JP5557848B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5557848B2
JP5557848B2 JP2011539356A JP2011539356A JP5557848B2 JP 5557848 B2 JP5557848 B2 JP 5557848B2 JP 2011539356 A JP2011539356 A JP 2011539356A JP 2011539356 A JP2011539356 A JP 2011539356A JP 5557848 B2 JP5557848 B2 JP 5557848B2
Authority
JP
Japan
Prior art keywords
semiconductor
manufacturing
semiconductor substrate
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011539356A
Other languages
Japanese (ja)
Other versions
JPWO2011055691A1 (en
Inventor
明生 島
一幸 朴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011539356A priority Critical patent/JP5557848B2/en
Publication of JPWO2011055691A1 publication Critical patent/JPWO2011055691A1/en
Application granted granted Critical
Publication of JP5557848B2 publication Critical patent/JP5557848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Description

本発明は、半導体基板内に導入された不純物を活性化させる際に用いられるレーザーアニール技術に係り、その不純物活性化方法を用いた半導体装置の製造方法に関する。   The present invention relates to a laser annealing technique used when activating impurities introduced into a semiconductor substrate, and more particularly to a method of manufacturing a semiconductor device using the impurity activation method.

Siの厚みを100μm程度にまで薄くした極薄IGBT(Insulated Gate Bipolar Transistor)が知られている。極薄IGBTは、n型のフィールドストップ層及びp型のコレクタ層を半導体基板の裏面部分に備えている。一般的には、フィールドストップ層及びコレクタ層は積層して形成されている。フィールドストップ層とコレクタ層は、半導体基板の裏面からn型不純物であるリンイオンを深い位置に導入し、p型不純物であるボロンイオンを浅い位置に導入した後に、活性化のための熱処理を実施することによって得られる。An ultra-thin IGBT (Insulated Gate Bipolar Transistor) in which the thickness of Si is reduced to about 100 μm is known. The ultra-thin IGBT includes an n + -type field stop layer and a p + -type collector layer on the back surface portion of the semiconductor substrate. In general, the field stop layer and the collector layer are laminated. In the field stop layer and the collector layer, phosphorus ions that are n-type impurities are introduced into deep positions from the back surface of the semiconductor substrate, and boron ions that are p-type impurities are introduced into shallow positions, and then heat treatment for activation is performed. Can be obtained.

この熱処理方法としてレーザーアニールが利用されている。レーザーアニールには、エキシマレーザー、YAG第2高調波レーザー、又はYLF第2高調波レーザー等が利用されている。これらのパルスレーザーは、Si半導体基板における吸収係数も大きいことから、半導体基板の裏面部分のみを選択的に加熱することができる。このため、半導体基板の表面に形成されているアルミ電極及びポリイミド層が損傷してしまうことを回避できる。この種のレーザーアニールを利用する方法は、下記の特許文献1〜4に開示されている。   Laser annealing is used as this heat treatment method. For laser annealing, an excimer laser, a YAG second harmonic laser, a YLF second harmonic laser, or the like is used. Since these pulse lasers also have a large absorption coefficient in the Si semiconductor substrate, only the back surface portion of the semiconductor substrate can be selectively heated. For this reason, it can avoid that the aluminum electrode and polyimide layer which are formed in the surface of a semiconductor substrate will be damaged. Methods using this type of laser annealing are disclosed in the following Patent Documents 1 to 4.

極薄IGBTのn型のフィールドストップ層は、半導体基板の裏面から1μmほどの深い位置に不純物濃度のピークが形成され、その形成範囲が半導体基板の裏面から2μmほどの深い位置にまで至ることが多い。このため、n型不純物であるリンイオンも半導体基板の裏面から深い位置に導入されている。このリンイオンを高活性化させるためには、深い位置まで950℃以上にまで加熱しなければならない。しかしながら、特許文献1〜4に示されたレーザーアニールでは、半導体基板の裏面から深い位置に導入された不純物を高活性化させることが難しい。エキシマレーザー、YAG第2高調波レーザ、又はYLF第2高調波レーザ等のパルスレーザは、波長が短いレーザーである。このため、これらのパルスレーザは半導体基板の裏面から浅い位置(深さ数10〜100nm)で吸収され、深い位置を加熱することができないためである。The n + type field stop layer of the ultra-thin IGBT has an impurity concentration peak formed at a depth of about 1 μm from the back surface of the semiconductor substrate, and its formation range reaches a deep position of about 2 μm from the back surface of the semiconductor substrate There are many. For this reason, phosphorus ions, which are n-type impurities, are also introduced deep from the back surface of the semiconductor substrate. In order to activate this phosphorus ion highly, it is necessary to heat to a deep position up to 950 ° C. or higher. However, in the laser annealing disclosed in Patent Documents 1 to 4, it is difficult to highly activate impurities introduced deep from the back surface of the semiconductor substrate. A pulse laser such as an excimer laser, a YAG second harmonic laser, or a YLF second harmonic laser is a laser having a short wavelength. For this reason, these pulse lasers are absorbed at a shallow position (a depth of 10 to 100 nm) from the back surface of the semiconductor substrate, and a deep position cannot be heated.

下記の特許文献5には、YAG第2高調波レーザと回転円盤式レーザーアニール装置を用いているが、この方式でも半導体基板の裏面から深い位置に導入された不純物を高活性化させることが難しい。   In Patent Document 5 below, a YAG second harmonic laser and a rotating disk type laser annealing apparatus are used. However, it is difficult to activate the impurity introduced deeply from the back surface of the semiconductor substrate even with this method. .

特開平10−41244号公報Japanese Patent Laid-Open No. 10-41244 特開2000−349042号公報JP 2000-349042 A 米国特許5,908,307号公報US Pat. No. 5,908,307 特開2004−363168号公報JP 2004-363168 A 特開2006−5291号公報JP 2006-5291 A

上述の特許文献1〜4に示される短波長のレーザーを利用する場合は、バンド間キャリア励起吸収をその加熱起源とするためレーザーアニールがアニール温度をコントロールできず、必ずSi基板を融点以上の温度に上昇させ溶解再結晶化させてしまう。このため結晶欠陥が多く電流リークパスが起こり易く、不純物プロファイルの形を制御できない(pn接合を裏面に作っても全部混合してしまう)という欠点がある。極薄IGBTのフィールドストップ層を効率的に活性化させるために、深い領域の不純物活性化を結晶欠陥数を減少させながら実現するレーザーアニールの技術が望まれている。   When using the short-wavelength lasers disclosed in the above-mentioned Patent Documents 1 to 4, laser annealing cannot control the annealing temperature because interband carrier excitation absorption is the source of heating, and the Si substrate must be at a temperature above the melting point. It will be dissolved and recrystallized. For this reason, there are many crystal defects, current leakage paths are likely to occur, and the shape of the impurity profile cannot be controlled (all the pn junctions are mixed even if they are formed on the back surface). In order to efficiently activate the field stop layer of the ultra-thin IGBT, a laser annealing technique that realizes impurity activation in a deep region while reducing the number of crystal defects is desired.

半導体基板の裏面から1μmよりも深い位置に形成されているフィールドストップ領域を備えている場合、特許文献1〜4に示されるレーザーアニールでは十分に活性化させることができなかった。また、これらのレーザーアニール技術によって深い位置のフィールドストップ領域を活性化させようとすると、レーザーの強度が強くなりすぎ浅い位置のコレクタ領域において昇華(アブレーション)が発生し、コレクタ領域が欠落するという事態が発生していた。   In the case where the field stop region formed at a position deeper than 1 μm from the back surface of the semiconductor substrate is provided, the laser annealing disclosed in Patent Documents 1 to 4 cannot be sufficiently activated. In addition, when trying to activate the deep field stop region by these laser annealing techniques, the laser intensity becomes too strong and sublimation (ablation) occurs in the shallow collector region and the collector region is missing. Had occurred.

上述の特許文献5に示される回転円盤式レーザーアニール装置を利用しても、深さ1μmの領域の活性化は十分できない。   Even if the rotating disk type laser annealing apparatus shown in Patent Document 5 described above is used, activation of a region having a depth of 1 μm cannot be sufficiently performed.

本発明は、半導体基板内に導入された不純物を、その深さに依存せずレーザーアニールで活性化させる方法を見出したことに基づくものである。半導体基板の主材料にSi(シリコン)が用いられる場合、本発明の不純物の活性化工程では、長波長の光がSiに吸収される様にSi基板を250℃以上の温度にあげた後に、従来用いられたエキシマ、YAGレーザー等とは異なり自由電子吸収をその加熱起源とする長波長のレーザーを用いて、レーザーパワーを制御することで半導体基板の表面の温度がシリコンの溶融温度以下となる条件でレーザーを照射する。これにより、半導体基板の表面部分を結晶欠陥の少ない状態にすることができる。   The present invention is based on the discovery of a method for activating an impurity introduced into a semiconductor substrate by laser annealing without depending on its depth. When Si (silicon) is used as the main material of the semiconductor substrate, in the impurity activation process of the present invention, after raising the Si substrate to a temperature of 250 ° C. or higher so that long wavelength light is absorbed by Si, Unlike the conventional excimer, YAG laser, etc., the surface temperature of the semiconductor substrate becomes lower than the melting temperature of silicon by controlling the laser power using a long wavelength laser whose free electron absorption is the heating origin. Irradiate the laser under conditions. Thereby, the surface part of a semiconductor substrate can be made into a state with few crystal defects.

具体的には、レーザーアニールの実施前に静電チャック機構で吸着する支持基板に、デバイス表面側が対向するように、ウエハ裏面が外側に出るように極薄デバイスウエハ(半導体基板)を吸着させる。100μm程度の厚みの極薄Si基板の場合、その基板自体を例えば本発明のように250℃以上に加熱すると下側(表面側)に凸にそりあがってしまうためである。この加熱のために、接着剤や固定テープ等で固定することはできず、本発明のような静電チャック機構で吸着する支持基板が必要となる。   Specifically, an ultrathin device wafer (semiconductor substrate) is adsorbed so that the back surface of the wafer is exposed to the outside so that the device front side faces the support substrate adsorbed by the electrostatic chuck mechanism before laser annealing. This is because, in the case of an ultrathin Si substrate having a thickness of about 100 μm, if the substrate itself is heated to 250 ° C. or more as in the present invention, for example, it is warped convexly downward (surface side). For this heating, it cannot be fixed with an adhesive or a fixing tape, and a support substrate that is attracted by an electrostatic chuck mechanism as in the present invention is required.

本発明の第1の特徴は、(1)半導体基板の表面から不純物を導入して半導体領域を形成する工程、静電チャック方式を用いて前記半導体基板を支持基板に固定して前記半導体基板全体を250℃以上に加熱する工程、3μm以上の波長のレーザーを1000マイクロ秒以下の照射時間で照射して前記半導体基板の表面を加熱して前記半導体基板内に導入された前記不純物を活性化する工程とを有する半導体装置の製造方法にある。   The first feature of the present invention is that: (1) a step of forming a semiconductor region by introducing impurities from the surface of the semiconductor substrate, and fixing the semiconductor substrate to a support substrate by using an electrostatic chuck method. And heating the surface of the semiconductor substrate to irradiate the impurities introduced into the semiconductor substrate by irradiating a laser having a wavelength of 3 μm or more with an irradiation time of 1000 microseconds or less. A method of manufacturing a semiconductor device having a process.

(2)(1)において、前記レーザーは波長10.6μmを有するCOレーザーであることが好ましい。自由電子をより励起しやすくする長波長のレーザーであり、かつ機械工作等で既に産業界で広く用いられている、安定稼動可能なレーザーであるためである。(2) In (1), the laser is preferably a CO 2 laser having a wavelength of 10.6 μm. This is because it is a laser with a long wavelength that makes it easier to excite free electrons, and is a laser that can be stably operated and is already widely used in the industry for machining.

(3)(1)において、前記半導体領域を形成する工程が前記半導体基板の裏面から1μmよりも深い位置に第1導電型の不純物を導入してフィールドストップ領域を形成する工程と、前記半導体基板の裏面から1μmよりも浅い位置に第2導電型の不純物を導入してコレクタ領域を形成する工程とを有することが好ましい。   (3) In (1), in the step of forming the semiconductor region, a step of forming a field stop region by introducing a first conductivity type impurity at a position deeper than 1 μm from the back surface of the semiconductor substrate; And a step of forming a collector region by introducing a second conductivity type impurity at a position shallower than 1 μm from the back surface of the substrate.

(4)(1)において、前記半導体基板は300μm以下に薄膜化した半導体Si基板を用いることが好ましい。表裏面間に流れるキャリアの流動距離を短くし、極薄IGBTの性能をより向上させるためである。   (4) In (1), it is preferable to use a semiconductor Si substrate thinned to 300 μm or less as the semiconductor substrate. This is for shortening the flow distance of the carrier flowing between the front and back surfaces and further improving the performance of the ultra-thin IGBT.

(5)(1)において、前記不純物を活性化する工程では、前記半導体Si基板の裏面から前記半導体基板の裏面から1μmよりも深い位置の温度が950℃以上シリコンの溶融温度1412℃以下となる条件で前記レーザーを照射することが好ましい。フィールドストップ領域を十分活性化させるためである。   (5) In (1), in the step of activating the impurities, the temperature deeper than 1 μm from the back surface of the semiconductor Si substrate to the back surface of the semiconductor substrate is 950 ° C. or higher and the silicon melting temperature is 1412 ° C. or lower. It is preferable to irradiate the laser under conditions. This is to sufficiently activate the field stop region.

(6)(3)において、前記コレクタ領域は、前記半導体基板の裏面から1μmよりも浅い位置に向けて前記不純物の濃度がイオン注入時のままの形状を維持した領域を備えていることが好ましい。裏面側最表面の活性な不純物濃度をより濃くし、金属電極との接触抵抗をさげ極薄IGBTの性能を向上させるためである。   (6) In (3), it is preferable that the collector region includes a region in which the impurity concentration is maintained as it is at the time of ion implantation toward a position shallower than 1 μm from the back surface of the semiconductor substrate. . This is because the active impurity concentration on the outermost surface on the back surface side is made higher, the contact resistance with the metal electrode is reduced, and the performance of the ultra-thin IGBT is improved.

本発明によれば、深さの異なるフィールドストップ領域とコレクタ領域の不純物を共に充分活性化することが可能であり、フィールドストップ領域の活性化時にコレクタ領域を溶融させることもなく、結晶欠陥の少ない半導体装置を得ることができる。   According to the present invention, it is possible to sufficiently activate both impurities in the field stop region and the collector region having different depths, and there is little crystal defect without melting the collector region when the field stop region is activated. A semiconductor device can be obtained.

IGBTの製造過程を示す(1)。The manufacturing process of IGBT is shown (1). IGBTの製造過程を示す(2)。The manufacturing process of IGBT is shown (2). IGBTの製造過程を示す(3)。The manufacturing process of IGBT is shown (3). 半導体基板の裏面部分に導入されたリンイオン及びボロンイオンの分布を示す。The distribution of phosphorus ions and boron ions introduced into the back surface portion of the semiconductor substrate is shown. 静電チャック方式支持基板への極薄ウエハの支持過程を示す。The process of supporting an ultrathin wafer on an electrostatic chuck type support substrate will be described. 極薄デバイスウエハを高温加熱した場合のウエハ形状を示す。The wafer shape when an ultra-thin device wafer is heated at a high temperature is shown. ボロンイオンを同一レーザー照射強度でCOレーザーアニールしたサンプルのシート抵抗、到達アニール温度の基板加熱温度依存性を示す。The sheet resistance of a sample obtained by subjecting boron ions to CO 2 laser annealing at the same laser irradiation intensity and the substrate annealing temperature dependence of the ultimate annealing temperature are shown. 半導体基板の裏面部分の活性化リンの分布を示す。The distribution of activated phosphorus on the back surface portion of the semiconductor substrate is shown. 半導体基板の裏面部分の活性化ボロンの分布を示す。The distribution of activated boron on the back surface portion of the semiconductor substrate is shown. 半導体基板の裏面部分に(a)導入されたボロン(b)活性化ボロンの分布を示す。The distribution of (a) boron introduced into the back surface portion of the semiconductor substrate (b) activated boron is shown. IGBTの製造過程を示す(4)。The manufacturing process of IGBT is shown (4).

以下、図面を参照して実施例1を詳細に説明する。   Hereinafter, Example 1 will be described in detail with reference to the drawings.

(IGBTの製造方法)
図1〜図10を参照して、IGBTの製造方法を説明する。とりわけ、フィールドストップ層及びコレクタ層を形成する方法を中心に説明する。
(Manufacturing method of IGBT)
With reference to FIGS. 1-10, the manufacturing method of IGBT is demonstrated. In particular, the method for forming the field stop layer and the collector layer will be mainly described.

図1に、IGBT100の製造過程の要部断面図を模式的に示す。IGBT100は、n型のシリコン単結晶のウェハ(CZ、MCZ、FZ)を利用して形成されている。IGBT100は、n型のドリフト層1上に形成されているp型のボディ層2と、そのボディ層2の表面部分に形成されているn型のソース領域3を備えている。ボディ層2及びソース領域3は、ドリフト層1の表面部分にイオン注入技術を利用して形成することができる。In FIG. 1, the principal part sectional drawing of the manufacturing process of IGBT100 is shown typically. The IGBT 100 is formed using an n-type silicon single crystal wafer (CZ, MCZ, FZ). The IGBT 100 includes a p-type body layer 2 formed on the n -type drift layer 1 and an n + -type source region 3 formed on the surface portion of the body layer 2. The body layer 2 and the source region 3 can be formed on the surface portion of the drift layer 1 using an ion implantation technique.

次に、図2に示すように、IGBT100には、トレンチゲート電極4が形成される。トレンチゲート電極4は、ソース領域3とドリフト層1を隔てているボディ層2にゲート絶縁膜5を介して対向している。ゲート絶縁膜5は、ボディ層2の表面からトレンチを形成した後に、そのトレンチの内壁を熱酸化することによって形成することができる。トレンチゲート電極4は、ゲート絶縁膜5によって被覆されたトレンチ内にポリシリコンを充填することによって形成することができる。トレンチゲート電極4のポリシリコンには不純物が高濃度に導入されており、実質的に導体である。   Next, as shown in FIG. 2, the trench gate electrode 4 is formed in the IGBT 100. The trench gate electrode 4 is opposed to the body layer 2 separating the source region 3 and the drift layer 1 through the gate insulating film 5. The gate insulating film 5 can be formed by forming a trench from the surface of the body layer 2 and then thermally oxidizing the inner wall of the trench. The trench gate electrode 4 can be formed by filling the trench covered with the gate insulating film 5 with polysilicon. Impurities are introduced into the polysilicon of the trench gate electrode 4 at a high concentration, which is substantially a conductor.

半導体基板の表面には、ソース領域3に電気的に接続するソース電極6が形成されている。ソース電極6とトレンチゲート電極4は、層間絶縁膜7によって電気的に分離されている。ボディ層2の表面にはさらに、ポリイミド層8が形成されている。ポリイミド層8はソース電極6を覆っており、ソース電極6等のパッシベーション(保護膜)用に設けられている。   A source electrode 6 that is electrically connected to the source region 3 is formed on the surface of the semiconductor substrate. The source electrode 6 and the trench gate electrode 4 are electrically separated by the interlayer insulating film 7. A polyimide layer 8 is further formed on the surface of the body layer 2. The polyimide layer 8 covers the source electrode 6 and is provided for passivation (protective film) of the source electrode 6 and the like.

次に、図3に示すように、IGBT100のドリフト層1は裏面側から研磨され、半導体基板は100μm程度の厚みに調整される。   Next, as shown in FIG. 3, the drift layer 1 of the IGBT 100 is polished from the back surface side, and the semiconductor substrate is adjusted to a thickness of about 100 μm.

次に、ドリフト層1の裏面から、フィールドストッパ層として寄与するn型不純物であるリンイオン9aを深い位置に導入し、さらにコレクタ層として寄与するp型不純物であるボロンイオン9bを浅い位置に導入する。リンイオン9aの注入条件は、注入エネルギーが500〜700KeVであり、ドーズ量が1×1013cm−2である。ボロンイオン9bの注入条件は、注入エネルギーが10〜20KeVであり、ドーズ量が5×1013〜1×1014cm−2である。図4に示すように、リンイオンの導入濃度分布は、半導体基板の裏面から1μmほどの深い位置に不純物濃度のピークが形成され、その形成範囲が半導体基板の裏面から2μmほどの深い位置にまで至っている。Next, from the back surface of the drift layer 1, phosphorus ions 9a that are n-type impurities contributing as field stopper layers are introduced into deep positions, and boron ions 9b that are p-type impurities contributing as collector layers are introduced into shallow positions. . The implantation conditions of phosphorus ions 9a are an implantation energy of 500 to 700 KeV and a dose amount of 1 × 10 13 cm −2 . The implantation conditions of the boron ions 9b are an implantation energy of 10 to 20 KeV and a dose amount of 5 × 10 13 to 1 × 10 14 cm −2 . As shown in FIG. 4, in the concentration distribution of phosphorus ions, an impurity concentration peak is formed at a position about 1 μm deep from the back surface of the semiconductor substrate, and the formation range reaches a position about 2 μm deep from the back surface of the semiconductor substrate. Yes.

次に、図5に示すように、静電チャック機構で吸着する支持基板に、デバイス表面側が対向するように、ウエハ裏面が外側に出るように吸着させる。100μm程度の厚みの極薄Si基板(極薄サンプル、極薄膜サンプル、Thin Wafer)の場合、その基板自体を例えば本発明のように250℃以上に加熱すると図6のように下側(表面側)に凸にそりあがってしまうためである。この加熱のために、接着剤や固定テープ等で固定することはできず、本発明のような静電チャック機構で吸着する支持基板が必要となる。   Next, as shown in FIG. 5, the wafer is sucked so that the back surface of the wafer comes out to the outside so that the device front side faces the support substrate sucked by the electrostatic chuck mechanism. In the case of an ultrathin Si substrate (ultrathin sample, ultrathin sample, thin wafer) having a thickness of about 100 μm, when the substrate itself is heated to, for example, 250 ° C. or more as in the present invention, the lower side (surface side) as shown in FIG. This is because it will bend upward. For this heating, it cannot be fixed with an adhesive or a fixing tape, and a support substrate that is attracted by an electrostatic chuck mechanism as in the present invention is required.

次に、半導体基板(極薄サンプル、極薄膜サンプル、Thin Wafer)の裏面に向けてレーザーアニールを実施する。レーザーアニール条件は、例えば裏面温度1200℃、アニール時間600マイクロ秒、基板加熱温度は250℃である。図7にボロンイオンを同一レーザー照射強度でCOレーザーアニールしたサンプルのシート抵抗、到達アニール温度の基板加熱温度依存性を示す。イオン注入層を十分活性化するためには(すなわち1100℃以上に活性化するためには)、基板自体を250℃以上に加熱する必要があることが分かる。Next, laser annealing is performed on the back surface of the semiconductor substrate (ultra thin sample, ultra thin film sample, thin wafer). The laser annealing conditions are, for example, a back surface temperature of 1200 ° C., an annealing time of 600 microseconds, and a substrate heating temperature of 250 ° C. FIG. 7 shows the substrate resistance dependence of the sheet resistance and ultimate annealing temperature of a sample obtained by subjecting boron ions to CO 2 laser annealing at the same laser irradiation intensity. It can be seen that the substrate itself needs to be heated to 250 ° C. or higher in order to sufficiently activate the ion-implanted layer (that is, to activate it at 1100 ° C. or higher).

図8に、リン、ボロンイオンの導入濃度分布と活性化された濃度分布を示す。導入濃度分布は二次イオン質量分析システム(SIMS)を用いて算出した。活性化されたリンの濃度分布は拡がり抵抗(SR)を用いて算出した。 本実施例の活性化されたリンの濃度分布は、リンイオンの導入濃度分布に沿って深い位置までほぼ100%活性化されていることが分かる。 本実施例では、半導体基板の浅い位置に導入されたボロンイオンの活性化においても従来技術で形成されたものとは異なる特徴を有している。図9に、半導体基板の裏面から深さ方向に沿った活性化ボロンの不純物濃度分布を示す。本実施例では、半導体基板の裏面部分がシリコンの溶融温度である1412℃以下の範囲で加熱されている。溶融再結晶化の現象は起きておらず、裏面部分の結晶欠陥の少ない状態であり、ほぼ100%活性化されている。   FIG. 8 shows the introduction concentration distribution and activated concentration distribution of phosphorus and boron ions. The introduced concentration distribution was calculated using a secondary ion mass spectrometry system (SIMS). The concentration distribution of activated phosphorus was calculated using the spread resistance (SR). It can be seen that the activated phosphorus concentration distribution of this example is almost 100% activated to a deep position along the phosphorus ion introduction concentration distribution. In this embodiment, the activation of boron ions introduced at a shallow position of the semiconductor substrate also has a feature different from that formed by the prior art. FIG. 9 shows the impurity concentration distribution of activated boron along the depth direction from the back surface of the semiconductor substrate. In the present embodiment, the back surface portion of the semiconductor substrate is heated within a range of 1412 ° C. or less, which is the melting temperature of silicon. The phenomenon of melt recrystallization does not occur, there are few crystal defects in the back surface portion, and it is almost 100% activated.

本実施例のレーザーアニールによると、コレクタ層の不純物濃度が、アニール後もほぼイオン注入時の濃度分布のまま形成されるという利点も有している。図10に示すように、YAGレーザー等の従来技術を用いると、コレクタ層の不純物濃度の分布は、溶解したシリコンの深さまで一様濃度分布している。半導体基板の表面部分の不純物濃度が低下している。この表面部分の低下は、ピークの値に対して1/10ほどに低下する。一方、本実施例のコレクタ層は、イオン注入条件を制御することによりコレクタ層最表面の濃度を従来技術によるものよりも濃くすることができる。これにより、コレクタ電極に対するコンタクト性の向上、及び正孔の注入効率の向上が得られ、オン電圧の小さいIGBTを得ることができる。   According to the laser annealing of this embodiment, there is also an advantage that the impurity concentration of the collector layer is formed with the concentration distribution at the time of ion implantation substantially after the annealing. As shown in FIG. 10, when a conventional technique such as a YAG laser is used, the distribution of impurity concentration in the collector layer is uniformly distributed up to the depth of dissolved silicon. The impurity concentration of the surface portion of the semiconductor substrate is reduced. The reduction of the surface portion is reduced to about 1/10 of the peak value. On the other hand, in the collector layer of this embodiment, the concentration of the outermost surface of the collector layer can be made higher than that of the prior art by controlling the ion implantation conditions. Thereby, the contact property with respect to the collector electrode and the hole injection efficiency are improved, and an IGBT having a low on-voltage can be obtained.

次に、図11に示すように、コレクタ層の裏面にアルミニウムを蒸着してコレクタ電極10を形成して、IGBT100を得ることができる。   Next, as shown in FIG. 11, the collector electrode 10 is formed by vapor-depositing aluminum on the back surface of the collector layer, whereby the IGBT 100 can be obtained.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

1…ドリフト層、2…p型のボディ層、3…ソース領域、4…トレンチゲート電極、5…ゲート絶縁膜、6…ソース電極、7…層間絶縁膜、8…ポリイミド層、9a…リンイオン、9b…ボロンイオン、10…コレクタ電極。   DESCRIPTION OF SYMBOLS 1 ... Drift layer, 2 ... p-type body layer, 3 ... Source region, 4 ... Trench gate electrode, 5 ... Gate insulating film, 6 ... Source electrode, 7 ... Interlayer insulating film, 8 ... Polyimide layer, 9a ... Phosphorus ion, 9b ... Boron ion, 10 ... Collector electrode.

Claims (11)

半導体基板の面から不純物を導入して半導体領域を形成する工程、前記不純物の導入工程の後、静電チャック方式を用いて前記半導体基板の表面側を支持基板に固定して前記半導体基板を250℃以上に加熱する工程、前記加熱工程の後に、3μm以上の波長のレーザーを1000マイクロ秒以下の照射時間で照射して前記半導体領域に導入された前記不純物を活性化する工程を有することを特徴とする半導体装置の製造方法。 Forming a semiconductor region by introducing impurities from the back surface of the semiconductor substrate, after the step of introducing the impurity, the semiconductor base plate by fixing the surface side of the semiconductor substrate to the support substrate using an electrostatic chuck system heating the above 250 ° C. step, after the heating step, a step, of activating the impurity introduced into the semiconductor region 3μm or more laser wavelengths irradiated at 1000 microseconds or less irradiation time A method for manufacturing a semiconductor device. 前記レーザーは波長10.6μmを有するCOレーザーであることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the laser is a CO2 laser having a wavelength of 10.6 [mu] m. 前記半導体領域を形成する工程が前記半導体基板の前記裏面から1μmよりも深い位置に第1導電型の不純物を導入してフィールドストップ領域を形成する工程と、前記半導体基板の前記裏面から1μmよりも浅い位置に第2導電型の不純物を導入してコレクタ領域を形成する工程とを有することを特徴とする請求項1記載の半導体装置の製造方法。 Forming a field stop region forming said semiconductor region by introducing a first conductivity type impurity at a position deeper than 1μm from the rear surface of the semiconductor substrate, than 1μm from said back surface of said semiconductor substrate 2. A method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming a collector region by introducing a second conductivity type impurity at a shallow position. 前記半導体基板は300μm以下に薄膜化した半導体Si基板を用いることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is a semiconductor Si substrate thinned to 300 [mu] m or less. 前記不純物を活性化する工程では、前記半導体基板の前記裏面から1μmよりも深い位置の温度が950℃以上シリコンの溶融温度1412℃以下となる条件で前記レーザーを照射することを特徴とする請求項記載の半導体装置の製造方法。 In the step of activating the impurity, claims and irradiating the laser before Symbol conditions at which position deeper than 1μm from the rear surface of the semiconductor substrate is less than the melting temperature of 1412 ° C. of silicon 950 ° C. or higher Item 5. A method for manufacturing a semiconductor device according to Item 4 . 前記コレクタ領域は、前記半導体基板の前記裏面から1μmよりも浅い位置に向けて前記不純物の濃度がイオン注入時のままの形状を維持した領域を備えていることを特徴とする請求項3記載の半導体装置の製造方法。 The collector region, according to claim 3, wherein the concentration of the impurity the towards a position shallower than 1μm from the rear surface of the semiconductor substrate is characterized in that it comprises a region that maintains the shape of the as-ion implantation A method for manufacturing a semiconductor device. 前記レーザーは、前記半導体基板の前記裏面側から照射することを特徴とする請求項1記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1, wherein the laser is irradiated from the back side of the semiconductor substrate. 前記半導体装置は、IGBTであり、前記IGBTは、ドリフト層と、前記ドリフト層上に形成されたボディ層と、前記ボディ層内に形成されたソース領域と、前記ボディ層にゲート絶縁膜を介して対向するゲート電極と、前記ドリフト層の下に形成されたフィールドストッパ層と、前記フィールドストッパ層の下に形成されたコレクタ層と、を有し、The semiconductor device is an IGBT, and the IGBT includes a drift layer, a body layer formed on the drift layer, a source region formed in the body layer, and a gate insulating film on the body layer. Opposite gate electrodes, a field stopper layer formed under the drift layer, and a collector layer formed under the field stopper layer,
前記半導体領域を形成する工程により、前記フィールドストッパ層を形成することを特徴とする請求項1記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the field stopper layer is formed by the step of forming the semiconductor region.
前記半導体領域を形成する工程において、前記裏面から1μmほどの位置に不純物濃度ピークをもつように前記不純物を導入することを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein in the step of forming the semiconductor region, the impurity is introduced so as to have an impurity concentration peak at a position of about 1 [mu] m from the back surface. 前記ソース領域は、前記半導体基板の前記表面側に位置し、前記コレクタ層は前記半導体基板の前記裏面側に位置することを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein the source region is located on the front side of the semiconductor substrate, and the collector layer is located on the back side of the semiconductor substrate. 前記ドリフト層、前記ソース領域および前記フィールドストッパ層はn型を有し、前記ボディ層と前記コレクタ層はp型を有することを特徴とする請求項10記載の半導体装置の製造方法。11. The method of manufacturing a semiconductor device according to claim 10, wherein the drift layer, the source region, and the field stopper layer have an n-type, and the body layer and the collector layer have a p-type.
JP2011539356A 2009-11-06 2010-10-29 Manufacturing method of semiconductor device Expired - Fee Related JP5557848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011539356A JP5557848B2 (en) 2009-11-06 2010-10-29 Manufacturing method of semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009254558 2009-11-06
JP2009254558 2009-11-06
PCT/JP2010/069291 WO2011055691A1 (en) 2009-11-06 2010-10-29 Method for manufacturing semiconductor device
JP2011539356A JP5557848B2 (en) 2009-11-06 2010-10-29 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2011055691A1 JPWO2011055691A1 (en) 2013-03-28
JP5557848B2 true JP5557848B2 (en) 2014-07-23

Family

ID=43969931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011539356A Expired - Fee Related JP5557848B2 (en) 2009-11-06 2010-10-29 Manufacturing method of semiconductor device

Country Status (4)

Country Link
JP (1) JP5557848B2 (en)
CN (1) CN102668037B (en)
DE (1) DE112010004296T5 (en)
WO (1) WO2011055691A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072306A (en) * 2012-09-28 2014-04-21 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
JP6265594B2 (en) 2012-12-21 2018-01-24 ラピスセミコンダクタ株式会社 Semiconductor device manufacturing method and semiconductor device
US10020193B1 (en) 2015-06-15 2018-07-10 Tdk Corporation Method for laser annealing with laser beam radiated via through hole
JP2018041988A (en) * 2017-12-18 2018-03-15 ラピスセミコンダクタ株式会社 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268487A (en) * 2004-03-18 2005-09-29 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device, and manufacturing equipment thereof
JP2005302883A (en) * 2004-04-08 2005-10-27 Hitachi Ltd Method for manufacturing semiconductor device
JP2006351659A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Method of manufacturing semiconductor device
JP2007123300A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Method for activating impurities, laser annealer, semiconductor device and method for fabricating same
JP2008244446A (en) * 2007-02-28 2008-10-09 Fuji Electric Device Technology Co Ltd Semiconductor device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962440B2 (en) 1996-07-19 2007-08-22 キヤノン株式会社 Image processing device
US5908307A (en) 1997-01-31 1999-06-01 Ultratech Stepper, Inc. Fabrication method for reduced-dimension FET devices
JP2000349042A (en) 1999-06-03 2000-12-15 Toshiba Corp Method and apparatus for manufacturing semiconductor device
JP4589606B2 (en) 2003-06-02 2010-12-01 住友重機械工業株式会社 Manufacturing method of semiconductor device
JP2006005291A (en) 2004-06-21 2006-01-05 Toyota Motor Corp Laser annealing device and method
KR100968687B1 (en) * 2005-08-03 2010-07-06 페톤 가부시끼가이샤 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
CN101217109A (en) * 2008-01-10 2008-07-09 清华大学 A double-light source laser annealing device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268487A (en) * 2004-03-18 2005-09-29 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device, and manufacturing equipment thereof
JP2005302883A (en) * 2004-04-08 2005-10-27 Hitachi Ltd Method for manufacturing semiconductor device
JP2006351659A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Method of manufacturing semiconductor device
JP2007123300A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Method for activating impurities, laser annealer, semiconductor device and method for fabricating same
JP2008244446A (en) * 2007-02-28 2008-10-09 Fuji Electric Device Technology Co Ltd Semiconductor device manufacturing method

Also Published As

Publication number Publication date
WO2011055691A1 (en) 2011-05-12
DE112010004296T5 (en) 2013-01-03
CN102668037B (en) 2015-07-15
CN102668037A (en) 2012-09-12
JPWO2011055691A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5104314B2 (en) Semiconductor device and manufacturing method thereof
WO2013108911A1 (en) Semiconductor device and method for producing same
JP2006351659A (en) Method of manufacturing semiconductor device
US9779968B2 (en) Method for processing semiconductor substrate and method for manufacturing semiconductor device in which said processing method is used
JP2008091705A (en) Semiconductor device and manufacturing method thereof
JP2009176892A (en) Semiconductor device and manufacturing method therefor
JP2001160559A (en) Method of manufacturing semiconductor device
US20120329257A1 (en) Method for manufacturing semiconductor device
JP2007123300A (en) Method for activating impurities, laser annealer, semiconductor device and method for fabricating same
US20150357229A1 (en) Method of Manufacturing a Semiconductor Device Comprising Field Stop Zone
US20120178223A1 (en) Method of Manufacturing High Breakdown Voltage Semiconductor Device
JP5557848B2 (en) Manufacturing method of semiconductor device
US8420512B2 (en) Method for manufacturing semiconductor device
JP5839768B2 (en) Manufacturing method of semiconductor device
JP2013247248A (en) Semiconductor device manufacturing method
KR102478873B1 (en) DIP junction electronic device and its manufacturing process
JP5034153B2 (en) Manufacturing method of semiconductor device
JP4043865B2 (en) Manufacturing method of semiconductor device using laser irradiation
JP5201305B2 (en) Manufacturing method of semiconductor device
JP7155759B2 (en) Semiconductor device and method for manufacturing semiconductor device
KR101162444B1 (en) Method for heating a plate with a light stream
JP5201303B2 (en) Method for manufacturing reverse blocking semiconductor device
JP6870286B2 (en) Manufacturing method of silicon carbide semiconductor device
CN113517183A (en) Device preparation method based on thin silicon carbide wafer
US20230369515A1 (en) Power semiconductor device and method of manufacturing power semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees