をナセル103の翼14とは反対側から受けるダウンウィンド型風車の概略図を示す。翼14がタワー101付近を通る時に、翼が受ける風が乱れ、揚力が低下するタワーシャドウ効果が起きる。風の乱れはタワーの裏だけではなく、その周囲にわたって乱れがあり、タワーシャドウ効果による出力変動を考慮するときは、おおよそ左右対称な、幅を持った回転範囲の影響を考える必要がある。
 多数の風車を有する風力発電所の制御器として以下の構成が考えられる。
 ・風車群制御(ファーム制御器):風車群の合計出力を制御する。合計出力値は各風車の風速計からの出力予測値の総和と上位の系統運用者の出力指令値から、各風車に出力すべき電力の出力指令値を演算する。
 ・風車制御器:上位制御器(ファーム制御器)からの出力指令値および現時点での風速・風向計の情報から自風車の出力を制御するため、風車ナセル方位や翼角度の制御によって、風車の回転や、出力を制御する。
 ・変換器制御器:与えられた電力指令に則して、発電機を運転する。
 一般的な風車制御では、上記の制御階層に基づき、与えられた電力指令に従って出力制御するため、軸に掛かる負荷や捩れは考慮されない。本実施例では、上位制御器から来る指令よりも、軸捩れの抑制を優先した電力出力制御をおこなうことで捩れを抑制する効果が得られる。
 タワーシャドウによる入力変動の影響は、このような軸捩れの抑制を優先した電力出力制御を行うことで特に顕著となる。電力系統に供給する電力は、電力変換器の直流部に設置されたエネルギー貯蔵装置がバッファになった上で、翼から供給されるエネルギー量に追従する。バッファで吸収できないような大きな入力変動があった場合、直接的に電力系統に変動が出力されてしまう恐れがある。また、これに対処するために、エネルギー貯蔵装置の容量を多くする必要がある。
 本実施例では、定期的に起きる、予測できる入力変動に合わせて、電力系統に出力する電力指令値を、最適な平準化周期で予め演算する。回転機で発電された電力を翼の枚数とその回転速度に応じた時間幅で平準化した電力を、電力系統に出力する。これにより、タワーシャドウのような定期的な入力変動の影響を抑制することができる。最適な平準化周期とは、例えば翼が3枚ある風力発電設備におけるタワーシャドウに対する演算では、翼が1回転する時間である回転周期の3分の1の時間の倍数が望ましい。
 図4を用いて、本実施例について説明する。なお、上述の実施例と重複する箇所については、その説明を省略する。
 実施例1は、交流側電力変換器が発電電力指令(Pin *)に従って動作させる場合について記載したが、回転機構の入力トルク変動に直接追随させるため、交流側電力変換器の発電電力制御に代えてトルク制御とし、交流側電力変換器の制御装置(19)はトルク指令値(Tin*)を入力として、回転機(7)の負荷トルクを制御しても良い。この場合、図2に示した本発明の制御ロジックは図4に示すように組み替えることができる。組み替えた結果、交流側電力変換機の制御装置(19)から入力トルク推定装置(16)に入力される計測値は、電気的な計測値から推定した負荷トルク(Tin)となる。また、入力トルク推定装置(16)で軸捩じれを抑制するような値となるように算出されたトルク指令値(Tin*)はそのまま交流側電力変換器の制御装置(19)に入力される。
 トルク制御とするときに、負荷トルクを推定せずに、光やひずみゲージなどの軸捩れセンサで軸の捩れ変位量を計測することで、直接的に負荷トルクと入力トルクの差分を計測することもできる。その場合、回転速度検出器(13)の代わりに軸捩じれセンサを設置し、トルク計測値をそのまま入力トルク推定装置(16)に入力する。
 図5を用いて、本実施例について説明する。なお、上述の実施例と重複する箇所については、その説明を省略する。
 図5に示す、固定子巻線(9)が電力系統(1)と電気的に接続しており、電力系統の周波数および固定子巻線(9)に依存して、固定子に回転磁界が発生し、電力変換器(2)は回転子(10)の物理的な回転速度と固定子の回転磁界の回転速度の差分(一般にすべり(s)と呼ばれる)に相当する交流電力をブラシ(21)およびスリップリング(22)を介して回転子巻線(11)に供給することで、発電する巻線形二次励磁回転電機システムにおいても本発明は適用可能である。
 巻線形二次励磁回転電機システムでは、すべり(s)に応じて回転子(10)に入力される入力エネルギーが固定子(8)および回転子(10)に一意に分配され、かつ、エネルギー授受の方向もすべり(s)によって一意に決定される。このため、交流側を制御する電力変換器(3)は、すべり(s)に応じて固定子巻線(9)から電力系統(1)へ提供される電力をPin */(1-s)となるように、電力変換器(3)から回転子巻線(10)に提供する電力を制御する。このため、図2に示した本発明の効果を得るための指令値演算ブロックは、すべり(s)を考慮して図6のように組み替える必要がある。
 図6に示す演算ブロックは、新たにすべり演算器(23)が追加され、回転速度検出器(13)で計測された回転速度(ω)信号からすべり(s)を演算する。交流側電力変換器の制御装置(19)で計測された回転機の軸出力とすべりから、回転機の軸出力演算器(25)は発電出力(Pin)を演算し、入力トルク推定装置(16)に入力する。軸捩じれが抑制されるように決定された発電電力指令値(Pin *)は、交流側電力変換器の制御装置(19)に入力される前に、固定子出力演算器(24)で回転子(10)への入力に対応する指令値に変換される。
 直流側を制御する電力変換器の制御装置(20)に送信する直流電圧指令値(V*)を、直流電圧演算装置(18)は発電電力指令値(Pin *)と平準化発電電力指令値(Pout *)の差分から演算するが、具体的な演算内容は実施例1と若干異なる。巻線形二次励磁回転電機システムでは、電力系統(1)に供給される電力は、固定子巻線(9)からの電力と直流側を制御する電力変換器(4)からの電力を加算したものとなる。前述の通り固定子巻線(9)から電力系統(1)へ提供される電力はPin */(1-s)であり、電力系統(1)に出力する総電力は平準化発電電力指令値(Pout *)にする必要があるため、直流電圧指令値(V*)はこれらの差分に基づき演算される。
 図7を用いて、本実施例について説明する。なお、上述の実施例と重複する箇所については、その説明を省略する。
 図7に示す2つの巻線形二次励磁発電機の回転子が同軸で回転するように接続され、かつ、その回転子に電力変換器(2)が実装されることで、図5に示す巻線型二次励磁発電機システムにおけるブラシ(21)およびスリップリング(22)を不要とした回転電機システムに対しても、本発明は適用可能である。すべりに応じて回転機に入出力されるエネルギーが一意に決定される点は巻線型二次励磁回転電機システムと同様であるが、回転機(7)および補助回転機(26)はそれぞれ巻線の極数が異なる場合もあり、回転機(7)のすべり(s)と補助回転機(26)のすべり(s’)をそれぞれ考慮する必要がある。また、回転機(7)および補助回転機(26)それぞれが回転機構に負荷トルクを発生させることも入力トルクを推定する際に考慮する必要がある。このため、図2に示した本発明の効果を得るための指令値演算ブロックは、すべり(s)およびすべり(s’)を考慮して図8のように組み替える必要がある。
 図8では、すべり演算器(23)はそれぞれの回転機の巻線極数に応じたすべり(s)とすべり(s‘)を演算し、軸出力演算器(25)と固定子出力演算器(24)に入力する。補助回転機の発電出力も入力トルク推定のために必要なので、直流側を制御する電力変換器の制御装置(20)から軸出力演算器(25)に発電出力(Pin’)を入力する。また、交流側電力変換器の制御装置(19)への指令値は補助回転機への指令値と協調をとったものである必要があるため、平準化発電電力指令値(Pout *)は固定子出力演算器(24)にも入力する。本実施例においても、発電電力指令値(Pin *)と平準化発電電力指令値(Pout *)の差分に基づいて演算した直流電圧指令値(V*)を、直流側を制御する電力変換器の制御装置(20)に入力する。
 図9を用いて、本実施例について説明する。なお、上述の実施例と重複する箇所については、その説明を省略する。
 図9に、本発明に係るその他の実施形態を示す回転電機システムの全体構成を示す。図1の永久磁石型回転電機システムに対して、翼側に新たに回転速度検出器(31)を設けた構成である。これにより回転速度検出器(13)および翼側回転速度検出器(31)それぞれの検出した回転速度信号を積分することで、回転速度検出器が具備された位置の回転機構の軸回転位相を知ることができる。この情報を用いることで、軸回転位相の差分により直接軸捩れの強弱を判定することができ、入力トルク推定装置(16)において、軸回転位相の差分と軸の捩じりバネ定数から入力トルク推定制度を向上することができる。さらに、直接軸捩れの強弱を判定することができるため、捩れ強度を一定に制御したり、一定の変動幅に抑えるための発電電力指令値(Pin *)を算出することができる。
 以上説明した実施例1~4の改善として以下がある。翼が2枚以上である場合、タワーシャドウ効果はどの翼の場合でもほぼ同様であるため、先行する翼によるタワーシャドウ効果の入力トルク変動は、それ以降の翼にとって、自翼がタワー構造部材を横切る際の入力トルク変動と同一と見なすことができる。これにより、一部演算値を翼回転位相の回転対称点での過去演算値を流用し用いることで、演算処理の分割および制御の高速化が期待できる。
 以上説明した実施例1~4は、発電機への入力トルクが風力や海流等の自然環境等に依存する回転電機システムに係り、回転電機から発電電力の反力として回転機構に出力される負荷トルクの可変制御および電力系統へ出力される発電電力の一定出力制御に必要な制御装置および制御に必要な検出装置等の機器構成について説明したものである。
 以上説明した実施例以外の変動対処方法1として、例えば、回転機構の回転速度が増加した場合に、発電機に接続される電力変換器によって発電機の電気出力を増加させるように発電機を制御する方法がある。これにより発電機の入力トルクの反力となる負荷トルクも増加するため、結果として回転機構の回転速度を減じることができる。また、反対に回転機構の回転速度が減少した場合に、発電機に接続される電力変換器によって発電機の電気出力を減少させるように発電機を制御する。これにより発電機の入力トルクの反力となる負荷トルクも減少するため、結果として回転機構の回転速度を増加せることができる。このように速度の増減に応じて負荷トルクを制御することで回転機構の回転速度を一定に保つようにすることで、軸捩れ共振を抑制する。
 しかし、上記の変動対処方法1によれば、回転速度の増減に応じて常に回転速度を一定に保つため、翼からの回転機構への入力トルクが増加し回転機構の回転速度が増加した場合に、回転速度が減速するように入力トルクとは逆向きの負荷トルクを増加させ、逆に、翼からの回転機構への入力トルクが減少し回転機構の回転速度が減少した場合に、回転速度が増速するように入力トルクとは逆向きの負荷トルクを減少させるため、タワーシャドウ効果による入力トルク変動に対して常に逆向きの負荷トルク変動を回転機構に加えることになる。これは軸に対して繰り返し軸捩れ負荷を与えることに相当する。このため、回転機構の部品劣化を加速する問題が生じる可能性がある。
 また、実施例以外の変動対処方法2として、例えば、発電機出力の増減に応じて、電力変換器の直流部に備わる電力貯蔵装置の充放電を制御することで、発電機出力の増減分を充放電電力として一時的に電力貯蔵装置で保存し、貯蔵された電力を電力系統に一定に出力することで、電力系統への発電電力の変動を制御する方法がある。
 しかし、上記の変動対処方法2によれば、逐次発電機出力の増減に応じて電力変換器の直流部の平滑コンデンサ等のエネルギー貯蔵装置を充放電するため、風力や海流等の流動性媒体の運動エネルギーが増加もしくは減少のいずれか一方の変化をする場合に、電力系統に出力する発電電力を一定に制御すると、直流部のエネルギー貯蔵装置の過充電および過放電となり、一定出力制御の継続が不可能となる。
 また、実施例以外の変動対処方法3として、例えば、複数台の風車の運転状況に応じて、それら風車から特定の風車をいくつか選択し、それら選択された風車の翼角度(ピッチ角度)を制御することで、翼回転速度を制御し、複数台の風車の合計出力を平準化する方法がある。
 しかし、上記の変動対処抑制方法3によって、電力系統へ出力される発電電力を平準化するためには、複数台の風車が必要不可欠であり、また、複数台の風車を制御する制御装置およびそれらの通信装置が必須となるため、発電システムの高コスト化となる。
 本発明の実施例に記載の回転電機システムでは、上記問題を解決する実施例記載の構成を有することで、単一の風力発電システムや海流発電システムに適応可能で、風力や海流等の流動性媒体の運動エネルギーの変化およびタワーシャドウ効果に起因する軸捩れを抑制し、回転機構を構成する部品の寿命を長期化させ、かつ、発電システムの入力となる運動エネルギーが変動した場合にも、発電機を制御する電力変換器の直流部のエネルギー貯蔵装置の過充電および過放電を招くことなく、出力電力の平準化することができる、回転電機システムを提供することができる。
 1         電力系統
 2         電力変換器
 3、4     (個別の)電力変換器
 5         直流部平滑コンデンサ
 6         電力変換器制御装置
 7         回転機
 8         固定子
 9         固定子巻線
 10        回転子
 11        回転子巻線
 12        回転軸もしくはシャフト
 13        回転速度検出器
 14        翼(3枚翼)
 15        ローパスフィルタ
 16        入力トルク推定装置
 17        平準化発電電力演算装置
 18        直流電圧演算装置
 19        交流側制御装置
 20        直流側制御装置
 21        ブラシ
 22        スリップリング
 23        すべり演算器
 24        固定子出力演算器
 25        回転機の軸出力演算器
 26        補助回転機
 27        補助回転機の固定子
 28        補助回転機の固定子巻線
 29        補助回転機の回転子
 30        補助回転機の回転子巻線
 31        翼側回転速度検出器
 ω         回転速度
  Pin      回転機の発電電力    計測値
 Pin *      発電電力指令値
 Pout *      平準化発電電力指令値
 V         直流電圧計測値
 V*        直流電圧指令値
 Tin       回転機のトルク計測値もしくは制御装置内演算値
 Tin *      トルク指令値
 s         回転機のすべり
 s’        補助回転機のすべり

Claims (11)

  1.  翼によって回転される回転機構を介して回転機が回転し発電する回転電機システムであって、
     前記発電された電力を貯蔵するエネルギー貯蔵装置を有し、
     前記発電された電力を前記翼の枚数と回転速度に応じた時間幅で平準化処理した電力を出力することを特徴とする回転電機システム。
  2.  請求項1に記載の回転電機システムであって、
     前記回転機が発電する電力を交流から直流に変換し前記エネルギー貯蔵装置に貯蔵する第一の変換器と、
     前記エネルギー貯蔵装置に貯蔵された電力を直流から交流に変換し電力系統に出力する第二の変換器と、
     前記回転機に備えられた回転速度検出器と、
     前記回転速度検出器の検出した回転速度の変化率に基づき、前記第一の変換器の出力指令値を決定する制御装置を有することを特徴とする回転電機システム。
  3.  請求項1に記載の回転電機システムであって、
     前記回転機が発電する電力を交流から直流に変換し前記エネルギー貯蔵装置に貯蔵する第一の変換器と、
     前記エネルギー貯蔵装置に貯蔵された電力を直流から交流に変換し電力系統に出力する第二の変換器と、
     前記第一の変換器への出力指令値を、前記翼の枚数とその回転速度に基づき決定した時間幅で平準化処理した値に基づき、前記第二の変換器への指令値を算出する制御装置を有することを特徴とする回転電機システム。
  4.  請求項2に記載の回転電機システムであって、
     前記翼により前記回転機構に加えられる入力トルクの変動に追従するように前記第一の変換器が変換する電力を制御する制御装置を有することを特徴とする回転電機システム。
  5.  翼によって回転される回転機構を介して回転機が回転する回転電機システムであって、
     前記翼、若しくは前記回転機構、若しくは前記回転機のいずれか一つ以上の回転軸に回転速度検出器を備え、
     前記回転速度検出器で検出した回転速度検出値の差分から、若しくは前記回転速度検出値を用いて算出される回転速度変化率から回転機構の入力トルクを推定する入力トルク推定装置を備え、
     前記推定された入力トルクに基づき、もしくは前記推定された入力トルクに前記回転速度を乗じることで推定される発電出力に基づき、前記回転機から出力される発電出力を制御する電力変換器の交流側制御装置を備え、
     前記推定された発電出力を入力として、前記翼の枚数と前記回転速度に応じた時間幅分の入力を平準化処理することで電力系統に出力する発電電力を演算する平準化発電電力演算装置を備え、
     前記演算された平準化発電電力と前記推定された発電機出力から、前記電力変換器の直流部に設置されたエネルギー貯蔵装置の充電電圧指令値を演算する直流電圧演算装置を備え、
     前記演算された充電電圧指令値に基づき前記電力変換器のエネルギー貯蔵装置の充電電圧を制御する前記電力変換器の直流側制御装置を備えることを特徴とする回転電機システム。
  6.  請求項5に記載の回転電機システムであって、
     前記回転機の回転軸に第一の回転速度検出器を備え、
     前記翼の回転軸に、若しくは前記回転機構の増速機の回転軸に第二の回転速度検出器を備え、
     それぞれの前記回転速度検出器で検出された回転速度信号を積分処理し、前記回転速度検出器が具備された位置の回転角位相を算出し、算出した回転角位相から軸捩れ若しくは軸捩れを補正するトルク指令値を算出することを特徴とする回転電機システム。
  7.  請求項1乃至6のいずれかに記載の回転電機システムであって、
     前記翼の枚数と回転速度に応じた時間幅に、前記回転機が発電した電力を逐次移動平均し、電力系統に出力する発電電力指令値を演算する制御装置を有することを特徴とする回転電機システム。
  8.  請求項1乃至6のいずれかに記載の回転電機システムであって、
     前記時間幅は、前記回転機の運転速度範囲の下限値の回転速度において、翼が1回転するのに要する時間を翼1枚あたりに換算した時間以上の固定時間幅であることを特徴とする回転電機システム。
  9.  請求項1乃至7のいずれかに記載の回転電機システムであって、
     前記翼の上流に前記翼の支持構造物を有することを特徴とする回転電機システム。
  10.  請求項1乃至8のいずれかに記載の回転電機システムであって、
     先行する翼に対する指令値演算値を、それ以降の翼に用いて制御する制御装置を有することを特徴とする回転電機システム。
  11.  3枚の翼と、
     前記翼により駆動され発電する回転機と、
     前記回転機が発電した電力を変換し系統に供給する、平滑コンデンサを備えた電力変換器と、
     を有する風力発電設備の運転方法であって、
     前記翼の回転周期の3分の1の時間の倍数の時間単位で、
     電力系統に出力する電力を平滑化処理することを特徴とする
     風力発電設備の運転方法。
PCT/JP2013/085036 2013-12-27 2013-12-27 回転電機システム WO2015097842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554428A JP6272355B2 (ja) 2013-12-27 2013-12-27 回転電機システム
EP13900249.7A EP3089353A4 (en) 2013-12-27 2013-12-27 Rotating electrical machine system
PCT/JP2013/085036 WO2015097842A1 (ja) 2013-12-27 2013-12-27 回転電機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085036 WO2015097842A1 (ja) 2013-12-27 2013-12-27 回転電機システム

Publications (1)

Publication Number Publication Date
WO2015097842A1 true WO2015097842A1 (ja) 2015-07-02

Family

ID=53477777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085036 WO2015097842A1 (ja) 2013-12-27 2013-12-27 回転電機システム

Country Status (3)

Country Link
EP (1) EP3089353A4 (ja)
JP (1) JP6272355B2 (ja)
WO (1) WO2015097842A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109931221B (zh) * 2019-03-28 2020-12-08 华中科技大学 一种双速永磁风力发电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250499A (ja) * 1994-03-09 1995-09-26 Mitsubishi Heavy Ind Ltd 風力発電装置の出力計測信号のノイズ除去装置
JP2002017044A (ja) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP2003134892A (ja) 2001-10-25 2003-05-09 Hitachi Ltd 風力発電装置及び風力発電方法
JP2005045849A (ja) 2003-07-22 2005-02-17 Hitachi Ltd 風力発電装置
JP2007124779A (ja) * 2005-10-27 2007-05-17 Hitachi Ltd 分散型電源システム及び系統安定化方法
JP2011137393A (ja) 2009-12-28 2011-07-14 Hitachi Ltd 風力発電システム
WO2011093362A1 (ja) * 2010-01-27 2011-08-04 三洋電機株式会社 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP2011217563A (ja) * 2010-04-01 2011-10-27 Toshiba Corp 電力安定化システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798631A (en) * 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
DE102009059669A1 (de) * 2009-12-19 2011-06-22 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur Dämpfung von Torsionsschwingungen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250499A (ja) * 1994-03-09 1995-09-26 Mitsubishi Heavy Ind Ltd 風力発電装置の出力計測信号のノイズ除去装置
JP2002017044A (ja) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP2003134892A (ja) 2001-10-25 2003-05-09 Hitachi Ltd 風力発電装置及び風力発電方法
JP2005045849A (ja) 2003-07-22 2005-02-17 Hitachi Ltd 風力発電装置
JP2007124779A (ja) * 2005-10-27 2007-05-17 Hitachi Ltd 分散型電源システム及び系統安定化方法
JP2011137393A (ja) 2009-12-28 2011-07-14 Hitachi Ltd 風力発電システム
WO2011093362A1 (ja) * 2010-01-27 2011-08-04 三洋電機株式会社 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP2011217563A (ja) * 2010-04-01 2011-10-27 Toshiba Corp 電力安定化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089353A4

Also Published As

Publication number Publication date
JPWO2015097842A1 (ja) 2017-03-23
EP3089353A1 (en) 2016-11-02
JP6272355B2 (ja) 2018-01-31
EP3089353A4 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
DK2963283T3 (en) METHODS AND SYSTEMS FOR OPERATING A WINDMILL SYSTEM
EP1918581B1 (en) Methods and apparatus for operating a wind turbine
EP2921699B1 (en) Method for operating a wind farm and wind farm
EP2963284B1 (en) Methods and systems to operate a wind turbine system
CN102472249B (zh) 风力发电装置、风力发电装置的控制方法、风力发电系统及风力发电系统的控制方法
CA2764612C (en) Methods and systems for determining a pitch angle offset signal and for controlling a rotor frequency of a rotor of a wind turbine for speed avoidance control
US9014861B2 (en) Method and system for noise-controlled operation of a wind turbine
US20110142634A1 (en) Overspeed protection system and method
CN203456878U (zh) 稳定器系统和转换器控制器
KR102128848B1 (ko) 등가 풍속을 결정하는 방법
ES2876246T3 (es) Procedimiento y sistemas para hacer funcionar un sistema de generación y suministro de potencia
EP2687857B1 (en) Methods and systems for use in monitoring a tachometer of a wind turbine
EP2955370B1 (en) Method and system for managing loads on a wind turbine
CN111712634B (zh) 用于风力涡轮功率系统中的锁相环路的功率角前馈信号
JP6272355B2 (ja) 回転電機システム
WO2011155278A1 (ja) 流体発電装置及び流体発電装置の制御方法
JP2016116305A (ja) 発電システムまたは風力発電システム
Stubkier et al. State of the art-hydraulic yaw systems for wind turbines
JP2024042342A (ja) 制御装置
JP2021027609A (ja) 風力発電装置およびその制御方法
JP2014053996A (ja) 回転電機の制御装置、回転電機、および風力発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554428

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013900249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900249

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE