JP4025419B2 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
JP4025419B2
JP4025419B2 JP12557098A JP12557098A JP4025419B2 JP 4025419 B2 JP4025419 B2 JP 4025419B2 JP 12557098 A JP12557098 A JP 12557098A JP 12557098 A JP12557098 A JP 12557098A JP 4025419 B2 JP4025419 B2 JP 4025419B2
Authority
JP
Japan
Prior art keywords
film
layer
mfr
inner layer
polypropylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12557098A
Other languages
Japanese (ja)
Other versions
JPH1170625A (en
Inventor
政彦 川島
豊 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP12557098A priority Critical patent/JP4025419B2/en
Publication of JPH1170625A publication Critical patent/JPH1170625A/en
Application granted granted Critical
Publication of JP4025419B2 publication Critical patent/JP4025419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、良好な包装機械適性を有し、透明性、光沢が良好で特に高速包装時のヒートシール性や包装仕上がりに優れる熱収縮性多層フィルムに関する。
【0002】
【従来の技術】
従来、収縮包装(シュリンク包装と同義語)は被包装物の形状、大きさに依らず、また同時に複数個の製品を迅速かつタイトに包装する事ができ、得られた包装物の外観が美しく、ディスプレイ効果を発揮し、商品価値を高め、また内容物を衛生的に保ち、視覚による品質管理が容易なことから食品、雑貨等の包装に使用されている。かかる収縮包装は、通常、フィルムに少し余裕をもたせてヒートシールにより内容物を一次包装したのち、シュリンクトンネルの熱風等によりフィルムを熱収縮させる方法が一般的であり、タイトで美しい仕上がりが得られる。この際ヒートシールの方法としては▲1▼バーシール法、熱ローラー法等のヒートシール法、▲2▼インパルスシール法、▲3▼溶断シール法等があり、前記の▲1▼、▲2▼は基本的に面シールであり通常シール面直近でシールとほとんど同時にカッターにて切断される、いわゆるシールアンドカット方式が採用されている。また▲3▼の溶断シール法は上記のように別にカッターを必要とせず、瞬間的に熱刃により、溶融シールと同時に溶融切断を行う方法であり、簡便な方法として包装用各種フィルムに広く用いられている。これらの包装用フィルムとしては、近年の包装機の自動化、高速化に対応し、また上記のいずれのシール方法においても満足する性能を有するフィルムが要求されている。
【0003】
一方、収縮包装フィルムとして要求される特性としては▲1▼収縮特性、▲2▼ヒートシール性、▲3▼光学特性、▲4▼機械的強度等があり、▲1▼についてはタイトに仕上がるための高収縮性、特に低温高収縮性、▲2▼については特に溶断シール時に生じる糸引き現象(溶断時に溶融した樹脂が溶断刃とフィルムとの間、および/または、溶断によって互いに切り離されたフィルムとフィルムとの間で糸を引く現象。)が少ないこと、そしてできるだけ低温で溶断シールできること、▲3▼については特に収縮後のフィルムの透明性や光沢がよいこと、▲4▼については包装時、および包装後の輸送や保管を含めて種々の外的負荷に対する強度(裂け、突き破れ等)を有することが求められる。上記の要求特性を鑑み、ポリプロピレン系樹脂を表面層に配した多層フィルムが従来知られている。
【0004】
例えば、特許第2570359号公報には、特定のポリプロピレン系樹脂からなる両最外層と、複数の中間層としてポリプロピレン系軟質樹脂層および線状超低密度ポリエチレンからなる層を含む多層の収縮性フィルムが開示されており、該公報によれば、ポリ塩化ビニル製シュリンクフィルムに匹敵する低温収縮性、耐ブロッキング性、透明性、光沢等のほか、好ましくは耐引裂特性にも優れるといった特徴を有していると記述されている。また特公平3−42180号公報にはエチレン・プロピレン共重合体からなる表面層と線状低密度ポリエチレンを含む芯の層、および線状低密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂等から適宜選ばれた樹脂混合層よりなる中間層を含む5層の収縮フィルムが開示されており、収縮張力、光学特性、密封特性等が改善され、広範囲の収縮温度を有する旨の記述がなされている。
【0005】
【発明が解決しようとする課題】
しかしながら上記の従来技術のうち、特許第2570359号公報に記載されている特定のポリプロピレン系樹脂を両外層に有する多層シュリンクフィルムでは、透明性や光沢が良好で低温収縮性も発現し得るが、ヒートシール性、特に高速包装時のヒートシール性に問題がある。すなわち高速包装(通常、包装速度で50パック/分以上をいう。)においてはシール時間そのものが短くなるため、高温でのシール温度が採用されるが、フィルムを構成する樹脂の温度特性により面シールの場合においては、両外層に比べ中間層、つまり内部層が軟化、溶融しやすいため、フィルムのシール部がシールバーに融着したり、シールアンドカット時にシール部が引き伸ばされてシール破れ等のシール不良を発生し易い。また溶断シールの場合においても、一応溶断は可能であるものの糸引き現象を生じやすく、包装体の外観を損ね、商品性の低下を招くといった問題がある。また、特公平3−42180号公報に例示されているフィルムでは上記特許第2570359号公報に記載の従来技術と同様の問題がある他、ノートや印刷用紙等の枚葉物(およびそれらの束状のものも含む)を包装するときに被包装物が容易に変形してしまうといった問題を有していた。
【0006】
従って、本発明の課題は、従来のポリプロピレン系樹脂を表面層に配した多層のフィルムが有する優れた包装機械適性(フィルムの腰及び滑り)、引裂等の機械的強度、収縮特性に加え、従来のフィルムの欠点であったヒートシール性、すなわち面シールおよび溶断シールのいずれの場合においても安定したヒートシール性、特に高速包装時の安定したヒートシール性を発現し、ノートや印刷用紙の枚葉物(およびそれらの束状のものも含む)を包装するときに発生していた被包装物の変形を抑制し、包装仕上がりを格段に改良し得る熱収縮性多層フィルムを提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、ポリプロピレン系樹脂を含有する表面層(A)、および内部層の少なくとも1つにエチレンα−オレフィン共重合体を含有する層(B)を有する少なくとも4層からなる多層フィルムにおいて、以下の(1)〜(5)を特徴とする多層フィルムである。
(1)別の内部層(C)として、ポリプロピレン系樹脂またはポリプロピレン系樹脂とポリブテン−1系樹脂との樹脂組成物を含有する層を少なくとも1層含むこと
(2)表面層(A)に用いられるポリプロピレン系樹脂の融点が内部層(C)に使用されるポリプロピレン系樹脂の融点以下でかつ155℃以下、120℃以上であり、そして表面層(A)に用いられるポリプロピレン系樹脂の230℃、2.16kgfの条件下で測定されるメルトフローレートが内部層(C)に使用されるポリプロピレン系樹脂のメルトフローレート以上でかつ3.0〜18g/10分であること
(3)内部層(B)に使用されるエチレンα−オレフィン共重合体の密度が0.870〜0.930g/cmであって、190℃、2.16kgfの条件下で測定されるメルトフローレートが0.2〜7g/10分であること
(4)全層に占める前記の各層厚み比率が表面層(A)が10〜60%、内部層(B)が20〜80%、内部層(C)が5〜60%であること
(5)表面層(A)に用いられるポリプロピレン系樹脂の230℃、2.16kgfの条件下で測定されるメルトフローレートが、内部層(C)に用いられるポリプロピレン系樹脂のメルトフローレートよりも3.0以上大きいこと
以下、本発明を詳細に説明する。
【0008】
まず、本発明が従来技術と相違するところは、特定のポリプロピレン系樹脂を含有する表面層(A)および特定のエチレンα−オレフィン共重合体を含有する少なくとも1つの内部層(B)に、別の内部層として、表面層(A)に使用するポリプロピレン系樹脂に対して、融点とメルトフローレートが特定の関係にあるポリプロピレン系樹脂を含有する層または同樹脂とポリブテン−1系樹脂との樹脂組成物を含有する層を加えた点にある。更に、上記各層の厚み比率を特定することである。上記従来技術と相違するところの本発明の構成要件の役割は、優れた包装機械適性、引裂強度および収縮特性に加えて、従来の課題であった面シールと溶断シールの両者に対するヒートシール性、特に高速包装における安定したヒートシール性が十分確保できることであり、さらに被包装物のシュリンク包装時の変形が抑制されることにより良好な仕上がりを実現できることである。
【0009】
本発明における最も重要な要件は表面層(A)と内部層(C)として、融点(DSCにより測定された最も高温のピーク値をいう。)とメルトフローレート(以後、MFRと記す。)が特定の要件を具備するポリプロピレン系樹脂を使用することである。すなわち、表面層(A)に用いられるポリプロピレン系樹脂(
以後、PP−aと記す。)の融点が内部層(C)に使用されるポリプロピレン系樹脂(以後、PP−cと記す。)の融点以下でかつ155℃以下であり、そしてPP−aの230℃、2.16kgfの条件下(以後、ポリプロピレン系樹脂については同条件を意味する。)で測定されるMFRがPP−cのMFR以上でかつ3〜18g/10分の値を有することが肝要である。ここで、表面層(A)とは、多層フィルムの両表面のうち少なくとも一層を意味する。
【0010】
本発明の多層フィルムにおいては、少なくとも片側のシール面である表面層が上記要件を具備すればよいが、本発明の効果が十分に発揮するためには、両表面層が上記要件を具備することが望ましい。また、ここで、本発明におけるMFRはJIS−K7210に従って測定される値をいうものとする。PP−aの融点がPP−cの融点を越えると面シールにおけるシール部に欠陥が発生しやすくなり、特に高速包装においては、少なくともシール部分のフィルム全体が溶融状態ないしは極度の軟化状態になってフィルムのシールバーへの融着や粘着が発生し、シール部の破れ等のトラブルの発生が起きやすくなる。PP−aに対するPP−cの融点は同じか好ましくは高い方が良く、その好ましい融点の差は1℃以上、より好ましくは3℃以上、更に好ましくは5℃以上である。PP−aの融点が155℃を越えると低温シール性が損なわれると共に、高速包装条件下では面シールの場合、上記同様にシール不良が発生しやすくなり、溶断シールにおいては後述するMFRの影響もあって糸引き現象の発生が生じ易くなって、商品の見栄えが悪くなる。PP−aの好ましい融点は150℃以下、より好ましくは145℃以下であり、下限はフィルムの腰の低下やブロッキング現象による包装適性の低下の防止の点から、通常は120℃である。またPP−cの融点の上限は、立体規則性がきわめて高い、通常ホモタイプで代表される融点であり、約170℃である。
【0011】
また表面層(A)に用いられるPP−aのMFRが3.0g/10分未満であると、高速包装時の面シールにおけるフィルム同士の融着が不十分になる傾向にあり、18g/10分を越えるとシールバーへのフィルムの融着やシール不良の発生、および溶断シール時に糸引き現象が発生し易くなり、いずれの現象も包装速度の高速化により顕著になってくる。またPP−aのMFRは3.0〜18g/10分の範囲であることに加えて、PP−cのMFR以上の値を有することが重要である。すなわち、PP−cのMFRがPP−aのMFRに対して同じか、下回る値であることが重要であり、こうすることで、特に高速包装時の溶断シール性が格段に改良されるのである。PP−aのMFRがPP−cのMFRの値を下回ると、溶断シールにおける糸引き現象が発生し易くなる他、シール部での強度のバラツキが大きくなる傾向がある。PP−aの好ましいMFRは3.0〜15g/10分、より好ましくは4.0〜12g/10分である。またPP−cに対するPP−aのMFRの値は同じか大きければ良いのだが、好ましくは、PP−cのMFRの値よりも2.0以上、より好ましくは3.0以上大きいものがよい。更にPP−cのMFRの下限は主に成形加工性の観点より約0.2が好ましい。
【0012】
本発明の表面層(A)および内部層(C)に用いられるポリプロピレン系樹脂としてはホモのPP、プロピレン含量が70重量%以上のポリプロピレンと他のα−オレフィン(エチレンの他、炭素数4〜8のもの)の1種または2種類以上との共重合体であって、チーグラー・ナッタ触媒のような従来の触媒で重合されたもの以外に、メタロセン系触媒等で重合された分子量分布が狭い(通常、Mw(重量平均分子量)/Mn(数平均分子量)で4以下のもの)シンジオタクチックPPやアイソタクチックPP等も含まれ、更に50重量%までの高濃度のゴム成分を均一微分散したものであっても良く、これらのうち少なくとも1種が用いられる。なお、2種以上のPPを混合して用いる場合には、各層におけるPPのうち、主成分とみられるPPの融点、MFRが上記要件を具備すればよい。
【0013】
また、シュリンク包装においては、被包装物が剛性的に弱いもの(例えば、ノートや印刷用紙等の枚葉物およびそれらの束状のものも含む等)の場合、フィルムの収縮力によって、容易にソリ等の変形を生じる場合があり、こういった場合においては、上記の優れたシール適性を損なわずに変形を抑制するために、内部層(C)に使用されるPP−cにポリブテン−1系樹脂(以後、PBと記す。)を混合することが極めて有効である。通常混合されるPBの比率は、PP−c100重量部に対して、150重量部以下で使用され、変形抑制の要求度に応じて適宣、用いられる。PBの比率が150重量部を越えるとPP−cの有するシール性改良効果が発揮しずらくなる他、収縮性の低下やフィルム全体の腰が低下して包装機械適性が悪化する。好ましいPBの混合比率はPP−c100重量部に対して100重量部以下、より好ましくは80重量部以下である。
【0014】
本発明で用いられるPBとしては、ブテン−1含量70モル%以上の結晶性で他の単量体(エチレン、プロピレンの他、炭素数5〜8のオレフィン系)の1種または2種以上との共重合体をも含む高分子量のものが用いられる。このものは液状およびワックス状の分子量のものとは異なり、MFR(190℃、2.16kgf:以下、PBについては同条件。)が通常0.1〜10g/10分のものである。中でもビカット軟化点が40〜100℃の共重合体が、より効果的で好ましい。ここで示すビカット軟化点はJIS−K7206−1982に従って測定される値である。
【0015】
次に、本発明のフィルムは、内部層の少なくとも一層として、特定のエチレンα−オレフィン共重合体を含有する内部層(B)を有するが、該内部層(B)は安定した延伸性を確保し、実用的に十分な引裂強度、突刺強度等の強度物性をフィルム全体に付与し、低温収縮性をも発現させる役割を担っている。本発明の内部層(B)に使用されるエチレンα−オレフィン共重合体の密度は0.870〜0.930g/cm3であって、190℃、2.16kgfの条件下(以下、エチレンα−オレフィン共重合体については同条件。)で測定されるMFRが0.2〜7g/10分のものである。なお、本発明でいう密度とは、JIS−K−7112に従って測定される23℃の値である。密度が0.930g/cm3 を越えると延伸そのものが困難になり、また得られたフィルムの透明性が低下する他、低温収縮性も得にくくなる。
【0016】
一方、密度が0.870g/cm3 未満であると、PP−aおよびPP−cに対する粘弾性の差が大きくなりすぎるため、延伸の安定性に欠ける他、低温収縮性を付与する効果が発揮しずらくなる。好ましい密度は0.880〜0.926g/cm3 、より好ましくは0.900〜0.920g/cm3 である。また、MFRが7を越えると延伸安定性が低下して、延伸時にフィルムが破れたり、厚み斑を生じ易くなる他、フィルムが得られても引裂強度や突刺強度等の機械的強度に劣ったものしか得られない。MFRが0.2未満であると押出成形時の押出動力が上昇する問題と押出動力が上昇することによる押出効率の低下および生産性が低下するといった問題が生ずる。また、押出された原反の表面平滑性に悪影響を及ぼす場合がある。好ましいMFRは0.5〜5、より好ましくは0.6〜4である。
【0017】
上記内部層(B)に使用されるエチレンα−オレフィン共重合体としては線状低密度ポリエチレン、超低密度ポリエチレン等があり、これらはエチレンとプロピレン、ブテン−1、ペンテン−1、4−メチル−ペンテン−1、ヘキセン−1、オクテン−1等の炭素数が3〜18のα−オレフィンから選ばれる少なくとも1種類の単量体との共重合体であるが、耐衝撃性や引裂強度、突刺強度等の機械的強度、および延伸製膜性の点から、α−オレフィンとしては4−メチル−ペンテン−1、ペンテン−1、ヘキセン−1、オクテン−1が好ましい。
【0018】
以上のエチレンα−オレフィン共重合体は、チーグラー触媒等の従来のマルチサイト触媒を用いて得られた重合体、またはメタロセン系触媒等のシングルサイト触媒で重合された分子的(コモノマー分布等)、分子量分布的に従来の方法で重合されたものより、より均一化されたもの(例えば、Mw/Mnで表される値が1.5〜3.5のもの、より好ましくは1.5〜3.0のもの)であり、両者を混合したものでよく、これらから少なくとも1種が用いられる。上記シングルサイト触媒で重合されたエチレンα−オレフィン共重合体には、制御された長鎖分岐を有したものであったり、上記α−オレフィンに加え、極性基を有する単量体やスチレン系モノマー等のその他の単量体が共重合されたものであっても良い。
【0019】
次に本発明のフィルムは、全層に占める各層の厚み比率が、表面層(A)が10〜60%、内部層(B)が20〜80%、内部層(C)が5〜60%であることが肝要であり、機械的強度、シール性、収縮性(包装仕上がり)、滑り性や腰等のシュリンクフィルムとしての必要な性能をバランスよく満足させる点で重要である。表面層(A)が10%未満であるとポリプロピレン系樹脂の腰を生かしたフィルムの滑りや包装機械適性が低下する。また60%を越えると引き裂きや突き刺しに対する機械的強度が低下したり、高速包装条件では溶断シール時に糸引きが生じ易い等、他の層が本来有する効果を発揮しずらくなる。また、内部層(B)の厚み比率が20%を下回ると、引き裂き等の機械的強度が不足し、低温収縮性の付与効果も発揮し得ない。
【0020】
一方、内部層(B)の厚み比率が80%を越えると引き裂きや突き刺しに対する強度が過剰になる他、フィルムの腰が低下し、またシュリンク時に層の界面で部分的に剥離を生じたり、界面がジグザグ状に変形して透明性や光沢が劣化したりする。そして、内部層(C)の厚み比率が5%を下回ると高速包装時に面シールでのシール破れや溶断シールでの糸引き現象を生じ易く、またPBブレンド効果であるシュリンク時の被包装物の変形抑制効果が発揮しずらくなる。一方、内部層(C)の厚み比率が60%を越えると延伸安定性が低下する傾向にあり、得られたフィルムも低温収縮性に乏しく、収縮率自体も低いレベルのものになり、包装仕上がりの点で問題を生じる。好ましい各層の層構成比は、表面層(A)が15〜50%、内部層(B)が30〜70%、内部層(C)が10〜45%である。より好ましい各層の層構成比は、表面層(A)が15〜40%、内部層(B)が40〜70%、内部層(C)が15〜40%である。
【0021】
本発明の多層フィルムは、収縮包装時にタイトな包装を十分に行うために、140℃における熱収縮率が、縦、横少なくとも1方向において30%以上であることが好ましい。多層フィルムの140℃における熱収縮率が縦、横少なくとも1方向において30%未満では収縮性に乏しく、収縮包装時の包装後のタイトな感じがなく、包装後のシワ等により商品の商品価値を著しく損ねてしまう。更に好ましい熱収縮率は140℃における熱収縮率が縦、横少なくとも1方向において35%以上より好ましくは40%以上である。
【0022】
上記表面層(A)、内部層(B)および内部層(C)にはその本来の特性を損なわない範囲で、1種以上の他の樹脂を50重量%以下、好ましくは40重量%以下、更に好ましくは30重量%以下で混合しても良い。他の樹脂は特に限定されないが、例えば、エチレン−酢酸ビニル共重合体およびその部分ケン化物、エチレン−脂肪族不飽和カルボン酸エステル共重合体、アイオノマー樹脂、高圧法低密度ポリエチレン、低圧法高密度ポリエチレン、遷移金属触媒によって重合された高分岐度エチレンポリマー(分岐度:5〜110基/1000炭素)、スチレン−共役ジエン共重合体(ブロック、ランダム)および該共重合体の少なくとも一部を水添したもの、またこれらの樹脂を酸変性等により改質したもの、結晶性1、2−ポリブタジエンその他、水添ポリジシクロペンタジエン、水添ポリテルペン等の石油樹脂、非晶性ポリオレフィンとしてプロピレン単独あるいはプロピレンとエチレンやブテン−1を共重合した分子量の比較的低い非晶性のポリオレフィン系ポリマーがあげられ、190℃における溶融粘度において、300〜10000cpsのものが代表例としてあげられる。また、混合の対象となる層以外の層に使用されている樹脂等が挙げられる。
【0023】
また、同様に本発明の表面層(A)、内部層(B)および内部層(C)にはその本来の特性を損なわない範囲で可塑剤、酸化防止剤、界面活性剤、紫外線吸収剤、無機フィラー、防曇剤、帯電防止剤、アンチブロッキング剤、滑剤、結晶核剤、着色剤等を含んでも良く、樹脂への添加方法としては直接対象樹脂層に練り込み添加するか、場合によってマスターバッチをあらかじめ作製して希釈添加してもよい。
【0024】
本発明のフィルムは表面層(A)および内部層(B)、(C)の合計少なくとも4層から構成されるが、場合によって、表面層(A)と同一の樹脂を用いた樹脂層を内部層として加えても良い。層の配置としては、例えば、4層の場合:A/B/C/A、5層の場合:A/C/B/C/A、A/B/C/B/A、A/B/A/C/A等、7層の場合:A/C/B/C/B/C/A、A/B/C/B/C/B/A等が挙げられる。他に6層、8層およびそれ以上の場合も含むものとする。また、本発明のフィルムには、その本来の特性を損なわない範囲で、更に内部層として、本発明の(A),(B),(C)の各層に使用可能な樹脂の他、公知の熱可塑性樹脂で構成される別の層を配してもよい。この追加される層には、回収層として、フィルム各層に使用されている樹脂からなる混合組成物層も含まれる。
【0025】
本発明の熱収縮性多層フィルムの厚みは通常5〜80μm、好ましくは6〜60μm、より好ましくは7〜40μmの薄肉の領域である。5μm未満ではフィルムの腰が低下し、シール強度も低下する。また包装時の作業性に問題が生ずる。また80μmを越えるとフィルムの腰が強くなりすぎ、フィット性が悪くなるほか、収縮の応答性が悪くなったり、機械的強度等の性能が過剰となる。
【0026】
次に、本発明の熱収縮性多層フィルムの製法の一例について述べる。まず、各層((A)、(B)、(C)層および必要に応じて用いられるその他の層)を構成する樹脂をそれぞれの押出機で溶融して、多層ダイで共押出・急冷固化して多層フィルム原反を得る。押出方法としては多層のTダイ法、多層のサーキュラー法等を用いることが出来るが、好ましくは後者がよい。このようにして得た該多層フィルム原反を加熱して、配向を付与するのに適当な温度条件下で延伸を行う。延伸温度としては、フィルムの延伸開始点(インフレ法の場合は、バブルとして膨張開始する位置)における表面温度で通常140℃以下、好ましくは130℃以下である。ただし、延伸温度の下限は、延伸後のフィルムの寸法安定性の点から40℃がよい。
【0027】
延伸方法としては、ロール延伸法、テンター法、インフレ法(ダブルバブル法を含む)等があるが、同時二軸延伸で製膜される方法が延伸性その他合理性等より好ましい。また延伸は少なくとも1方向に面積延伸倍率で3〜50倍、好ましくは3.5〜40倍さらに好ましくは4〜30倍で延伸し、用途により必要な熱収縮率等に応じて適宣選択される。また、必要に応じ、後処理、例えば寸法安定性のためのヒートセット、コロナ処理やプラズマ処理等の表面処理、印刷処理、他種のフィルム等とのラミネーション等が行われても良い。
更に、本発明のフィルムは、その少なくとも1つの層が架橋されていてもよく、架橋処理は、電子線(例えば、加速電圧50〜1000kVの照射装置)、紫外線、γ線等のエネルギー線照射やパーオキサイドの利用等の従来公知の方法が用いられる。
【0028】
【発明の実施の形態】
以下、本説明を実施例にて更に詳しく説明するが、本発明で用いた測定評価方法は、以下の通りである。
(1)融点
測定試料を6〜8mg採取してアルミパンに詰め、パーキンエルマー社製示差走査熱分析装置(DSC−7)を用いてDSC法により、窒素気流下にて10℃/分の昇温速度で一旦200℃まで昇温して1分間保持した後、10℃/分の降温速度で0℃まで冷却した。その後、0℃の状態で1分間保持した後、再度10℃/分で昇温して測定を行い、その時の最も高温の吸熱ピークを融点とした。
(2)熱収縮率
100mm角のフィルム試料を所定の温度に設定したエアーオーブン式の恒温槽に入れ、自由に収縮する状態で30分処理した後フィルムの収縮量を求め、元の寸法で割った値を百分率で表した。なお、測定は縦方向(MD)、横方向(TD)の各々について行った。
【0029】
(3)光学特性
ヘイズはASTM−D−1003、グロスはASTM−D−2457に各々準じて測定を行った。
(4)動摩擦係数
JIS−K−7125に準じて、試験速度700mm/分で測定を行った。この際、試験テーブルはアクリル板の枠に半硬質のポリエチレン製の発泡体シートをはめ込み固定したものを用い、また滑り片は表面が梨地加工されたステンレス製の板状のもの(重量:500g)を使用した。
(5)引裂強度
JIS−P−8116に準じて、軽荷重引裂試験機(東洋精機製)を用いて、縦方向(MD)と横方向(TD)各々について測定した。なお、ここでの測定値の読みは、目盛りの20〜60の範囲になるように測定を行うが、測定レンジによって測定値に差がある場合は、高い方の値を測定した。
【0030】
(6)溶断シール性
(6−1)溶断シール開始温度
テスター産業(株)製TP701ヒートシールテスターに、表面にテフロンコート処理が施されている0.5mmR×280mmLの溶断刃を取り付け、シール条件としてエアー圧力3kg/cm2 (エアーシリンダー径:50mmφ)、シール時間1秒の条件で温度を色々変えて溶断シールを行った。この時の温度は溶断刃の先端の温度を接触式温度計にて実測し、これを各温度条件の値とした。二つ折りにして2枚重ねにされた状態の各測定フィルムは溶断刃に対して余裕を持った幅寸法のもので上記テストを行い、溶断刃の90%以上(252mm以上)が溶断された最低温度を溶断シール開始温度とした。なお、溶断シール開始温度は低温ほど高速包装条件に適し、また省エネルギーの観点からも好ましい。
【0031】
(6−2)溶断シールの仕上がり
上記(6−1)で規定した溶断シール開始温度よりも約10℃高い温度条件で溶断シールしたものについて、その溶断シールの仕上がりを以下の基準で評価した。
○:シールは完全で欠陥が認められず、また糸引きがほとんど無く溶断面の仕上がりがきれいな状態。
△:シールはほぼ完全であるが、若干の糸引きが見られ商品性にやや問題がある状態。
×:明らかな糸引きが何カ所にも見られるか、もしくはシール部に局部的な開口部等のシール不良があり、商品として問題がある状態。
【0032】
(7)高速包装適性
茨木精機(株)製FP−280型万能自動包装機を用いて、直方体の木片(概略寸法:150×100×35mm)を60パック/分の包装速度で2分間、計120個の包装を行った。使用した包装機は、シール方法として、センターシール部での熱ローラー方式による面シール、次いでカッターシール部での溶断シールを採用しており、以下の評価を行った。なお、収縮は上記の包装に連続して熱風式シュリンクトンネルを約5秒で通過させて行った。また、各シール部および収縮時の熱風の温度は、各フィルムの最適条件になるように適宣条件変更を行った。
◎:包装中に各シール部において融着や粘着に基づくフィルムの走行トラブルが無く、シュリンク後の包装体についても各シール部に破れ等の欠陥が無く、また溶断シール部の見栄えが良く商品性に優れる。
○:包装中に各シール部において融着や粘着に基づくフィルムの走行トラブルが無く、シュリンク後の包装体についても各シール部に破れ等の欠陥が無いものの半数以上の包装体に溶断シール部に糸引きの影響による外観不良が若干認められる。但し、商品性としては許容される範囲。
△:包装中に各シール部においてシーラーへのフィルムの融着、粘着が認められ、フィルムの走行性が不安定である。また、シュリンク後のほとんどの包装体には溶断シール部に糸引きによる外観不良が認められるか、もしくは包装体のシール部に破れ等の欠陥部を有するものが、1〜10ヶ認められる。
×:包装体に各シール部においてシーラーへのフィルムの融着、粘着によるトラブルが発生し、連続してフィルムを走行させることが困難。または、シュリンク後の包装体にはシール部に破れ等の欠陥を有するものが、11ヶ以上認められる。
【0033】
次に、実施例および比較例において使用した樹脂を以下に記す。
LL1:エチレンα−オレフィン共重合体(MFR(190℃、2.16kg f)=2.0g/10分、密度=0.917g/cm3 、α−オレフィン=ヘキセン−1)
LL2:エチレンα−オレフィン共重合体(MFR=4.0g/10分、密度=0.927g/cm3 、α−オレフィン=ヘキセン−1)
LL3:エチレンα−オレフィン共重合体(MFR=2.0g/10分、密度=0.912g/cm3 、α−オレフィン=ヘキセン−1)
LL4:エチレンα−オレフィン共重合体(MFR=4.0g/10分、密度=0.916g/cm3 、α−オレフィン=オクテン−1)
LL5:エチレンα−オレフィン共重合体(MFR=0.8g/10分、密度=0.905g/cm3 、α−オレフィン=オクテン−1)
LL6:エチレンα−オレフィン共重合体(シングルサイト触媒で重合されたもの。MFR=1.0g/10分、密度=0.868g/cm3 、α−オレフィン=オクテン−1)
LL7:エチレンα−オレフィン共重合体(MFR=1.0g/10分、密度=0.920g/cm3 、α−オレフィン=オクテン−1)
LL8:エチレンα−オレフィン共重合体(MFR=0.7g/10分、密度=0.917g/cm3 、α−オレフィン=ヘキセン−1)
LL9:エチレンα−オレフィン共重合体(シングルサイト触媒で重合されたもの。MFR=1.6g/10分)、密度=0.895g/cm3 、α−オレフィン=オクテン−1)
LL10:エチレンα−オレフィン共重合体(MFR=1.0g/10分、密度=0.884g/cm3 、α−オレフィン=ブテン−1)
【0034】
LL11:エチレンα−オレフィン共重合体(MFR=2.2g/10分、密度=0.905g/cm3 、α−オレフィン=4−メチル−ペンテン−1)
LL12:エチレンα−オレフィン共重合体(シングルサイト触媒で重合されたもの。MFR=1.0g/10分、密度=0.902g/cm3 、α−オレフィン=オクテン−1)
LL13:エチレンα−オレフィン共重合体(シングルサイト触媒で重合されたもの。MFR=3.5g/10分、密度=0.910g/cm3 、α−オレフィン=オクテン−1)
LL14:エチレンα−オレフィン共重合体(MFR=2.1g/10分、密度=0.939g/cm3 、α−オレフィン=オクテン−1)
LL15:エチレンα−オレフィン共重合体(MFR=10.0g/10分、密度=0.914g/cm3 、α−オレフィン=ヘキセン−1)
PP1:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR(230℃、2.16kgf)=7.0g/10分、密度=0.900g/cm3 、融点=140℃)
PP2:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=6.5g/10分、密度=0.900g/cm3 、融点=145℃)
PP3:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=1.0g/10分、密度=0.900g/cm3 、融点=148℃)
PP4:ポリプロピレン系樹脂(ホモポリプロピレン:MFR=4.0g/10分、密度=0.900g/cm3 、融点=161℃)
PP5:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=18.0g/10分、密度=0.900g/cm3 、融点=145℃)
PP6:ポリプロピレン系樹脂(プロピレン−(エチレン−プロピレンゴム)共重合体:MFR=8.7g/10分、密度=0.900g/cm3 、融点=130℃)
PP7:ポリプロピレン系樹脂(エチレン−プロピレン−ブテン共重合体:MFR=5.5g/10分、密度=0.890g/cm3 、融点=132℃)
PP8:ポリプロピレン系樹脂(エチレン−プロピレン−ブテン共重合体:MFR=5.0g/10分、密度=0.900g/cm3 、融点=120℃)
PP9:メタロセン触媒で重合されたシンジオタクチックプロピレン:MFR=2.5g/10分、密度=0.886g/cm3 、融点=149℃)
PP10:ポリプロピレン系樹脂(ホモポリプロピレン:MFR=8.0g/10分、密度=0.900g/cm3 、融点=161℃)
【0035】
PP11:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=5.0g/10分、密度=0.900g/cm3 、融点=126℃)
PP12:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=1.9g/10分、密度=0.900g/cm3 、融点=142℃)
PP13:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=20.0g/10分、密度=0.900g/cm3 、融点=135℃)
PP14:ポリプロピレン系樹脂(エチレン−プロピレン共重合体:MFR=0.8g/10分、密度=0.900g/cm3 、融点=140℃)
PB1:ポリブテン−1系樹脂(プロピレンをコモノマーとする共重合体、MFR(190℃、2.16kgf)=2.0g/10分、ビカット軟化点=61℃)
混合1:LL1(57重量%)、PP1(19重量%)、PP3(24重量%)を混合させたもの
混合2:LL1(53重量%)、PP1(21重量%)、PP3(26重量%)を混合させたもの
混合3:LL1(32重量%)、PP1(12重量%)、PP3(56重量%)を混合させたもの
混合4:LL1(28重量%)、PP1(14重量%)、PP3(58重量%)を混合させたもの
混合5:PP3(50重量%)、PB1(50重量%)を混合させたもの
混合6:PP3(70重量%)、PB1(30重量%)を混合させたもの
混合7:PP3(90重量%)、PB1(10重量%)を混合させたもの
【0036】
【実施例1】
表面層(A)にエチレン−プロピレン共重合体:PP1(MFR=7.0g/10分、融点=140℃)を配し、内部層(B)にエチレンα−オレフィン共重合体:LL1(MFR=2.0g/10分、密度=0.917g/cm3、α−オレフィン=ヘキセン−1)を、さらに別の内部層(C)にエチレン−プロピレン共重合体:PP3(MFR=1.0g/10分、融点=148℃)を用い、各々表面層(A)には32φmm押出機(L/D=22)を、内部層(B)には40φmm押出機(L/D=24)を、内部層(C)には32φmm押出機(L/D=22)を使用して、層配置がPP1/LL1/PP3/LL1/PP1の5層になるように環状5層ダイを用いて押出した(押出量20Kg/h)。その直後、冷水にて急冷固化して折り幅200mm、厚み230μmの各層とも均一な厚み精度のチューブ状原反を作成した。各層の厚み比率(%)はチューブの外側から10/27.5/25/27.5/10になるように調整した。
【0037】
なお、表面層(A)には、アンチブロッキング剤として、長石微粉砕品(平均粒径4.5μm:白石工業「Minex7」)を0.1重量%、エルカ酸アミド0.15重量%を添加した。次に、この原反を2対の差動ニップロール間に通し、加熱ゾーンで延伸可能な温度まで加熱し、延伸ゾーンでチューブ内部に空気を圧入してバブルを形成させて連続延伸を行い、冷却ゾーンで冷風を吹き付けて縦横同時2軸延伸を行った。得られたフィルムは厚みが15μmで該フィルムの評価結果を表1に示す。得られたフィルムは、溶断シール性に優れ、高速包装適性を有する他、高収縮性で、光学特性や引裂強度等の物性にも優れるものであった。
【0038】
【実施例2〜10】
内部層(B)に使用するエチレンα−オレフィン共重合体を各々変更した以外は、実施例1と同様な方法で、フィルムを得、これを実施例2〜10とした。
フィルムの層構成ならびに評価結果を表1〜表2に示す。得られたフィルムはいずれも実施例1と同様に、溶断シール性に優れ、高速包装適性を有する他、高収縮性で、光学特性および引裂強度等の物性にも優れるものであった。
【0039】
【実施例11〜18】
内部層(B)はそのままで、表面層(A)および内部層(C)のポリプロピレン系樹脂を種々変え、実施例1と同様な方法でフィルムを得た。フィルムの層構成ならびに評価結果を表2〜表3に示すが、いずれも溶断シール性に優れ、高速包装適性を有する他、高収縮性であり、光学特性および引裂強度等の物性にも優れるものであった。
【0040】
【実施例19〜21】
内部層(B)および内部層(C)の配置と各層に使用する樹脂を種々変え、以下実施例1と同様な方法でフィルムを得た。フィルムの層構成と評価結果を表4に示す。
【0041】
【実施例22〜24】
各層の厚み比率を種々変更した以外は、実施例1と同様な方法でフィルムを得た。実施例22の層構成比(%)はA/B/C/B/A=20/20/20/20/20、実施例23の層構成比(%)はA/B/C/B/A=10/32.5/15/32.5/10、実施例24の層構成比(%)はA/B/C/B/A=10/20/40/20/10で製膜を行った。
得られたフィルムの評価結果を表4に示す。得られたフィルムは、実施例1と同様に溶断シール性に優れ、高速包装適性を有する他、高収縮性、光学特性および引裂強度等の物性にも優れるものであった。
【0042】
【実施例25〜27】
表面層(A)に添加した添加剤の量や種類を変更した以外は、実施例1と同様な層構成、層比率のチューブ状原反を作製し、以下同様な方法でフィルムを得た。実施例25には表面層(A)に対し、長石微粉砕品(平均粒径4.5μm:白石工業「Minex7」)を0.25重量%、エルカ酸アミド0.3重量%およびグリセリンモノステアレートが主成分である帯電防止剤(理研ビタミン「リケマールS−100」)1重量%を添加し、以下同様に、実施例26には長石微粉砕品(Minex7)0.25重量%、メチルフェニルシリコーンオイル(25℃における粘度が約400センチストークスのもの)0.3重量%および帯電防止剤(リケマールS−100)1重量%を添加、そして実施例27にはグリセリンモノオレートとジグリセリンラウレートを重量比で2:1に混合したものを1.5重量%添加した。得られたフィルムの物性を表5に示す。得られたフィルムは、いずれも溶断シール性や高速包装適性に優れる他、実施例27で得られたフィルムにあっては防曇性に優れるものであった。(防曇性の評価としては20℃の水を入れた上部開放容器をフィルムで密閉状態に覆った後、5℃の冷蔵ショーケースに保管して、フィルム表面への水滴の発生状況を観察し、水滴がなく、透明性の良いものほど防曇性に優れる。)
【0043】
【実施例28〜30】
実施例1に使用した樹脂原料を用いて、内部層(B)および(C)に3元ブレンド樹脂組成物を、適宜配し、以下、実施例1と同様な方法でフィルムを得た。フィルムの層構成ならびに評価結果を表5に示す。得られたフィルムは、いずれも実施例1と同様、溶断シール性、高速包装適性に優れるものであった。
【0044】
【実施例31〜33】
チューブ状原反の厚みを変えた以外は実施例1と同様にしてフィルムを得た。実施例31のチューブ状原反の厚みは150μm、同様に実施例32は300μm、実施例33は350μmで調整し、得られたフィルムの厚みは実施例31から順に10μm、20μm、25μmであった。
得られたフィルムの評価結果を表6に示す。得られたフィルムは、いずれも溶断シール性に優れ、高速包装適性を有する他、収縮性、光学特性等の物性にも優れるものであった。
【0045】
【実施例34〜36】
内部層(C)にポリブテン−1系樹脂(PB1)をブレンドした樹脂組成物を用いた以外は、実施例1と同様な方法でフィルムを得た。PB1のブレンド比率を50重量%として用いたものを実施例34、同じくブレンド比率を30重量%として用いたものを実施例35、そして同じくブレンド比率を10重量%として用いたものを実施例36とした。
得られたフィルムの評価結果を表7に示す。得られたフィルムは、いずれも実施例1と同様、溶断シール性に優れ、高速包装適性を有する他、収縮性、光学特性および引裂強度等の物性にも優れるものであった。
【0046】
また、得られたフィルムを実施例1(PBを含まない実施例)で得られたフィルムと共に、ノートブック(6号、179×252mm)4冊の集積包装を行った。実施例1のフィルムを使用した場合、包装体に若干の反りが認められたが、PBをブレンドした層を有した実施例34〜36のフィルムでは包装体に反り等の変形がなく、タイトで良好な仕上がりが得られ、剛性に劣る被包装物の収縮包装にも適したものであった。
【0047】
【実施例37】
実施例14の内部層(C)のPP3をPP14と非晶性ポリオレフィン(190℃における溶融粘度=8000cps、軟化点=110℃)をブレンドした組成物に置き換えた。非晶性ポリオレフィンのブレンド比率は内部層(C)に使用するPP14に対し、30重量%ブレンドした樹脂組成物を使用した。組成物の物性はMFR=3.8g/10分、密度=0.887g/cm3、融点=139℃であった。それ以外は、実施例14と同様な方法で、フィルムを得、実施例34とした。得られたフィルムの評価を表7に示すが、溶断シール性に優れ、高速包装適性を有する他、収縮性に向上し、光学特性および引裂強度等の物性にも優れるものであった。
【0048】
【実施例38】
各層の厚み比率を変化した以外は実施例37と同様な方法で、フィルムを得た。実施例38の層構成比(%)はA/B/C/B/A=10/32.5/15/32.5/10で製膜を行った。得られたフィルムの評価を表7に示すが、溶断シール性に優れ、高速包装適性を有する他、高収縮性で、光学特性および引裂強度等の物性にも優れるものであった。
【0049】
【比較例1〜3】
内部層(B)に使用するエチレンα−オレフィン共重合体を本発明の技術的範囲外のもので各々置き換えた以外は実施例1と同様な方法でフィルムを得、これを比較例1〜3とした。比較例1のLL6(α−オレフィン:オクテン−1)および比較例2のLL14(コモノマー:オクテン−1)は密度が本発明の範囲外の樹脂であり、比較例3のLL15(コモノマー:ヘキセン−1)はMFR(190℃、2.16kgf)が本発明の範囲外の樹脂である。
【0050】
該フィルムの評価結果を表8に示す。比較例1で得られたフィルムは、収縮性に劣り、光学特性(透明性)が悪く、引裂強度に劣るものであった。比較例2は延伸そのものが困難であったが延伸倍率を下げて、かろうじて得た小片サンプルを評価したところ、収縮性や光学特性に劣るものであった。また比較例3は延伸時に、フィルム切れを起こし易く、安定した延伸は困難であった。得られたフィルムの引裂強度も弱く、高速包装適性も劣るものであった。
【0051】
【比較例4〜7】
本発明の技術的範囲外のものとして、まず実施例1の表面層(A)をPP10で置き換え、PP−aの融点(およびPP−cとの融点との関係)が本発明の範囲外であるものを比較例4とし、次に、同じく実施例1の表面層(A)をPP13で置き換え、PP−aのMFRが本発明の範囲外であるものを比較例5とした。また、実施例1の内部層(C)をPP8で置き換え、PP−aとPP−cの融点の関係が本発明の範囲外であるものを比較例6、更に、実施例1の表面層(A)をPP3、内部層(C)をPP4で置き換え、PP−aとPP−cのMFRの関係が本発明の範囲外であるものを比較例7とした。これらはいずれも実施例1と同様な方法でフィルムを得たが、その評価結果を表9に示す。比較例4と7は光学特性、比較例5は引裂特性に各々劣る他、いずれも溶断シール性や高速包装適性に劣るものであった。
【0052】
【比較例8〜10】
フィルムの厚み構成比を本発明の範囲外に変更した以外は実施例1と同様にしてチューブ状原反を作製し、延伸製膜を行った。各々の厚み構成比およびフィルムの評価結果を表10に示す。
まず、比較例8においては延伸安定性に欠け、偏肉の大きなフィルム(バブル全周でのフィルムの偏肉が±42%。ちなみに本発明の実施例で得られたフィルムはすべて±15%以内の偏肉の小さな良好なものであった。)しか得られず、結果として高速包装時にフィルムが安定して走行せず、シール不良が多発した。また、光学特性にも若干劣るものであった。比較例9においては、高速包装時に、フィルムの破れが多発し、また溶断シールにおいても糸引き現象が認められ、問題のあるものであった。そして、比較例10で得られたフィルムでは、溶断シール性(糸引き現象の発生)に劣り、高速包装時においては、センターシール部およびカッターシール部において、いずれもシール不良によるトラブルが発生し、問題を有するものであった。
【0053】
【表1】

Figure 0004025419
【0054】
【表2】
Figure 0004025419
【0055】
【表3】
Figure 0004025419
【0056】
【表4】
Figure 0004025419
【0057】
【表5】
Figure 0004025419
【0058】
【表6】
Figure 0004025419
【0059】
【表7】
Figure 0004025419
【0060】
【表8】
Figure 0004025419
【0061】
【表9】
Figure 0004025419
【0062】
【表10】
Figure 0004025419
【0063】
【発明の効果】
本発明は上述の構成を有することによって、従来の収縮包装用フィルムにはない極めて総合的にバランスのとれた高性能な熱収縮フィルムを提供できる。即ち、ポリプロピレン系樹脂を表面層に配した従来の多層フィルムが有する優れた包装機械適性(フィルムの腰及び滑り)、引裂等の機械的強度、収縮特性に加え、従来のフィルムの欠点であったヒートシール性、すなわち面シールおよび溶断シールのいずれの場合においても安定したヒートシール性を高速包装条件下においても発揮し、又、ノートや印刷用紙の枚葉物(およびそれらの束状のものも含む)を包装するときに生じ易い被包装物の変形を抑制し、包装仕上がりを格段に改良し得る熱収縮性多層フィルムを提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat shrinkable multilayer film having good packaging machine suitability, excellent transparency and gloss, and excellent heat sealability and packaging finish especially at high speed packaging.
[0002]
[Prior art]
Conventionally, shrink wrapping (synonymous with shrink wrapping) can quickly and tightly package multiple products at the same time, regardless of the shape and size of the package, and the resulting package has a beautiful appearance. It is used for packaging foods, sundries, etc. because it exerts a display effect, enhances the value of products, keeps the contents hygienic, and facilitates visual quality control. Such shrink wrapping is usually a method in which the film is heat-sealed with heat shrink in a shrink tunnel after the contents are primarily wrapped by heat sealing with a little margin, and a tight and beautiful finish can be obtained. . In this case, the heat sealing method includes (1) heat sealing method such as bar sealing method and hot roller method, (2) impulse sealing method, and (3) fusing sealing method. Is basically a surface seal, and a so-called seal-and-cut method is adopted in which it is cut with a cutter almost simultaneously with the seal in the immediate vicinity of the seal surface. In addition, the melt-sealing method (3) does not require a separate cutter as described above, and is a method of instantaneously performing melt-cutting simultaneously with melt-sealing with a hot blade, and is widely used for various packaging films as a simple method. It has been. As these packaging films, there is a demand for films that are compatible with the recent automation and speeding up of packaging machines and that have satisfactory performance in any of the sealing methods described above.
[0003]
On the other hand, there are (1) shrinkage characteristics, (2) heat sealability, (3) optical characteristics, (4) mechanical strength, etc. as characteristics required for the shrink wrapping film. High shrinkage, especially low-temperature high-shrinkage, (2) is particularly a stringing phenomenon that occurs during fusing sealing (films in which the resin melted during fusing is separated from the fusing blade and the film and / or by fusing Phenomenon that draws yarn between the film and the film.) And can be fused and sealed at as low a temperature as possible. (3) is particularly transparent and glossy after shrinking, and (4) is when packaging. In addition, it is required to have strength against various external loads (such as tearing and breaking) including transportation and storage after packaging. In view of the above required characteristics, a multilayer film in which a polypropylene resin is arranged on the surface layer is conventionally known.
[0004]
For example, Japanese Patent No. 2570359 discloses a multilayer shrinkable film including both outermost layers made of a specific polypropylene resin, and a plurality of intermediate layers made of a polypropylene soft resin layer and a layer made of linear ultra-low density polyethylene. According to this publication, it has characteristics such as low temperature shrinkage comparable to polyvinyl chloride shrink film, blocking resistance, transparency, gloss, etc., and preferably excellent tear resistance. It is described as being. Japanese Patent Publication No. 3-42180 discloses a surface layer composed of an ethylene / propylene copolymer and a core layer containing linear low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer, ionomer resin, and the like. A five-layer shrink film including an intermediate layer composed of a resin mixed layer appropriately selected from the above has been disclosed, and it has been described that the shrink tension, optical characteristics, sealing characteristics, etc. are improved and that it has a wide range of shrink temperatures. Yes.
[0005]
[Problems to be solved by the invention]
However, among the above-mentioned conventional techniques, the multilayer shrink film having the specific polypropylene resin described in Japanese Patent No. 2570359 in both outer layers has good transparency and gloss and can exhibit low-temperature shrinkage. There is a problem in sealing performance, particularly heat sealing performance during high-speed packaging. That is, in high-speed packaging (usually a packaging speed of 50 packs / minute or more), the sealing time itself is shortened, so a high sealing temperature is adopted, but the surface sealing is performed depending on the temperature characteristics of the resin constituting the film. In this case, since the intermediate layer, that is, the inner layer is softened and melted more easily than both outer layers, the seal part of the film is fused to the seal bar, or the seal part is stretched at the time of sealing and cutting, and the seal is broken. Prone to seal failure. Also in the case of a fusing seal, although fusing is possible, there is a problem that a stringing phenomenon is likely to occur, the appearance of the package is impaired, and the merchantability is reduced. In addition, the film exemplified in Japanese Examined Patent Publication No. 3-42180 has problems similar to those of the prior art described in the above-mentioned Japanese Patent No. 2570359, as well as single sheets (and bundles thereof) such as notebooks and printing paper. In other words, there is a problem that the packaged material is easily deformed.
[0006]
Therefore, the problems of the present invention include the conventional packaging machine suitability (film waist and slip) of a multilayer film in which a conventional polypropylene resin is arranged on the surface layer, mechanical strength such as tearing, and shrinkage characteristics, as well as conventional The heat-sealability that was the drawback of the film of the above, that is, stable heat-sealability in both the case of face seal and fusing seal, especially stable heat-seal property during high-speed packaging, and the sheet of notebook and printing paper An object of the present invention is to provide a heat-shrinkable multilayer film capable of suppressing the deformation of an article to be packaged that occurs when an article (and a bundle thereof) is packaged and improving the finished packaging.
[0007]
[Means for Solving the Problems]
  The inventors of the present invention have reached the present invention as a result of intensive studies to achieve the above-mentioned problems. That is, the present invention provides a multilayer film comprising at least four layers having a surface layer (A) containing a polypropylene-based resin and a layer (B) containing an ethylene α-olefin copolymer in at least one of the inner layers. The following (1) ~(5)Is a multilayer film characterized by
  (1) As another inner layer (C), at least one layer containing a polypropylene resin or a resin composition of a polypropylene resin and a polybutene-1 resin is included.
  (2) The melting point of the polypropylene resin used for the surface layer (A) is equal to or lower than the melting point of the polypropylene resin used for the inner layer (C) and 155 ° C. or less.120 ℃ or higherAnd the melt flow rate measured under the conditions of 230 ° C. and 2.16 kgf of the polypropylene resin used for the surface layer (A) is equal to or higher than the melt flow rate of the polypropylene resin used for the inner layer (C). And3.0~ 18g / 10 min
  (3) The density of the ethylene α-olefin copolymer used for the inner layer (B) is 0.870 to 0.930 g / cm.3The melt flow rate measured under the conditions of 190 ° C. and 2.16 kgf is 0.2 to 7 g / 10 min.
  (4) The thickness ratio of each layer in all layers is 10 to 60% for the surface layer (A), 20 to 80% for the inner layer (B), and 5 to 60% for the inner layer (C).
  (5) The melt flow rate measured under the conditions of 230 ° C. and 2.16 kgf of the polypropylene resin used for the surface layer (A) is higher than the melt flow rate of the polypropylene resin used for the inner layer (C). 3.0 or larger
  Hereinafter, the present invention will be described in detail.
[0008]
First, the present invention differs from the prior art in that it is divided into a surface layer (A) containing a specific polypropylene resin and at least one inner layer (B) containing a specific ethylene α-olefin copolymer. As the inner layer, a layer containing a polypropylene resin having a specific relationship between the melting point and the melt flow rate with respect to the polypropylene resin used for the surface layer (A) or a resin of the same resin and a polybutene-1 resin It is in the point which added the layer containing a composition. Furthermore, the thickness ratio of each of the above layers is specified. The role of the constituent elements of the present invention, which is different from the above prior art, in addition to excellent packaging machine aptitude, tear strength and shrinkage characteristics, heat sealability for both face seal and fusing seal, which were conventional problems, In particular, stable heat-sealing property in high-speed packaging can be sufficiently secured, and further, good finish can be realized by suppressing deformation at the time of shrink wrapping of an article to be packaged.
[0009]
The most important requirement in the present invention is that the surface layer (A) and the inner layer (C) have a melting point (referred to the highest temperature peak value measured by DSC) and a melt flow rate (hereinafter referred to as MFR). This is to use a polypropylene resin having specific requirements. That is, the polypropylene resin used for the surface layer (A) (
Hereinafter, it is referred to as PP-a. ) Below the melting point of the polypropylene resin (hereinafter referred to as PP-c) used in the inner layer (C) and below 155 ° C., and the PP-a conditions of 230 ° C. and 2.16 kgf It is important that the MFR measured below (hereinafter referred to as the same condition for a polypropylene resin) is not less than the MFR of PP-c and has a value of 3 to 18 g / 10 min. Here, the surface layer (A) means at least one of both surfaces of the multilayer film.
[0010]
In the multilayer film of the present invention, at least a surface layer that is a sealing surface only needs to have the above requirements. However, in order for the effects of the present invention to be sufficiently exerted, both surface layers must have the above requirements. Is desirable. Here, MFR in the present invention refers to a value measured according to JIS-K7210. When the melting point of PP-a exceeds the melting point of PP-c, defects are likely to occur in the seal portion of the face seal. Particularly in high-speed packaging, at least the entire film of the seal portion is in a molten state or extremely softened. The film is fused or adhered to the seal bar, and troubles such as tearing of the seal portion are likely to occur. The melting point of PP-c with respect to PP-a should be the same or preferably higher, and the preferable difference in melting point is 1 ° C. or higher, more preferably 3 ° C. or higher, and further preferably 5 ° C. or higher. When the melting point of PP-a exceeds 155 ° C., the low-temperature sealing property is impaired, and in the case of surface sealing under high-speed packaging conditions, a sealing failure is likely to occur as described above. Thus, the occurrence of the stringing phenomenon is likely to occur, and the appearance of the product is deteriorated. The preferable melting point of PP-a is 150 ° C. or lower, more preferably 145 ° C. or lower, and the lower limit is usually 120 ° C. from the viewpoint of preventing the film from lowering and the packaging property from being lowered due to the blocking phenomenon. The upper limit of the melting point of PP-c is a melting point typically represented by a homotype having extremely high stereoregularity, and is about 170 ° C.
[0011]
Further, if the MFR of PP-a used for the surface layer (A) is less than 3.0 g / 10 minutes, the fusion between the films in the face seal at the time of high-speed packaging tends to be insufficient, and 18 g / 10 Exceeding the minute range causes the film to adhere to the seal bar, the occurrence of poor sealing, and the stringing phenomenon easily occurs at the time of fusing and sealing, both of which become more noticeable as the packaging speed increases. In addition to the MFR of PP-a being in the range of 3.0 to 18 g / 10 min, it is important to have a value equal to or greater than the MFR of PP-c. That is, it is important that the MFR of PP-c is the same or lower than the MFR of PP-a, and by doing so, the fusing sealability particularly during high-speed packaging is remarkably improved. . When the MFR of PP-a is lower than the value of MFR of PP-c, the yarn drawing phenomenon in the fusing seal tends to occur, and the strength variation at the seal portion tends to increase. The preferred MFR of PP-a is 3.0 to 15 g / 10 minutes, more preferably 4.0 to 12 g / 10 minutes. The MFR value of PP-a with respect to PP-c may be the same or larger, but is preferably 2.0 or more, more preferably 3.0 or more larger than the MFR value of PP-c. Further, the lower limit of PP-c MFR is preferably about 0.2 mainly from the viewpoint of moldability.
[0012]
The polypropylene resin used in the surface layer (A) and the inner layer (C) of the present invention is homo PP, polypropylene having a propylene content of 70% by weight or more and other α-olefins (in addition to ethylene, a carbon number of 4 to 4). 8) and a copolymer with one or more than one, polymerized with a conventional catalyst such as a Ziegler-Natta catalyst, but with a narrow molecular weight distribution polymerized with a metallocene catalyst, etc. (Normally, Mw (weight average molecular weight) / Mn (number average molecular weight) of 4 or less) syndiotactic PP, isotactic PP, etc. are also included, and rubber components with a high concentration of up to 50% by weight are uniformly finely divided. It may be dispersed, and at least one of them is used. In addition, when using 2 or more types of PP in mixture, the melting | fusing point and MFR of PP considered to be a main component among PP in each layer should just satisfy | fill the said requirements.
[0013]
Also, in shrink wrapping, if the material to be packaged is weak in rigidity (for example, including single-sheet items such as notebooks and printing paper and bundles thereof) In such a case, deformation such as warping may occur, and in such a case, polybutene-1 is added to PP-c used for the inner layer (C) in order to suppress deformation without impairing the excellent sealability. It is extremely effective to mix a resin (hereinafter referred to as PB). The ratio of PB usually mixed is 150 parts by weight or less with respect to 100 parts by weight of PP-c, and is appropriately used depending on the degree of demand for deformation suppression. When the ratio of PB exceeds 150 parts by weight, the sealing property improving effect of PP-c is difficult to be exhibited, and shrinkage is reduced and the whole film is lowered, thereby deteriorating the suitability of packaging machinery. A preferable mixing ratio of PB is 100 parts by weight or less, more preferably 80 parts by weight or less with respect to 100 parts by weight of PP-c.
[0014]
As PB used in the present invention, one or two or more of crystalline monomers having a butene-1 content of 70 mol% or more and other monomers (ethylene, propylene, and olefins having 5 to 8 carbon atoms) are used. Those having a high molecular weight including the above copolymer are also used. This is different from liquid and wax-like molecular weights, and has an MFR (190 ° C., 2.16 kgf: hereinafter, the same conditions for PB) of 0.1 to 10 g / 10 min. Among them, a copolymer having a Vicat softening point of 40 to 100 ° C. is more effective and preferable. The Vicat softening point shown here is a value measured according to JIS-K7206-1982.
[0015]
Next, the film of the present invention has an inner layer (B) containing a specific ethylene α-olefin copolymer as at least one of the inner layers, and the inner layer (B) ensures stable stretchability. In addition, it has a role of imparting practically sufficient strength properties such as tear strength and puncture strength to the entire film and also exhibiting low-temperature shrinkage. The density of the ethylene α-olefin copolymer used in the inner layer (B) of the present invention is 0.870 to 0.930 g / cm.ThreeThe MFR measured under the conditions of 190 ° C. and 2.16 kgf (hereinafter the same for the ethylene α-olefin copolymer) is 0.2 to 7 g / 10 min. In addition, the density as used in the field of this invention is a value of 23 degreeC measured according to JIS-K-7112. Density is 0.930 g / cmThreeIf it exceeds, stretching itself becomes difficult, the transparency of the obtained film is lowered, and it is difficult to obtain low-temperature shrinkage.
[0016]
On the other hand, the density is 0.870 g / cmThreeIf it is less than the range, the difference in viscoelasticity with respect to PP-a and PP-c becomes too large, so that the stability of stretching is lacking, and the effect of imparting low-temperature shrinkage becomes difficult to exhibit. The preferred density is 0.880-0.926 g / cm.Three, More preferably 0.900 to 0.920 g / cmThreeIt is. In addition, when the MFR exceeds 7, the stretching stability is lowered, and the film is easily torn or stretched when stretched. In addition, even if a film is obtained, the mechanical strength such as tear strength and puncture strength is inferior. You can only get things. When the MFR is less than 0.2, there arises a problem that the extrusion power at the time of extrusion molding is increased, and a problem that the extrusion efficiency is lowered and productivity is lowered due to the increase of the extrusion power. In addition, the surface smoothness of the extruded raw material may be adversely affected. A preferred MFR is 0.5 to 5, more preferably 0.6 to 4.
[0017]
Examples of the ethylene α-olefin copolymer used for the inner layer (B) include linear low-density polyethylene and ultra-low-density polyethylene. These include ethylene and propylene, butene-1, pentene-1, 4-methyl. -A copolymer with at least one monomer selected from α-olefins having 3 to 18 carbon atoms such as pentene-1, hexene-1, octene-1, etc., but impact resistance and tear strength, From the viewpoint of mechanical strength such as puncture strength and stretch film-forming properties, the α-olefin is preferably 4-methyl-pentene-1, pentene-1, hexene-1, or octene-1.
[0018]
The above ethylene α-olefin copolymer is a polymer obtained by using a conventional multi-site catalyst such as a Ziegler catalyst or a single-site catalyst such as a metallocene catalyst (comonomer distribution, etc.) More uniformized than those polymerized by conventional methods in terms of molecular weight distribution (for example, those having a value represented by Mw / Mn of 1.5 to 3.5, more preferably 1.5 to 3) 0.0) and may be a mixture of both, and at least one of them may be used. The ethylene α-olefin copolymer polymerized by the single-site catalyst has a controlled long-chain branch, or in addition to the α-olefin, a monomer having a polar group or a styrene monomer The other monomers such as may be copolymerized.
[0019]
Next, as for the film of this invention, the thickness ratio of each layer which occupies for all the layers is 10 to 60% for the surface layer (A), 20 to 80% for the inner layer (B), and 5 to 60% for the inner layer (C). It is important to satisfy the necessary performance as a shrink film such as mechanical strength, sealability, shrinkage (packaging finish), slipperiness and waist. If the surface layer (A) is less than 10%, the slipping of the film taking advantage of the elasticity of the polypropylene resin and the suitability of the packaging machine are deteriorated. On the other hand, if it exceeds 60%, the mechanical strength against tearing and piercing is lowered, and under the high-speed packaging conditions, it is difficult to exhibit the effects that other layers originally have, such as stringing easily occurring during fusing sealing. On the other hand, when the thickness ratio of the inner layer (B) is less than 20%, mechanical strength such as tearing is insufficient, and the effect of imparting low-temperature shrinkage cannot be exhibited.
[0020]
On the other hand, when the thickness ratio of the inner layer (B) exceeds 80%, the strength against tearing and piercing becomes excessive, the film is lowered, and peeling occurs partially at the interface of the layer when shrinking. May be deformed in a zigzag shape, resulting in deterioration of transparency and gloss. And when the thickness ratio of the inner layer (C) is less than 5%, it is easy to cause a seal breakage at the face seal and a stringing phenomenon at the fusing seal at the time of high-speed packaging. It becomes difficult to exert the effect of suppressing deformation. On the other hand, if the thickness ratio of the inner layer (C) exceeds 60%, the stretching stability tends to decrease, and the resulting film also has poor low-temperature shrinkage and the shrinkage rate itself is low, resulting in a finished package. Cause problems. The preferable layer constitution ratio of each layer is 15 to 50% for the surface layer (A), 30 to 70% for the inner layer (B), and 10 to 45% for the inner layer (C). More preferable layer composition ratio of each layer is 15 to 40% for the surface layer (A), 40 to 70% for the inner layer (B), and 15 to 40% for the inner layer (C).
[0021]
The multilayer film of the present invention preferably has a thermal shrinkage rate at 140 ° C. of 30% or more in at least one longitudinal and lateral direction in order to sufficiently perform tight packaging during shrink packaging. If the thermal shrinkage rate at 140 ° C of the multilayer film is less than 30% in the vertical and horizontal directions, the shrinkage is poor, there is no tight feeling after packaging during shrink wrapping, and the product value of the product is improved by wrinkles after packaging. It will be seriously damaged. The heat shrinkage rate at 140 ° C. is more preferably 35% or more, and more preferably 40% or more in at least one longitudinal and transverse direction.
[0022]
The surface layer (A), the inner layer (B), and the inner layer (C) contain 50% by weight or less, preferably 40% by weight or less of one or more other resins, as long as the original properties are not impaired. More preferably, you may mix at 30 weight% or less. Other resins are not particularly limited, but, for example, ethylene-vinyl acetate copolymer and its partially saponified product, ethylene-aliphatic unsaturated carboxylic acid ester copolymer, ionomer resin, high pressure method low density polyethylene, low pressure method high density Polyethylene, highly branched ethylene polymer polymerized by a transition metal catalyst (branching degree: 5 to 110 groups / 1000 carbon), styrene-conjugated diene copolymer (block, random) and at least a part of the copolymer are water. And those modified by acid modification, crystalline 1,2-polybutadiene, etc., petroleum resins such as hydrogenated polydicyclopentadiene, hydrogenated polyterpene, and the like as propylene alone or propylene as amorphous polyolefin Amorphous poly of low molecular weight copolymerized with ethylene and butene-1 Olefin-based polymers and the like, in the melt viscosity at 190 ° C., are cited as the typical example those 300~10000Cps. Moreover, the resin etc. which are used for layers other than the layer used as the object of mixing are mentioned.
[0023]
Similarly, the surface layer (A), inner layer (B) and inner layer (C) of the present invention are plasticizers, antioxidants, surfactants, ultraviolet absorbers, as long as the original properties are not impaired. It may contain inorganic fillers, antifogging agents, antistatic agents, antiblocking agents, lubricants, crystal nucleating agents, coloring agents, etc., and as a method of addition to the resin, it is kneaded directly into the target resin layer, or in some cases a master A batch may be prepared in advance and diluted.
[0024]
The film of the present invention is composed of a total of at least four layers of the surface layer (A) and the inner layers (B) and (C). In some cases, the resin layer using the same resin as the surface layer (A) is provided inside. It may be added as a layer. The arrangement of the layers is, for example, 4 layers: A / B / C / A, 5 layers: A / C / B / C / A, A / B / C / B / A, A / B / In the case of 7 layers such as A / C / A: A / C / B / C / B / C / A, A / B / C / B / C / B / A, and the like. In addition, the case of 6 layers, 8 layers and more is also included. In addition, the film of the present invention is not limited to the original characteristics, and further, as an internal layer, in addition to the resins that can be used in the layers (A), (B), and (C) of the present invention, You may arrange | position another layer comprised with a thermoplastic resin. This added layer includes a mixed composition layer made of a resin used in each layer of the film as a recovery layer.
[0025]
The thickness of the heat-shrinkable multilayer film of the present invention is usually a thin region of 5 to 80 μm, preferably 6 to 60 μm, more preferably 7 to 40 μm. If it is less than 5 μm, the stiffness of the film is lowered and the sealing strength is also lowered. There is also a problem in workability during packaging. On the other hand, if it exceeds 80 μm, the stiffness of the film becomes too strong, the fitting property becomes worse, the shrinkage response becomes worse, and the performance such as mechanical strength becomes excessive.
[0026]
Next, an example of a method for producing the heat-shrinkable multilayer film of the present invention will be described. First, the resin constituting each layer ((A), (B), (C) layer and other layers used as needed) is melted in each extruder, and co-extruded and rapidly cooled and solidified with a multilayer die. To obtain a multilayer film original fabric. As the extrusion method, a multilayer T-die method, a multilayer circular method, or the like can be used, but the latter is preferable. The multilayer film raw material obtained in this way is heated and stretched under temperature conditions suitable for imparting orientation. The stretching temperature is usually 140 ° C. or less, preferably 130 ° C. or less, as the surface temperature at the stretching start point of the film (in the inflation method, the position where expansion starts as a bubble). However, the lower limit of the stretching temperature is preferably 40 ° C. from the viewpoint of dimensional stability of the film after stretching.
[0027]
Examples of the stretching method include a roll stretching method, a tenter method, an inflation method (including a double bubble method), and a method of forming a film by simultaneous biaxial stretching is preferable from the viewpoint of stretchability and other rationality. The stretching is performed at least in one direction at an area stretching ratio of 3 to 50 times, preferably 3.5 to 40 times, more preferably 4 to 30 times. The If necessary, post-treatment such as heat setting for dimensional stability, surface treatment such as corona treatment or plasma treatment, printing treatment, lamination with other types of films, and the like may be performed.
Further, at least one layer of the film of the present invention may be cross-linked, and the cross-linking treatment may be performed by irradiation with an energy beam such as an electron beam (for example, an irradiation device with an acceleration voltage of 50 to 1000 kV), ultraviolet rays, and γ rays. Conventionally known methods such as use of peroxide are used.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present description will be described in more detail with reference to Examples. The measurement evaluation method used in the present invention is as follows.
(1) Melting point
6 to 8 mg of a measurement sample is collected and packed in an aluminum pan, and once at a heating rate of 10 ° C./min under a nitrogen stream by a DSC method using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer. The temperature was raised to 200 ° C. and held for 1 minute, and then cooled to 0 ° C. at a temperature lowering rate of 10 ° C./min. Then, after maintaining for 1 minute in a 0 degreeC state, it heated up again at 10 degree-C / min, it measured, and the highest endothermic peak at that time was made into melting | fusing point.
(2) Thermal contraction rate
A 100 mm square film sample was placed in an air oven type thermostat set at a predetermined temperature, treated for 30 minutes in a freely shrinkable state, then the amount of film shrinkage was determined, and the value divided by the original dimension was expressed as a percentage. did. The measurement was performed in each of the vertical direction (MD) and the horizontal direction (TD).
[0029]
(3) Optical characteristics
Haze was measured according to ASTM-D-1003 and gloss was measured according to ASTM-D-2457.
(4) Coefficient of dynamic friction
Measurement was performed at a test speed of 700 mm / min according to JIS-K-7125. At this time, the test table used was an acrylic plate frame in which a semi-rigid polyethylene foam sheet was fitted and fixed, and the slide piece was a stainless steel plate with a textured surface (weight: 500 g). It was used.
(5) Tear strength
According to JIS-P-8116, it measured about each of the vertical direction (MD) and the horizontal direction (TD) using the light load tear test machine (made by Toyo Seiki). In addition, although the reading of the measured value here measured in the range of 20-60 of a scale, when there was a difference in a measured value by a measurement range, the higher value was measured.
[0030]
(6) Fusing sealability
(6-1) Fusing seal start temperature
A TP701 heat seal tester manufactured by Tester Sangyo Co., Ltd. is attached with a 0.5 mmR x 280 mmL fusing blade with a Teflon-coated surface, and an air pressure of 3 kg / cm as a sealing condition2(Air cylinder diameter: 50 mmφ) Fusing sealing was performed by changing the temperature variously under the conditions of a sealing time of 1 second. At this time, the temperature at the tip of the cutting blade was measured with a contact-type thermometer, and this was taken as the value for each temperature condition. Each of the measurement films in a state of being folded in two and being overlapped with each other was tested with the width dimension having a margin with respect to the cutting blade, and 90% or more (252 mm or more) of the cutting blade was blown out. The temperature was defined as the fusing seal start temperature. It should be noted that the lower the fusing seal start temperature is, the more suitable for high-speed packaging conditions, and also from the viewpoint of energy saving.
[0031]
(6-2) Finish of fusing seal
About what was melt-sealed on the temperature conditions about 10 degreeC higher than the melt-seal start temperature prescribed | regulated by said (6-1), the finish of the melt seal was evaluated on the following references | standards.
○: The seal is complete, no defects are observed, there is almost no stringing, and the finish of the melted section is clean.
Δ: The seal is almost perfect, but there is a slight problem in merchantability due to some stringing.
X: A state in which there is a problem as a product because there are obvious stringing in several places or there is a seal failure such as a local opening in the seal part.
[0032]
(7) High-speed packaging suitability
Using a FP-280 universal automatic packaging machine manufactured by Ibaraki Seiki Co., Ltd., 120 pieces of rectangular parallelepiped pieces (approximate dimensions: 150 x 100 x 35 mm) are packaged for 2 minutes at a packaging speed of 60 packs / min. It was. The used packaging machine employs a surface seal by a hot roller system at the center seal part and then a fusing seal at the cutter seal part as the sealing method, and the following evaluation was performed. In addition, shrinkage | contraction was performed by letting a hot-air type shrink tunnel pass through said packaging in about 5 seconds. In addition, the proper conditions were changed so that the temperature of each seal part and the hot air at the time of shrinkage became the optimum conditions for each film.
A: There is no film running trouble due to fusion or adhesion at each seal part during packaging, and there is no defect such as tearing of each seal part on the package after shrinking, and the appearance of the fusing seal part is good and the product is good Excellent.
○: There is no film running trouble due to adhesion or adhesion at each seal part during packaging, and there is no defect such as tearing on each sealed part even after shrinking, but more than half of the sealed parts are fused Some appearance defects due to the influence of stringing are observed. However, the acceptable range for merchantability.
(Triangle | delta): The fusion | melting and adhesion of the film to a sealer are recognized in each seal part during packaging, and the running property of a film is unstable. Moreover, in most of the packaged bodies after shrinkage, 1-10 pieces of defective appearance such as tearing are recognized in the fusing seal part or the sealing part of the package has a defective part such as a tear.
X: Troubles due to adhesion and adhesion of the film to the sealer occur at each seal portion of the package, and it is difficult to continuously run the film. Alternatively, 11 or more packages having defects such as tearing in the seal portion are recognized in the package after shrinking.
[0033]
Next, resins used in Examples and Comparative Examples are described below.
LL1: ethylene α-olefin copolymer (MFR (190 ° C., 2.16 kg f) = 2.0 g / 10 min, density = 0.919 g / cmThree, Α-olefin = hexene-1)
LL2: ethylene α-olefin copolymer (MFR = 4.0 g / 10 min, density = 0.927 g / cmThree, Α-olefin = hexene-1)
LL3: ethylene α-olefin copolymer (MFR = 2.0 g / 10 min, density = 0.912 g / cmThree, Α-olefin = hexene-1)
LL4: ethylene α-olefin copolymer (MFR = 4.0 g / 10 min, density = 0.916 g / cmThree, Α-olefin = octene-1)
LL5: ethylene α-olefin copolymer (MFR = 0.8 g / 10 min, density = 0.905 g / cmThree, Α-olefin = octene-1)
LL6: ethylene α-olefin copolymer (polymerized with a single site catalyst. MFR = 1.0 g / 10 min, density = 0.868 g / cmThree, Α-olefin = octene-1)
LL7: ethylene α-olefin copolymer (MFR = 1.0 g / 10 min, density = 0.920 g / cmThree, Α-olefin = octene-1)
LL8: ethylene α-olefin copolymer (MFR = 0.7 g / 10 min, density = 0.919 g / cmThree, Α-olefin = hexene-1)
LL9: ethylene α-olefin copolymer (polymerized with a single site catalyst. MFR = 1.6 g / 10 min), density = 0.895 g / cmThree, Α-olefin = octene-1)
LL10: ethylene α-olefin copolymer (MFR = 1.0 g / 10 min, density = 0.848 g / cmThree, Α-olefin = butene-1)
[0034]
LL11: ethylene α-olefin copolymer (MFR = 2.2 g / 10 min, density = 0.905 g / cmThree, Α-olefin = 4-methyl-pentene-1)
LL12: ethylene α-olefin copolymer (polymerized with a single site catalyst. MFR = 1.0 g / 10 min, density = 0.902 g / cmThree, Α-olefin = octene-1)
LL13: ethylene α-olefin copolymer (polymerized with a single site catalyst. MFR = 3.5 g / 10 min, density = 0.910 g / cmThree, Α-olefin = octene-1)
LL14: ethylene α-olefin copolymer (MFR = 2.1 g / 10 min, density = 0.939 g / cmThree, Α-olefin = octene-1)
LL15: ethylene α-olefin copolymer (MFR = 10.0 g / 10 min, density = 0.914 g / cmThree, Α-olefin = hexene-1)
PP1: Polypropylene resin (ethylene-propylene copolymer: MFR (230 ° C., 2.16 kgf)) = 7.0 g / 10 min, density = 0.900 g / cmThree, Melting point = 140 ° C.)
PP2: Polypropylene resin (ethylene-propylene copolymer: MFR = 6.5 g / 10 min, density = 0.900 g / cmThreeMelting point = 145 ° C)
PP3: Polypropylene resin (ethylene-propylene copolymer: MFR = 1.0 g / 10 min, density = 0.900 g / cmThreeMelting point = 148 ° C)
PP4: Polypropylene resin (homopolypropylene: MFR = 4.0 g / 10 min, density = 0.900 g / cmThree, Melting point = 161 ° C)
PP5: Polypropylene resin (ethylene-propylene copolymer: MFR = 18.0 g / 10 min, density = 0.900 g / cmThreeMelting point = 145 ° C)
PP6: polypropylene resin (propylene- (ethylene-propylene rubber) copolymer: MFR = 8.7 g / 10 min, density = 0.900 g / cm)Three, Melting point = 130 ° C.)
PP7: Polypropylene resin (ethylene-propylene-butene copolymer: MFR = 5.5 g / 10 min, density = 0.890 g / cmThree, Melting point = 132 ° C.)
PP8: Polypropylene resin (ethylene-propylene-butene copolymer: MFR = 5.0 g / 10 min, density = 0.900 g / cmThree, Melting point = 120 ° C.)
PP9: Syndiotactic propylene polymerized with a metallocene catalyst: MFR = 2.5 g / 10 min, density = 0.886 g / cmThreeMelting point = 149 ° C)
PP10: Polypropylene resin (homopolypropylene: MFR = 8.0 g / 10 min, density = 0.900 g / cmThree, Melting point = 161 ° C)
[0035]
PP11: Polypropylene resin (ethylene-propylene copolymer: MFR = 5.0 g / 10 min, density = 0.900 g / cmThreeMelting point = 126 ° C)
PP12: Polypropylene resin (ethylene-propylene copolymer: MFR = 1.9 g / 10 min, density = 0.900 g / cmThree, Melting point = 142 ° C)
PP13: Polypropylene resin (ethylene-propylene copolymer: MFR = 20.0 g / 10 min, density = 0.900 g / cmThree, Melting point = 135 ° C.)
PP14: polypropylene resin (ethylene-propylene copolymer: MFR = 0.8 g / 10 min, density = 0.900 g / cmThree, Melting point = 140 ° C.)
PB1: Polybutene-1 resin (copolymer using propylene as a comonomer, MFR (190 ° C., 2.16 kgf) = 2.0 g / 10 min, Vicat softening point = 61 ° C.)
Mix 1: LL1 (57 wt%), PP1 (19 wt%), PP3 (24 wt%) mixed
Mix 2: LL1 (53 wt%), PP1 (21 wt%), PP3 (26 wt%) mixed
Mix 3: A mixture of LL1 (32 wt%), PP1 (12 wt%), PP3 (56 wt%)
Mix 4: LL1 (28 wt%), PP1 (14 wt%), PP3 (58 wt%) mixed
Mix 5: A mixture of PP3 (50 wt%) and PB1 (50 wt%)
Mix 6: Mixture of PP3 (70 wt%) and PB1 (30 wt%)
Mix 7: PP3 (90% by weight) and PB1 (10% by weight) mixed
[0036]
[Example 1]
An ethylene-propylene copolymer: PP1 (MFR = 7.0 g / 10 min, melting point = 140 ° C.) is disposed on the surface layer (A), and an ethylene α-olefin copolymer: LL1 (MFR) is disposed on the inner layer (B). = 2.0 g / 10 min, density = 0.917 g / cmThree, Α-olefin = hexene-1) and ethylene-propylene copolymer: PP3 (MFR = 1.0 g / 10 min, melting point = 148 ° C.) for another inner layer (C), and each surface layer ( A) has a 32 mm extruder (L / D = 22), the inner layer (B) has a 40 mm extruder (L / D = 24), and the inner layer (C) has a 32 mm extruder (L / D =). 22) was extruded using an annular 5-layer die so that the layer arrangement was 5 layers of PP1 / LL1 / PP3 / LL1 / PP1 (extrusion amount 20 kg / h). Immediately thereafter, it was rapidly cooled and solidified with cold water to produce a tube-shaped original fabric with a uniform thickness accuracy for each layer having a folding width of 200 mm and a thickness of 230 μm. The thickness ratio (%) of each layer was adjusted to be 10 / 27.5 / 25 / 27.5 / 10 from the outside of the tube.
[0037]
In addition, 0.1% by weight of feldspar finely pulverized product (average particle size: 4.5 μm: Shiraishi Kogyo “Minex7”) and 0.15% by weight of erucamide are added to the surface layer (A) as an anti-blocking agent. did. Next, this raw fabric is passed between two pairs of differential nip rolls, heated to a temperature at which it can be stretched in a heating zone, air is injected into the tube in the stretching zone to form bubbles, and continuous stretching is performed, followed by cooling. Cold air was blown in the zone to perform simultaneous longitudinal and transverse biaxial stretching. The obtained film has a thickness of 15 μm and the evaluation results of the film are shown in Table 1. The obtained film had excellent fusing and sealing properties, high-speed packaging suitability, high shrinkability, and excellent physical properties such as optical properties and tear strength.
[0038]
Examples 2 to 10
Except having changed each ethylene alpha-olefin copolymer used for an inner layer (B), the film was obtained by the method similar to Example 1, and this was set as Examples 2-10.
Tables 1 and 2 show the layer structure and evaluation results of the film. As in Example 1, all of the obtained films were excellent in fusing and sealing properties, had high-speed packaging suitability, were highly shrinkable, and were excellent in physical properties such as optical properties and tear strength.
[0039]
Examples 11 to 18
A film was obtained in the same manner as in Example 1, except that the polypropylene resin of the surface layer (A) and the inner layer (C) was variously changed without changing the inner layer (B). Tables 2 to 3 show the layer structure and evaluation results of the film, all of which have excellent fusing and sealing properties, high-speed packaging suitability, high shrinkability, and excellent physical properties such as optical properties and tear strength. Met.
[0040]
Examples 19-21
The arrangement of the inner layer (B) and the inner layer (C) and the resin used in each layer were variously changed, and a film was obtained in the same manner as Example 1 below. Table 4 shows the layer structure and evaluation results of the film.
[0041]
Examples 22 to 24
A film was obtained in the same manner as in Example 1 except that the thickness ratio of each layer was variously changed. The layer composition ratio (%) of Example 22 is A / B / C / B / A = 20/20/20/20/20, and the layer composition ratio (%) of Example 23 is A / B / C / B /. A = 10 / 32.5 / 15 / 32.5 / 10, and the layer composition ratio (%) of Example 24 is A / B / C / B / A = 10/20/40/20/10. went.
Table 4 shows the evaluation results of the obtained film. The obtained film had excellent fusing and sealing properties as in Example 1, had high-speed packaging suitability, and excellent physical properties such as high shrinkage, optical properties, and tear strength.
[0042]
Examples 25-27
Except for changing the amount and type of the additive added to the surface layer (A), a tube-shaped raw material having the same layer constitution and layer ratio as in Example 1 was produced, and a film was obtained in the same manner. In Example 25, 0.25 wt% of feldspar fine pulverized product (average particle size 4.5 μm: Shiraishi Kogyo “Minex 7”), erucic acid amide 0.3 wt% and glycerin monostea with respect to the surface layer (A) 1% by weight of an antistatic agent (Riken Vitamin “Rikemar S-100”) whose rate is the main component was added, and similarly to Example 26, 0.25% by weight of fine feldspar (Minex7), methylphenyl 0.3% by weight of silicone oil (having a viscosity of about 400 centistokes at 25 ° C.) and 1% by weight of an antistatic agent (Riquemar S-100) are added, and Example 27 contains glycerin monooleate and diglycerin laurate. Was mixed at a weight ratio of 2: 1 and 1.5% by weight was added. Table 5 shows the physical properties of the obtained film. All of the obtained films were excellent in fusing and sealing properties and high-speed packaging suitability, and the film obtained in Example 27 was excellent in antifogging properties. (For evaluation of anti-fogging property, cover the upper open container with water at 20 ° C in a sealed state with a film, store it in a refrigerated showcase at 5 ° C, and observe the occurrence of water droplets on the film surface. ) Anti-fogging properties are better as there are no water droplets and better transparency
[0043]
Examples 28-30
Using the resin raw material used in Example 1, the ternary blend resin composition was appropriately disposed in the inner layers (B) and (C), and a film was obtained in the same manner as in Example 1 below. Table 5 shows the layer structure and evaluation results of the film. The obtained films were all excellent in fusing sealing properties and high-speed packaging suitability as in Example 1.
[0044]
Examples 31-33
A film was obtained in the same manner as in Example 1 except that the thickness of the tube-shaped original fabric was changed. The thickness of the tube-shaped original fabric of Example 31 was 150 μm, similarly, Example 32 was adjusted to 300 μm, Example 33 was adjusted to 350 μm, and the thicknesses of the obtained films were 10 μm, 20 μm, and 25 μm in order from Example 31. .
Table 6 shows the evaluation results of the obtained film. The obtained films were all excellent in fusing and sealing properties, having high-speed packaging suitability, and excellent physical properties such as shrinkage and optical properties.
[0045]
Examples 34 to 36
A film was obtained in the same manner as in Example 1 except that a resin composition in which a polybutene-1 resin (PB1) was blended with the inner layer (C) was used. A PB1 blend ratio of 50% by weight was used in Example 34, a blend ratio of 30% by weight was used in Example 35, and a blend ratio of 10% by weight was used in Example 36. did.
Table 7 shows the evaluation results of the obtained film. Each of the obtained films was excellent in fusing and sealing properties as in Example 1, having high-speed packaging suitability, and excellent physical properties such as shrinkage, optical properties, and tear strength.
[0046]
The obtained film was packaged and packaged in four notebooks (No. 6, 179 × 252 mm) together with the film obtained in Example 1 (Example not including PB). When the film of Example 1 was used, some warping was observed in the package, but the films of Examples 34 to 36 having a layer blended with PB had no deformation such as warpage and were tight. A good finish was obtained and it was also suitable for shrink wrapping of an article to be packaged with poor rigidity.
[0047]
Example 37
The PP3 of the inner layer (C) of Example 14 was replaced with a blended composition of PP14 and amorphous polyolefin (melt viscosity at 190 ° C. = 8000 cps, softening point = 110 ° C.). The blend ratio of the amorphous polyolefin was a resin composition blended by 30% by weight with respect to PP14 used for the inner layer (C). The physical properties of the composition are: MFR = 3.8 g / 10 min, density = 0.877 g / cmThreeMelting point = 139 ° C. Otherwise in the same manner as in Example 14, a film was obtained and referred to as Example 34. The evaluation of the obtained film is shown in Table 7. It was excellent in fusing and sealing properties, has high-speed packaging suitability, improved in shrinkability, and excellent in physical properties such as optical properties and tear strength.
[0048]
Example 38
A film was obtained in the same manner as in Example 37 except that the thickness ratio of each layer was changed. Film formation was performed at a layer composition ratio (%) of Example 38 of A / B / C / B / A = 10 / 32.5 / 15 / 32.5 / 10. The evaluation of the obtained film is shown in Table 7. It was excellent in fusing and sealing properties, high-speed packaging suitability, high shrinkability, and excellent physical properties such as optical properties and tear strength.
[0049]
[Comparative Examples 1-3]
A film was obtained in the same manner as in Example 1 except that the ethylene α-olefin copolymer used for the inner layer (B) was replaced with one outside the technical scope of the present invention, and this was obtained as Comparative Examples 1-3. It was. LL6 (α-olefin: octene-1) in Comparative Example 1 and LL14 (comonomer: octene-1) in Comparative Example 2 are resins having a density outside the range of the present invention, and LL15 (comonomer: hexene- in Comparative Example 3). 1) is a resin whose MFR (190 ° C., 2.16 kgf) is outside the scope of the present invention.
[0050]
The evaluation results of the film are shown in Table 8. The film obtained in Comparative Example 1 was inferior in shrinkage, inferior in optical properties (transparency), and inferior in tear strength. In Comparative Example 2, although the stretching itself was difficult, when a small piece sample obtained by barely reducing the stretching ratio was evaluated, it was inferior in shrinkability and optical characteristics. In Comparative Example 3, the film was easily cut during stretching, and stable stretching was difficult. The obtained film had low tear strength and poor high-speed packaging suitability.
[0051]
[Comparative Examples 4-7]
As a thing outside the technical scope of the present invention, first, the surface layer (A) of Example 1 was replaced with PP10, and the melting point of PP-a (and the relationship with the melting point with PP-c) was outside the scope of the present invention. Some were designated as Comparative Example 4, and then the surface layer (A) of Example 1 was similarly replaced with PP13, and the MFR of PP-a outside the scope of the present invention was designated as Comparative Example 5. Further, the inner layer (C) of Example 1 was replaced with PP8, and the relationship between the melting points of PP-a and PP-c was outside the scope of the present invention was Comparative Example 6, and the surface layer of Example 1 ( A) was replaced with PP3, the inner layer (C) was replaced with PP4, and the MFR relationship between PP-a and PP-c was outside the scope of the present invention was designated as Comparative Example 7. All of these films were obtained in the same manner as in Example 1, and the evaluation results are shown in Table 9. Comparative Examples 4 and 7 were inferior in optical properties, Comparative Example 5 was inferior in tear properties, and both were inferior in fusing and sealing properties and high-speed packaging suitability.
[0052]
[Comparative Examples 8 to 10]
A tube-shaped original fabric was produced in the same manner as in Example 1 except that the thickness composition ratio of the film was changed outside the range of the present invention, and stretched film formation was performed. Table 10 shows the thickness composition ratios and the evaluation results of the films.
First, in Comparative Example 8, the film lacks in stretching stability and has a large thickness deviation (the thickness deviation of the film around the entire circumference of the bubble is ± 42%. Incidentally, all the films obtained in the examples of the present invention are within ± 15%. As a result, the film did not run stably during high-speed packaging, resulting in frequent seal failures. Also, the optical properties were slightly inferior. In Comparative Example 9, the film was frequently broken during high-speed packaging, and the stringing phenomenon was observed even in the fusing seal, which was problematic. And the film obtained in Comparative Example 10 is inferior to the fusing sealability (occurrence of the yarn drawing phenomenon), and at the time of high-speed packaging, both the center seal part and the cutter seal part cause troubles due to poor sealing, There was a problem.
[0053]
[Table 1]
Figure 0004025419
[0054]
[Table 2]
Figure 0004025419
[0055]
[Table 3]
Figure 0004025419
[0056]
[Table 4]
Figure 0004025419
[0057]
[Table 5]
Figure 0004025419
[0058]
[Table 6]
Figure 0004025419
[0059]
[Table 7]
Figure 0004025419
[0060]
[Table 8]
Figure 0004025419
[0061]
[Table 9]
Figure 0004025419
[0062]
[Table 10]
Figure 0004025419
[0063]
【The invention's effect】
By having the above-described configuration, the present invention can provide a high-performance heat-shrinkable film that is very comprehensively balanced and not found in conventional shrink-wrapping films. In other words, in addition to the excellent packaging machine suitability (film waist and slip) of a conventional multilayer film in which a polypropylene resin is arranged on the surface layer, mechanical strength such as tearing, and shrinkage characteristics, it was a defect of the conventional film. Heat-sealability, that is, stable heat-seal properties in both face seals and fusing seals, even under high-speed packaging conditions. Also, single sheets of notebooks and printing paper (and their bundles) In addition, it is possible to provide a heat-shrinkable multilayer film that can suppress the deformation of the package that is likely to occur when packaging) and can significantly improve the packaging finish.

Claims (2)

ポリプロピレン系樹脂を含有する表面層(A)、および内部層の少なくとも1つにエチレンα−オレフィン共重合体を含有する層(B)を有する少なくとも4層からなる多層フィルムにおいて、以下の(1)〜(5)を特徴とする多層フィルム。
(1)別の内部層(C)として、ポリプロピレン系樹脂またはポリプロピレン系樹脂とポリブテン−1系樹脂との樹脂組成物を含有する層を少なくとも1層含むこと
(2)表面層(A)に用いられるポリプロピレン系樹脂の融点が内部層(C)に用いられるポリプロピレン系樹脂の融点以下でかつ155℃以下、120℃以上であり、そして表面層(A)に用いられるポリプロピレン系樹脂の230℃、2.16kgfの条件下で測定されるメルトフローレートが内部層(C)に用いられるポリプロピレン系樹脂のメルトフローレート以上でかつ3.0〜18g/10分であること
(3)内部層(B)に用いられるエチレンα−オレフィン共重合体の密度が0.870〜0.930g/cmであって、190℃、2.16kgfの条件下で測定されるメルトフローレートが0.2〜7g/10分であること
(4)全層に占める前記の各層厚み比率が表面層(A)が10〜60%、内部層(B)が20〜80%、内部層(C)が5〜60%であること
(5)表面層(A)に用いられるポリプロピレン系樹脂の230℃、2.16kgfの条件下で測定されるメルトフローレートが、内部層(C)に用いられるポリプロピレン系樹脂のメルトフローレートよりも3.0以上大きいこと
In a multilayer film comprising at least four layers having a surface layer (A) containing a polypropylene-based resin and a layer (B) containing an ethylene α-olefin copolymer in at least one of the inner layers, the following (1) A multilayer film characterized by (5) .
(1) As another inner layer (C), including at least one layer containing a polypropylene resin or a resin composition of a polypropylene resin and a polybutene-1 resin (2) used for the surface layer (A) The melting point of the polypropylene resin used is not higher than the melting point of the polypropylene resin used for the inner layer (C) and not higher than 155 ° C. and not lower than 120 ° C. , and 230 ° C. of the polypropylene resin used for the surface layer (A). The melt flow rate measured under the condition of .16 kgf is not less than the melt flow rate of the polypropylene resin used for the inner layer (C) and is 3.0 to 18 g / 10 min. (3) Inner layer (B) The density of the ethylene α-olefin copolymer used in the process is 0.870 to 0.930 g / cm 3 , under the conditions of 190 ° C. and 2.16 kgf. The melt flow rate to be measured is 0.2 to 7 g / 10 min. (4) The thickness ratio of each layer in all layers is 10 to 60% for the surface layer (A) and 20 to 20 for the inner layer (B). 80%, the inner layer (C) is 5-60%
(5) The melt flow rate measured under the conditions of 230 ° C. and 2.16 kgf of the polypropylene resin used for the surface layer (A) is higher than the melt flow rate of the polypropylene resin used for the inner layer (C). 3.0 or larger
縦、横少なくとも1方向の、140℃における熱収縮率が30%以上である請求項1記載の多層フィルム。The multilayer film according to claim 1, wherein the thermal shrinkage at 140 ° C in at least one direction of length and width is 30% or more.
JP12557098A 1997-06-19 1998-05-08 Multilayer film Expired - Fee Related JP4025419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557098A JP4025419B2 (en) 1997-06-19 1998-05-08 Multilayer film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-162560 1997-06-19
JP16256097 1997-06-19
JP12557098A JP4025419B2 (en) 1997-06-19 1998-05-08 Multilayer film

Publications (2)

Publication Number Publication Date
JPH1170625A JPH1170625A (en) 1999-03-16
JP4025419B2 true JP4025419B2 (en) 2007-12-19

Family

ID=26461973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557098A Expired - Fee Related JP4025419B2 (en) 1997-06-19 1998-05-08 Multilayer film

Country Status (1)

Country Link
JP (1) JP4025419B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923338B2 (en) * 2001-06-20 2012-04-25 大日本印刷株式会社 Battery packaging materials
JP5068130B2 (en) * 2007-10-01 2012-11-07 株式会社興人 Polyolefin-based multilayer shrink film and packaging method
TW202037489A (en) * 2019-01-29 2020-10-16 日商東洋紡股份有限公司 Polypropylene resin multilayer film

Also Published As

Publication number Publication date
JPH1170625A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US4619859A (en) Highly-oriented stretchable multilayer film and process for producing the same
US7182998B2 (en) Heat-shrinkable film
JPH03215034A (en) Multilayered polyethylene-based stretch shrink film and manufacture thereof
WO1996009931A1 (en) Heat-shrinkable polypropylene laminate film
JP4205258B2 (en) Heat shrinkable multilayer film
JP4115846B2 (en) Polyolefin resin anti-fogging and heat shrinkable multilayer film
JP2007045855A (en) Polyolefin-based resin composition
JP4919620B2 (en) 3-layer crosslinked film
JP4025419B2 (en) Multilayer film
JPH11348205A (en) Multi-layered shrink film
JPH0890737A (en) Multilayered polyethylenic stretch/shrink film and production thereof
JP2000272063A (en) Multilayered stretched film
JP3440227B2 (en) Laminated stretch shrink film
US5635286A (en) Heat shrinkable polyethylene laminate film
JP3606611B2 (en) Multilayer shrink film
JPS58175635A (en) Highly stretched multilayered film and manufacture thereof
JPH10272747A (en) Laminated stretch shrink film
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP4818169B2 (en) Heat shrinkable multilayer film
JPH1199600A (en) Polyolefinic laminated stretch shrink film
JP3748639B2 (en) Polyolefin resin composition
JP2002187245A (en) Polyolefin resin heat-shrinkable multilayer film
JP3189174B2 (en) Composite stretched film
JP3755923B2 (en) Polyolefin resin multilayer shrink film
JPH11105222A (en) Heat-shrinkable multilayered film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070810

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees