JP5554054B2 - ターボ冷凍機 - Google Patents

ターボ冷凍機 Download PDF

Info

Publication number
JP5554054B2
JP5554054B2 JP2009274434A JP2009274434A JP5554054B2 JP 5554054 B2 JP5554054 B2 JP 5554054B2 JP 2009274434 A JP2009274434 A JP 2009274434A JP 2009274434 A JP2009274434 A JP 2009274434A JP 5554054 B2 JP5554054 B2 JP 5554054B2
Authority
JP
Japan
Prior art keywords
compressor
condenser
evaporator
stage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009274434A
Other languages
English (en)
Other versions
JP2011117648A (ja
Inventor
直人 阪井
隼人 坂本
正史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2009274434A priority Critical patent/JP5554054B2/ja
Publication of JP2011117648A publication Critical patent/JP2011117648A/ja
Application granted granted Critical
Publication of JP5554054B2 publication Critical patent/JP5554054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、気相の冷媒をターボ圧縮機により圧縮したのちに凝縮器で凝縮し、得られた液相の冷媒を蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機に関するものである。
近年、この種のターボ冷凍機として、環境対策のために、フロンなどの温室効果ガスに代えて、水を冷媒として用いるものが提案されている。このようなターボ冷凍機では、フロンに比べて沸点の高い水を低圧下で蒸発させるために、冷媒の密度が下がり、体積流量が増加するので、圧縮機が大型化する。一方、水はフロンと比較すると熱伝導性が良いため、凝縮器、蒸発器などの熱交換器は、圧縮機ほどは大型化しない。そのため、装置が大型化するとはいえ、圧縮機、凝縮器および蒸発器が同じ比率で大型化するのではなく、圧縮機のみが、他の構成要素に比較して大きくなる。一般的な、フロンのターボ冷凍機の構造である圧縮機、熱交換器を別々の要素とし、その間を配管で接続する構造を水冷媒に適用した場合、圧縮機のみが大型化し、遠心式羽根車の周囲に大きなデッドスペースが発生する。また、装置の大型化を極力抑制する目的で配管類を可能な限り小さくするため、冷媒の流速が増加し、圧力損失が発生し、冷凍機の性能が低下する。
この対策として、2段の遠心式圧縮機の羽根車を背面合わせに配置し、放射状に流出する冷媒をスクロールで集めて,蒸発器、凝縮器と配管で接続するのではなく、羽根車に続くデフューザダクトを複数本ずつ設けるとともに、第1段デフューザダクトおよび第2段デフューザダクトを周方向に交互に配置したものが提案されている(特許文献1参照)。
特許第4191477号公報
しかしながら、特許文献1の圧縮機は、構成が極めて複雑になり、製造コストが高くつく。また、やはり遠心式羽根車の周囲に大きなデッドスペースが残る。
本発明は、蒸気冷媒の接続配管を少なくして構造を簡略化するととともに、接続配管による圧力損失を小さくして効率の低下を抑制し、かつ省スペース化を図って小形化できるターボ冷凍機を提供することを目的とする。
上記目的を達成するために、本発明に係るターボ冷凍機は、蒸発器からの気相の冷媒を遠心式のターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、前記蒸発器と凝縮器の少なくとも一方は、冷媒配管を形成する複数の直線状のチューブを有する直管形であり、かつ、少なくとも一部分が前記圧縮機に隣接し、かつ軸方向から見て重合する位置に配置されている。ここで、「圧縮機に隣接」とは、軸方向および径方向において近接している状態をいい、好ましくは径方向から見て一部または全部が圧縮機と重合している状態である。
このターボ冷凍機によれば、蒸発器と凝縮器の少なくとも一方が、圧縮機に隣接し、かつ圧縮機の軸方向から見て重合する位置に配置されているから、つまり圧縮機の周囲の近傍位置に配置されているから、蒸発器から圧縮機の羽根車への蒸気冷媒の供給、または圧縮機から凝縮器への蒸気冷媒の供給を、長い接続配管を介することなく、直接的に、かつ円滑に行えるので、接続配管を省略できる。これにより、構造が簡略化されるとともに、接続配管で生じていた圧力損失がなくなるので、冷凍機の効率低下を抑制できる。また、従来において大きなデッドスペースとなっていた、圧縮機の周囲のスペースを利用して蒸発器または/および凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を図ることができる。しかも、蒸発器または/および凝縮器は、直管形であるので、圧縮機の外形に対応した円形状のチューブを用いる場合に比べて、製作が容易であり、保守に際してチューブの交換・洗浄を容易に行える利点がある。
本発明において、前記圧縮機の出口は軸方向から見て四角形であり、前記直管形の凝縮器が、前記圧縮機と軸方向および径方向から見て重合していることが好ましい。この構成によれば、圧縮機の四角形の出口の辺に平行な凝縮器を配置することにより、圧縮機の出口から流出した蒸気冷媒が凝縮器に全体にわたって均等に流入するので、凝縮器の効率が向上する。また、凝縮器が圧縮機と軸方向および径方向の両方から見て重合する位置に配置されているから、圧縮機の周囲のスペースを有効利用して凝縮器を配置できる。さらに、圧縮機の羽根車から流出する蒸気冷媒を、スクロールおよび長い接続配管を介することなく、直接的に凝縮器に供給できるので、既存のターボ冷凍機に設けられているスクロールおよび接続配管が共に不要となる結果、構造が簡略化されるとともに、スクロールおよび接続配管による圧力損失がなくなる。
本発明において、前記圧縮機は背面合せの2段遠心式であり、前記圧縮機前段から前記圧縮機後段に冷媒を導く中間通路と前記圧縮機後段との間に直管形の前記凝縮器が配置されていることが好ましい。この構成によれば、圧縮機後段から放射状に流出する蒸気冷媒を、中間通路を横切ることなく凝縮器に供給することができる。
背中合せの2段遠心式の圧縮機を用いる構成において、前記直管形の蒸発器の少なくとも一部が前記圧縮機と軸方向および径方向から見て重合していることが好ましい。この構成によれば、圧縮機の周囲のスペースを有効利用して蒸発器を配置できる。また、蒸発器から流出する蒸気冷媒を、接続配管を介することなく、直接的に円滑に圧縮機に供給できるので、接続配管が不要となる結果、構造が簡略化されるとともに、接続配管による圧力損失がなくなる。
背中合せの2段遠心式の圧縮機を用いる構成において、前記蒸発器と凝縮器が前記圧縮機の両段のデフューザを挟んで軸方向に対向していることが好ましい。この構成によれば、圧縮機の軸方向両側に蒸発器と凝縮器とをスペース的にバランスよく配置できるので、ターボ冷凍機がコンパクトな構成となる。
背中合せの2段遠心式の圧縮機を用いる構成において、前記圧縮機前段から前記圧縮機後段へ導かれる冷媒を冷却する中間冷却器が前記凝縮器の後方に配置されていることが好ましい。この構成によれば、圧縮機前段で圧縮されて温度が上昇した蒸気冷媒を、中間冷却器で冷却したのちに圧縮機後段に供給することで、圧縮機の圧縮効率が向上する。また、好ましくは、中間冷却器を圧縮機と同心状の形状にすることもでき、そうすれば、コンパクトに配置できる。
本発明において、前記蒸発器が前記圧縮機の軸方向の一方に配置され、前記圧縮機を駆動する駆動機が他方に配置されていることが好ましい。この構成によれば、駆動機の発生熱によって蒸発器が熱せられる悪影響を防止することができる。
本発明において、少なくとも前記蒸発器、圧縮機および凝縮器がハウジング内に収納されていることが好ましい。前述のとおり、本発明では、接続配管を省略できるから、蒸発器、圧縮機および凝縮器をハウジング内に収納することが可能となり、コンパクトな構造となる。
本発明のターボ冷凍機によれば、蒸発器と凝縮器の少なくとも一方が、圧縮機に隣接し、かつ圧縮機の軸方向から見て重合する近傍位置に配置されているから、蒸発器から圧縮機への蒸気冷媒の供給または圧縮機から凝縮器への蒸気冷媒の供給を、長い接続配管を介することなく、直接的に、かつ円滑に行えるので、蒸発器から蒸気冷媒を圧縮機に導く接続配管と、蒸気冷媒を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く接続配管との少なくとも一方が不要となって冷凍機の効率低下を抑制できる。また、圧縮機の周囲のスペースを有効利用して蒸発器または/および凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を図ることができる。しかも、蒸発器または/および凝縮器は、直管形であるので、製作が容易であり、保守に際してチューブの交換・洗浄を容易に行うことができる。
本発明の第1実施形態に係るターボ冷凍機の作動原理を示す概略構成図である。 同上のターボ冷凍機の縦断面図である。 図2のIII-III 線に沿った断面図である。 図3のターボ冷凍機の凝縮器を示す斜視図である。 本発明の第2実施形態に係るターボ冷凍機を示す縦断面図である。 本発明の第3実施形態に係るターボ冷凍機を示す縦断面図である。 本発明の第4実施形態に係るターボ冷凍機の凝縮器を示す斜視図である。
以下、本発明の好ましい実施形態について図面を参照しながら詳細に説明する。
図1は本発明の第1実施形態に係るターボ冷凍機の概略構成図であり、この実施形態では、液状の冷媒として水を用いている。このターボ冷凍機は、蒸発器1内の底部に溜まった液状の冷媒(水)R3を、ポンプ39の駆動により汲み上げ管41を介して噴霧管42に導き、噴霧管42から伝熱管5上に散布しながら蒸発させて、その気化熱で、伝熱管5内を流れる冷却対象物(以下、冷水という)W1から熱を奪う。低圧となった蒸気冷媒R1は、電動モータのような駆動機3により回転駆動されるターボ圧縮機2に吸入されて圧縮されることにより、高圧の蒸気冷媒R2となって凝縮器4に送り込まれる。この蒸気冷媒R2は、凝縮器4内で冷却管6内を流れる廃熱対象物(以下、冷却水という)W2に対し熱放散を行って液状冷媒R3となったのち、戻り管43を通って蒸発器1の底部に供給される。
このターボ冷凍機では、従来の一般的な冷媒であるフロンなどに比べて沸点の高い水を冷媒として用いているので、圧縮機2は、例えば、流入側を1/100気圧で、流出側を1/10気圧に設定して負圧作動される。したがって、冷媒の密度が下がり体積流量が増加するため、フロンなどを冷媒とする冷凍機に比べて大形化する。伝熱管5内の冷水W1は、例えば、蒸発器1で12℃から7℃に冷却されて送出され、ビルディングなどの室内冷房などに用いられる。冷却管6内の冷却水W2は、例えば、凝縮器4で蒸気冷媒R2から熱を奪って32℃から37℃の温度となって冷却塔に送られる。
前記ターボ冷凍機の縦断面図を示す図2において、外装体となるハウジング8は、直方体状のハウジング本体9が基台10上に載置されて固定された構造になっている。このハウジング8内に、前記蒸発器1、圧縮機2および凝縮器4を含む主要な構成要素が収納されており、圧縮機2の水平な軸方向Sの両側に蒸発器1および凝縮器4がそれぞれ配置されている。以下、図2の左側を前側、右側を後側と呼ぶ。
圧縮機2は、前側の圧縮機前段2Fと後側の圧縮機後段2Rとが背面合わせに配置された2段遠心式であって、圧縮機前段2Fは、前段羽根車(インペラ)20と、その径方向Rの外方の前段デフューザ21とにより構成され、圧縮機後段2Rも、後段羽根車(インペラ)22と、その径方向Rの外方に同心状に配置された後段デフューザ23とにより構成されている。圧縮機前段2Fの前段ケーシング14Fと圧縮機後段2Rの後段ケーシング14Rとは、基台10の上面の中央部に固定された支持台18上に支持されている。圧縮機2は、回転軸11の後端部(図の右端部)に直結された電動モータからなる駆動機3により駆動される。
蒸発器1と凝縮器4は、圧縮機2に隣接して配置されており、圧縮機2の前段2Fおよび後段2Rの両デフューザ21,23を挟んで軸方向Sに相対向している。蒸発器1および凝縮器4として、共に直管形のものが用いられており、この直管形の構成の詳細については後述する。蒸発器1は下部蒸発ユニット1Lと上部蒸発ユニット1Uとを有し、これら下部蒸発ユニット1Lと上部蒸発ユニット1Uが、圧縮機前段2Fにおける小径となった吸入側の径方向外側近傍の上下位置にそれぞれ配置されて、圧縮機前段2Fの前段ケーシング14Fに支持されている。
前記凝縮器4は、第1の凝縮ユニットである上部凝縮ユニット4Uと第2の凝縮ユニットである下部凝縮ユニット4Lとを有し、これら上部凝縮ユニット4Uと下部凝縮ユニット4Lが、圧縮機後段2Rにおける小径となった吸入側の径方向外側近傍で径方向に相対向する上下位置に配置されて、圧縮機後段2Rの後段ケーシング14Rに支持されている。凝縮器4内で液化した液状冷媒R3が戻り管31を介して蒸発器1の下部蒸発ユニット1Lに供給される。この下部蒸発ユニット1L内の液状冷媒R3は、ポンプ39の駆動により、汲み上げ管41を介して両凝縮ユニット1A,1B内の噴霧管42に供給される。
回転軸11の前端部は、複数本の前側ステー13Fを介して前段ケーシング14Fに保持された軸受12に回転自在に支持されている。回転軸11の後端部に直結された前記電動モータ3は、鉛直に延びる後方端壁17を貫通し、かつ複数本の後段ステー13Rを介して後段ケーシング14Rに支持されている。
蒸発器1からの蒸気冷媒R1は、圧縮機2により発生する吸引力を受けて、圧縮機前段2Fに吸入される。前段羽根車20は、蒸発器1からの蒸気冷媒R1を入口20iから回転軸11の軸方向Sに沿って図2の右方に向け吸い込み、径方向Rの外側に向けて流動させ、外周の出口20eから径方向外方に流出させる。この前段羽根車20から流出した蒸気冷媒R21は、前段デフューザ21を通って、出口21eから中間通路24に流出し、中間通路24から圧縮機後段2Rに流入する。
図2のIII-III 線に沿った断面図である図3に示すように、前段デフューザ21の出口21eは軸方向Rから見て四角形(この例では正方形)を形成しており、この出口21eと同一寸法の四角形に形成された通路内壁16とハウジング本体9の底板9aおよび3方の周壁9bとの間に、四角形の中間通路24の前半部が形成されている。通路内壁16の後端部と後段ケーシング14Rの入口端部との間に中間壁27が取り付けられており、この中間壁27と前記後方端壁17とにより、中間通路24の後半部が形成されている。中間壁27と後方端壁17との間に中間冷却器28が配置されている。蒸気冷媒R21は、中間通路24を通るときに中間冷却器28によって冷却される。
中間冷却器28から流出した蒸気冷媒R22は、後段羽根車22の入口22iから回転軸11の軸方向Sに沿って図の左方に向け吸い込まれ、後段羽根車22の外周の出口22eから径方向Rの外方に向けて流出する。この後段羽根車22から流出した蒸気冷媒R2は、後段デフューザ23を通って、通路内壁16の内側に設けられた出口23eから流出する。この出口23eも、図3に示すように、軸方向Sから見て四角形である。後段ケーシング14Rと通路内壁16と中間壁27との間に設けられた空間30に凝縮器4が配置されており、出口23eを出た蒸気冷媒R2が凝縮器4に流入するように、通路内壁16と凝縮ユニット4L,4Uとの間に蒸気冷媒R2の出口通路29が形成されている。凝縮器4の下部凝縮ユニット4Lおよび上部凝縮ユニット4Uはそれぞれ出口23eの水平な上下辺に沿って平行に延びるように水平に配置されている。
このように、凝縮器4を空間30内に配置したことで、凝縮器4の全体が圧縮機2に対し軸方向Sおよび径方向Rから見て重合する位置となる。図3に示すように、この凝縮器4で蒸気冷媒R2が液化され、液状となった冷媒R3は、前述のとおり、図2の戻り管31を通って蒸発器1に戻る。戻り管31はハウジング8内に配置され、ハウジング本体9の底板9aおよび基台10の上面を形成する台板10aを貫通して、凝縮器4と蒸発器1とを連通している。なお、戻り管31はハウジング8の外側を通るように配置してもよい。
図3に示すように、凝縮器4を構成する下部凝縮ユニット4Lおよび上部凝縮ユニット4Uはそれぞれ、直管形であって、下部凝縮ユニット4Lは、同一水平面上に所定間隔で配置された一対の下部冷却水ヘッダ4L1,4L2を有し、その間が水平方向に延びる多数の直線状チューブ40により接続されている。上部凝縮ユニット4Uも同様に、一対の上部冷却水ヘッダ4U1,4U2が水平方向に延びる多数のチューブ40により接続されている。さらに、図3の左側の下部冷却水ヘッダ4L1と上部冷却水ヘッダ4U1間は、2本の連結チューブ32、33で連結されている。
図4に示すように、前記凝縮器4を構成する下部凝縮ユニット4Lおよび上部凝縮ユニット4Uのそれぞれは4つに区分されている。すなわち、4つのヘッダ4L1,4L2、4U1,4U2の内部がそれぞれ四つの空間S1〜S4に仕切られており、これに応じて、チューブ40も、各空間S1〜S4に接続される四つのチューブ群C1〜C4に区分されている。図4の左側の上下の冷却水ヘッダ4L1,4U1における相対向する2つの空間S2,S1が前記連結チューブ32により連通されており、他の2つの空間S3,S4が連結チューブ33により連通されている。。さらに、図4の左側の下部冷却水ヘッダ4L1の下部の二つの空間S1,S4には冷却水流入管34および冷却水流出管38が接続されている。
前記凝縮器4において、冷却水流入管34から凝縮器4の下部凝縮ユニット4Lの左側の下部冷却水ヘッダ4L1の第1空間S1に流入した冷却水W2が、第1チューブ群C1を通って右側の下部冷却水ヘッダ4L2の第1空間S1に流れ、この第1空間S1から第2空間S2に入ったのちに、第2チューブ群C2を通って下部冷却水ヘッダ4L1の第2空間S2に流入する。この第2空間S2の冷却水W2は、連結管32を通って上部凝縮ユニット4Uの左側の上部冷却水ヘッダ4U1の第1空間S1内に流入したのち、第1チューブ群C1を通って右側の上部冷却水ヘッダ4U2の第1空間S1に流入する。
上部冷却水ヘッダ4U2の第1空間S1に流入した冷却水W2は、第2空間S2から第2チューブ群C2を通って上部凝冷却水ヘッダ4U1へ戻り、上部冷却水ヘッダ4U1の第2空間S2から第3空間S3に入り、第3チューブ群C3を通って上部冷却水ヘッダ4U2の第3空間S4に流入し、第4空間S4から第4チューブ群C4を通って上部冷却水ヘッダ4U1の第4空間S4に戻る。冷却水W2はさらに、連結チューブ33を通って下部凝縮ユニット4Lの下部冷却水ヘッダ4L1の第3空間S4に入り、第3チューブ群C3を通って下部冷却水ヘッダ4L2の第3空間S4に流入し、さらに第4空間S4および第4チューブ群C4を通って下部冷却水ヘッダ4L1の第4空間S4に戻ったのち、冷却水流出管38から流出する。このように、冷却水W2がチューブ群C1〜C4を順次流れる際に、図2の圧縮機2から供給される蒸気冷媒R2から熱を奪って、蒸気冷媒R2を液状冷媒R3とする。
また、蒸発器1も、凝縮器4と同様な直管形の構造であり、各蒸発ユニット1L,1Uは両端のヘッダ間が水平に延びる多数のチューブ50によって接続され、一端の上下ヘッダ間が連結管35,36で接続されている。また、蒸発器1の前部を除いた一部も、前段羽根車20と前段デフューザ21とからなる圧縮機前段2Fと軸方向Sおよび径方向Rから見て重合する箇所に存在する空間30Aに配置されている。
この実施形態では蒸発器1および凝縮器4を2分割としたが、それぞれ4分割して、四角形の上下辺に加えて、左右辺に平行に配置してもよい。
上記構成において、図2に示す凝縮器4が、圧縮機後段2Rの外側で、圧縮機後段2Rと軸方向Sおよび径方向Rから見て重合する位置、つまり圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置に配置されているので、圧縮機2の後段羽根車22から流出する蒸気冷媒R2を、後段デフューザ23から直接的に、凝縮器4に導くことができる。これにより、従来の2段遠心式の圧縮機の圧縮機後段から流出する冷媒R2を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く長い接続配管が共に不要となる。その結果、構造が簡略化されるとともに、スクロールおよび接続配管で生じていた圧力損失がなくなるので、冷凍機の効率低下を抑制できる。
また、圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置は、従来のターボ冷凍機において大きなデッドスペースとなっていたので、この場所を凝縮器4の設置箇所に活用することで、省スペース化により、冷凍機全体の小形化を図ることができる。特に、このターボ冷凍機は、冷媒として沸点の高い水を用いているので、負圧条件下で低圧作動となり密度が小さくなるため、比較的直径の大きな羽根車20,22を持つ圧縮機2を用いる必要があるから、後段羽根車22と後段デフューザ23とからなる圧縮機後段2Rに対し、その軸方向Sおよび径方向Rから見て重合する外側に大きなスペースが存在するので、この大きなスペースとなる空間30を有効利用して凝縮器4を容易に設置することができる。
なお、この実施形態では、後段羽根車2と後段デフューザ23からなる圧縮機後段2Rに対し凝縮器4の全体が軸方向Sおよび径方向Rに重合する配置となっているが、径方向Rの重合については、圧縮機後段2Rに対し凝縮器4の一部、例えば凝縮器4の軸方向後部(図2の右方)を除いた他の部分のみが重合する配置としてもよい。
また、このターボ冷凍機では、蒸発器1の前部を除いた一部も、圧縮機前段2Fと軸方向Sおよび径方向Rから見て重合する箇所に存在する大きな空間30Aに設けられているから、この空間30Aを有効利用して蒸発器1を容易に設置することができる。勿論、蒸発器1の全体を圧縮機前段2Fと軸方向Sおよび径方向Rから見て重合するように配置してもよい。
さらに、圧縮機前段2Fの出口21eに連なる中間通路24と圧縮機後段2Rの後段ケーシング14Rとで囲まれた空間30に凝縮器4が配置されているので、圧縮機後段2Rから軸方向後方に流出する蒸気冷媒R2を、中間通路24を横切ることなく凝縮器4に供給することができる。したがって、圧縮機後段2Rと凝縮器4とを接続する出口通路29が短く、かつ簡単な形状となる。
また、圧縮機前段2Fで圧縮されて温度が上昇した蒸気冷媒R21を、中間冷却器28で冷却したのちに圧縮機後段2Rに供給しているので、圧縮機2の圧縮効率が向上する。さらに、前述のとおり、スクロールや接続配管が不要となるので、蒸発器1、圧縮機2および凝縮器4を含む主要な構成要素をハウジング8内に収納することが可能となり、コンパクトな構造となる。しかも、直線状のチューブ40,50を有する直管形の凝縮器4および蒸発器1は、配管を圧縮機の外形に対応した複数の円形状のチューブで構成する場合に比べて、製作が容易であり、安価になるとともに、保守に際してチューブ40,50の交換が容易に行える利点がある。
また、このターボ冷凍機は、図2に明示するように、凝縮器4を直管形としたのに伴って圧縮機後段2Rの出口23eを軸方向Sから見て四角形にして、その2辺に平行に下部凝縮ユニット4Lおよび上部凝縮ユニット4Uを配置したので、圧縮機後段2Rの出口を円形とした場合と異なり、この四角形の出口23eから流出した蒸気冷媒R2は、凝縮器4内の全体にわたり均等に流入するので、チューブ40内を流れる冷却水W2に対する蒸気冷媒R2の熱放散が効率的に行われる。
図5は本発明の第2実施形態に係るターボ冷凍機を示し、同図において、第1実施形態と同一または相当するものに同一の符号を付して、重複する説明を省略する。このターボ冷凍機は、ハウジング8Aを形成する直方体形状のハウジング本体9Aの開口部が蓋体45で密閉された構成になっており、圧縮機前段2Fおよび圧縮後段2Rの各羽根車20,22が同じ向きとなる直列配置で設けられた2段遠心式の圧縮機49を備えている。蒸発器1は圧縮機49の前側(図5の右側)に配置され、直管形の下部蒸発ユニット1Lと上部蒸発ユニット1Uからなる。下部蒸発ユニット1Lと上部蒸発ユニット1Uの間に電動モータ3が配置されている。
前段羽根車20から前段デフューザ21を通った冷媒蒸気R21は、180°の角度で折り返すクロスオーバー形状の中間通路51を通って後段羽根車22の入口に導かれる。凝縮器4は、圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置で、圧縮機後段2Rに対し軸方向Sおよび径方向Rから見て共に重合する位置に配置されている。後段デフューザ23の出口23e、つまり圧縮機2の出口はやはり、軸方向Sから見て正方形となっており、その上下辺に平行に直管形の下部凝縮ユニット4Lおよび上部凝縮ユニット4Uが配置されている。
この構成によっても、後段羽根車22から流出する蒸気冷媒R2を、スクロールおよび長い接続配管を介することなく直接的に、凝縮器4に供給できるので、スクロールおよび接続配管で生じていた圧力損失がなくなり、冷凍機の効率低下を抑制できる。また、後段羽根車22の周囲のスペースを有効利用して凝縮器4を設けることで、デッドスペースを無くして省スペース化を図ることができ、冷凍機全体の小形化を達成できる。
なお、この直列配置の圧縮機50では、圧縮機前段2Fと圧縮機後段2Rが共に前方を向いているから、圧縮機前段2Fと圧縮機後段2Rとを接続する中間通路51と、圧縮機後段2Rを凝縮器4に接続する通路とが交差するという、背面合わせの2段遠心圧縮機に存在する課題は、元来存在しない。
図6は、本発明の第3実施形態に係るターボ冷凍機を示す。このターボ冷凍機は、単一の羽根車53とデフューザ57とを有するのみの単段遠心式の圧縮機52を備えたものである。直管形の凝縮器4は、圧縮機52の羽根車53の径方向外側で、圧縮機52対し軸方向Sおよび径方向Rから見て共に重合する位置に配置されている。直管形の蒸発器1は圧縮機52の前側に配置されている。したがって、このターボ冷凍機においても、蒸気冷媒R2を、従来のスクロールおよび接続配管を介することなく直接的に凝縮器4に供給できるので、スクロールおよび接続配管で生じていた圧力損失がなくなり、冷凍機の効率低下を抑制できる。また、羽根車53の周囲のスペースを利用して凝縮器4を設けることで、デッドスペースを無くして省スペース化を図ることができ、冷凍機全体の小形化を達成できる。
図7は本発明の第4実施形態のターボ冷凍機に用いる円筒状の凝縮器58を示す。この凝縮器58は、円筒状の一対の冷却水ヘッダ58A,58Bを複数の直線状のチューブ59で連通した直管形である。この凝縮器58は、内部に圧縮機後段を収容する配置で設けることにより、第1ないし第3実施形態で説明としたと同様の効果を得ることができる。蒸発器もこれと同様な円筒状とすることができる。このような円筒状とすることにより、ハウジングを、圧縮機の外形に対応する円形の形状とすることができる。
なお、前述の各実施形態では、圧縮機2,49,52の回転軸11が水平方向の向きとなる横置きタイプを例示して説明したが、本発明は、圧縮機2,50,52の回転軸11が鉛直方向の向きとなる縦置きタイプにも適用することができる。また、圧縮機2,50,52を駆動する駆動機3は、ハウジング8の外部に設けるようにしてもよい。駆動機3と圧縮機2,50,52との間に増速機(ギヤ)を介設することもできる。
本発明は、以上の実施形態で示した内容に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
1 蒸発器
2,49,52 ターボ圧縮機
2F 圧縮機前段
2R 圧縮機後段
3 電動モータ(駆動機)
4,58 凝縮器
8 ハウジング
24,51 中間通路
28 中間冷却器
29 出口
40,50,59 チューブ
R1,R2 蒸気冷媒(気相の冷媒)
R3 液状冷媒(液相の冷媒)
W1 冷水(冷却対象物)
S 軸方向
R 径方向

Claims (8)

  1. 蒸発器からの気相の冷媒を遠心式のターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、
    前記蒸発器と前記凝縮器のうち少なくとも前記凝縮器は、冷媒配管を形成する複数の直線状のチューブを有する直管形であり、かつ、少なくとも一部分が前記圧縮機に隣接し、かつ圧縮機の軸方向および径方向から見て重合する位置に配置されており、
    前記圧縮機の出口は軸方向から見て四角形であり、
    前記凝縮器は、第1の凝縮ユニットと第2の凝縮ユニットとを有し、
    前記両凝縮ユニットが、前記圧縮機における小径となった吸入側の径方向外側近傍で、径方向に相対向し、かつ前記出口の辺に沿って平行に延びるように水平に配置され、前記圧縮機のケーシングに支持されているターボ冷凍機。
  2. 請求項1において、前記圧縮機は水平な軸方向を持ち、
    前記圧縮機は背面合せの2段遠心式であり、前記第1および第2の凝縮ユニットが、それぞれ圧縮機後段における小径となった吸入側の径方向外側近傍の上下位置で、前記出口の水平な上下辺に沿って平行に延びるように水平に配置されているターボ冷凍機。
  3. 請求項1または2において、前記圧縮機は背面合せの2段遠心式であり、圧縮機前段から圧縮機後段に冷媒を導く中間通路と前記圧縮機後段との間に直管形の前記凝縮器が配置されているターボ冷凍機。
  4. 請求項1から3のいずれか一項において、前記直管形の蒸発器の少なくとも一部が前記圧縮機と軸方向および径方向から見て重合しているターボ冷凍機。
  5. 請求項1から4のいずれか一項において、前記圧縮機は背面合せの2段遠心式であり、前記蒸発器と凝縮器が前記圧縮機の両段のデフューザを挟んで軸方向に対向しているターボ冷凍機。
  6. 請求項1から5のいずれか一項において、前記圧縮機は背面合せの2段遠心式であり、前記圧縮機前段から前記圧縮機後段へ導かれる冷媒を冷却する中間冷却器が前記凝縮器の後方に配置されているターボ冷凍機。
  7. 請求項1から6のいずれか一項において、前記蒸発器が前記圧縮機の軸方向の一方に配置され、前記圧縮機を駆動する駆動機が他方に配置されているターボ冷凍機。
  8. 請求項1から6のいずれか一項において、少なくとも前記蒸発器、圧縮機および凝縮器がハウジング内に収納されているターボ冷凍機。
JP2009274434A 2009-12-02 2009-12-02 ターボ冷凍機 Active JP5554054B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274434A JP5554054B2 (ja) 2009-12-02 2009-12-02 ターボ冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274434A JP5554054B2 (ja) 2009-12-02 2009-12-02 ターボ冷凍機

Publications (2)

Publication Number Publication Date
JP2011117648A JP2011117648A (ja) 2011-06-16
JP5554054B2 true JP5554054B2 (ja) 2014-07-23

Family

ID=44283180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274434A Active JP5554054B2 (ja) 2009-12-02 2009-12-02 ターボ冷凍機

Country Status (1)

Country Link
JP (1) JP5554054B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082092B2 (ja) * 1990-09-28 2000-08-28 日本酸素株式会社 酸素の精製方法及び装置
JPH08322170A (ja) * 1995-05-24 1996-12-03 Hitachi Ltd 回転電機
JP3089466B2 (ja) * 1997-02-25 2000-09-18 株式会社興和システムサービス 活魚水槽用クーラー
JP2000105056A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 冷却貯蔵庫
FR2800159B1 (fr) * 1999-10-25 2001-12-28 Electricite De France Installation de pompage de chaleur, notamment a fonction frigorifique
IL136921A (en) * 2000-06-22 2004-07-25 Ide Technologies Ltd Arrangement for multi-stage heat pump assembly

Also Published As

Publication number Publication date
JP2011117648A (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2673585B1 (en) Brazed plate heat exchanger for water-cooled heat rejction in a refrigeration cycle
US20070107886A1 (en) Evaporator for a refrigeration system
WO2014103436A1 (ja) 冷凍サイクル装置
CN104185765A (zh) 制冷装置
US9625191B2 (en) Condensing apparatus
US9890973B2 (en) Turbo refrigerator
JP5491818B2 (ja) ターボ冷凍機
JP2007278572A (ja) 吸収式冷凍装置
JP2024120080A (ja) 冷凍システム用のコンパクト熱交換器アセンブリ
JP4191477B2 (ja) 多段式熱ポンプ組立体のための配列
JP5647352B2 (ja) 圧縮装置、冷凍装置
JP5554054B2 (ja) ターボ冷凍機
JP2007078317A (ja) 冷却装置用熱交換器及び冷却装置
WO2012131771A1 (ja) ターボ冷凍機
JP5941297B2 (ja) 冷凍機
JP3943875B2 (ja) ターボ冷凍機
JP2017116122A (ja) 熱交換装置
KR101090227B1 (ko) 흡수식 냉동기를 이용한 공기조화기
CN110887260A (zh) 一种工业冷水机
KR101661954B1 (ko) 열교환기
US20210254909A1 (en) Fluid cleaning apparatus
KR101080308B1 (ko) 흡수식 냉동시스템의 흡수기 및 이를 포함하는 공냉식 흡수식 냉동기
JP2018146153A (ja) 凝縮器
WO2020080129A1 (ja) 冷媒圧縮機
JP2013242102A (ja) コンテナ用冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250