JP5545627B2 - Polyolefin thin film multilayer shrink film - Google Patents

Polyolefin thin film multilayer shrink film Download PDF

Info

Publication number
JP5545627B2
JP5545627B2 JP2009289413A JP2009289413A JP5545627B2 JP 5545627 B2 JP5545627 B2 JP 5545627B2 JP 2009289413 A JP2009289413 A JP 2009289413A JP 2009289413 A JP2009289413 A JP 2009289413A JP 5545627 B2 JP5545627 B2 JP 5545627B2
Authority
JP
Japan
Prior art keywords
film
stretching
polyolefin
shrink film
multilayer shrink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009289413A
Other languages
Japanese (ja)
Other versions
JP2011126247A (en
Inventor
明広 宮本
和宏 浜田
大輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHJIN Film and Chemicals Co Ltd
Original Assignee
KOHJIN Film and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHJIN Film and Chemicals Co Ltd filed Critical KOHJIN Film and Chemicals Co Ltd
Priority to JP2009289413A priority Critical patent/JP5545627B2/en
Publication of JP2011126247A publication Critical patent/JP2011126247A/en
Application granted granted Critical
Publication of JP5545627B2 publication Critical patent/JP5545627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はオーバーラップ用の熱収縮性包装材料に関し、より詳しくは、厚みは6〜11μと薄いにもかかわらず、高引張弾性率、高熱収縮率、高引裂強度、及び経時収縮が小さい等の特性バランスが優れ、高速自動包装や印刷に好適に用いられるポリオレフィン系薄膜多層シュリンクフィルムに関する。   The present invention relates to a heat-shrinkable packaging material for overlap. More specifically, although the thickness is as thin as 6 to 11 μm, the high tensile elastic modulus, high heat shrinkage, high tear strength, small shrinkage with time, etc. The present invention relates to a polyolefin-based thin-film multilayer shrink film that has excellent property balance and is suitably used for high-speed automatic packaging and printing.

従来、熱収縮性包装材料として、ポリ塩化ビニル系フィルム、ポリプロピレン系フィルム、ポリエチレン系フィルム等が知られているが、低価格、使用後の廃棄処理の容易さなどの点でポリプロピレン、ポリエチレン等のポリオレフィン系シュリンクフィルムが好んで用いられている。しかしながら、ポリプロピレン系シュリンクフィルムは弾性率、耐熱性等に優れるものの、低温収縮性に乏しく、一方、ポリエチレン系シュリンクフィルムは、低温収縮性に優れるものの、弾性率、耐熱性に乏しい等の欠点を有している。このような問題を解決すべく、プロピレン系樹脂とエチレン系樹脂を積層したポリオレフィン系多層シュリンクフィルムが開示(特許文献1)されている。   Conventionally, polyvinyl chloride films, polypropylene films, polyethylene films, and the like are known as heat-shrinkable packaging materials. However, polypropylene, polyethylene, etc. are low in terms of cost and ease of disposal after use. Polyolefin shrink films are preferred. However, polypropylene-based shrink film is excellent in elastic modulus, heat resistance, etc., but poor in low-temperature shrinkage, while polyethylene-based shrink film is excellent in low-temperature shrinkage, but has disadvantages such as poor elasticity and heat resistance. doing. In order to solve such problems, a polyolefin multilayer shrink film in which a propylene resin and an ethylene resin are laminated has been disclosed (Patent Document 1).

一方、市場では、環境負荷低減を目指すために、フィルムの薄膜化が望まれる。しかしながら、従来のフィルムを単純に薄くしていくと、弾性率の低下により高速自動包装適性や印刷適性が劣り、また、引裂強度の低下により、自動包装機で付与されるエアー抜きの針孔から破れが生じやすくなるという問題があった。更に、引裂強度を高めようとして、ポリエチレン系樹脂を多用すると経時収縮が大きくなったり、弾性率の低下を招く問題があった。   On the other hand, in the market, in order to reduce the environmental load, it is desired to make the film thinner. However, if the conventional film is simply made thinner, the high-speed automatic packaging suitability and printing suitability are inferior due to the decrease in elastic modulus, and the tearing strength is lowered from the air vent needle hole provided by the automatic packaging machine. There was a problem that it was easy to break. Furthermore, when polyethylene resin is used frequently in order to increase the tear strength, there is a problem that shrinkage with time increases or the elastic modulus decreases.

特開昭58−166049号公報、同63−17361号公報、同63−214446号公報、同64−56547号公報、同64−1535号公報、特開平4−5044号公報、同4−211936号公報、同6−50096号公報、同8−99393号公報、同11−254610号公報、特開2005−144725号公報JP-A-58-166049, JP-A-63-17361, JP-A-63-214446, JP-A-64-56547, JP-A-64-1535, JP-A-4-50444, JP-A-4-21936. Gazettes, 6-50096, 8-99393, 11-254610, and JP-A-2005-144725.

本発明は、上記状況を鑑みてなされたもので、厚みは6〜11μと薄いにもかかわらず、高引張弾性率、高熱収縮率、高引裂強度、及び経時収縮が小さい等の特性バランスが優れ、高速自動包装や印刷に好適に用いられるポリオレフィン系薄膜多層シュリンクフィルムを提供する事を課題とするものである。   The present invention has been made in view of the above situation, and has a good balance of properties such as high tensile elastic modulus, high thermal shrinkage, high tear strength, and small shrinkage over time, although the thickness is as thin as 6 to 11 μm. An object of the present invention is to provide a polyolefin-based thin-film multilayer shrink film that is suitably used for high-speed automatic packaging and printing.

本発明者らは、鋭意検討した結果、プロピレン系樹脂を含む両表面層と、メタロセン触媒によって重合された結晶性プロピレン樹脂(以下、メタロセンPPと記す)、又は、エチレン系樹脂を含む内部層を有する少なくとも3層以上の多層フィルムを特定の延伸倍率にて延伸する事により、課題を解決できる事を見出し、本発明に到達した。
すなわち本発明は、以下のものを提供する。
(1)プロピレン系樹脂を含む両表面層と、メタロセンPP、又は、エチレン系樹脂を含む内部層を有する少なくとも3層以上の多層構成を縦倍率より横倍率が大きく、面積延伸倍率が20倍以上の延伸条件で二軸延伸加工し、下記(a)〜(d)をすべて満足するポリオレフィン系多層シュリンクフィルムを提供するものである。
(a)厚みが6〜11μの範囲である。
(b)引張弾性率が0.8GPa以上である。
(c)120℃での熱収縮率が35%以上である。
(d)40℃雰囲気中で7日間保管後の収縮率が4%以下である。
(e)引裂強度が30mN以上である。
(2)二軸延伸加工が、チューブラー延伸方法であり、縦延伸倍率が4.0〜5.5倍、横延伸倍率が5.5〜7.0倍である事を特徴とする請求項1記載のポリオレフィン系多層シュリンクフィルム。
(3)(a)の厚みが7〜9μの範囲である事を特徴とする(1)〜(2)記載のポリオレフィン系多層シュリンクフィルム。
(4)両表面層が、メタロセンPPを10〜30重量%含むプロピレン系樹脂からなる事を特徴とする(1)〜(3)記載のポリオレフィン系多層シュリンクフィルム。
(5)メタロセンPPが、示差走査熱量計(以下、DSCと記す。)によって測定される融解ピーク温度が110〜130℃であり、メルトフローレート(測定温度230℃、荷重2.16kgf)が1.0〜10.0g/10分である事を特徴とする(1)〜(4)記載のポリオレフィン系多層シュリンクフィルム。
(6)内部層の厚みが全体の60〜80%であり、両表面層が各々1μm以上である事を特徴とする(1)〜(5)記載ポリオレフィン系多層シュリンクフィルム。
(7)(d)の40℃雰囲気中で7日間保管後の収縮率が1.7%以下である事を特徴とする(1)〜(6)記載のポリオレフィン系多層シュリンクフィルム。
As a result of intensive studies, the present inventors have found that both surface layers containing a propylene-based resin and a crystalline propylene resin polymerized by a metallocene catalyst (hereinafter referred to as metallocene PP) or an inner layer containing an ethylene-based resin. The inventors have found that the problem can be solved by stretching a multilayer film having at least three layers at a specific stretching ratio, and have reached the present invention.
That is, the present invention provides the following.
(1) A multi-layer structure having at least three layers having both surface layers containing a propylene-based resin and an inner layer containing a metallocene PP or ethylene-based resin has a lateral magnification larger than a vertical magnification and an area stretch magnification of 20 times or more. And a polyolefin-based multilayer shrink film satisfying all of the following (a) to (d).
(A) The thickness is in the range of 6 to 11 μm.
(B) The tensile elastic modulus is 0.8 GPa or more.
(C) The thermal shrinkage rate at 120 ° C. is 35% or more.
(D) The shrinkage after storage for 7 days in a 40 ° C. atmosphere is 4% or less.
(E) The tear strength is 30 mN or more.
(2) The biaxial stretching process is a tubular stretching method, wherein the longitudinal stretching ratio is 4.0 to 5.5 times and the transverse stretching ratio is 5.5 to 7.0 times. 1. A polyolefin-based multilayer shrink film according to 1.
(3) The polyolefin-based multilayer shrink film as described in (1) to (2), wherein the thickness of (a) is in the range of 7 to 9 μm.
(4) The polyolefin multilayer shrink film according to any one of (1) to (3), wherein both surface layers are made of a propylene resin containing 10 to 30% by weight of metallocene PP.
(5) The melting peak temperature of the metallocene PP measured by a differential scanning calorimeter (hereinafter referred to as DSC) is 110 to 130 ° C., and the melt flow rate (measuring temperature 230 ° C., load 2.16 kgf) is 1. The polyolefin-based multilayer shrink film according to any one of (1) to (4), characterized in that the thickness is from 0.0 to 10.0 g / 10 minutes.
(6) The polyolefin-based multilayer shrink film according to any one of (1) to (5), wherein the thickness of the inner layer is 60 to 80% of the whole and both surface layers are each 1 μm or more.
(7) The polyolefin multilayer shrink film according to any one of (1) to (6), wherein the shrinkage after storage for 7 days in a 40 ° C. atmosphere of (d) is 1.7% or less.

本発明のポリオレフィン系多層シュリンクフィルムは、厚みは6〜11μと薄いにもかかわらず、高引張弾性率、高熱収縮率、高引裂強度、及び経時収縮が小さい等の特性バランスが優れ、高速自動包装や印刷に好適に用いることができる、という効果を奏する。   The polyolefin-based multilayer shrink film of the present invention has an excellent balance of properties such as high tensile elastic modulus, high thermal shrinkage, high tear strength, and small shrinkage over time despite its thin thickness of 6 to 11 μm, and high-speed automatic packaging And it can be suitably used for printing.

以下、本発明を詳細に説明する。
本発明において、プロピレン系樹脂は、示差走査熱量計(以下「DSC」と記す)によって測定される融解ピーク温度が130〜165℃、メルトフローレート(以下「MFR」と記す)(測定温度230℃、荷重2.16kgf)が1.0〜10.0g/10分の範囲のもので、プロピレン単独重合体、プロピレンとα−オレフィンの共重合体、例えばプロピレン−エチレン、プロピレン−ブテン共重合体等、及びプロピレン−エチレン−ブテン3元共重合体の中から選ばれる少なくとも1種以上からなり、主に耐熱性、高弾性率を付与する作用を成す。これらの内、耐熱性、高弾性率、熱収縮特性と透明性のバランスを考慮して、結晶性プロピレン−α−オレフィンランダム共重合体が好適に用いられる。
プロピレン系樹脂の融解ピーク温度が130℃未満では耐熱性が低いため好ましくなく、165℃を超えると低温収縮性が低下するため好ましくない。また、MFRが1.0g/10分未満では、溶融押出時のモーター負荷が高くなる等の問題点があり、10.0g/10分を超えると自動包装機使用時の溶断シール性が低下するため好ましくない。
Hereinafter, the present invention will be described in detail.
In the present invention, the propylene-based resin has a melting peak temperature measured by a differential scanning calorimeter (hereinafter referred to as “DSC”) of 130 to 165 ° C., a melt flow rate (hereinafter referred to as “MFR”) (measurement temperature 230 ° C.). , Load 2.16 kgf) is in the range of 1.0 to 10.0 g / 10 min, propylene homopolymer, copolymer of propylene and α-olefin, such as propylene-ethylene, propylene-butene copolymer, etc. And at least one selected from the group consisting of propylene-ethylene-butene terpolymers, and mainly serves to impart heat resistance and high elastic modulus. Among these, a crystalline propylene-α-olefin random copolymer is preferably used in consideration of the balance between heat resistance, high elastic modulus, heat shrinkage characteristics and transparency.
When the melting peak temperature of the propylene-based resin is less than 130 ° C., the heat resistance is low, which is not preferable. When the melting peak temperature exceeds 165 ° C., the low-temperature shrinkability is decreased, which is not preferable. Further, if the MFR is less than 1.0 g / 10 minutes, there is a problem that the motor load at the time of melt extrusion becomes high, and if it exceeds 10.0 g / 10 minutes, the fusing sealability when using an automatic packaging machine is lowered. Therefore, it is not preferable.

本願において、メタロセンPPは、融解ピーク温度が110〜130℃の範囲のものであり、110℃未満では多層フィルム全体としての耐熱性が低くなるため好ましくなく、130℃を超えると低温収縮性が低下するため好ましくない。MFR(測定温度230℃、荷重2.16kgf)は、0.5〜10.0g/10分のものが好適に用いられる。0.5g/10分未満では溶融押出時のモーター負荷が高くなる等の問題点があり、10.0g/10分を超えると溶断シール性が低下するため好ましくない。
本発明に用いられるメタロセンPPは、低温収縮性の特性を有しており、ポリエチレン系樹脂を積層せずとも、ポリエチレン並みの熱収縮特性を発現することができる。
In the present application, the metallocene PP has a melting peak temperature in the range of 110 to 130 ° C., and if it is less than 110 ° C., the heat resistance of the multilayer film as a whole is lowered, which is not preferable. Therefore, it is not preferable. A MFR (measurement temperature 230 ° C., load 2.16 kgf) of 0.5 to 10.0 g / 10 min is preferably used. If it is less than 0.5 g / 10 minutes, there is a problem that the motor load at the time of melt extrusion becomes high, and if it exceeds 10.0 g / 10 minutes, the fusing and sealing properties are lowered, which is not preferable.
The metallocene PP used in the present invention has a low temperature shrinkage characteristic, and can exhibit a heat shrinkage characteristic similar to that of polyethylene without laminating a polyethylene resin.

表面層には、プロピレン系樹脂又は、プロピレン系樹脂とメタロセンPPの混合樹脂を使用することが出来る。プロピレン系樹脂を単独で表面層に使用した場合、溶断シール、耐熱性が向上する。また、プロピレン系樹脂とメタロセンPPを混合することで、更に低温収縮性を付与する事ができる。プロピレン系樹脂とメタロセンPPを混合して使用する場合の混合比は、プロピレン系樹脂:メタロセンPP=70:30〜90:10の範囲が好ましい。プロピレン系樹脂が70%未満では、溶断シール性、耐熱性が低下し、メタロセンPPが10%未満では、プロピレン系樹脂を単独で使用した場合以上の低温収縮性を得る事ができない。 For the surface layer, a propylene resin or a mixed resin of a propylene resin and a metallocene PP can be used. When a propylene resin is used alone for the surface layer, the fusing seal and heat resistance are improved. Further, by mixing the propylene resin and the metallocene PP, it is possible to further impart low temperature shrinkage. The mixing ratio when using a mixture of propylene resin and metallocene PP is preferably in the range of propylene resin: metallocene PP = 70: 30 to 90:10. If the propylene resin is less than 70%, the fusing sealability and heat resistance are lowered, and if the metallocene PP is less than 10%, it is not possible to obtain a low-temperature shrinkage more than that when the propylene resin is used alone.

本発明において、エチレン系樹脂は、23℃における密度が0.900〜0.940g/cmの範囲のもので、長鎖分岐を有する低密度ポリエチレン、エチレンとブテン―1、ペンテン―1、ヘキセン―1、4−メチルペンテン―1、オクテン―1を含む炭素数4〜20個のα―オレフィンとの共重合体である直鎖状低密度ポリエチレン、エチレン―酢酸ビニル共重合体、エチレン―脂肪族不飽和カルボン酸共重合体、エチレン―脂肪族不飽和カルボン酸エステル共重合体、アイオノマー樹脂から選ばれる少なくとも1種以上からなり、低温収縮性、耐引裂性、耐衝撃性を付与する作用をなす。これらの内、優れた低温収縮性を付与できる点から直鎖状低密度ポリエチレンが好適に用いられる。
ポリエチレン系樹脂の密度が0.900g/cm未満では引張弾性率や耐熱性が低下するため好ましくなく、0.940g/cmを越えると低温収縮性が低下するため好ましくない。また、メルトインデックス(以下MIと記す、測定温度190℃、荷重2.16kgf)は、0.3〜5.0g/10分のものが好適に用いられる。0.3g/10分未満では押出時のモーター負荷が高くなる等の問題点があり、5.0g/10分を越えると延伸安定性が低下するため好ましくない。
In the present invention, the ethylene-based resin has a density in the range of 0.900 to 0.940 g / cm 3 at 23 ° C., low-density polyethylene having long chain branching, ethylene and butene-1, pentene-1, hexene -Linear low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-fat, which is a copolymer with α-olefin having 4 to 20 carbon atoms, including 1,4-methylpentene-1, octene-1 Consisting of at least one selected from aliphatic unsaturated carboxylic acid copolymers, ethylene-aliphatic unsaturated carboxylic acid ester copolymers, and ionomer resins, and has the effect of imparting low-temperature shrinkage, tear resistance, and impact resistance Eggplant. Of these, linear low-density polyethylene is preferably used because it can impart excellent low-temperature shrinkage.
If the density of the polyethylene-based resin is less than 0.900 g / cm 3 , the tensile modulus and heat resistance are undesirably lowered, and if it exceeds 0.940 g / cm 3 , the low-temperature shrinkability is undesirably lowered. A melt index (hereinafter referred to as MI, measuring temperature 190 ° C., load 2.16 kgf) of 0.3 to 5.0 g / 10 min is preferably used. If it is less than 0.3 g / 10 minutes, there is a problem that the motor load at the time of extrusion becomes high, and if it exceeds 5.0 g / 10 minutes, the stretching stability is lowered, which is not preferable.

本発明の層構成は、少なくとも3層以上の層構成であれば問題なく、内部層には、プロピレン系樹脂、メタロセンPP、エチレン系樹脂を用いることが出来る。また、本発明の目的に支障をきたさない範囲で、プロピレン系樹脂、メタロセンPP、エチレン系樹脂を混合して使用することもできる。使用できる樹脂としては、前述した本発明で使用するプロピレン系樹脂、メタロセンPP、エチレン系樹脂と同じである。また、プロピレン系樹脂、メタロセンPP、エチレン系樹脂の混合物のスクラップを再利用して用いることもできる。 There is no problem as long as the layer structure of the present invention is a layer structure of at least three layers, and a propylene resin, metallocene PP, or ethylene resin can be used for the inner layer. In addition, a propylene-based resin, a metallocene PP, and an ethylene-based resin can be mixed and used as long as the object of the present invention is not hindered. Usable resins are the same as the propylene-based resin, metallocene PP, and ethylene-based resin used in the present invention described above. In addition, a scrap of a mixture of propylene resin, metallocene PP, and ethylene resin can be reused.

本発明における、表面層の厚みは、1μm以上が好ましく、1μm未満では、耐熱性が不足し好ましくない。 In the present invention, the thickness of the surface layer is preferably 1 μm or more, and less than 1 μm is not preferable because the heat resistance is insufficient.

内部層の厚みは、全体の60%以上、80%以下が好ましく、60%未満では低温収縮性、耐引き裂き性が劣り、80%を超えると耐熱性が劣り好ましくない。 The thickness of the inner layer is preferably 60% or more and 80% or less of the whole, and if it is less than 60%, the low-temperature shrinkage and tear resistance are inferior, and if it exceeds 80%, the heat resistance is inferior.

表面層及び/又は内部層には、滑剤、ブロッキング防止剤、帯電防止剤、防曇剤、酸化防止剤、核剤等の添加剤がそれぞれの有効な作用を具備させる目的で適宜使用することができる。 In the surface layer and / or the inner layer, additives such as a lubricant, an antiblocking agent, an antistatic agent, an antifogging agent, an antioxidant, and a nucleating agent may be appropriately used for the purpose of providing each effective action. it can.

本発明の特徴の一つとして良好な平面性があるが、フィルム製品ロールの長期保管中に、自然収縮による平面性のくずれがないことも重要な性質である。本発明者らが自然収縮の目安としている40℃雰囲気中での1週間保管後の収縮率は、縦横とも4%以下が好ましく、更に、夏場等の長期保管を考えると、1.7%以下が好ましい。保管中の自然収縮による平面性のくずれが大きくなると、本発明の目的とする高速包装適性、印刷適性を十分に得る事ができない。
本発明の特徴である高い熱収縮率を有するにも関わらず、自然収縮率を低く抑えたフィルムが得られるのは、縦と横の延伸倍率を掛けた面積延伸倍率を20倍以上に設定する事により達成されるものである。
One of the features of the present invention is good flatness, but it is also an important property that there is no loss of flatness due to natural shrinkage during long-term storage of the film product roll. The shrinkage rate after storage for 1 week in a 40 ° C. atmosphere, which is a measure of natural shrinkage by the present inventors, is preferably 4% or less in both length and width, and 1.7% or less considering long-term storage such as in summer. Is preferred. If the flatness failure due to natural shrinkage during storage becomes large, the high-speed packaging suitability and printability intended by the present invention cannot be sufficiently obtained.
Despite having a high heat shrinkage rate, which is a feature of the present invention, a film having a low natural shrinkage rate can be obtained by setting the area draw ratio multiplied by the vertical and horizontal draw ratios to 20 times or more. It is achieved by things.

本発明における、ポリオレフィン系多層シュリンクフィルムの厚みは、環境負荷低減、高速仕上がり性を得るために11〜6μmが好ましく、更に好ましくは、9〜7μmが好ましい。本発明におけるフィルムは、従来市販されている製品のフィルム厚みが強度特性を考慮し11μmを超えるものに対して、フィルム厚みが11μm以下でも、ポリプロピレン系樹脂、メタロセンPP、エチレン系樹脂を好適に用い、延伸倍率の設定を縦倍率よりも横倍率を大きく、面積延伸倍率が20倍以上の延伸条件で、好ましくは、縦延伸倍率が4.0〜5.5倍、横延伸倍率が5.5〜7.0倍に設定する事で、印刷時にかかる温度、テンションによるフィルムの伸びを抑制でき、また、包装時に発生しやすい縦方向の針孔破れを抑制でき、十分な耐引き裂き性を得ることができる。 In the present invention, the thickness of the polyolefin-based multilayer shrink film is preferably 11 to 6 μm, more preferably 9 to 7 μm, in order to reduce environmental burden and achieve high-speed finish. For the film in the present invention, a polypropylene resin, a metallocene PP, or an ethylene resin is suitably used even if the film thickness is 11 μm or less, while the film thickness of a commercially available product exceeds 11 μm in consideration of strength characteristics. The stretching ratio is set to a stretching condition in which the transverse ratio is larger than the longitudinal ratio and the area stretching ratio is 20 times or more. Preferably, the longitudinal stretching ratio is 4.0 to 5.5 times, and the transverse stretching ratio is 5.5. By setting up to 7.0 times, it is possible to suppress the film elongation due to the temperature and tension applied during printing, and to suppress the tearing of the vertical needle holes that are likely to occur during packaging, and to obtain sufficient tear resistance. Can do.

本願における、ポリオレフィン系多層シュリンクフィルムの引張弾性率は、0.8GPa以上、120℃での熱収縮率が35%以上である。これ以外であると、本願の特徴である、薄膜化しても特性バランスが優れ、高速自動包装や印刷に好適に用いられるフィルムを得ることができない。なお、物性測定は、実施例の方法により行うことができる。 The tensile elastic modulus of the polyolefin-based multilayer shrink film in the present application is 0.8 GPa or more and the thermal shrinkage at 120 ° C. is 35% or more. Other than this, the characteristic balance of the present application is excellent even when the film is thinned, and a film suitable for high-speed automatic packaging and printing cannot be obtained. The physical properties can be measured by the methods of the examples.

本願における、ポリオレフィン系多層シュリンクフィルムの引裂強度は、30mN以上である。30mN以下では、高速自動包装時に針孔破れが発生しやすく、十分な耐引裂き性を得る事ができない。引裂強度の測定は、実施例の方法により行うことができる。
本願のポリオレフィン系多層シュリンクフィルムは、薄膜化しても高速自動包装や印刷に好適に用いるためには、引張弾性率、120℃での熱収縮率、引裂強度、40℃雰囲気中での1週間保管後の収縮率の全てを満たす必要がある。
The tear strength of the polyolefin multilayer shrink film in the present application is 30 mN or more. If it is 30 mN or less, needle hole breakage is likely to occur during high-speed automatic packaging, and sufficient tear resistance cannot be obtained. The tear strength can be measured by the method of the example.
The polyolefin multilayer shrink film of the present application is suitable for high-speed automatic packaging and printing even if it is thinned. Tensile modulus, thermal shrinkage at 120 ° C, tear strength, and storage at 40 ° C for 1 week All subsequent shrinkage needs to be met.

次に、本発明のフィルムの製造方法を示す。前記の樹脂を用いて本発明のフィルムを製造する方法は、公知の縦横2軸延伸方法で行うことができる。
以下、3層積層環状製膜延伸の場合を例に挙げ、具体的に説明する。
まず、プロピレン系樹脂とメタロセンPPを混合した両表面層、メタロセンPPを内部層となるように、3台の押出機により溶融混練し、3層環状ダイより環状に共押出し、延伸することなく一旦急冷固化してチューブ状未延伸フィルムを作製する。
得られたチューブ状未延伸フィルムを、チューブラー延伸装置に供給し、高度の配向可能な温度範囲、例えば芯層樹脂の融点以下10℃よりも低い温度で、好ましくは融点以下15℃よりも低い温度でチューブ内部にガス圧を適用して膨張延伸により、縦横の延伸倍率が、縦延伸倍率が4.0〜5.5倍、横延伸倍率が5.5〜7.0倍で同時二軸配向を起こさせる。延伸装置から取り出したフィルムは、希望により熱処理やアニーリングすることができ、これにより保存中の自然収縮を抑制することができる。
Next, the manufacturing method of the film of this invention is shown. The method for producing the film of the present invention using the above resin can be carried out by a known longitudinal and transverse biaxial stretching method.
Hereinafter, the case of three-layer laminated annular film-forming stretching will be described as an example.
First, both surface layers mixed with a propylene-based resin and a metallocene PP, and a metallocene PP are melt-kneaded by three extruders so as to be an inner layer, and are co-extruded in a ring form from a three-layer annular die, and without stretching. A tube-shaped unstretched film is prepared by rapid solidification.
The obtained tubular unstretched film is supplied to a tubular stretching apparatus, and is in a highly orientable temperature range, for example, at a temperature lower than 10 ° C below the melting point of the core layer resin, preferably lower than 15 ° C below the melting point. By applying gas pressure to the inside of the tube at a temperature and expanding and stretching, the longitudinal and transverse draw ratios are 4.0 to 5.5 times in the longitudinal draw ratio and 5.5 to 7.0 times in the transverse draw ratio. Cause orientation. The film taken out from the stretching apparatus can be heat-treated or annealed as desired, thereby suppressing natural shrinkage during storage.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、本実施例の中で示した各物性測定は以下の方法によった。
1.フィルム厚み:JIS−Z1709に準じて測定した。
2.平面性:フィルムの平面性を以下の基準で評価した。
<評価基準>
○:フィルムにタルミが全くない、或いはほとんど目立たない。
△:フィルムにタルミが見られるが、軽く伸ばせば目立たなくなる。
×:フィルムにタルミが見られ、軽く伸ばしてもタルミが残る。
3.厚み比:フィルムの断面を顕微鏡で観察することにより測定した。
4.ヘイズ:JIS−K7105に準じて測定した。
5.グロス(60°):JIS−Z7105に準じて測定した。
6.引張弾性率:JIS−Z7127に準じて測定した。
7.引裂強度:JIS−P8116に準拠し、東洋精機製軽荷重引裂試験機で測定した。
8.40℃、7日後収縮率:縦横それぞれ200mmの正方形に切り取ったフィルムを40℃のオーブンに7日間保管後、縦横それぞれの長さを測定し、数1によりMD、TDの熱収縮率を算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
In addition, each physical property measurement shown in a present Example was based on the following method.
1. Film thickness: measured according to JIS-Z1709.
2. Flatness: The flatness of the film was evaluated according to the following criteria.
<Evaluation criteria>
○: The film has no tarmi or is hardly noticeable.
Δ: Tarmi is seen in the film, but it becomes inconspicuous if it is stretched lightly.
X: Talmi is seen in the film, and it remains even if lightly stretched.
3. Thickness ratio: Measured by observing the cross section of the film with a microscope.
4). Haze: Measured according to JIS-K7105.
5. Gloss (60 °): Measured according to JIS-Z7105.
6). Tensile modulus: measured according to JIS-Z7127.
7). Tear strength: Measured with a light load tear tester manufactured by Toyo Seiki in accordance with JIS-P8116.
8. Shrinkage after 7 days at 40 ° C .: Films cut into 200 mm squares in length and breadth are stored in an oven at 40 ° C. for 7 days, then the lengths in both length and breadth are measured. Calculated.

Figure 0005545627
Figure 0005545627

9.120℃熱収縮率:縦横それぞれ100mmの正方形に切り取ったフィルムを100℃のグリセリン浴中に10秒間浸漬した後、水中で急冷し、縦横それぞれの長さを測定し、数2によりMD、TDの熱収縮率を算出した。 9. 120 ° C. heat shrinkage ratio: Films cut into 100 mm squares in the vertical and horizontal directions were immersed in a glycerin bath at 100 ° C. for 10 seconds, then rapidly cooled in water, and the lengths in both the vertical and horizontal directions were measured. The thermal contraction rate of TD was calculated.

Figure 0005545627
Figure 0005545627

10.伸び挙動:セイコーインスツル(株)製熱・応力・歪測定装置(以下TMAと記す、型式:EXSTAR6000)を用い、フィルムを縦×横=20mm×3mmにカットし、印刷時にかかるテンション相当の345mNの荷重を縦方向にかけ、50℃に過熱した際の縦方向のフィルムの伸び挙動を測定し、以下の基準で評価した。
<評価基準>
◎:フィルムの伸びが10%未満。
〇:フィルムの伸びが10〜20%。
△:フィルムの伸びが20%を越える。
11.高速自動包装適性:トキワ工業(株)製自動包装機(型式:NEO型、ピロー包装機)にて市販のカップ麺を175個/分のスピードで包装し、下記項目について下記の基準で評価した。
<走行性>
○:走行が安定し、安定してカップ麺を包装できる。
×:走行が安定せず、安定してカップ麺を包装できない。
<仕上がり性>
フィルムヤケド2〜10℃手前の温度に設定した収縮トンネルを3秒間滞留させ、トンネル通過後の包装サンプルの中から無作為に5つを選び、
○:包装サンプルの平均角高さが7mm以下となるトンネル温度範囲が6℃を越える。
△:包装サンプルの平均角高さが7mm以下となるトンネル温度範囲が4〜6℃。
×:包装サンプルの平均角高さが7mm以下となるトンネル温度範囲が4℃未満。
(注:角高さとは、適度に余裕率を持たせた包装予備体を収縮トンネルで熱収縮させた後、包装体の側面にできる角状突起物の突起高さを意味する。)
<耐針孔破れ性>
フィルムヤケド2℃手前の温度に設定した収縮トンネルを3秒間滞留させ、トンネル通過後の包装物50個について、
○:針孔からの破れが50個中1個もない。
△:針孔からの破れが50個中5個発生する。
×:針孔からの破れの発生が50個中5個を越える。
10. Elongation behavior: Using a heat / stress / strain measuring device (hereinafter referred to as TMA, model: EXSTAR6000) manufactured by Seiko Instruments Inc., the film was cut into length × width = 20 mm × 3 mm and 345 mN corresponding to the tension applied during printing. Was applied in the longitudinal direction, the elongation behavior of the film in the longitudinal direction when heated to 50 ° C. was measured, and evaluated according to the following criteria.
<Evaluation criteria>
A: The elongation of the film is less than 10%.
A: The elongation of the film is 10 to 20%.
Δ: The elongation of the film exceeds 20%.
11. High-speed automatic packaging aptitude: Tokiwa Kogyo Co., Ltd. automatic packaging machine (model: NEO type, pillow packaging machine) was used to package commercially available cup noodles at a speed of 175 pieces / min, and the following items were evaluated according to the following criteria. .
<Running>
○: The running is stable and the cup noodles can be packaged stably.
X: Running is not stable and cup noodles cannot be packaged stably.
<Finish>
Film burned 2 to 10 ° C, the shrinking tunnel set at a temperature just before 10 ° C was retained for 3 seconds, and randomly selected 5 from the packaging samples after passing through the tunnel,
○: The tunnel temperature range in which the average angular height of the packaging sample is 7 mm or less exceeds 6 ° C.
(Triangle | delta): The tunnel temperature range from which the average angle height of a packaging sample will be 7 mm or less is 4-6 degreeC.
X: The tunnel temperature range in which the average angular height of the packaging sample is 7 mm or less is less than 4 ° C.
(Note: Angular height means the height of the projections on the side of the package after heat shrinking the packaging preparatory body with a moderate margin with a shrinking tunnel.)
<Needle hole resistance>
Film shrinkage The shrinking tunnel set at a temperature of 2 ° C. was retained for 3 seconds. About 50 packages after passing through the tunnel,
◯: There is no breakage from the needle hole out of 50.
Δ: 5 out of 50 breaks from the needle hole.
X: Generation of breakage from the needle hole exceeds 5 out of 50.

実施例1
表1に示すように、融解ピーク温度が140℃、MFRが2.3g/10分の特性を有するプロピレン系樹脂と融解ピーク温度が115℃、MFRが2.0g/10分の特性を有するメタロセンPPを配合比80:20でブレンドした層を両表面層とし、融解ピーク温度が115℃、MFRが2.0g/10分の特性を有するメタロセンPPを内部層として、3台の押出機で溶融混練し、厚み比が1/5/1になるように各押出機の押出量を設定し、3層環状ダイスにより下向きに共押出した。形成された3層構成チューブを、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、未延伸フィルムを得た。
このチューブ状未延伸フィルムをチューブラー二軸延伸装置に導き、縦横それぞれ5.0×6.0倍に延伸し、フィルム厚み10.5μmの積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 1
As shown in Table 1, a propylene-based resin having a melting peak temperature of 140 ° C. and MFR of 2.3 g / 10 min and a metallocene having a melting peak temperature of 115 ° C. and MFR of 2.0 g / 10 min. PP blended at a blending ratio of 80:20 is used as both surface layers, melting peak temperature is 115 ° C, MFR is 2.0 g / 10 min. After kneading, the extrusion amount of each extruder was set so that the thickness ratio would be 1/5/1, and coextrusion was performed downward with a three-layer annular die. The formed three-layered tube was cooled by passing through a water tank while the outer surface of a cylindrical cooling mandrel in which cooling water circulated was slid, and was taken out to obtain an unstretched film.
This tubular unstretched film was guided to a tubular biaxial stretching apparatus, and stretched 5.0 times and 6.0 times in length and breadth to obtain a laminated biaxially stretched film having a film thickness of 10.5 μm.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例2
表1に示すように、フィルム厚みを8μmにした以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 2
As shown in Table 1, a laminated biaxially stretched film was obtained in the same manner as in Example 1 except that the film thickness was 8 μm.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例3
表1に示すように、縦横それぞれ5.5×6.0倍に延伸した以外は実施例2と同様の方法で積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 3
As shown in Table 1, a laminated biaxially stretched film was obtained in the same manner as in Example 2 except that the film was stretched 5.5 × 6.0 times in the vertical and horizontal directions.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例4
表1に示すように、密度0.900g/cm、MIが1.0g/10分の特性を有する直鎖状低密度ポリエチレンを内部層とし、厚み比が1/4/1にした以外は実施例1と同様の方法で、フィルム厚み10.5μmの積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 4
As shown in Table 1, a linear low density polyethylene having a density of 0.900 g / cm 3 and MI of 1.0 g / 10 min is used as an inner layer, and the thickness ratio is 1/4/1. In the same manner as in Example 1, a laminated biaxially stretched film having a film thickness of 10.5 μm was obtained.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例5
表1に示すように、フィルム厚みを8μmにした以外は実施例4と同様の方法で積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 5
As shown in Table 1, a laminated biaxially stretched film was obtained in the same manner as in Example 4 except that the film thickness was 8 μm.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例6
表1に示すように、縦横それぞれ5.5×6.0倍に延伸した以外は実施例5と同様の方法で積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 6
As shown in Table 1, a laminated biaxially stretched film was obtained in the same manner as in Example 5 except that the film was stretched 5.5 × 6.0 times in the vertical and horizontal directions.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例7
表1に示すように、融解ピーク温度が138℃、MFRが2.5g/10分の特性を有するプロピレン系樹脂を両表面層とし、フィルム厚みを8μmにした以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 7
As shown in Table 1, the same method as in Example 1 except that a propylene-based resin having a melting peak temperature of 138 ° C. and an MFR of 2.5 g / 10 min was used as both surface layers and the film thickness was 8 μm. A laminated biaxially stretched film was obtained.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例8
表1に示すように、融解ピーク温度が115℃、MFRが2.0g/10分の特性を有するメタロセンPPと実施例1で得られたスクラップを配合比50:50でブレンドした層を内部層とした以外は実施例1と同様の方法で、フィルム厚み8μmの積層二軸延伸フィルムを得た。
表1に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表1に示す通りで、良好なものであった。
Example 8
As shown in Table 1, an inner layer is a layer obtained by blending a metallocene PP having a melting peak temperature of 115 ° C. and an MFR of 2.0 g / 10 min with the scrap obtained in Example 1 at a blending ratio of 50:50. A laminated biaxially stretched film having a film thickness of 8 μm was obtained in the same manner as in Example 1 except that.
As shown in Table 1, the stretchability was good, there was no vertical movement of the stretching point or swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. The evaluation results of the obtained film were as shown in Table 1 and were good.

実施例9
密度0.900g/cm、MIが1.0g/10分の特性を有する直鎖状低密度ポリエチレンと実施例4で得られたスクラップを配合比50:50でブレンドした層を内部層とした以外は実施例1と同様の方法で、フィルム厚み8μmの積層二軸延伸フィルムを得た。
延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、良好なものであった。
Example 9
A layer obtained by blending a linear low density polyethylene having a density of 0.900 g / cm 3 and MI of 1.0 g / 10 min and the scrap obtained in Example 4 at a blending ratio of 50:50 was used as an inner layer. A laminated biaxially stretched film having a film thickness of 8 μm was obtained in the same manner as in Example 1 except for the above.
The drawability was good, there was no up-and-down movement of the drawing point and the swinging of the drawing tube, non-uniform drawing conditions such as necking were not observed, and the flatness was good. The evaluation result of the obtained film was good.

比較例1
表2に示すように、縦横それぞれ5.0×5.0倍に延伸した以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、延伸倍率が縦横等倍率であったため、縦方向の引裂強度が劣り、高速包装時の耐針孔破れ性が劣った。
Comparative Example 1
As shown in Table 2, a laminated biaxially stretched film was obtained in the same manner as in Example 1 except that the film was stretched 5.0 × 5.0 times in the vertical and horizontal directions.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation result of the obtained film was that the draw ratio was equal to the vertical and horizontal ratios, so that the tear strength in the vertical direction was inferior, and the resistance to tearing of needle holes during high-speed packaging was inferior.

比較例2
表2に示すように、縦横それぞれ6.0×6.0倍に延伸した以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、延伸倍率が縦横等倍率であったため、縦方向の引裂強度が劣り、高速包装時の耐針孔破れ性が劣った。
Comparative Example 2
As shown in Table 2, a laminated biaxially stretched film was obtained in the same manner as in Example 1 except that the film was stretched 6.0 × 6.0 times in the vertical and horizontal directions.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation result of the obtained film was that the draw ratio was equal to the vertical and horizontal ratios, so that the tear strength in the vertical direction was inferior, and the resistance to tearing of needle holes during high-speed packaging was inferior.

比較例3
表2に示すように、縦横それぞれ6.0×6.0倍に延伸した以外は実施例4と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、延伸倍率が縦横等倍率であったため、縦方向の引裂強度が劣り、高速包装時の耐針孔破れ性が劣った。
Comparative Example 3
As shown in Table 2, a laminated biaxially stretched film was obtained in the same manner as in Example 4 except that the film was stretched 6.0 × 6.0 times in the vertical and horizontal directions.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation result of the obtained film was that the draw ratio was equal to the vertical and horizontal ratios, so that the tear strength in the vertical direction was inferior, and the resistance to tearing of needle holes during high-speed packaging was inferior.

比較例4
表2に示すように、厚み比を1/10/1、縦横それぞれ5.0×5.0倍に延伸した以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、内部層のメタロセンPPの厚みが80%を越え、表面層の厚みが1μm以下であるため、耐熱性が劣り美麗な仕上がりが得られるトンネル範囲が狭かった。また、延伸倍率が縦横等倍率であったため、縦方向の引裂強度が劣り、高速包装時の耐針孔破れ性が劣った。
Comparative Example 4
As shown in Table 2, a laminated biaxially stretched film was obtained in the same manner as in Example 1 except that the thickness ratio was 1/10/1 and the film was stretched 5.0 × 5.0 times in the vertical and horizontal directions.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation result of the obtained film is that the thickness of the metallocene PP of the inner layer exceeds 80% and the thickness of the surface layer is 1 μm or less, so that the heat resistance is poor and a beautiful finish is obtained. The tunnel range was narrow. Moreover, since the draw ratio was equal to the vertical and horizontal ratios, the tear strength in the vertical direction was inferior, and the resistance to needle hole tearing during high-speed packaging was inferior.

比較例5
表2に示すように、フィルム厚みを13.5μmにした以外は比較例5と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、内部層のメタロセンPPの厚みが80%を越え、耐熱性が劣り、フィルム厚みが11μmを越えるため美麗な仕上がりが得られるトンネル範囲が狭かった。また、厚みが11μmを越えるため、高速包装時の針孔破れは特に見られなかった。
Comparative Example 5
As shown in Table 2, a laminated biaxially stretched film was obtained in the same manner as in Comparative Example 5 except that the film thickness was 13.5 μm.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation results of the obtained film are as follows. The thickness of the metallocene PP in the inner layer exceeds 80%, the heat resistance is inferior, and the film thickness exceeds 11 μm. It was narrow. Moreover, since the thickness exceeded 11 μm, the needle hole was not particularly broken during high-speed packaging.

比較例6
表2に示すように、融解ピーク温度が140℃、MFRが2.3g/10分の特性を有するプロピレン系樹脂と融解ピーク温度が115℃、MFRが2.0g/10分の特性を有するメタロセンPPを配合比65:35でブレンドした層を両表面層とし、融解ピーク温度が115℃、MFRが2.0g/10分の特性を有するメタロセンPPを内部層として、厚み比が1/8/1になるように各押出機の押出量を設定し、フィルム厚みを8μm、縦横それぞれ4.5×4.5倍に延伸した以外は実施例1と同様の方法で積層二軸延伸フィルムを得た。
表2に示すように、延伸性は良好で、延伸点の上下動や延伸チューブの揺動もなく、またネッキングなどの不均一延伸状態も観察されず、平面性も良好であった。得られたフィルムの評価結果は、表2に示すように、表面層のメタロセンPPの配合量が30%を越え、内部層のメタロセンPPの厚みが80%を越えるため耐熱性が劣り美麗な仕上がりが得られるトンネル範囲が狭かった。また、延伸倍率が縦横等倍率であったため、引裂強度が劣り、高速包装時の耐針孔破れ性が劣った。
Comparative Example 6
As shown in Table 2, a propylene-based resin having a melting peak temperature of 140 ° C. and an MFR of 2.3 g / 10 min and a metallocene having a melting peak temperature of 115 ° C. and an MFR of 2.0 g / 10 min. the PP compounding ratio 65: a layer blended with 35 and both surface layers, melting peak temperature of 115 ° C., a metallocene PP which MFR has a property of 2.0 g / 10 min as the internal layer, the thickness ratio of 1/8 / The extrusion amount of each extruder was set so as to be 1, and the laminated biaxially stretched film was formed in the same manner as in Example 1 except that the film thickness was 8 μm and the film was stretched 4.5 × 4.5 times in length and width respectively. Obtained.
As shown in Table 2, the stretchability was good, there was no vertical movement of the stretching point and the swinging of the stretching tube, non-uniform stretching conditions such as necking were not observed, and the planarity was also good. As shown in Table 2, the evaluation result of the obtained film is that the blending amount of the metallocene PP in the surface layer exceeds 30% and the thickness of the metallocene PP in the inner layer exceeds 80%. The tunnel range that can be obtained was narrow. In addition, since the draw ratio was equal in length and width, the tear strength was inferior, and the resistance to tearing of needle holes during high-speed packaging was inferior.

Figure 0005545627
Figure 0005545627

Figure 0005545627
Figure 0005545627

本発明の熱収縮性包装材料は、厚みは6〜11μと薄いにもかかわらず、高引張弾性率、高熱収縮率、高引裂強度、及び経時収縮が小さい等の特性バランスが優れ、高速自動包装や印刷に好適に用いられるポリオレフィン系薄膜多層シュリンクフィルムとして好適に用いることができる。
The heat-shrinkable packaging material of the present invention has an excellent balance of properties such as high tensile elastic modulus, high heat shrinkage, high tear strength, and small shrinkage over time despite its thin thickness of 6 to 11 μm, and high-speed automatic packaging. It can be suitably used as a polyolefin-based thin film multilayer shrink film suitably used for printing.

Claims (7)

プロピレン系樹脂を含む両表面層と、メタロセン触媒によって重合された結晶性プロピレン樹脂(以下、「メタロセンPP」と記す)又は、エチレン系樹脂を含む内部層を有する少なくとも3層以上の多層構成を延伸倍率が縦倍率より横倍率が大きく面積延伸倍率が20倍以上の延伸条件で二軸延伸加工し、下記(a)〜()をすべて満足するポリオレフィン系多層シュリンクフィルム。
(a)厚みが6〜11μの範囲である。
(b)引張弾性率が0.8GPa以上である。
(c)120℃での熱収縮率が35%以上である。
(d)40℃雰囲気中で7日間保管後の収縮率が4%以下である。
(e)引裂強度が30mN以上である。
Stretching a multilayer structure of at least three layers having both surface layers containing a propylene resin and a crystalline propylene resin polymerized by a metallocene catalyst (hereinafter referred to as “metallocene PP”) or an inner layer containing an ethylene resin A polyolefin-based multilayer shrink film that is biaxially stretched under stretching conditions in which the lateral magnification is larger than the vertical magnification and the area stretching magnification is 20 times or more, and satisfies all of the following (a) to ( e ).
(A) The thickness is in the range of 6 to 11 μm.
(B) The tensile elastic modulus is 0.8 GPa or more.
(C) The thermal shrinkage rate at 120 ° C. is 35% or more.
(D) The shrinkage after storage for 7 days in a 40 ° C. atmosphere is 4% or less.
(E) The tear strength is 30 mN or more.
二軸延伸加工が、チューブラー延伸方法であり、縦延伸倍率が4.0〜5.5倍、横延伸倍率が5.5〜7.0倍である事を特徴とする請求項1記載のポリオレフィン系多層シュリンクフィルム。 The biaxial stretching process is a tubular stretching method, wherein the longitudinal stretching ratio is 4.0 to 5.5 times, and the transverse stretching ratio is 5.5 to 7.0 times. Polyolefin-based multilayer shrink film. (a)の厚みが7〜9μの範囲である事を特徴とする請求項1又は2記載のポリオレフィン系多層シュリンクフィルム。 The polyolefin multilayer shrink film according to claim 1 or 2, wherein the thickness of (a) is in the range of 7 to 9 µm. 両表面層が、メタロセンPPを10〜30重量%含むプロピレン系樹脂からなる事を特徴とする請求項1〜3のいずれか一項に記載のポリオレフィン系多層シュリンクフィルム。 Both the surface layers consist of a propylene-type resin which contains 10-30 weight% of metallocene PP, The polyolefin-type multilayer shrink film as described in any one of Claims 1-3 characterized by the above-mentioned. メタロセンPPが、示差走査熱量計によって測定される融解ピーク温度が110〜130℃であり、メルトフローレート(測定温度230℃、荷重2.16kgf)が1.0〜10.0g/10分である事を特徴とする請求項1〜4のいずれか一項に記載のポリオレフィン系多層シュリンクフィルム。 Metallocene PP has a melting peak temperature measured by a differential scanning calorimeter of 110 to 130 ° C. and a melt flow rate (measuring temperature 230 ° C., load 2.16 kgf) of 1.0 to 10.0 g / 10 min. The polyolefin multilayer shrink film according to any one of claims 1 to 4 , wherein 内部層の厚みが全体の60〜80%であり、両表面層が各々1μm以上である事を特徴とする請求項1〜5のいずれか一項にポリオレフィン系多層シュリンクフィルム。 The polyolefin multilayer shrink film according to any one of claims 1 to 5 , wherein the thickness of the inner layer is 60 to 80% of the whole, and both surface layers are each 1 µm or more. (d)の40℃雰囲気中で7日間保管後の収縮率が1.7%以下である事を特徴とする請求項1〜6のいずれか一項にのポリオレフィン系多層シュリンクフィルム。 The shrinkage ratio after being stored for 7 days in a 40 ° C atmosphere of (d) is 1.7% or less, and the polyolefin-based multilayer shrink film according to any one of claims 1 to 6.
JP2009289413A 2009-12-21 2009-12-21 Polyolefin thin film multilayer shrink film Active JP5545627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289413A JP5545627B2 (en) 2009-12-21 2009-12-21 Polyolefin thin film multilayer shrink film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289413A JP5545627B2 (en) 2009-12-21 2009-12-21 Polyolefin thin film multilayer shrink film

Publications (2)

Publication Number Publication Date
JP2011126247A JP2011126247A (en) 2011-06-30
JP5545627B2 true JP5545627B2 (en) 2014-07-09

Family

ID=44289361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289413A Active JP5545627B2 (en) 2009-12-21 2009-12-21 Polyolefin thin film multilayer shrink film

Country Status (1)

Country Link
JP (1) JP5545627B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3019334B1 (en) * 2013-07-12 2022-03-30 UPM Raflatac Oy Multilayer film for label and a method for providing such
DE112020007130T5 (en) 2020-04-30 2023-03-16 Bonset America Corporation Polyester-based shrink film
CN113478934A (en) * 2021-05-26 2021-10-08 江阴奕佳包装材料有限公司 Low-temperature POF (polyester pre-oriented film) matte high-shrinkage film and production process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017545A (en) * 2002-06-19 2004-01-22 Gunze Ltd Low temperature shrinkable multilayered polyolefinic film and manufacturing method therefor
JP3751965B2 (en) * 2003-11-12 2006-03-08 株式会社興人 Polyolefin multilayer shrink film
JP2005170011A (en) * 2003-12-15 2005-06-30 Sekisui Film Kk Polyolefin resin-based heat-shrinkable film
JP5221093B2 (en) * 2007-09-28 2013-06-26 三井化学株式会社 Shrink film
JP4915749B2 (en) * 2007-10-01 2012-04-11 株式会社興人 Polyolefin multilayer shrink film

Also Published As

Publication number Publication date
JP2011126247A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5893091B2 (en) Polyethylene-based crosslinked shrink film
JP4915749B2 (en) Polyolefin multilayer shrink film
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP2012035466A (en) Multilayer polyolefin-based heat shrinkable film
JP3751965B2 (en) Polyolefin multilayer shrink film
JP2007045855A (en) Polyolefin-based resin composition
JP6281950B2 (en) Polyolefin-based unstretched multilayer film
EP0732196B1 (en) Heat-shrinkable polyolefin laminate film
JP2016179648A (en) Heat-shrinkable laminated film
JP2010064369A (en) Polypropylene-based multilayered shrink film
JP6372924B2 (en) Polyolefin heat shrinkable film
JP2006346868A (en) Three-layered crosslinked film
US5635286A (en) Heat shrinkable polyethylene laminate film
JP2020007445A (en) Packaging film for food and packaging body for food
JP6289261B2 (en) Heat shrinkable laminated film
JP5660852B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP5587136B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP2008036844A (en) Multilayered polyolefinic heat-shrinkable film
JP2009255392A (en) Shrinkable film
JP2000094604A (en) Multilayer film for packaging
JP5399048B2 (en) Polyethylene-based crosslinked shrink film
JP6604835B2 (en) Polyolefin heat shrinkable film
JP5068130B2 (en) Polyolefin-based multilayer shrink film and packaging method
JP3068920B2 (en) Polyethylene heat-shrinkable laminated film
JP4025419B2 (en) Multilayer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5545627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250