WO2011155278A1 - 流体発電装置及び流体発電装置の制御方法 - Google Patents

流体発電装置及び流体発電装置の制御方法 Download PDF

Info

Publication number
WO2011155278A1
WO2011155278A1 PCT/JP2011/060573 JP2011060573W WO2011155278A1 WO 2011155278 A1 WO2011155278 A1 WO 2011155278A1 JP 2011060573 W JP2011060573 W JP 2011060573W WO 2011155278 A1 WO2011155278 A1 WO 2011155278A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
generator
fluid
wind
speed
Prior art date
Application number
PCT/JP2011/060573
Other languages
English (en)
French (fr)
Inventor
浅生 利之
旭弘 海野
圭介 早坂
隆 咲山
章枝 棚網
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2012519312A priority Critical patent/JPWO2011155278A1/ja
Publication of WO2011155278A1 publication Critical patent/WO2011155278A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/40Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of reluctance of magnetic circuit of generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/707Application in combination with an electrical generator of the linear type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a fluid power generation device that converts wind or hydraulic fluid energy into electrical energy by a generator, and a control method for the fluid power generation device.
  • Natural energy is energy that can be used without depleting resources, and is also called renewable energy.
  • Wind energy (wind power) and water energy (hydraulic power) are attracting attention as a kind of natural energy.
  • the wind power generator receives wind power from a rotor (impeller), and the generator converts the mechanical rotational force of the rotor into electric power.
  • the hydroelectric power generation device uses hydropower instead of wind power, and includes a generator like the wind power generation device.
  • Patent Document 1 discloses a variable speed control type wind power generator (hereinafter simply referred to as a windmill) that controls the number of rotations of a rotor according to the wind speed. Based on the principle of the windmill, the rotor speed that maximizes the energy received from the wind is determined from the blade characteristics of the rotor. As the wind speed changes, the rotor speed that maximizes the energy the rotor receives from the wind also changes. In the invention described in Patent Document 1, the rotational speed of the rotor is controlled to a rotational speed that maximizes the energy received from the wind.
  • a windmill variable speed control type wind power generator
  • the generator of the windmill is connected to the power system via a converter and an inverter.
  • the wind turbine generator is designed to output a rated output at the rated wind speed (the wind speed when the rated output of the wind turbine is generated).
  • an object of the present invention is to provide a fluid power generation facility capable of solving the above-described problems of conventional fluid power generation facilities and capable of efficient power generation.
  • One embodiment of the present invention includes a rotor that rotates by receiving wind or hydraulic power, a rotating shaft that rotates together with the rotor, a rotor that is attached to the rotating shaft, and a stator that faces the rotor via a gap.
  • a generator that converts wind energy or hydraulic fluid energy received by the rotor into electrical energy, and at least one of the stator and the rotor of the generator is moved in the axial direction of the rotating shaft, thereby
  • a driving device that changes an overlapping length in which one of the stator and the rotor enters the other, a flow velocity measuring device that measures the flow velocity of the fluid, and / or a rotational speed measuring device that measures the rotational speed of the rotor; The flow velocity of the fluid measured by the flow velocity measuring device and the relationship between the predetermined flow velocity of the fluid and the index related to the overlap length of the generator, or the rotation speed measuring device measured
  • a control device for controlling the overlap length of the generator based on a relationship between a rotation speed of the motor and a predetermined rotation speed of the rotor and an index relating to the overlap length of the generator. It is a fluid power generation device.
  • Another aspect of the present invention is a method of controlling a fluid power generation apparatus that converts wind energy or hydraulic fluid energy received by a rotor into electrical energy by a generator, wherein the flow velocity of the fluid received by the rotor and / or the rotational speed of the rotor is determined.
  • the overlap length in which one of the stator and rotor of the generator enters the other is controlled.
  • the overlap length that is, the electrical energy output by the generator can be precisely controlled.
  • the energy of the wind received by the rotor rotating in proportion to the wind speed can be substantially matched with the electrical energy output by the generator, thus enabling efficient power generation.
  • the efficiency of the windmill can be maintained high.
  • FIG. 1 is an overall view of a fluid power generation apparatus according to an embodiment of the present invention.
  • Schematic diagram of the generator ((a) shows a cross-sectional view of a vertical plane, (b) shows a cross-sectional view of a horizontal plane) Horizontal sectional view showing a rotor rotating in response to wind Graph showing the relationship between rotor speed and wind turbine output
  • a graph showing the relationship between the meshing rate and the back electromotive force constant Graph showing the relationship between wind speed and engagement rate
  • Graph showing generator characteristics when meshing rate is controlled
  • FIG explaining right side control Configuration diagram of control device Conceptual diagram showing an example of extracting the minimum wind speed V MIN from the sampled wind speed data
  • the figure which shows the 1st example of the flowchart which a control apparatus performs The figure which shows the 2nd example of the flowchart which a control apparatus performs Graph showing the relationship between the wind speed and the maximum efficiency speed N MAX (V) that produces the maximum output
  • FIG. 1 shows an overall configuration diagram of the wind turbine.
  • FIG. 1 shows a vertical axis windmill in which the rotating shaft 4 of the rotor 1 is perpendicular to the wind direction.
  • a lift type windmill that uses the lift acting on the rotor 1 to obtain a rotational force is used.
  • the rotor 1 has a plurality of blades 2 extending linearly in the vertical direction. When the wind blows, the blade 2 rotates at a speed several times the speed of the wind flowing into the rotor 1 using the generated lift.
  • the blade 2 is attached to the rotary shaft 4 via a pair of upper and lower support arms 3.
  • the wind speed is measured by an anemometer 6 as a flow velocity measuring device installed at the height of the rotor 1.
  • the wind speed data measured by the anemometer 6 is sent to the control device 10 that controls the position of the stator 7 of the generator 8.
  • the rotating shaft 4 is rotatably supported by the case 12.
  • the case 12 includes a lower case 12a formed in a cylindrical shape and an upper case 12b formed in a cylindrical shape and having a diameter narrower than that of the lower case.
  • a plurality of bearings 13 are arranged in the upper case 12b at intervals in the vertical direction.
  • the rotating shaft 4 is rotatably supported by the plurality of bearings 13.
  • Below the rotating shaft 4, a rotary encoder 14 is provided as a rotating speed measuring device that measures the rotating speed of the rotating shaft 4.
  • the rotational speed data measured by the rotary encoder 14 is sent to the control device 10.
  • the case 12 is fixed to the upper part of the tower installed on the ground.
  • the generator 8 is accommodated in the lower case 12a.
  • a synchronous generator is housed as the generator 8.
  • the synchronous generator is an AC generator that generates electric power synchronized with the rotational speed at which the magnetic field generated by the rotor 9 crosses the coil of the stator 7.
  • a rotor 9 of a generator 8 formed in a cylindrical shape is attached to the lower part of the rotating shaft 4.
  • the rotor 9 has a plurality of permanent magnets 9a and 9b arranged so that N poles and S poles are alternately formed in the circumferential direction.
  • Each permanent magnet 9a, 9b is elongated in the vertical direction.
  • the cylindrical stator 7 faces the rotor 9 through a gap.
  • the center line of the rotor 9 and the center line of the stator 7 coincide with each other, and the cylindrical stator 7 surrounds the rotor 9.
  • the stator 7 includes a cylindrical yoke 17 and a plurality of coils 16 wound around a plurality of teeth 17 a of the yoke 17.
  • the yoke 17 is made of electromagnetic steel having high conversion efficiency between electric energy and magnetic energy, such as silicon steel.
  • the yoke 17 includes a cylindrical yoke main body 17b and a plurality of teeth 17a protruding inward in the radial direction from the cylindrical yoke main body.
  • the teeth 17a extend in the vertical direction like the permanent magnets 9a and 9b.
  • the vertical length of the teeth 17a is substantially equal to the vertical length of the permanent magnets 9a, 9b.
  • the U-phase, V-phase, and W-phase coils 16 are wound around the plurality of teeth 17a
  • a three-phase alternating current is generated in the coil composed of the U phase, the V phase, and the W phase.
  • This three-phase alternating current becomes an output of the generator 8 and is linked to the commercial power supply 22 via a direct current link system, that is, a power conversion device composed of a converter 19 and an inverter 20 and a transformer 21.
  • the output of the generator 8 may be linked to a commercial power supply via an AC link system, that is, only through the transformer 21, or may be stored in a battery via a rectifier circuit.
  • the stator 7 of the generator 8 is moved in the vertical direction by a feed screw mechanism as a driving device 24.
  • a ball screw nut 25 of a feed screw mechanism is coupled to the stator 7.
  • a screw shaft 26 extending in the vertical direction is screwed onto the ball screw nut 25.
  • the output shaft of the servo motor 30 is coupled to the end of the screw shaft 26.
  • the servo motor 30 is supported by a bracket 27 attached to the lower case 12a.
  • the servo motor 30 rotates the screw shaft 26 around its axis, the ball screw nut 25 moves up and down by the action of the screw. Since the stator 7 is coupled to the ball screw nut 25, the stator 7 moves up and down as the ball screw nut 25 moves up and down.
  • the meshing rate is used as an index representing the overlapping length of the rotor 9 entering the stator 7.
  • the axial length of the rotor 9 may be used instead of the axial length L of the stator 7.
  • the control device 10 operates the drive device 24 to control the engagement rate.
  • the rotation angle of the servo motor 30 is detected by the encoder 29.
  • the detection signal of the encoder 29 is sent to the control device 10.
  • the control device 10 feedback-controls the servo motor 30 so that a predetermined engagement rate is obtained.
  • the purpose of the meshing rate control of the generator 8 is to make the wind energy received by the rotor 1 rotating in proportion to the wind speed coincide with the electrical energy output by the generator 8 when the wind speed changes. First, the energy of wind received by the rotor 1 rotating in proportion to the wind speed will be described.
  • the wind turbine rotor 1 rotates when it receives wind energy. How efficiently the rotor 1 receives wind energy is determined by the shape of the blades 2 of the rotor 1.
  • the output coefficient Cp is used as an index representing how much windmill output can be obtained from wind energy.
  • the peripheral speed ratio at which the wind turbine output is maximized depends only on the shape of the blade 2 of the rotor 1 and does not depend on the wind speed.
  • the peripheral speed ratio at which the output of the windmill is maximized is a constant value.
  • the optimum peripheral speed ratio is constant 5 regardless of whether the wind is 12 m / s or 6 m / s.
  • the generator 8 is designed to output a rated output at the rated wind speed.
  • the generator 8 (to be precise, the permanent magnet and coil of the generator 8) is configured to generate a rated output of 1 KW. Is designed.
  • the voltage output from the generator 8 is proportional to the rotational speed.
  • the rotation speed of the rotor 1 changes from 200 rpm to 100 rpm, so the voltage output from the generator 8 decreases from E to E / 2.
  • E RI (E: voltage, R: coil resistance, I: current)
  • the current I is also reduced to 1 ⁇ 2.
  • the electric power E ⁇ I output from the generator 8 is reduced to 1 ⁇ 4 KW.
  • the energy of the wind received by the rotor 1 is reduced to 1/8 KW.
  • the power output from the generator 8 is reduced to 1 ⁇ 4 KW.
  • the energy of the wind is reduced to 1/8 KW, so it can generate electricity only up to 1/8 KW.
  • the output of the generator 8 is 1 ⁇ 4 KW.
  • the generator 8 cannot be rotated at 100 rpm due to the deviation between the wind energy and the output of the generator 8. As a result, the rotational speed of the rotor 1 decreases one after another, and finally stops.
  • the wind speed has doubled and changed from 12 m / s to 24 m / s. While the wind energy received by the rotor 1 increases eight times, the output of the generator 8 increases four times. Since the wind energy is larger, the rotational speed of the rotor 1 becomes faster from 400 rpm. In this case, the rotational speed of the rotor 1 deviates from the rotational speed when the circumferential speed ratio is 5, so that the efficiency is also lowered. Finally, the rotor 1 is low in that the energy of wind and the output of the generator 8 are balanced. Rotate.
  • the meshing rate control of the generator 8 is performed in order to make the wind energy received by the rotor 1 coincide with the output of the generator 8.
  • the output of the windmill is increased by N ⁇ 3 times.
  • the rotational speed of the generator 8 is -1 times N
  • the output of the generator 8 becomes -2 times N.
  • the counter electromotive voltage constant of the generator 8 is increased by N ⁇ 1/2 times. If the back electromotive force constant of the generator 8 is increased by N ⁇ 1/2 times, the voltage of the generator 8 is N ⁇ 3/2 times, the current is N ⁇ 3/2 times, and the output of the generator 8 is N ⁇ 3 times. Doubled to match the output of the windmill.
  • N rational number equal to or greater than 1
  • the output of the wind turbine is increased N 3 times
  • the output of the generator 8 is increased N 2 times.
  • the counter electromotive voltage constant of the generator 8 is increased to N 1/2 times. If the back electromotive force constant of the generator 8 is increased to N 1/2 times, the voltage of the generator 8 is N 3/2 times, the current is N 3/2 times, the output of the generator 8 is N 3 times, Matches the output of the windmill.
  • FIG. 5 is a graph showing an example of the relationship between the meshing rate and the back electromotive force constant. As the engagement rate increases from 0% to 100%, the back electromotive force constant increases almost linearly. Even when the meshing rate is 0%, the counter electromotive voltage constant does not become zero. Since the magnetic flux is formed from the permanent magnets 9a and 9b with a certain extent, even if the stator 7 is completely extracted from the rotor 9, a counter electromotive force is generated.
  • FIG. 6 is a graph showing an example of the relationship between the wind speed and the engagement rate. If the meshing rate is controlled according to the wind speed as shown in FIG. 6, the wind energy received by the rotor 1 and the output of the generator 8 can be matched.
  • FIG. 6 shows that the cut-in wind speed as a cut-in flow rate is 2 m / s, the rated wind speed is 12.5 m / s, and the cut-out wind speed as a cut-out flow rate is 15 m / s.
  • Cut-in wind speed is the minimum wind speed that produces the power available to the windmill.
  • the rated wind speed is a prescribed wind speed at which the rated output of the wind turbine is generated.
  • Cutout wind speed is the maximum wind speed that produces the power available to the windmill.
  • the meshing rate gradually increases as the wind speed gradually increases.
  • the relationship between the wind speed and the engagement rate is represented by a continuous curve. For example, when the wind speed changes to N times the rated wind speed (N: rational number of 1 or more), the meshing rate changes to approximately N ⁇ 1/2 times the meshing rate at the rated wind speed.
  • the meshing rate of the generator 8 is set to 65%, for example.
  • the generator 8 has a capacity larger than the output when the rotor 1 rotates at the cutout wind speed.
  • the meshing rate is set to be larger than the meshing rate of 65% at the cut-out wind speed, and finally with a steeper slope than when the wind speed is below the cut-out wind speed. Is raised to 100%.
  • the windmill When the wind speed exceeds the cut-out wind speed, the windmill may be broken. Therefore, the rotation of the rotor 1 is stopped by a mechanical brake.
  • the generator 8 When the wind speed exceeds the cut-out wind speed, the generator 8 can be caused to function as a brake that stops the rotation of the rotor 1 by rapidly increasing the meshing rate. In addition, it is possible to generate power even in strong winds exceeding the cutout wind speed.
  • a critical wind speed for example, 18 m / s
  • the control device 10 applies a mechanical brake (not shown). Operate.
  • the meshing rate is set smaller than the meshing rate at the cut-in wind speed, and the slope is steeper than the gradient at the cut-in wind speed or higher. Lower than zero. Less than 0 means that there is a gap in the axial direction of the rotating shaft 4 between the stator 7 and the rotor 9. The reason why it is less than 0 is to prevent the influence of magnetic flux spreading outside the permanent magnets 9a and 9b.
  • Whether the wind turbine rotor 1 rotates is determined by the torque acting on the rotor 1. Since the torque acting on the rotor 1 is proportional to the square of the wind speed, the torque decreases as the wind speed decreases. It is the bearing 13 and the generator 8 that become resistance when the rotor 1 rotates. Although the resistance of the bearing 13 is slight, the resistance of the generator 8 is larger than the resistance of the bearing 13. When the electric current flows, the generator 8 tries to stop the rotation of the rotor 1. When a synchronous generator is used for the generator 8, cogging that becomes resistance occurs because the teeth of the magnetic material are provided.
  • the resistance of the generator 8 can be reduced by making the meshing rate of the generator 8 less than 0, and the rotor 1 can be easily rotated. Once the rotor 1 rotates, the rotor 1 continues to rotate due to inertia, so the rotor 1 can be rotated even if the meshing rate is increased. In the world, a breeze of the cut-in wind speed blows frequently. By controlling the meshing rate in this way, power can be generated even with a light breeze of the cut-in wind speed.
  • FIG. 7 shows the characteristics of the generator 8 when the meshing rate is controlled as shown in the graph of FIG.
  • the “design generator characteristics” indicated by the solid line in FIG. 7 is the output characteristics of the generator 8 when the meshing rate is 100%.
  • the output characteristics of the generator 8 are reduced to “operating generator characteristics” indicated by the broken line in FIG. It can be seen that the peak value of the wind turbine output matches the output of the generator 8 by controlling the meshing rate.
  • the peak value of the wind turbine output increases in proportion to the cube of the wind speed.
  • the output of the generator 8 also increases in proportion to the third power of the wind speed, so that the peak value of the wind turbine output matches the output of the generator 8.
  • the meshing rate of the generator 8 is set to 100%, and the “generator characteristics during operation” is made to coincide with the “generator characteristics during design”. Thereby, the generator 8 can be operated as a brake of the rotor 1 that rotates at high speed by strong wind.
  • the meshing rate of the generator 8 is controlled so that the rotor 1 rotates at a peripheral speed ratio higher than the peripheral speed ratio at which the output coefficient becomes maximum. Since control is performed on the right side of the peak value of the output coefficient, this control method is called right side control. Hereinafter, the right side control will be described.
  • FIG. 8 shows a wind turbine efficiency curve A similar to FIG. According to the efficiency curve A of the windmill, the peripheral speed ratio at which the output coefficient is maximized is 5, and when the rotational speed of the rotor 1 is 200 rpm, the windmill output becomes 1 KW at the maximum.
  • FIG. 8 also shows output curves C and D of two types of generators 8 with a one-dot chain line.
  • the output curve C of the generator 8 outputs 1 KW equal to the peak value of the wind turbine efficiency curve A when the peripheral speed ratio is 5 and the rotation speed of the rotor 1 is 200 rpm, and intersects with the wind turbine efficiency curve A at the point P1.
  • the output curve D intersects with the efficiency curve A on the right side P2 of the peak value of the efficiency curve A, and the rotor 1 rotates at a peripheral speed ratio 5.5 higher than the peripheral speed ratio 5 at which the output coefficient becomes maximum.
  • FIG. 9 shows an example of a configuration diagram of the control device 10.
  • the control device 10 includes a wind speed determination unit 41, a rotation speed determination unit 42, a wind speed / mesh rate storage unit 43, and a mesh rate control unit 44.
  • the wind speed determination unit 41, the rotation speed determination unit 42, and the engagement rate control unit 44 are realized by the CPU executing a program stored in a storage device such as a ROM or a RAM.
  • the wind speed / meshing ratio storage unit 43 is realized by a storage device such as a hard disk or a ROM.
  • the wind speed determination unit 41 takes in wind speed data measured by the anemometer 6 every predetermined sampling time (for example, 1 second to several seconds), and averages the predetermined time such as 10 seconds, 30 seconds, 1 minute, 3 minutes, 5 minutes, etc. The wind speed is calculated by moving average. Then, the wind speed determination unit 41 sends the calculated moving average wind speed data to the engagement rate control unit 44.
  • predetermined sampling time for example, 1 second to several seconds
  • Moving average is a technique for smoothing time-series data.
  • a simple moving average is used for the moving average.
  • a simple moving average is a simple average with no weighting of the last n data.
  • the simple moving average for 10 seconds is the average of the wind speed for the last 10 seconds. Assuming that the wind speeds are M1, M2, M3, M4... M10, the formula for calculating the simple moving average V AVE is as follows.
  • V NEXT SMA-M1 / 10 + M11 / 10
  • the wind speed determination unit 41 takes in the wind speed data measured by the anemometer 6 every predetermined sampling time (for example, 1 second to several seconds), 10 seconds, 30 seconds, 1 minute, 3 minutes.
  • the minimum wind speed V MIN for a predetermined time such as 5 minutes may be calculated.
  • the meshing rate is determined from the moving average wind speed V AVE, there is an advantage that large electric power can be obtained, but the torque resistance of the generator 8 increases.
  • the actual wind speed fluctuates greatly, and it frequently occurs that the current wind speed is smaller than the calculated moving average wind speed V AVE .
  • the torque resistance of the generator 8 is larger than the torque received from the wind of the rotor 1, and the rotational speed of the rotor 1 is reduced.
  • the minimum wind speed V MIN may be calculated.
  • the rotational speed determination unit 42 takes in the rotational speed data of the rotor 1 measured by the rotary encoder 14 as the rotational speed measuring device, and calculates the current rotational speed N of the rotor 1. The rotation speed determination unit 42 sends the calculated rotation number data to the engagement rate control unit 44.
  • the wind speed / engagement rate storage unit 43 stores the relationship between the wind speed and the engagement rate shown in the graph of FIG. 6 as table-like data.
  • the meshing rate control unit 44 is based on the moving average wind speed data from the wind speed determining unit 41, the rotational speed data from the rotational speed determining unit 42, and the data stored in the wind speed / meshing rate storage unit 43. To control.
  • FIG. 11 shows a first example of a flowchart executed by the control device 10.
  • the wind speed determination unit 41 calculates the moving average wind speed V AVE (S1). If the change rate of the moving average wind speed V AVE is equal to or greater than a predetermined value (for example, 20% or more) (S2), a target meshing rate corresponding to the moving average wind speed V AVE is calculated from the wind speed / meshing rate storage unit 43 ( S3). When the change rate of the moving average wind speed V AVE is less than the predetermined value, the process returns to S1. Then, the servo motor 30 of the drive device 24 is feedback-controlled so that the meshing rate of the generator 8 matches the target meshing rate (S4). A driver (not shown) is incorporated in the servo motor 30.
  • a predetermined value for example, 20% or more
  • the servo motor 30 is frequently operated and power is also applied.
  • the frequency of operating the servo motor 30 can be reduced, and power can be saved.
  • FIG. 12 shows a second example of a flowchart executed by the control device 10.
  • This second example is characterized in that not only the wind speed but also the rotational speed of the rotor 1 is incorporated in the control. What is important in controlling the meshing rate is to know in which state the current windmill is operating on the graph of FIG. 13 (details will be described later). In order to know this, not only the wind speed but also the rotational speed of the rotor 1 is incorporated in the control.
  • the wind speed determination unit 41 calculates the moving average wind speed V AVE (S1).
  • the rotational speed N MAX (V) with the maximum efficiency is calculated from the moving average wind speed V AVE (S2).
  • the rotational speed N MAX (V) with the maximum efficiency is obtained as follows from FIG.
  • FIG. 13 shows the relationship between the wind speed and the maximum efficiency rotational speed N MAX (V) that produces the maximum output.
  • the maximum rotational speed N MAX (V) corresponding to each wind speed is indicated by a black circle.
  • the wind turbine output increases in proportion to the cube of the wind speed. Considering blade characteristics, the output fluctuates according to the rotational speed even at the same wind speed.
  • the point where the maximum output is obtained at each wind speed is defined as the maximum output point
  • the line connecting the maximum output points is defined as the maximum efficiency curve.
  • the intersection of each wind speed curve and the maximum efficiency curve is the maximum efficiency rotation speed N MAX (V) for each wind speed.
  • the rotational speed N MAX when the wind speed 8m / s (V) is 110 rpm wind speed 12m / s rotational speed N MAX when the (V) is 170 rpm.
  • the relationship between the wind speed and the rotation speed N MAX (V) is stored in the wind speed / meshing ratio storage unit 43 as table data.
  • the meshing rate control unit 44 calculates the rotational speed N MAX (V) at the moving average wind speed V AVE based on the moving average wind speed V AVE calculated by the wind speed determination unit 41.
  • the meshing rate control unit 44 compares the rotational speed N of the rotor 1 calculated by the rotational speed determination unit 42 with the rotational speed N MAX (V) of the maximum efficiency (S3).
  • the rotational speed N of the rotor 1 is larger than the rotational speed N MAX (V) of the maximum efficiency, the stator 7 so that the fluid energy received by the rotor 1 and the electrical energy output by the generator 8 substantially coincide.
  • the wind speed / meshing rate storage unit 43 stores a meshing rate corresponding to the moving average wind speed V AVE as shown in FIG.
  • the meshing rate control unit 44 calculates a target meshing rate from the moving average wind speed V AVE, and feeds back the servo motor 30 of the driving device 24 so that the meshing rate of the generator 8 matches the target meshing rate. Control (S4).
  • the meshing rate control unit 44 compares the rotation speed N of the rotor 1 with the minimum rotation speed N MIN (S5). ).
  • the stator 7 of the generator 8 is completely pulled out (the engagement rate is controlled to be less than 0) (S6).
  • the meshing rate control unit 44 does not change the meshing rate of the generator 8 (without performing meshing rate control) when the rotational speed N of the rotor 1 is larger than the minimum rotational speed NMIN . Return to S1.
  • the rotational speed N of the rotor 1 is compared with the rotational speed N MAX (V) of the maximum efficiency, and the rotational speed N MAX of the rotor 1 is the rotational speed N MAX of the maximum efficiency. Only when it is larger than (V), the meshing rate of the generator 8 is controlled. On the other hand, when the rotational speed N of the rotor 1 is smaller than the rotational speed N MAX (V) of the maximum efficiency, the meshing rate control of the generator 8 is not performed.
  • the meshing rate is not controlled when the rotational speed N of the rotor 1 is small, and power generation is not performed until the rotational speed N MAX (V) is greater than the maximum efficiency. It is possible to control the meshing rate of the machine 8 and start power generation. Therefore, when starting the operation of the wind turbine from the stopped state, it is possible to prevent the rotor 1 from decelerating.
  • the rotational speed N of the rotor 1 is compared with the minimum rotational speed NMIN, and when the rotational speed N of the rotor 1 is smaller than the minimum rotational speed NMIN , the generator 8 The stator 7 is completely pulled out. By completely pulling out the stator 7, it is possible to prevent the rotor 1 from stalling and stopping when the wind speed is low, and the rotor 1 can be easily accelerated again.
  • FIG. 14 shows a third example of a flowchart executed by the control device 10.
  • This third example is characterized in that the meshing rate is controlled only by the rotational speed of the rotor 1 and that the control is simpler than the case where the meshing rate is controlled by the wind speed and the rotational speed.
  • the wind speed increment in the graph of FIG. 13 is calculated in more detail, and the stator is controlled so as to have an optimum meshing rate as a parameter for a certain rotational speed regardless of the wind speed. To do.
  • the rotational speed determination unit 42 calculates the current rotational speed N of the rotor 1.
  • the meshing rate control unit 44 calculates an optimal stator position Z (N) from the current rotational speed N (S1).
  • the relationship between the rotational speed N and the stator position Z (N) is stored in advance in the rotational speed / meshing ratio control unit as table data.
  • a rotation speed / meshing rate storage unit is prepared instead of the wind speed / meshing rate storage unit 43 of FIG.
  • the relationship between the rotational speed N and the optimum stator position Z (N) is determined based on the maximum efficiency curve of FIG.
  • the optimum position parameter Z (N) of the stator 7 is stored in the rotation speed / meshing ratio control section every 5 rpm of the rotation speed N of the rotor 1.
  • the meshing rate control unit 44 controls the position of the stator 7 so as to coincide with the calculated stator position Z (N) (S2). Since the position parameter Z (N) is stored for every 5 rpm of the rotational speed N in the rotational speed / meshing ratio storage section, the flow of S1 to S2 is performed every time the rotational speed changes by 5 rpm. That is, when the rotation speed N changes by 5 rpm, the stator 7 is moved.
  • the present invention can be applied not only to a windmill but also to a hydroelectric generator that generates electric power using hydropower.
  • cut-in wind speed rated wind speed
  • cut-out wind speed and wind turbine output are merely examples, and the scale of wind turbines such as large wind turbines and small wind turbines, axial wind turbines, horizontal axis wind turbines, propeller wind turbines, vertical axis wind turbines, etc. It can be designed appropriately depending on the type of rotor.
  • a gearbox may be provided between the rotor and the generator, and the rotational speed of the rotor may be increased to transmit to the rotating shaft of the generator.
  • the rotating shaft in the claims means the rotating shaft of the generator.
  • An induction generator can be used as a generator instead of a synchronous generator.
  • the meshing rate is used as an index regarding the overlap length in which one of the generator rotor and the stator enters the other, but the vertical position of the stator is used instead of the meshing rate. May be.
  • the relationship between the wind speed and the position of the stator is stored in the wind speed / mesh ratio storage unit of the control device.
  • the rotational speed / meshing rate storage unit of the control device stores the relationship between the rotational speed and the position of the stator.
  • the control device controls the position of the stator as the overlap length.
  • stator of the generator When changing the meshing rate, not the stator of the generator but the rotor may be moved in the axial direction, or both may be moved.
  • a linear scale that detects the position of the stator of the generator may be provided, and the position of the stator may be controlled by the linear scale.
  • the stator 7 of the generator 8 may be divided into a plurality of segments 7a in the circumferential direction and moved in the axial direction for each segment 7a.
  • FIG. 15 shows a horizontal cross-sectional view of the generator.
  • the rotor 9 of the generator 8 has a large number of permanent magnets 9a and 9b arranged so that N poles and S poles are alternately formed in the circumferential direction, similarly to the generator shown in FIG.
  • the three-phase coils 16a to 16c of the stator 7 face the large number of permanent magnets 9a and 9b of the rotor 9 through gaps.
  • the stator 7 is divided into a plurality of segments 7a in the circumferential direction. Three-phase coils 16a to 16c are combined to form a segment. If the segment 7a is moved in the axial direction, the output of the generator 8 can be finely adjusted.
  • the rotor 9 may be divided into a number of segments 9-1 in the circumferential direction instead of the stator 7 of the generator 8 and moved in the axial direction for each segment 9-1. Good. In order to finely adjust the output of the generator 8, it is also possible to move the segment 9-1 in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 ロータが受ける流体のエネルギと発電機が出力する電気エネルギとを一致させることができる流体発電装置を提供する。 流体発電装置に、発電機8の固定子7及び回転子9の少なくとも一方を回転軸4の軸線方向に移動させ、これにより固定子7及び回転子9のいずれか一方が他方に入る重なり長さを変化させる駆動装置24を設ける。流速測定装置6が流体の流速を測定し、測定した流体の流速、及び予め定められた流体の流速と発電機8の重なり長さに関する指標(噛合い率)との関係に基づいて、制御装置10が発電機8の重なり長さを制御する。

Description

流体発電装置及び流体発電装置の制御方法
 本発明は、風力又は水力の流体エネルギを発電機によって電気エネルギに変換する流体発電装置、及び流体発電装置の制御方法に関する。
 近年、環境問題や化石燃焼の枯渇に関する関心が世界的に高まっており、その対策の一つとして自然エネルギの利用に注目が集まっている。自然エネルギは、資源を枯渇させずに利用可能なエネルギであり、再生可能エネルギとも呼ばれている。自然エネルギの一種として風のエネルギ(風力)、水のエネルギ(水力)が注目されている。
 風力発電装置は、風力をロータ(翼車)が受け、ロータの機械的な回転力を発電機が電力に変換する。水力発電装置は、風力の替わりに水力を利用するものであり、風力発電装置と同様に発電機を備える。
 風力、水力を利用した発電は、資源が無尽蔵でクリーンな反面、出力が風、水などの自然現象に影響されて変動するという欠点をもつ。風速の変動に対応するために、特許文献1には、風速に応じてロータの回転数を制御する可変速制御方式の風力発電装置(以下、単に風車という)が開示されている。風車の原理上、ロータの翼特性から、風から受けるエネルギを最大にするロータの回転数が求められる。風速が変化するとき、ロータが風から受けるエネルギを最大にするロータの回転数も変化する。特許文献1に記載の発明において、ロータの回転数は、風から受けるエネルギを最大にする回転数に制御されている。ロータの回転数を制御するために、風車の発電機はコンバータ及びインバータを介して電力系統に接続される。また、風車の発電機は、定格風速(風車の定格出力が発生するときの風速)のときに定格出力を出力するように設計される。
特開2006-262583号公報
 しかし、特許文献1に記載の発明にあっては、ロータが風から受けるエネルギを最大にできるものの、風速が変化することに伴って、風のエネルギの変化率と発電機の出力の変化率とがずれることに対応できない。風車が受ける風のエネルギは風速の3乗に比例するのに対し、発電機の出力は風速の2乗に比例する。例えば、風速が1/2になると、風車が受ける風のエネルギが1/8になるのに対し、発電機の出力が1/4になる。逆に、風速が2倍になると、風車が受ける風のエネルギが8倍になるのに対し、発電機の出力が4倍になる。
 すなわち、特許文献1に記載の発明にあっては、風速が定格風速から変化したとき、ロータが風から受けるエネルギと発電機の出力とがずれることが原因で、定格風速よりも小さい風速のときには、ロータの回転数が次々と落ちるという問題が発生し、逆に定格風速よりも大きい風速のときには、ロータの回転数が高くなり過ぎて風車の効率が低下するという問題が発生する。
 そこで、本発明は、従来の流体発電設備の上述の問題点を解決でき、効率的な発電が可能な流体発電設備を提供することを目的とする。
 以下、本発明について説明する。本発明の一態様は、風力又は水力を受けて回転するロータと、ロータと共に回転する回転軸と、前記回転軸に取り付けられる回転子、及び前記回転子にすきまを介して対向する固定子を有し、前記ロータが受ける風力又は水力の流体のエネルギを電気エネルギに変換する発電機と、前記発電機の前記固定子及び前記回転子の少なくとも一方を前記回転軸の軸線方向に移動させ、これにより前記固定子及び前記回転子のいずれか一方が他方に入る重なり長さを変化させる駆動装置と、流体の流速を測定する流速測定装置及び/又はロータの回転数を測定する回転数測定装置と、前記流速測定装置が測定した流体の流速、及び予め定められた流体の流速と前記発電機の前記重なり長さに関する指標との関係、又は、前記回転数測定装置が測定したロータの回転数、及び予め定められたロータの回転数と前記発電機の前記重なり長さに関する指標との関係に基づいて、前記発電機の前記重なり長さを制御する制御装置と、を備える流体発電装置である。
 本発明の他の態様は、ロータが受ける風力又は水力の流体エネルギを発電機によって電気エネルギに変換する流体発電装置の制御方法であって、ロータが受ける流体の流速及び/又はロータの回転数を測定する工程と、前記測定工程で測定した流体の流速、及び、予め定められた流体の流速と、発電機の回転子及び固定子のいずれか一方が他方に入る重なり長さに関する指標との関係、又は前記測定工程で測定したロータの回転数、及び予め定められたロータの回転数と発電機の回転子及び固定子のいずれか一方が他方に入る重なり長さに関する指標との関係に基づいて、前記ロータと共に回転する回転軸に取り付けられる前記発電機の前記回転子、及び前記回転子にすきまを介して対向する前記発電機の前記固定子の少なくとも一方を、前記回転軸の軸線方向に移動させ、前記発電機の前記重なり長さを制御する工程と、を備える流体発電装置の制御方法である。
 本発明によれば、測定した流体の流速、及び予め定められた流体の流速と発電機の重なり長さに関する指標との関係、又は、測定したロータの回転数、及び予め定められたロータの回転数と前記発電機の前記重なり長さに関する指標との関係に基づいて、発電機の固定子及び回転子のいずれか一方が他方に入る重なり長さを制御するので、風速に応じて発電機の重なり長さ、すなわち発電機が出力する電気エネルギを精密に制御することができる。風速が変化するとき、風速に比例して回転するロータが受ける風のエネルギと発電機が出力する電気エネルギとを実質的に一致させることができるようになるので、効率的な発電が可能になる。例えば、風速が定格風速より小さいとき、ロータの回転数が落ちるのを防止することができ、風速が定格風速よりも大きいとき、風車の効率を高く維持することができる。
本発明の一実施形態の流体発電装置の全体図 発電機の概念図(図中(a)は垂直面の断面図を示し、(b)は水平面の断面図を示す) 風を受けて回転するロータを示す水平断面図 ロータの回転数と風車出力との関係を示すグラフ 噛合い率と逆起電圧定数との関係を示すグラフ 風速と噛合い率の関係を示すグラフ 噛合い率制御したときの発電機特性を示すグラフ 右側制御を説明するグラフ 制御装置の構成図 サンプリングした風速データから最低風速VMINを抽出する例を示す概念図 制御装置が実行するフローチャートの第一の例を示す図 制御装置が実行するフローチャートの第二の例を示す図 風速と最大出力を生じさせる最大効率の回転数NMAX(V)との関係を示すグラフ 制御装置が実行するフローチャートの第三の例を示す図 発電機の固定子を複数のセグメントに分割した例を示す水平断面図 発電機の固定子のセグメントを軸線方向に移動させる例を示す側面図 発電機の回転子を複数のセグメントに分割した例を示す水平断面図 発電機の回転子のセグメントを軸線方向に移動させる例を示す側面図
 以下、添付図面に基づいて本発明の一実施形態の流体発電装置としての風力発電装置(以下、単に風車という)を説明する。図1は、風車の全体の構成図を示す。図1には、風車として、ロータ1の回転軸4が風向きに垂直である垂直軸風車が示されている。この実施形態においては、ロータ1に働く揚力を利用して回転力を得る揚力型風車が用いられる。ロータ1は、垂直方向に直線状に伸びる複数毎のブレード2を有する。風が吹いたとき、ブレード2は発生する揚力を利用してロータ1に流入する風速の数倍のスピードで回転する。ブレード2は、上下一対の支持腕3を介して回転軸4に取り付けられる。
 風速は、ロータ1の高さに設置された流速測定装置としての風速計6により測定される。風速計6が測定した風速データは、発電機8の固定子7の位置を制御する制御装置10に送られる。
 回転軸4は、ケース12に回転可能に支持される。ケース12は、筒状に形成される下部側ケース12aと、筒状に形成され、下部側ケースよりも径を狭めた上部側ケース12bと、を備える。上部側ケース12bには、上下方向に間隔を空けて複数のベアリング13が配置される。回転軸4はこの複数のベアリング13に回転可能に支持される。回転軸4の下方には、回転軸4の回転数を測定する回転数測定装置としてのロータリーエンコーダ14が設けられる。ロータリーエンコーダ14が測定した回転数データは、制御装置10に送られる。ケース12は地上に設置されたタワーの上部に固定されている。
 下部側ケース12aには、発電機8が収納される。この実施形態では、発電機8として同期発電機が収納される。同期発電機は、回転子9の作る磁界が固定子7のコイルを横切る回転速度に同期した電力を発電する交流発電機である。回転軸4の下部には、筒状に形成される発電機8の回転子9が取り付けられる。図2に示すように、回転子9は、周方向に交互にN極及びS極が形成されるように配列された複数の永久磁石9a,9bを有する。各永久磁石9a,9bは垂直方向に細長く伸びている。
 回転子9には、すきまを介して筒状の固定子7が対向する。回転子9の中心線と固定子7の中心線とは一致しており、回転子9の周囲を筒状の固定子7が囲んでいる。固定子7は、筒状のヨーク17と、ヨーク17の複数のティース17aに巻かれる複数のコイル16と、を有する。ヨーク17には、珪素鋼等の電気エネルギと磁気エネルギの変換効率が高い電磁鋼が用いられる。ヨーク17は、筒状のヨーク本体17bと、筒状のヨーク本体から半径方向の内側に突出する複数のティース17aと、を有する。ティース17aは永久磁石9a,9bと同様に垂直方向に伸びる。ティース17aの垂直方向の長さは永久磁石9a,9bの垂直方向の長さにほぼ等しい。複数のティース17aには、U相,V相,及びW相のコイル16が巻かれる。
 図1に示すように、ロータ1の回転と共に回転子9が回転すると、U相,V相及びW相からなるコイルに三相交流が発生する。この三相交流は発電機8の出力となり、直流リンク方式、すなわちコンバータ19及びインバータ20から構成される電力変換装置、トランス21を介して商用電源22に系統連係される。なお、発電機8の出力は、交流リンク方式、すなわちトランス21だけを介して商用電源に系統連係されてもよいし、整流回路を介してバッテリーに蓄電されてもよい。
 図1に示すように、発電機8の固定子7は、駆動装置24としての送りねじ機構により垂直方向に移動される。固定子7には、送りねじ機構のボールねじナット25が結合される。ボールねじナット25には、垂直方向に伸びるねじ軸26が螺合する。ねじ軸26の端部には、サーボモータ30の出力軸が結合される。サーボモータ30は、下部側ケース12aに取り付けられたブラケット27に支持される。サーボモータ30がねじ軸26をその軸線の回りに回転させると、ねじの作用により、ボールねじナット25が上下動する。ボールねじナット25には固定子7が結合されているので、ボールねじナット25の上下動に伴って固定子7が上下動する。
 図2に示すように、固定子7を上下動させると、回転子9が固定子7の中に入る重なり長さ(側方からみたときの、固定子7と回転子9が重なっている長さ)dが変化する。この実施形態では、回転子9が固定子7の中に入る重なり長さを表す指標として噛合い率を使用する。噛合い率は、固定子7の軸線方向の長さLに対する回転子9が固定子7の中に入る重なり長さdの比で表され、噛合い率=d/Lと定義される。なお、固定子7の軸線方向の長さLの替わりに回転子9の軸線方向の長さを用いてもよい。
 図1に示すように、制御装置10は、駆動装置24を操作し、噛合い率を制御する。サーボモータ30の回転角度はエンコーダ29により検出される。エンコーダ29の検出信号は制御装置10に送られる。制御装置10は、所定の噛合い率が得られるようにサーボモータ30をフィードバック制御する。
 以下に、制御装置10による噛合い率の制御方法を詳細に説明する。
 (発電機の噛合い率の制御の目的)
 発電機8の噛合い率制御の目的は、風速が変化するとき、風速に比例して回転するロータ1が受ける風のエネルギを発電機8が出力する電気エネルギに一致させることにある。まず、風速に比例して回転するロータ1が受ける風のエネルギについて説明する。
 図3に示すように、風車のロータ1は風のエネルギを受けると回転する。ロータ1が風のエネルギをどのくらい効率よく受けるかは、ロータ1のブレード2の形状によって決定される。風のエネルギからどれだけ風車の出力が得られるかを表す指標として出力係数Cpが用いられる。出力係数Cpとは、風のエネルギに対する風車出力の比、出力係数Cp=風車出力/風のエネルギ、で定義される。
 図4の縦軸は、風車出力(=Cp×風のエネルギ)であり、横軸はロータ1の周速比である。周速比λは、風速vに対するロータの周速R・ω(ロータ半径×回転角速度)の比であり、λ=(R・ω)/vで定義される。風速v,ロータ1の周速比から、ロータ1の回転数を求めることができる。
 図4に示すように、ロータ1の周速比と風車出力との関係(効率曲線A)を見ると、所定の周速比で極大値をもつ曲線になる。すなわち、ある風速に対して効率が最大になる最適なロータ1の回転数があることがわかる。この例では、風速v=12m/s、ロータ1の周速比が5(ロータ1の回転数が200rpm)のときに、風車出力は最大の1KWになる。ロータ1の回転数が200rpmより小さくても大きくても、風車出力はピーク値よりも小さくなる。風車出力が最大になる周速比は、ロータ1のブレード2の形状のみに依存し、風速に依存しない。ロータ1のブレード2を所定の形状に設計すると、風車の出力が最大になる周速比は一定の値となる。例えば12m/sの風でも6m/sの風でも最適な周速比は一定の5になる。
 次に、風速が12m/s→6m/sに変化したきの、効率曲線の変化(A→B)について説明する。ロータ1が受ける風のエネルギは風速の3乗に比例するので、風速が12m/sから6m/sに変化すると、ロータ1が受ける風のエネルギは(1/2)3=1/8に小さくなる。このため、効率曲線Bのピーク値は効率曲線Aのピーク値の1/8になる。風速が6m/sに変化しても、風車の出力が最大になる周速比は5のままなので、効率曲線Bにおいては100rpmのときに最も効率がよくなる。ロータ1の回転数は効率が最もよくなる100rpmに制御される。
 なお、風速vに対してロータ1が受けるエネルギPは以下の数式で表されるから、ロータ1が受ける風のエネルギは風速vの3乗に比例することになる。
(数1)
 P=(1/2)Cpρv
 Cp:風車の出力係数
 ρ:空気密度
 S:受風面積
 次に、風速が変化したときに発電機8が出力する電気エネルギの変化(発電機の出力曲線C)について説明する。発電機8は、定格風速のときに定格出力を出力するように設計される。この例では、例えば定格風速が12m/sであり、ロータ1の回転数が200rpmのとき、定格出力1KWを発電するように発電機8(正確にいえば、発電機8の永久磁石とコイル)が設計される。
 発電機8が出力する電圧は回転数に比例する。風速が12m/s→6m/sに変化すると、ロータ1の回転数が200rpm→100rpmに変化するので、発電機8が出力する電圧はE→E/2に低減する。E=RI(E:電圧、R:コイル抵抗、I:電流)の関係があるから、電圧Eが1/2に低減することに伴って、電流Iも1/2に低減する。この結果、発電機8が出力する電力E・Iは1/4KWに低減する。
 以上説明したように、風速が12m/s→6m/sに変化すると、ロータ1が受ける風のエネルギが1/8KWに低減する。その一方、発電機8が出力する電力は1/4KWに低減する。もともと風のエネルギが1/8KWに低減しているから、1/8KWまでしか発電できない。それにもかかわらず、発電機8の出力が1/4KWになっていることになる。風のエネルギと発電機8の出力との間にずれが生ずることが原因で、発電機8を100rpmで回せない。この結果、ロータ1の回転数が次々と落ち、最終的には停止してしまう。
 逆に、風速が倍になり、12m/s→24m/sに変化したとする。ロータ1が受ける風のエネルギは8倍に増加するのに対し、発電機8の出力は4倍に増加する。風のエネルギの方が大きいから、ロータ1の回転数が400rpmからどんどん速くなる。こうなると、ロータ1の回転数が周速比5のときの回転数からずれるので、効率も下がり、最終的に風のエネルギと発電機8の出力とがバランスする効率の低い点でロータ1が回転する。
 風速が変化したときでも、風速に比例して回転するロータ1が受ける風のエネルギと発電機8の出力とを一致させることができれば、上記の問題を解決することができる。ロータ1が受ける風のエネルギと発電機8の出力とを一致させるために、発電機8の噛合い率制御が行われる。
 (発電機の噛合い率と発電機の出力との関係)
 図2に示すように、発電機8の固定子7を回転子9から引き抜くと、回転子9の磁束を横切るコイルしか発電しないので、発電機8の逆起電圧定数が低くなり、発電機の出力が低くなる。
 上述のように、風速が2-1倍になると、風車出力は2-3倍になるのに対し、発電機出力は2-2倍になる。このため、風車出力と発電機出力とが整合しない。発電機8の固定子7を引き抜き、発電機8の逆起電圧定数を2-1/2倍に低減させると、発電機8の電圧及び電流がともに2-1/2倍に低減する。このため、電圧と電流の積である発電機出力が2-1/2×2-1/2×2-2=2-3倍になり、風車出力と整合するようになる。
 一般化すると、風速がN-1(N:1以上の有理数)倍になると、風車の出力は、N-3倍になる。一方、風速がN-1倍になると、発電機8の回転数はN-1倍になり、発電機8の出力はN-2倍になる。風車の出力と発電機8の出力を整合させるために、発電機8の逆起電圧定数をN-1/2倍にする。発電機8の逆起電圧定数をN-1/2倍にすれば、発電機8の電圧がN-3/2倍、電流がN-3/2倍、発電機8の出力がN-3倍になり、風車の出力に整合するようになる。
 また、風速がN(N:1以上の有理数)倍になると、風車の出力はN3倍になるのに対し、発電機8の出力はN2倍になる。風車の出力と発電機8の出力を整合させるために、発電機8の逆起電圧定数をN1/2倍にする。発電機8の逆起電圧定数をN1/2倍にすれば、発電機8の電圧がN3/2倍、電流がN3/2倍、発電機8の出力がN倍になり、風車の出力に整合するようになる。
 図5は、噛合い率と逆起電圧定数の関係の一例を示すグラフである。噛合い率を0%から100%まで増加していくと、逆起電圧定数はほぼ線形的に増加する。噛合い率が0%のときも、逆起電圧定数は0にはならない。永久磁石9a,9bからは磁束がある程度の広がりをもって形成されるから、固定子7を回転子9から完全に引き抜いたとしても逆起電力が発生する。
 図6は、風速と噛合い率の関係の一例を示すグラフである。風速に応じてこの図6に示すように噛合い率を制御すれば、ロータ1が受ける風のエネルギと発電機8の出力とを一致させることができる。
 図6には、カットイン流速としてのカットイン風速が2m/s、定格風速が12.5m/s、カットアウト流速としてのカットアウト風速が15m/sであることが示されている。カットイン風速は、風車が利用可能な動力を生む最小の風速である。定格風速は、風車の定格出力が発生する規定の風速である。カットアウト風速は、風車が利用可能な動力を生む最大の風速である。
 風速がカットイン風速以上、カットアウト風速以下のとき、風速が徐々に大きくなるにしたがって噛合い率が徐々に大きくなる。風速と噛合い率との関係は連続的な曲線で表される。例えば、風速が定格風速のN倍(N:1以上の有理数)に変化すると、噛合い率は定格風速のときの噛合い率の約N-1/2倍に変化する。
 図6に示すように、風速がカットアウト風速のとき、発電機8の噛合い率は例えば65%に設定される。発電機8は、ロータ1がカットアウト風速で回転するときの出力よりも大きい容量を有する。そして、風速がカットアウト風速を超えたとき、噛合い率はカットアウト風速のときの噛合い率65%よりも大きく設定され、カットアウト風速以下のときの勾配よりも急峻な勾配で最終的には100%まで上げられる。
 風速がカットアウト風速を超えると、風車が壊れるおそれがあるので、機械的なブレーキによりロータ1の回転を止めることが行われている。風速がカットアウト風速を超えたとき、噛合い率を急激に増加させることにより、発電機8をロータ1の回転を止めるブレーキとして機能させることができる。また、カットアウト風速を超えた強い風のときにも発電できるようになる。風速が危険風速(例えば18m/s)を超えた場合、又は噛合い率を100%に上げても、ロータ1の回転数が増加し続ける場合、制御装置10は、図示しない機械的なブレーキを作動させる。
 図6に示すように、風速がカットイン風速よりも小さいとき、噛合い率はカットイン風速のときの噛合い率よりも小さく設定され、カットイン風速以上のときの勾配よりも急峻な勾配で0未満に下げられる。0未満とは、固定子7と回転子9との間に回転軸4の軸線方向にすきまが空くことを意味する。0未満にしたのは、永久磁石9a,9bの外側に広がる磁束の影響を防止するためである。
 風車のロータ1が回るかどうかはロータ1に作用するトルクで決定される。ロータ1に作用するトルクは風速の2乗に比例するので、風速が小さくなればなるほど、トルクも小さくなる。ロータ1が回転する時に抵抗になるのは、ベアリング13と発電機8である。ベアリング13の抵抗は僅かなものであるが、発電機8の抵抗はベアリング13の抵抗に比べて大きい。発電機8は電流が流れると、ロータ1の回転を止めようとする。発電機8に同期発電機を用いると、磁性材料のティースを備えるので、抵抗になるコギングも発生する。
 カットイン風速よりも小さい風速のとき、発電機8の噛合い率を0未満にすることで、発電機8の抵抗を低減することができ、ロータ1を回転させ易くなる。ロータ1が一旦回転すると、あとは慣性により回転し続けようとするので、噛合い率を増加させてもロータ1を回転させることができる。世界には、カットイン風速程度の微風が頻繁に吹く。このように噛合い率を制御することで、カットイン風速程度の微風でも発電できるようになる。
 図7は、図6のグラフに示すように噛合い率を制御したときの発電機8の特性を示す。図7中の実線の「設計発電機特性」とは、噛合い率が100%のときの発電機8の出力特性である。噛合い率を制御することにより、発電機8の出力特性が図7の破線で示す「運用時発電機特性」まで低下する。噛合い率を制御することにより、風車出力のピーク値と発電機8の出力とが一致することがわかる。
 風速が1m/s、2m/s、3m/s…、12.5m/s、14m/s、15m/sと徐々に増加すると、風車出力のピーク値は風速の3乗に比例して増加する。一方、発電機8の出力も風速の3乗に比例して増加していて、これにより風車出力のピーク値と発電機8の出力とが一致する。
 風速がカットアウト風速以上になるとき、発電機8の噛合い率を100%にし、「運用時発電機特性」を「設計時発電機特性」に一致させる。これにより、強風によって高速に回転するロータ1のブレーキとして発電機8を作動させることができる。
 さらに本実施形態では、出力係数が最大となる周速比よりも高い周速比でロータ1が回転するように、発電機8の噛合い率が制御されている。出力係数のピーク値の右側で制御するので、この制御方法を右側制御と呼ぶ。以下、右側制御について説明する。
 図8は、図4と同様の風車の効率曲線Aを示す。この風車の効率曲線Aによれば、出力係数が最大となる周速比は5であり、ロータ1の回転数が200rpmのときに、風車出力が最大の1KWになる。図8には、一点鎖線で二種類の発電機8の出力曲線C,Dも示されている。発電機8の出力曲線Cは、周速比5、ロータ1の回転数200rpmのときに、風車の効率曲線Aのピーク値と等しい1KWを出力し、点P1で風車の効率曲線Aと交差する。一方、出力曲線Dは、効率曲線Aのピーク値の右側P2で効率曲線Aと交差し、ロータ1は出力係数が最大となる周速比5よりも高い周速比5.5で回転する。
 発電機8の出力が出力曲線Cになるように噛合い率を制御した場合、ロータ1の回転数が一旦落ち始めると、2乗と3乗の関係から、ロータ1の回転数が急激に落ちてしまう。これに対し、発電機8の出力が出力曲線Dになるように噛合い率を制御すると、ロータ1の回転数を上げることができ、風速が変化しても安定してロータ1を回転させることができる。なお、出力係数が最大となる周速比5よりも高い周速比5.5で回転させると、発電量が低下する。右側制御では、発電量を犠牲にしても回転数が高い方を優先させている。
 (制御装置の構成)
 図9は、制御装置10の構成図の一例を示す。制御装置10は、風速判定部41、回転速度判定部42、風速/噛合い率記憶部43、及び噛合い率制御部44を備える。風速判定部41、回転速度判定部42、噛合い率制御部44は、ROM,RAM等の記憶装置に記憶されたプログラムをCPUが実行することにより実現される。風速/噛合い率記憶部43は、ハードディスク,ROM等の記憶装置により実現される。
 風速判定部41は、風速計6で測定した風速データを所定のサンプリング時間(例えば1秒~数秒)毎に取り込み、10秒、30秒、1分、3分、5分等の所定時間の平均風速を移動平均によって算出する。そして、風速判定部41は、算出した移動平均の風速データを噛合い率制御部44に送る。
 移動平均は、時系列データを平滑化する手法である。移動平均には単純移動平均(Simple Moving Average)を用いる。単純移動平均は、直近のn個のデータの重み付けのない単純な平均である。例えば、10秒間の単純移動平均とは、直近の10秒間の風速の平均である。それらの風速をM1,M2,M3,M4…M10とすると、単純移動平均VAVEを求める式は次のようになる。
(数2) VAVE=(M1+M3+M4+…+M10)/10
 次回の単純移動平均VNEXTを求めるには、新たな風速(M11)を加え、一番古い風速M1を除けばよい。この計算では、改めて総和を求め直す必要はなく、以下の式で与えられる。
(数3) VNEXT=SMA-M1/10+M11/10
 移動平均を用いることで、常に変動する風速に合わせて敏感に噛合い率を制御することが可能になる。なお、単純移動平均の替わりに加重移動平均や指数移動平均を用いてもよい。
 なお、図10に示すように、風速判定部41は、風速計6で測定した風速データを所定のサンプリング時間(例えば1秒~数秒)毎に取り込み、10秒、30秒、1分、3分、5分等の所定時間の最低風速VMINを算出してもよい。移動平均風速VAVEから噛合い率を決定すると、大きな電力が得られるという利点があるが、発電機8のトルク抵抗が増加する。実際の風速は変動が大きく、現在の風速が算出した移動平均風速VAVEよりも小さいことも頻繁に生ずる。この場合、発電機8のトルク抵抗がロータ1の風から受けるトルクよりも大きくなり、ロータ1の回転数が下がってしまう。ロータ1の回転数を下げないようにするために、最低風速VMINを算出してもよい。
 回転速度判定部42は、回転数測定装置としてのロータリーエンコーダ14が測定したロータ1の回転数データを取り込み、ロータ1の現在の回転数Nを算出する。回転速度判定部42は、算出した回転数データを噛合い率制御部44に送る。
 風速/噛合い率記憶部43は、図6のグラフに示される風速と噛合い率との関係を、テーブル状のデータとして記憶する。
 噛合い率制御部44は、風速判定部41からの移動平均風速データ、回転速度判定部42からの回転数データ、及び風速/噛合い率記憶部43が記憶したデータに基づいて、駆動装置24を制御する。
 図11は、制御装置10が実行するフローチャートの第一の例を示す。まず、風速判定部41が移動平均風速VAVEを算出する(S1)。移動平均風速VAVEの変化率が所定値以上(例えば20%以上)ならば(S2)、風速/噛合い率記憶部43から移動平均風速VAVEに応じた目標の噛合い率を算出する(S3)。移動平均風速VAVEの変化率が所定値未満のときはS1に戻る。そして、発電機8の噛合い率が目標の噛合い率に一致するように駆動装置24のサーボモータ30をフィードバック制御する(S4)。サーボモータ30には図示しないドライバが組み込まれている。
 風速の変動が激しいとき、リアルタイムに噛合い率をすると、サーボモータ30を動作させるのも頻繁になり、電力もかかる。移動平均風速VAVEを使用することで、サーボモータ30を動作させる頻度を少なくすることができ、電力を節約することができる。
 図12は、制御装置10が実行するフローチャートの第二の例を示す。この第二の例では、風速だけでなく、ロータ1の回転数も制御に組み込んでいることに特徴がある。噛合い率の制御において重要なことは現在の風車が図13のグラフ(詳しくは後述する)上のどの状態で運転されているか知ることである。これを知るために風速だけでなく、ロータ1の回転数も制御に組み込んでいる。
 この第二の例では、まず、風速判定部41が移動平均風速VAVEを算出する(S1)。次に、移動平均風速VAVEから最大効率の回転数NMAX(V)を算出する(S2)。最大効率の回転数NMAX(V)は図13から以下のように求められる。
 図13は、風速と最大出力を生じさせる最大効率の回転数NMAX(V)との関係を示す。この図13には、各風速に対応した最大効率の回転数NMAX(V)が黒丸で示される。風車出力は風速の3乗に比例して出力が大きくなる。翼特性を考慮すると、同じ風速でも回転数に応じて出力が変動する。この図では、各風速において最大出力が得られる点を最大出力点をとし、最大出力点を結んだ線を最大効率曲線とする。各風速の曲線と最大効率曲線の交点が各風速の最大効率の回転数NMAX(V)となる。例えば、風速8m/sのときの回転数NMAX(V)は110rpmであり、風速12m/sのときの回転数NMAX(V)は170rpmである。風速と回転数NMAX(V)との関係はテーブルデータとして風速/噛合い率記憶部43に記憶される。噛合い率制御部44は、風速判定部41が算出した移動平均風速VAVEに基づいて、移動平均風速VAVEのときの回転数NMAX(V)を算出する。
 次に、図12に示すように、噛合い率制御部44は、回転速度判定部42が算出したロータ1の回転数Nと最大効率の回転数NMAX(V)とを比較し(S3)、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも大きいとき、ロータ1が受ける流体のエネルギと発電機8が出力する電気エネルギとが実質的に一致するよう固定子7を移動させる(すなわち噛合い率を制御する)(S4)。風速/噛合い率記憶部43には、図6に示すように移動平均風速VAVEに応じた噛合い率が記憶されている。噛合い率制御部44は、移動平均風速VAVEから目標の噛合い率を算出し、発電機8の噛合い率が目標の噛合い率に一致するように駆動装置24のサーボモータ30をフィードバック制御する(S4)。
 一方、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも小さいとき、噛合い率制御部44は、ロータ1の回転数Nと最低回転数NMINとを比較する(S5)。そして、ロータ1の回転数Nが最低回転数NMINよりも小さいとき、発電機8の固定子7を完全に引き抜く(噛合い率を0未満に制御する)(S6)。そして、噛合い率制御部44は、ロータ1の回転数Nが最低回転数NMINよりも大きいとき、発電機8の噛合い率を変化させることなく(噛合い率制御を行うことなく)、S1に戻る。
 このように、第二の例においては、S3において、ロータ1の回転数Nと最大効率の回転数NMAX(V)とを比較し、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも大きいときにのみ、発電機8の噛合い率の制御を行う。その一方、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも小さいときは、発電機8の噛合い率制御を行わない。これにより、停止した状態から風車の運転を開始する場合、ロータ1の回転数Nが小さいときには噛合い率の制御を行わず、最大効率の回転数NMAX(V)よりも大きくなってはじめて発電機8の噛合い率を制御し、発電を開始することが可能になる。したがって、停止した状態から風車の運転を開始する場合、ロータ1が減速するのを防止することが可能になる。
 ところで、S3において、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも小さいときにも、噛合い率を制御して発電するのが理想である。しかし、風速の変動が激しく、機械系が慣性を持つので、風速と噛合い率とのマッチングは現実的には困難である。実際の風車において、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも小さいときにも噛合い率を制御したところ、ロータ1の回転数が一気に落ちることも多かった。このため、ロータ1の回転数Nが最大効率の回転数NMAX(V)よりも小さいときには噛合い率の制御を行わないこととする。ただし、制御のフローがS1に戻った後、S4で再び発電機8の噛合い率の制御を行うこともある。
 また、この第二の例においては、S5において、ロータ1の回転数Nと最低回転数NMINとを比較し、ロータ1の回転数Nが最低回転数NMINよりも小さいとき、発電機8の固定子7を完全に引き抜いている。固定子7を完全に引き抜くことにより、風速が小さいときにロータ1が失速・停止するのを防止でき、ロータ1が再び加速し易くなる。
 図14は、制御装置10が実行するフローチャートの第三の例を示す。この第三の例では、ロータ1の回転数のみで噛合い率を制御しており、風速及び回転数で噛合い率を制御する場合よりも簡素な制御になることに特徴がある。風速変動が大きいサイトでは、風速データを有効に利用することができない場合がある。そこで、図13のグラフの風速刻みをさらに細かくして計算し、風速に関係なくある回転数に対して最適な噛合い率をパラメータとして持ち、最適な噛合い率になるように固定子を制御する。
 この第三の例では、基本的に現在のロータ1の回転数を常に監視し、その回転数に対して最適な噛合い率になるように固定子7を移動する。まず、回転速度判定部42(図9参照)が現在のロータ1の回転数Nを算出する。現在のロータ1の回転数には、移動平均を用いてもよいし、瞬間的な値を用いてもよい。次に、噛合い率制御部44(図9参照)が現在の回転数Nより最適な固定子位置Z(N)を計算する(S1)。回転数Nと固定子位置Z(N)との関係は、予めテーブルデータとして回転数/噛合い率制御部に記憶されている。第三の例では、図9の風速/噛合い率記憶部43の替わりに回転数/噛合い率記憶部が用意されている。回転数Nと最適な固定子位置Z(N)との関係は、図13の最大効率曲線に基づいて定められる。回転数/噛合い率制御部には、例えばロータ1の回転数Nの5rpm毎に最適な固定子7の位置パラメータZ(N)が記憶される。
 次に、噛合い率制御部44は、算出した固定子位置Z(N)に一致するように固定子7の位置を制御する(S2)。回転数/噛合い率記憶部に回転数Nの5rpm毎に位置パラメータZ(N)が記憶されているので、S1~S2のフローは回転数が5rpm変化する毎に行われる。すなわち、回転数Nが5rpm変化すると、固定子7を移動させることになる。
 なお、本発明は上記実施形態に限られることはなく、本発明の要旨を変更しない範囲でさまざまに変更可能である。
 本発明は風車だけでなく、水力を利用して電力を発生する水力発電装置にも適用することができる。
 上記カットイン風速、定格風速、カットアウト風速、風車出力の数値例はあくまで一例であり、大形風車、小型風車等の風車の規模、軸流風車、水平軸風車、プロペラ風車、垂直軸風車等のロータの種類によって適宜設計することができる。
 ロータと発電機との間に増速機を設け、ロータの回転数を増速させて発電機の回転軸に伝動してもよい。この場合、ロータの回転軸と発電機の回転軸の二種類が存在する。請求項中の回転軸は、発電機の回転軸を意味する。
 発電機には、同期発電機の替わりに誘導発電機を用いることもできる。
 上記実施形態では、発電機の回転子及び固定子の一方が他方に入る重なり長さに関する指標として噛合い率を用いているが、噛合い率の替わりに、固定子の垂直方向の位置を用いてもよい。この場合、制御装置の風速/噛合い率記憶部には、風速と固定子の位置との関係が記憶される。制御装置の回転数/噛合い率記憶部には、回転数と固定子の位置との関係が記憶される。制御装置は、重なり長さとしての固定子の位置を制御する。
 噛合い率を変化させるとき、発電機の固定子ではなく、回転子を軸線方向に移動させてもよいし、両方を移動させてもよい。
 発電機の固定子の位置を検出するリニアスケールを設け、リニアスケールにより固定子の位置を制御してもよい。
 図15及び16に示すように、発電機8の固定子7を周方向に複数のセグメント7aに分割し、セグメント7a毎に軸線方向に移動させてもよい。図15には発電機の水平面断面図が示される。発電機8の回転子9は、図2に示す発電機と同様に、周方向に交互にN極及びS極が形成されるように配列された多数の永久磁石9a,9bを有する。回転子9の多数の永久磁石9a,9bにはすきまを介して固定子7の三相のコイル16a~16cが対向する。固定子7は周方向に複数のセグメント7aに分割されている。三相のコイル16a~16cがセットになってセグメントを構成している。セグメント7a毎に軸線方向に移動させれば、発電機8の出力の微調整が可能になる。
 図17及び図18に示すように、発電機8の固定子7の替わりに回転子9を周方向に多数のセグメント9-1に分割し、セグメント9-1毎に軸線方向に移動させてもよい。発電機8の出力を微調整するためにセグメント9-1毎に軸線方向に移動させることも可能である。
 本明細書は、2010年6月10日出願の特願2010-132738に基づく。この内容はすべてここに含めておく。
1…ロータ,4…回転軸,6…風速計(流速測定装置),8…発電機,7…固定子,8…発電機,9…回転子,10…制御装置,24…駆動装置
 

Claims (7)

  1.  風力又は水力を受けて回転するロータと、
     ロータと共に回転する回転軸と、
     前記回転軸に取り付けられる回転子、及び前記回転子にすきまを介して対向する固定子を有し、前記ロータが受ける風力又は水力の流体のエネルギを電気エネルギに変換する発電機と、
     前記発電機の前記固定子及び前記回転子の少なくとも一方を前記回転軸の軸線方向に移動させ、これにより前記固定子及び前記回転子のいずれか一方が他方に入る重なり長さを変化させる駆動装置と、
     流体の流速を測定する流速測定装置及び/又はロータの回転数を測定する回転数測定装置と、
     前記流速測定装置が測定した流体の流速、及び予め定められた流体の流速と前記発電機の前記重なり長さに関する指標との関係、又は、前記回転数測定装置が測定したロータの回転数、及び予め定められたロータの回転数と前記発電機の前記重なり長さに関する指標との関係に基づいて、前記発電機の前記重なり長さを制御する制御装置と、を備える流体発電装置。
  2.  前記制御装置は、前記ロータが受ける流体のエネルギと前記発電機が出力する電気エネルギとが実質的に一致するように、前記発電機の前記重なり長さを制御することを特徴とする請求項1に記載の流体発電装置。
  3.  前記発電機は、前記ロータがカットアウト流速で回転するときの出力より大きい容量を有し、
     前記制御装置は、流体の流速がカットアウト流速を超えるとき、前記発電機の前記重なり長さをカットアウト流速のときの前記発電機の前記重なり長さよりも長くすることを特徴とする請求項2に記載の流体発電装置。
  4.  前記制御装置は、前記流速測定装置が測定した流体の流速がカットイン流速より小さいとき、前記発電機の前記重なり長さを0未満にすることを特徴とする請求項2又は3に記載の流体発電装置。
  5.  前記制御装置は、出力係数が最大となる周速比よりも高い周速比で前記ロータが回転するように、前記発電機の前記重なり長さを制御することを特徴とする請求項2ないし4のいずれかに記載の流体発電装置。
  6.  前記制御装置は、前記流速測定装置が測定した流速の移動平均に基づいて、前記発電機の前記重なり長さを制御することを特徴とする請求項2ないし5のいずれかに記載の流体発電装置。
  7.  ロータが受ける風力又は水力の流体エネルギを発電機によって電気エネルギに変換する流体発電装置の制御方法であって、
     ロータが受ける流体の流速及び/又はロータの回転数を測定する工程と、
     前記測定工程で測定した流体の流速、及び予め定められた流体の流速と発電機の回転子及び固定子のいずれか一方が他方に入る重なり長さに関する指標との関係、又は前記測定工程で測定したロータの回転数、及び予め定められたロータの回転数と発電機の回転子及び固定子のいずれか一方が他方に入る重なり長さに関する指標との関係に基づいて、前記ロータと共に回転する回転軸に取り付けられる前記発電機の前記回転子、及び前記回転子にすきまを介して対向する前記発電機の前記固定子の少なくとも一方を、前記回転軸の軸線方向に移動させ、前記発電機の前記重なり長さを制御する工程と、
     を備える流体発電装置の制御方法。
PCT/JP2011/060573 2010-06-10 2011-05-06 流体発電装置及び流体発電装置の制御方法 WO2011155278A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519312A JPWO2011155278A1 (ja) 2010-06-10 2011-05-06 流体発電装置及び流体発電装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-132738 2010-06-10
JP2010132738 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155278A1 true WO2011155278A1 (ja) 2011-12-15

Family

ID=45097891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060573 WO2011155278A1 (ja) 2010-06-10 2011-05-06 流体発電装置及び流体発電装置の制御方法

Country Status (3)

Country Link
JP (1) JPWO2011155278A1 (ja)
TW (1) TW201223130A (ja)
WO (1) WO2011155278A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158192A (ja) * 2012-01-31 2013-08-15 Minoru Murano 発電出力の適正制御方法
JP2014027824A (ja) * 2012-07-30 2014-02-06 Hitachi Ltd 発電システム
CN108612629A (zh) * 2018-06-29 2018-10-02 苏州大学 一种涡轮式立轴电磁风能收集器
CN111637013A (zh) * 2019-03-01 2020-09-08 吴宸至 专业风力、水力双栖发电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324896A (ja) * 2002-04-26 2003-11-14 Chikoji Gakuen 中小型風力発電機の制御方法
JP2006067784A (ja) * 2004-07-28 2006-03-09 Shiro Kanehara 回転機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324896A (ja) * 2002-04-26 2003-11-14 Chikoji Gakuen 中小型風力発電機の制御方法
JP2006067784A (ja) * 2004-07-28 2006-03-09 Shiro Kanehara 回転機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158192A (ja) * 2012-01-31 2013-08-15 Minoru Murano 発電出力の適正制御方法
JP2014027824A (ja) * 2012-07-30 2014-02-06 Hitachi Ltd 発電システム
CN108612629A (zh) * 2018-06-29 2018-10-02 苏州大学 一种涡轮式立轴电磁风能收集器
CN108612629B (zh) * 2018-06-29 2023-11-28 苏州大学 一种涡轮式立轴电磁风能收集器
CN111637013A (zh) * 2019-03-01 2020-09-08 吴宸至 专业风力、水力双栖发电机

Also Published As

Publication number Publication date
JPWO2011155278A1 (ja) 2013-08-01
TW201223130A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
US9014861B2 (en) Method and system for noise-controlled operation of a wind turbine
EP2674617B1 (en) Wind turbine rotor control
US8215896B2 (en) Apparatus and method for operation of an off-shore wind turbine
EP2762720B1 (en) Method for optimizing the operation of a wind turbine
EP2696067A2 (en) Wind turbine yaw control within wind farm
CN101581272B (zh) 定桨距变速风力发电机组在失速区的功率控制方法
Soter et al. Development of induction machines in wind power technology
US9234498B2 (en) High efficiency wind turbine
WO2011155278A1 (ja) 流体発電装置及び流体発電装置の制御方法
US10054108B2 (en) Wind turbine system and method for controlling a wind turbine system by power monitoring
US20130200618A1 (en) High efficiency wind turbine
Hlaing Basic concepts of doubly fed induction generator driven by wind energy conversion system
Madani et al. A permanent magnet synchronous generator for a small scale vertical axis wind turbine
Chitransh et al. Comparative analysis of different configuration of generators for extraction of wind energy
Upadhaya et al. Design of adjustable blade wind turbine for constant generated power
KR101487992B1 (ko) 가변속 풍력발전기 및 그 운전 방법
CN105317632A (zh) 一种风电机组转动惯量的测量方法
Jacomini et al. Simulation and experimental studies on double-fed induction generator power control at subsynchronous operating speed
Fuchs et al. Dynamic modelling of a 2 MW DFIG wind turbine for converter issues: Part 1
JP2024042342A (ja) 制御装置
Pongwan et al. Skewing angle magnet and coil reduced starting torque in a permanent magnet synchronous generator for a small vertical axis wind turbine
Habib et al. Optimization and experimental power generation assessment of counter rotation twin turbine configuration
KR20230007236A (ko) 풍력 터빈 제어
Zhang et al. Rotor power factor adjustable direct torque control of doubly-fed induction generators for wind power generation
RU70940U1 (ru) Ветроэлектростанция

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519312

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792236

Country of ref document: EP

Kind code of ref document: A1