JP5587136B2 - Polyolefin heat shrinkable film with excellent shrink finish - Google Patents

Polyolefin heat shrinkable film with excellent shrink finish Download PDF

Info

Publication number
JP5587136B2
JP5587136B2 JP2010242434A JP2010242434A JP5587136B2 JP 5587136 B2 JP5587136 B2 JP 5587136B2 JP 2010242434 A JP2010242434 A JP 2010242434A JP 2010242434 A JP2010242434 A JP 2010242434A JP 5587136 B2 JP5587136 B2 JP 5587136B2
Authority
JP
Japan
Prior art keywords
polyolefin
ethylene
heat
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010242434A
Other languages
Japanese (ja)
Other versions
JP2011136548A (en
Inventor
和宏 浜田
大 中西
徹 松本
祐己 埀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHJIN Film and Chemicals Co Ltd
Original Assignee
KOHJIN Film and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHJIN Film and Chemicals Co Ltd filed Critical KOHJIN Film and Chemicals Co Ltd
Priority to JP2010242434A priority Critical patent/JP5587136B2/en
Publication of JP2011136548A publication Critical patent/JP2011136548A/en
Application granted granted Critical
Publication of JP5587136B2 publication Critical patent/JP5587136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は収縮包装材料に関し、より詳しくは、収縮仕上がり性に優れたポリオレフィン系
熱収縮性フィルムに関する。
The present invention relates to a shrink wrap material, and more particularly, to a polyolefin-based heat shrinkable film excellent in shrink finish.

従来、熱収縮性包装材料としては、ポリ塩化ビニル系シュリンクフィルム、ポリプロピレ
ン系シュリンクフィルム、ポリエチレン系シュリンクフィルム等が知られていが、低価格
、使用後の廃棄処理の容易さなどの点でポリプロピレン、ポリエチレン等のポリオレフィ
ン系シュリンクフィルムが好んで用いられている。しかしながら、ポリプロピレン系シュ
リンクフィルムは耐熱性等に優れるものの、低温収縮性、耐引裂性に乏しい等の欠点を有
している。一方、ポリエチレン系シュリンクフィルムは、低温収縮性、耐引裂性等に優れ
るものの、耐熱性に乏しい等の欠点を有している。
Conventionally, polyvinyl chloride shrink film, polypropylene shrink film, polyethylene shrink film, and the like are known as heat shrinkable packaging materials, but polypropylene, in terms of low cost, easy disposal after use, etc. Polyolefin shrink films such as polyethylene are preferably used. However, although the polypropylene-based shrink film is excellent in heat resistance and the like, it has drawbacks such as low temperature shrinkage and poor tear resistance. On the other hand, the polyethylene-based shrink film has defects such as poor heat resistance, although it is excellent in low-temperature shrinkage and tear resistance.

これらの欠点を改善すべく、エチレン系樹脂に架橋処理を施したポリエチレン系架橋シュ
リンクフィルムが開示されている(特許文献1)。これらのポリエチレン系架橋シュリン
クフィルムは、低温収縮性、耐熱性、耐引裂性等に優れるものの、架橋処理を施されてい
るため、製造工程や規格外製品で発生するスクラップを再利用し難く、製品のコストアッ
プを招く、省資源性が低下するといった問題を有していた。
また、プロピレン系樹脂、エチレン系樹脂を表層や内部層に、単独又はブレンド系で積層
したポリオレフィン系熱収縮性フィルム(特許文献2〜7)が開示されている。これらの
フィルムは、低温収縮性や耐熱性等が依然不十分であり、化粧品や薬品等の高価な商品を
包装する際に必要とされる高度な収縮仕上がり性が得られないという課題を有していた。
In order to improve these drawbacks, a polyethylene-based crosslinked shrink film obtained by crosslinking an ethylene-based resin has been disclosed (Patent Document 1). These polyethylene-based cross-linked shrink films are excellent in low-temperature shrinkage, heat resistance, tear resistance, etc., but because they are cross-linked, it is difficult to reuse scrap generated in manufacturing processes and non-standard products. There are problems such as cost increase and resource saving.
Moreover, the polyolefin-type heat-shrinkable film (patent documents 2-7) which laminated | stacked propylene-type resin and ethylene-type resin on the surface layer and the inner layer individually or by the blend type | system | group is disclosed. These films still have insufficient low-temperature shrinkage, heat resistance, etc., and have a problem that the high shrinkage finish required for packaging expensive products such as cosmetics and drugs cannot be obtained. It was.

特開平5−84826号公報JP-A-5-84826 特開平10−296932号公報Japanese Patent Laid-Open No. 10-296932 特開2005−144725号公報JP 2005-144725 A 特開2008−036844号公報JP 2008-036844 A 特開2008−149503号公報JP 2008-149503 A 特開2009−039950号公報JP 2009-039950 A 特開2009−101682号公報JP 2009-101682 A

本発明は、架橋を行うことなく優れた低温収縮性、耐熱性が得られ、高価な商品を包装す
る際に必要とされる高度な収縮仕上がり性を発現可能なポリオレフィン系熱収縮性フィル
ムを提供することを課題とするものである。
The present invention provides a polyolefin-based heat-shrinkable film that has excellent low-temperature shrinkage and heat resistance without crosslinking, and can exhibit the high degree of shrinkage finish required when packaging expensive products. It is an object to do.

本発明者らは、かかる課題を解決すべく鋭意検討した結果、本発明に到達したものである
。すなわち、本発明は、 示差走査熱量計(以下、DSCと略す)によって測定される溶
融ピーク温度が130℃〜170℃の範囲であり、かつ硬度(ショアーA)が60〜90
であるポリオレフィン系エラストマー10〜60重量部とプロピレン系樹脂40〜90重
量部からなる表層、及びエチレン系樹脂からなる芯層の少なくとも3層からなり、縦横2
軸延伸したポリオレフィン系熱収縮性フィルムである。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve such problems. That is, in the present invention, the melting peak temperature measured by a differential scanning calorimeter (hereinafter abbreviated as DSC) is in the range of 130 ° C. to 170 ° C., and the hardness (Shore A) is 60 to 90.
It consists of at least three layers of a surface layer composed of 10 to 60 parts by weight of a polyolefin-based elastomer and 40 to 90 parts by weight of a propylene-based resin, and a core layer composed of an ethylene-based resin.
This is an axially stretched polyolefin heat-shrinkable film.

本発明のポリオレフィン系熱収縮性フィルムは、低温収縮性等や耐熱性に優れたポリオレ
フィン系エラストマーと、耐熱性等に優れたプロピレン系樹脂からなる表層、低温収縮性
と耐引裂性等に優れたエチレン系樹脂からなる芯層の少なくとも3層からなり、縦横2軸
延伸することで、優れた低温収縮性、耐熱性が得られ、高価な商品を包装する際に必要と
される高度な収縮仕上がり性を発現することができる、という効果を奏する。
The polyolefin-based heat-shrinkable film of the present invention is excellent in low-temperature shrinkage and tear resistance, a surface layer comprising a polyolefin-based elastomer excellent in low-temperature shrinkage and heat resistance, and a propylene-based resin excellent in heat resistance and the like. It consists of at least three core layers made of an ethylene-based resin, and has excellent low-temperature shrinkage and heat resistance by stretching biaxially in the vertical and horizontal directions, and has a high degree of shrinkage that is required when packaging expensive products. There is an effect that sex can be expressed.

以下、本発明を詳細に説明する。
本発明において、表層に用いるポリオレフィン系エラストマーは、DSCによって測定さ
れる溶融ピーク温度が130℃〜170℃の範囲であり、かつ硬度(ショアーA)が60
〜90である事が必要である。溶融ピーク温度が130℃未満であると、耐熱性が不足し
、170℃を超えると低温収縮性が不足する。硬度(ショアーA)は、60未満であると
、耐熱性もやや不足気味となり、また滑り性も低下し、90を超えると低温収縮性が不足
する。つまり、前述の融解ピーク温度範囲と硬度範囲を兼ね備える事が、低温収縮性と耐
熱性の高度なバランスを達成するの不可欠であり、高価な商品を包装する際に必要とされ
る高度な収縮仕上がり性の発現に繋がるものである。このポリオレフィン系エラストマー
とし用いられる例としては、結晶と非晶がナノオーダーで構造制御された三井化学株式会
社製ノティオが上げられる。また、このポリオレフィン系エラストマーは、表層の樹脂1
00重量部中に10〜60重量部含まれる事が必要である。表層中の組成が10重量部未
満では低温収縮性が不足し、60重量部を超えると滑り性や耐熱性が低下し、双方の場合
において、高価な商品を包装する際に必要とされる高度な収縮仕上がり性を発現すること
ができない。
Hereinafter, the present invention will be described in detail.
In the present invention, the polyolefin elastomer used for the surface layer has a melting peak temperature measured by DSC in the range of 130 ° C. to 170 ° C. and a hardness (Shore A) of 60.
It must be ~ 90. When the melting peak temperature is less than 130 ° C, the heat resistance is insufficient, and when it exceeds 170 ° C, the low temperature shrinkage is insufficient. When the hardness (Shore A) is less than 60, the heat resistance is slightly insufficient, and the slipping property is also deteriorated. In other words, combining the aforementioned melting peak temperature range and hardness range is indispensable to achieve a high balance between low-temperature shrinkage and heat resistance, and the high shrinkage finish required when packaging expensive products. It leads to the expression of sex. An example of the polyolefin-based elastomer is Notio manufactured by Mitsui Chemicals Co., Ltd., whose crystal and amorphous structure are nano-order controlled. In addition, this polyolefin-based elastomer is a surface layer resin 1
It is necessary that 10 to 60 parts by weight are contained in 00 parts by weight. If the composition in the surface layer is less than 10 parts by weight, the low-temperature shrinkability is insufficient, and if it exceeds 60 parts by weight, the slipperiness and heat resistance are reduced. In both cases, the high degree required for packaging expensive products It is not possible to develop a good shrinkage finish.

さらに、表層のポリオレフィン系エラストマーは、DSCを用いた測定において、溶融開
始温度から溶融ピーク温度よりも20℃低い温度までの間に吸収された熱量の総量が上記
溶融開始温度から上記溶融終了温度までの間に吸収された全熱量の39%以下、好ましくは
30%以下、さらに好ましくは20%以下であることが望ましい。40%を超えると、
滑り性が低下し易くなる。
Further, in the measurement using the DSC, the polyolefin elastomer of the surface layer has a total amount of heat absorbed from the melting start temperature to a temperature 20 ° C. lower than the melting peak temperature from the melting start temperature to the melting end temperature. It is desirable that it is 39% or less, preferably 30% or less, more preferably 20% or less of the total heat absorbed during the period. If it exceeds 40%,
The slipperiness tends to decrease.

本発明の表層に用いるプロピレン系樹脂とは、プロピレン含量が50mol%以上からな
る重合体のことであり、メタロセン触媒やチーグラー・ナッタ触媒等により製造された、
ポリプロピレン単独重合体、プロピレンとα−オレフィンの共重合体、例えばプロピレン
−エチレン、プロピレン−ブテン共重合体等、及びプロピレン−エチレン−ブテン3元共
重合体の中から選ばれる少なくとも一種以上からなり、表層の樹脂100重量部中に40
〜90重量部含まれ、主に耐熱性を付与する作用を成す。プロピレン系樹脂の表層中の組
成が40重量部未満では耐熱性や滑り性が低下し、90重量部を超えると低温収縮性が低
下し、双方の場合において、高価な商品を包装する際に必要とされる高度な収縮仕上がり
性を発現することができないので好ましくない。
The propylene-based resin used for the surface layer of the present invention is a polymer having a propylene content of 50 mol% or more, and produced by a metallocene catalyst, a Ziegler-Natta catalyst, or the like.
A polypropylene homopolymer, a copolymer of propylene and α-olefin, such as propylene-ethylene, propylene-butene copolymer, and propylene-ethylene-butene terpolymer. 40 in 100 parts by weight of the surface layer resin
It is contained in 90 parts by weight and mainly serves to impart heat resistance. When the composition of the surface layer of the propylene-based resin is less than 40 parts by weight, the heat resistance and slipperiness are lowered, and when it exceeds 90 parts by weight, the low-temperature shrinkage is lowered. In both cases, it is necessary for packaging expensive products. It is not preferable because it cannot exhibit the high shrinkage finishing property.

また、表層に用いるプロピレン系樹脂はDSCによって測定される溶融ピーク温度が12
0〜165℃、MFRが0.3〜10.0g/10分であることが好ましい。融解ピーク
温度が120℃未満では耐熱性が低下し易く、165℃を超えると低温収縮性が低下し易
く、MFRが0.3g/10分未満や、10.0g/10分を超える場合には、透明性が
低下し易い。
The propylene resin used for the surface layer has a melting peak temperature of 12 measured by DSC.
It is preferable that it is 0-165 degreeC and MFR is 0.3-10.0 g / 10min. If the melting peak temperature is less than 120 ° C, the heat resistance tends to be low, and if it exceeds 165 ° C, the low temperature shrinkage tends to be low, and if the MFR is less than 0.3 g / 10 min or 10.0 g / 10 min , Transparency tends to decrease.

本発明の芯層に用いるエチレン系樹脂とは、エチレン含量が50mol%以上からなる重
合体のことであり、プロピレン、ブテン−1、ペンテンー1、ヘキセン−1、ヘプテン−
1、オクテン−1、4−メチルペンテン−1から成る群から選ばれた1種又は2種以上の
α−オレフィンとエチレンとの共重合体、エチレン−酢酸ビニル共重合体、エチレン−脂
肪族不飽和カルボン酸共重合体、エチレン−脂肪族不飽和カルボン酸エステル共重合体、
アイオノマー樹脂、ポリエチレン単独重合体から選ばれる少なくとも1種以上からなり、
主に低温収縮性、耐引裂性を付与する作用を成す。
The ethylene-based resin used for the core layer of the present invention is a polymer having an ethylene content of 50 mol% or more, and propylene, butene-1, pentene-1, hexene-1, heptene-
1, one or more α-olefins selected from the group consisting of octene-1, 4-methylpentene-1, copolymers of ethylene with ethylene-vinyl acetate, ethylene-aliphatic non-aliphatic Saturated carboxylic acid copolymer, ethylene-aliphatic unsaturated carboxylic acid ester copolymer,
Consisting of at least one selected from ionomer resins and polyethylene homopolymers,
Mainly acts to provide low temperature shrinkage and tear resistance.

芯層にエチレン系樹脂が使用されない場合には、低温収縮性、耐引裂性が不足し、高価な
商品を包装する際に必要とされる高度な収縮仕上がり性を発現することができない他、包
装品が破れやすい等の問題が生じるので好ましくない。
When ethylene-based resin is not used for the core layer, low-temperature shrinkage and tear resistance are insufficient, and the high shrinkage finish required for packaging expensive products cannot be expressed. This is not preferable because problems such as easy breakage of the product occur.

また、芯層に用いられるエチレン系樹脂は、密度0.865〜0.925g/cm3、M
I0.5〜4.0g/10分のエチレン−αオレフィン共重合体1種または2種以上から
なることが好ましい。密度については、0.870〜0.910g/cm3であることが
さらに好ましい。密度が0.865g/cm3未満の場合にはフィルムの引張弾性率が低
下し、包装機での走行性が低下する傾向があり、0.925g/cm3 を超えると低温収
縮性が低下し易くなる。MIが0.5g/10分未満のものは、押出時のモーター負荷が
増大し易くな、4.0g/10分を超えると延伸加工性、耐熱性の低下や、溶断シール時
にピンホールやシール開きが発生し易くなる。
The ethylene resin used for the core layer has a density of 0.865 to 0.925 g / cm 3 , M
It is preferable that it consists of 1 type, or 2 or more types of ethylene-alpha olefin copolymer of I0.5-4.0g / 10min. The density is more preferably 0.870 to 0.910 g / cm 3 . When the density is less than 0.865 g / cm 3, the tensile elastic modulus of the film tends to be lowered and the running property in the packaging machine tends to be lowered. When the density exceeds 0.925 g / cm 3 , the low temperature shrinkage is lowered. It becomes easy. When MI is less than 0.5 g / 10 min, the motor load at the time of extrusion tends to increase, and when it exceeds 4.0 g / 10 min, stretching workability and heat resistance decrease, and pinholes and seals during fusing sealing Opening tends to occur.

表層及び/又は芯層は、本発明の目的に支障をきたさない範囲であれば、他の樹脂を混合
することもできる。たとえば、表層にはエチレン系樹脂を混合して、芯層には表層で用い
るポリオレフィン系エラストマーや、プロピレン系樹脂を混合して用いる事が出来、これ
により、要求される特性に応じて諸物性の調整を行う事が出来、またトリムや格外品等の
再利用樹脂を混合使用する事も出来る。
The surface layer and / or the core layer can be mixed with other resins as long as the object of the present invention is not affected. For example, the surface layer can be mixed with an ethylene resin, and the core layer can be used with a mixture of a polyolefin elastomer or propylene resin used in the surface layer. Adjustments can be made, and recycled resins such as trims and non-standard products can be mixed.

本発明の層構成は、少なくとも3層以上の層構成であり、例えばA/B/Aの3層構成、
A/A+B/B/A+B/A、A/B/A+B/B/A等の5層構成が挙げられる。中で
も、A+B層を設けた層構成は、諸物性の調整や再利用樹脂の混合使用がやりやすくなり
、好適である。
A+B層における、ポリオレフィン系エラストマー、プロピレン系樹脂とエチレン系樹脂
の混合比率は、本発明の目的に支障をきたさない範囲であれば、特に制限はない。
The layer structure of the present invention is a layer structure of at least three layers, for example, a three-layer structure of A / B / A,
A five-layer structure such as A / A + B / B / A + B / A, A / B / A + B / B / A, and the like can be given. Among them, the layer structure provided with the A + B layer is preferable because it is easy to adjust various physical properties and to mix and use recycled resins.
The mixing ratio of the polyolefin-based elastomer, the propylene-based resin and the ethylene-based resin in the A + B layer is not particularly limited as long as it does not hinder the object of the present invention.

本発明の各層の厚み構成比については特に限定されないが、芯層の厚み比率が全体厚みに
対し40〜80%の範囲内であることが好ましい。芯層の厚み比率が40%未満では耐引
裂性が低下し易くなり、80%を超えると耐熱性が低下し易くなる。フィルムの全体厚み
も特に限定されないが、熱収縮性包装材料用途としては7〜35μmであることが好まし
い。
Although it does not specifically limit about the thickness structural ratio of each layer of this invention, It is preferable that the thickness ratio of a core layer exists in the range of 40 to 80% with respect to the whole thickness. If the thickness ratio of the core layer is less than 40%, the tear resistance tends to be lowered, and if it exceeds 80%, the heat resistance tends to be lowered. Although the total thickness of the film is not particularly limited, it is preferably 7 to 35 μm as a heat shrinkable packaging material.

本発明の目的に支障をきたさない範囲であれば、滑剤、ブロッキング防止剤、帯電防止剤
、防曇剤、酸化防止剤等の添加剤がそれぞれの有効な作用を具備させる目的で適宜使用す
ることができる。
As long as it does not interfere with the object of the present invention, additives such as lubricants, antiblocking agents, antistatic agents, antifogging agents, and antioxidants should be used appropriately for the purpose of providing each effective action. Can do.

次に、本発明のフィルムの製造方法を示す。前記の樹脂を用いて本発明のフィルムを製造
する方法は、公知の縦横2軸延伸方法で行うことができる。
Next, the manufacturing method of the film of this invention is shown. The method for producing the film of the present invention using the above resin can be carried out by a known longitudinal and transverse biaxial stretching method.

以下、3層積層環状製膜延伸の場合を例に挙げ、具体的に説明する。
まず、ポリオレフィン系エラストマーとプロピレン系樹脂の混合物を表層、及びエチレン
系樹脂を芯層となるように、3台の押出機により溶融混練し、3層環状ダイより環状に共
押出し、延伸することなく一旦急冷固化してチューブ状未延伸フィルムを作製する。得ら
れたチューブ状未延伸フィルムを、チューブラー延伸装置に供給し、高度の配向可能な温
度範囲、例えば芯層樹脂の融点以下10℃よりも低い温度で、好ましくは融点以下15℃
よりも低い温度でチューブ内部にガス圧を適用して膨張延伸により、縦横とも延伸倍率3
〜6倍で同時二軸配向を起こさせる。延伸装置から取り出したフィルムは、希望によりア
ニーリングすることができ、このアニーリングにより保存中の自然収縮を抑制することが
できる。
Hereinafter, the case of three-layer laminated annular film-forming stretching will be described as an example.
First, a mixture of a polyolefin-based elastomer and a propylene-based resin is melt-kneaded with three extruders so that it becomes a surface layer and an ethylene-based resin as a core layer, and is co-extruded in a ring from a three-layer annular die, without stretching. Once rapidly solidified, a tube-shaped unstretched film is produced. The obtained tube-shaped unstretched film is supplied to a tubular stretching apparatus, and a highly orientable temperature range, for example, a temperature lower than 10 ° C. below the melting point of the core layer resin, preferably below 15 ° C. below the melting point.
By applying gas pressure to the inside of the tube at a lower temperature and expanding and stretching, both the longitudinal and lateral stretch ratios are 3
Causes simultaneous biaxial orientation at ~ 6 times. The film taken out from the stretching apparatus can be annealed as desired, and the natural shrinkage during storage can be suppressed by this annealing.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定される
ものではない。
なお、実施例と比較例おける測定及び評価の方法、及び用いた原料を以下に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
The measurement and evaluation methods and the raw materials used in Examples and Comparative Examples are shown below.

1.フィルム厚み:JIS−Z1709に準じて測定した。 1. Film thickness: measured according to JIS-Z1709.

2.厚み比:フィルムの断面を顕微鏡で観察することにより測定した。 2. Thickness ratio: Measured by observing the cross section of the film with a microscope.

3.ヘイズ:JIS−K7105に準じて測定した。 3. Haze: Measured according to JIS-K7105.

4.MI:JIS−K7210に準じて、190℃、2.16kg荷重条件で測定した。 4). MI: Measured according to JIS-K7210 at 190 ° C. and 2.16 kg load condition.

5.MFR:JIS−K7210に準じて、230℃、2.16kg荷重条件で測定した。 5. MFR: Measured under conditions of 230 ° C. and 2.16 kg load according to JIS-K7210.

6.溶融ピーク温度:示差走査熱量計(DSC)を用いて、JIS−K7121に準じて
測定した。
6). Melting peak temperature: Measured according to JIS-K7121 using a differential scanning calorimeter (DSC).

7.硬度(ショアーA):ASTM D2440に準じて瞬間値を測定した。 7). Hardness (Shore A): The instantaneous value was measured according to ASTM D2440.

8.低温吸収割合:DSCを用いた測定において、(溶融開始温度から溶融ピーク温度よ
りも20℃低い温度までの間に吸収された熱量の総量)/(上記溶融開始温度から上記溶
融終了温度までの間に吸収された全熱量)×100、で導かれる低温側の吸収熱量の全熱
量に対する割合を測定した。
8). Low-temperature absorption ratio: In measurement using DSC, (total amount of heat absorbed from the melting start temperature to a temperature 20 ° C. lower than the melting peak temperature) / (between the melting start temperature and the melting end temperature) The total amount of heat absorbed by the low-temperature-side absorbed heat led to the total amount of heat was measured.

9.引張弾性率:JIS−Z7127に準じて測定した。 9. Tensile modulus: measured according to JIS-Z7127.

10.100℃熱収縮率:縦横それぞれ100mmの正方形に切り取ったフィルムを10
0℃のグリセリン浴中に10秒間浸漬した後、水中で急冷し、縦横それぞれの長さを測定
し、式(1)によりMD、TDの熱収縮率を算出した。

Figure 0005587136
10. 100 ° C. heat shrinkage ratio: 10 pieces of a film cut into a square of 100 mm each in length and width
After being immersed in a glycerin bath at 0 ° C. for 10 seconds, it was rapidly cooled in water, the lengths in the vertical and horizontal directions were measured, and the thermal shrinkage rates of MD and TD were calculated from the formula (1).
Figure 0005587136

11.収縮包装仕上がり性:協和電機(株)製のL型シール式半折自動包装機(型式:AT-
500)にて、市販の化粧品ボトル容器を余裕率20%の条件で予備包装し、フィルムの耐
熱限界5℃手前に設定した収縮トンネル内を5秒滞留させ、トンネル通過後の包装サンプルの中から無作為に5つを選び、以下の基準で評価した。
<評価基準>
○:包装サンプルの四隅の角立ちが極めて小さく、小ジワも殆ど無く、見栄えが良い。
△:包装サンプルの四隅の角立ちや小ジワがやや目立つ。
×:包装サンプルの四隅の角立ちや小ジワが明らかに目立ち、外観を著しく損ねる。また
は、包装時にフィルムが走行不良を起こし、傷などが入って外観を損ねる。
11. Shrink packaging finish: Kyowa Denki Co., Ltd. L-type seal type half-fold automatic packaging machine (model: AT-
500), pre-wrap a cosmetic bottle container on the market with a margin of 20%, and stay in the shrink tunnel set at 5 ° C before the heat resistance limit of the film for 5 seconds. Five were randomly selected and evaluated according to the following criteria.
<Evaluation criteria>
○: The corners of the four corners of the packaging sample are extremely small, there are almost no wrinkles, and the appearance is good.
Δ: Corners and wrinkles at the four corners of the packaging sample are slightly noticeable.
X: The corners and wrinkles at the four corners of the packaging sample are clearly noticeable and the appearance is remarkably impaired. Or the film causes poor running at the time of packaging, and scratches and the like are damaged.

A1;
ポリオレフィン系エラストマー(三井化学(株)製ノティオPN−3560、溶融ピーク温度159℃、硬度(ショアーA)70、低温吸収割合6%)
A2;
ポリオレフィン系エラストマー(三井化学(株)製ノティオPN−0040、溶融ピーク温度160℃、硬度(ショアーA)86、低温吸収割合17%)
A3;
ポリオレフィン系エラストマー(三井化学(株)製タフマーA4085S、溶融ピーク温度66℃、硬度(ショアーA)86)
B1;
プロピレン-エチレンランダム共重合体 (溶融ピーク温度145℃、MFR=2.3g/10分)
B2;
プロピレン-エチレンランダム共重合体 (溶融ピーク温度125℃、MFR =2.0g/10分)
B3;
プロピレン-エチレンランダム共重合体 (溶融ピーク温度145℃、MFR =0.5g/10分)
C1;
エチレン−オクテン−1共重合体 (密度=0.905g/cm3、MI=0.8g/10分)
C2;
エチレン−オクテン−1共重合体 (密度=0.920g/cm3、MI=1.0g/10分)
C3;
エチレン−オクテン−1共重合体 (密度=0.870g/cm3、MI=1.0g/10分)
A1;
Polyolefin elastomer (Notio PN-3560 manufactured by Mitsui Chemicals, Ltd., melting peak temperature 159 ° C., hardness (Shore A) 70, low temperature absorption ratio 6%)
A2;
Polyolefin elastomer (Mitsui Chemicals Co., Ltd. Notio PN-0040, melting peak temperature 160 ° C., hardness (Shore A) 86, low temperature absorption ratio 17%)
A3;
Polyolefin elastomer (Tafmer A4085S, Mitsui Chemicals, Ltd., melting peak temperature 66 ° C., hardness (Shore A) 86)
B1;
Propylene-ethylene random copolymer (melting peak temperature 145 ° C, MFR = 2.3g / 10min)
B2;
Propylene-ethylene random copolymer (melting peak temperature 125 ° C, MFR = 2.0g / 10min)
B3;
Propylene-ethylene random copolymer (melting peak temperature 145 ° C, MFR = 0.5g / 10min)
C1;
Ethylene-octene-1 copolymer (density = 0.905g / cm3, MI = 0.8g / 10min)
C2;
Ethylene-octene-1 copolymer (density = 0.920g / cm3, MI = 1.0g / 10min)
C3;
Ethylene-octene-1 copolymer (Density = 0.870g / cm3, MI = 1.0g / 10min)

実施例1
表1に示すように、A1を25重量部、B1を75重量部からなる樹脂組成物を両表面層とし、C1を芯層とし、3台の押出機で溶融混練した後、厚み比が1/5/1になるように各押出機の押出量を設定し、3層環状ダイスにより下向きに共押出した。形成された3層構成チューブを、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、未延伸フィルムを得た。得られた未延伸チューブをチューブラー二軸延伸装置に導き、90〜110℃で縦横それぞれ5倍に延伸し、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、良好な特性であった。
Example 1
As shown in Table 1, a resin composition composed of 25 parts by weight of A1 and 75 parts by weight of B1 is used as both surface layers, C1 is used as a core layer, and after melt-kneading with three extruders, the thickness ratio is 1. The extrusion amount of each extruder was set so as to be / 5/1, and coextrusion was performed downward with a three-layer annular die. The formed three-layered tube was cooled by passing through a water tank while the outer surface of a cylindrical cooling mandrel in which cooling water circulated was slid, and was taken out to obtain an unstretched film. The obtained unstretched tube was guided to a tubular biaxial stretching apparatus and stretched at 90 to 110 ° C. by 5 times in length and breadth to obtain a laminated biaxially stretched film having a film thickness of 15 μm. The evaluation results of the obtained film were as shown in Table 1 and were good characteristics.

実施例2
実施例1において、A2を25重量部、B1を75重量部からなる樹脂組成物を両表面層とし、C2を芯層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、良好な特性であった。
Example 2
In Example 1, a laminate having a film thickness of 15 μm was prepared in the same manner as in Example 1 except that the resin composition consisting of 25 parts by weight of A2 and 75 parts by weight of B1 was used as both surface layers and C2 was used as the core layer. A biaxially stretched film was obtained. The evaluation results of the obtained film were as shown in Table 1 and were good characteristics.

実施例3
実施例1において、A1を10重量部、B2を90重量部からなる樹脂組成物を両表面層とし、C3を芯層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、良好な特性であった。
Example 3
In Example 1, a laminate having a film thickness of 15 μm was prepared in the same manner as in Example 1 except that the resin composition consisting of 10 parts by weight of A1 and 90 parts by weight of B2 was used as both surface layers and C3 was used as the core layer. A biaxially stretched film was obtained. The evaluation results of the obtained film were as shown in Table 1 and were good characteristics.

実施例4
実施例3において、厚み比を1/4/1とし、縦横の延伸倍率をそれぞれ4倍とした以外は、実施例3と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、良好な特性であった。
Example 4
In Example 3, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 3 except that the thickness ratio was 1/4/1 and the longitudinal and lateral stretching ratios were respectively 4 times. The evaluation results of the obtained film were as shown in Table 1 and were good characteristics.

実施例5
実施例1において、A1を60重量部、B1を40重量部からなる樹脂組成物を両表面層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、良好な特性であった。
Example 5
In Example 1, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition consisting of 60 parts by weight of A1 and 40 parts by weight of B1 was used as both surface layers. It was. The evaluation results of the obtained film were as shown in Table 1 and were good characteristics.

実施例6
実施例1において、A1を60重量部、B3を40重量部からなる樹脂組成物を両表面層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表2に示す通りで、良好な特性であった。
Example 6
In Example 1, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition consisting of 60 parts by weight of A1 and 40 parts by weight of B3 was used as both surface layers. It was. The evaluation results of the obtained film were as shown in Table 2 and were good characteristics.

比較例1
実施例1において、A1を75重量部、B1を25重量部からなる樹脂組成物を両表面層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、滑り性や耐熱性が低下し、収縮包装仕上がりが劣るものであった。
Comparative Example 1
In Example 1, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition consisting of 75 parts by weight of A1 and 25 parts by weight of B1 was used as both surface layers. It was. The evaluation results of the obtained film were as shown in Table 1, and the slipperiness and heat resistance were lowered, and the shrink-wrapped finish was inferior.

比較例2
実施例1において、A1を5重量部、B1を95重量部からなる樹脂組成物を両表面層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、低温収縮性が不足し、収縮包装仕上がりが劣るものであった。
Comparative Example 2
In Example 1, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition consisting of 5 parts by weight of A1 and 95 parts by weight of B1 was used as both surface layers. It was. The evaluation results of the obtained film were as shown in Table 1. The low-temperature shrinkability was insufficient and the shrink-wrapped finish was inferior.

比較例3
実施例1において、A3を25重量部、B1を75重量部からなる樹脂組成物を両表面層とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。得られたフィルムの評価結果は、表1に示す通りで、耐熱性が不足し、収縮包装仕上がりが劣るものであった。
Comparative Example 3
In Example 1, a laminated biaxially stretched film having a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition comprising 25 parts by weight of A3 and 75 parts by weight of B1 was used as both surface layers. It was. The evaluation results of the obtained film were as shown in Table 1. The heat resistance was insufficient and the shrink-wrapped finish was inferior.

Figure 0005587136
Figure 0005587136

Figure 0005587136
Figure 0005587136

本発明の熱収縮性包装材料は、優れた低温収縮性、耐熱性が得られ、高価な商品を包装す
る際に必要とされる高度な収縮仕上がり性を発現することができるポリオレフィン系熱収
縮性フィルムとして好適に用いることができる。
The heat-shrinkable packaging material of the present invention is a polyolefin-based heat-shrinkable material that has excellent low-temperature shrinkability and heat resistance, and can exhibit a high degree of shrinkage finish required when packaging expensive products. It can be suitably used as a film.

Claims (5)

示差走査熱量計(以下、DSCと略す)によって測定される溶融ピーク温度が130℃〜170℃の範囲であり、かつ硬度(ショアーA)が60〜90であるポリオレフィン系エラストマー10〜60重量部とプロピレン系樹脂40〜90重量部からなる表層、及びエチレン系樹脂からなる芯層の少なくとも3層からなり、縦横2軸延伸したポリオレフィン系熱収縮性フィルム。 10 to 60 parts by weight of a polyolefin-based elastomer having a melting peak temperature measured by a differential scanning calorimeter (hereinafter abbreviated as DSC) in the range of 130 ° C to 170 ° C and a hardness (Shore A) of 60 to 90; A polyolefin-based heat-shrinkable film comprising at least three layers of a surface layer composed of 40 to 90 parts by weight of a propylene-based resin and a core layer composed of an ethylene-based resin and stretched biaxially and vertically. 表層プロピレン系樹脂の、DSCによって測定される溶融ピーク温度が120〜165℃、MFRが0.3〜10.0g/10分であることを特徴とする請求項1記載のポリオレフィン系熱収縮性フィルム。 2. The polyolefin heat-shrinkable film according to claim 1, wherein the surface layer propylene-based resin has a melting peak temperature measured by DSC of 120 to 165 [deg.] C. and an MFR of 0.3 to 10.0 g / 10 minutes. . 芯層エチレン系樹脂が、密度0.865〜0.925g/cm3、MI0.5〜4.0g/10分のエチレン−αオレフィン共重合体1種または2種以上からなることを特徴とする請求項1〜2のいずれか一項に記載のポリオレフィン系熱収縮性フィルム。 The core layer ethylene resin is composed of one or more ethylene-α olefin copolymers having a density of 0.865 to 0.925 g / cm 3 and an MI of 0.5 to 4.0 g / 10 min. The polyolefin heat-shrinkable film according to claim 1. 芯層エチレン系樹脂が、密度0.870〜0.910g/cm3、MI0.5〜4.0g/10分のエチレン−αオレフィン共重合体1種または2種以上からなることを特徴とする請求項1〜3のいずれか一項に記載のポリオレフィン系熱収縮性フィルム。 The core layer ethylene resin is composed of one or more ethylene-α olefin copolymers having a density of 0.870 to 0.910 g / cm 3 and an MI of 0.5 to 4.0 g / 10 min. The polyolefin heat-shrinkable film according to any one of claims 1 to 3. 表層に用いるポリオレフィン系エラストマーが、DSCを用いた測定において、溶融開始温度から溶融ピーク温度よりも20℃低い温度までの間に吸収された熱量の総量が上記溶融開始温度から溶融終了温度までの間に吸収された全熱量の39%以下であることを特徴とする請求項1〜4のいずれか一項に記載のポリオレフィン系熱収縮性フィルム。 Polyolefin elastomers for use in the surface layer, in the measurement using a DSC, until absorbed total amount the melt initiation temperature or et melting completion temperature of heat until 20 ° C. lower temperature than the melting peak temperature from the melting start temperature polyolefin heat-shrinkable film according to claim 1, characterized in that absorbed is 39% or less of the total heat during.
JP2010242434A 2009-12-03 2010-10-28 Polyolefin heat shrinkable film with excellent shrink finish Active JP5587136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242434A JP5587136B2 (en) 2009-12-03 2010-10-28 Polyolefin heat shrinkable film with excellent shrink finish

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009275520 2009-12-03
JP2009275520 2009-12-03
JP2010242434A JP5587136B2 (en) 2009-12-03 2010-10-28 Polyolefin heat shrinkable film with excellent shrink finish

Publications (2)

Publication Number Publication Date
JP2011136548A JP2011136548A (en) 2011-07-14
JP5587136B2 true JP5587136B2 (en) 2014-09-10

Family

ID=44348447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242434A Active JP5587136B2 (en) 2009-12-03 2010-10-28 Polyolefin heat shrinkable film with excellent shrink finish

Country Status (1)

Country Link
JP (1) JP5587136B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563316B2 (en) * 2014-11-28 2019-08-21 日本エイアンドエル株式会社 Graft copolymer
JP6561857B2 (en) * 2015-01-22 2019-08-21 王子ホールディングス株式会社 Stretched film
JP6715628B2 (en) * 2016-03-22 2020-07-01 大倉工業株式会社 Manufacturing method of designable squeeze bottle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2170961C (en) * 1995-03-22 2005-08-09 Walter B. Mueller Multilayer films for packaging and administering medical solutions
JPH08336897A (en) * 1995-06-09 1996-12-24 Tonen Chem Corp Method for connecting stretchable film
JP3905353B2 (en) * 2001-11-05 2007-04-18 大倉工業株式会社 Low temperature heat shrinkable multilayer film with excellent transparency and gloss
JP4115846B2 (en) * 2003-01-17 2008-07-09 旭化成ケミカルズ株式会社 Polyolefin resin anti-fogging and heat shrinkable multilayer film
JP2008149503A (en) * 2006-12-15 2008-07-03 Sekisui Film Kk Heat-shrinkable multilayer polyolefin-based resin film

Also Published As

Publication number Publication date
JP2011136548A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5893091B2 (en) Polyethylene-based crosslinked shrink film
JP4915749B2 (en) Polyolefin multilayer shrink film
EP0732196B1 (en) Heat-shrinkable polyolefin laminate film
JP5587136B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP3751965B2 (en) Polyolefin multilayer shrink film
JP2010064369A (en) Polypropylene-based multilayered shrink film
JP2016179648A (en) Heat-shrinkable laminated film
JP5660852B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP6532125B2 (en) Polyethylene-based crosslinked shrink film
JP5722081B2 (en) Polyethylene-based crosslinked shrink film with excellent shrink finish
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP4287875B2 (en) Polyolefin laminated stretch shrink film
JP5399048B2 (en) Polyethylene-based crosslinked shrink film
JP2004017545A (en) Low temperature shrinkable multilayered polyolefinic film and manufacturing method therefor
JP3850545B2 (en) Polyolefin heat shrinkable film
JP6604835B2 (en) Polyolefin heat shrinkable film
JP3493474B2 (en) Polyolefin-based heat-shrinkable multilayer film
JP2010234656A (en) Polypropylene and polyolefin multilayer shrink film with light shielding property
JP3068920B2 (en) Polyethylene heat-shrinkable laminated film
JP2011240619A (en) Styrene heat-shrinkable film for over-wrap packing
JP5068130B2 (en) Polyolefin-based multilayer shrink film and packaging method
JP3859808B2 (en) Polyolefin heat shrinkable film
JP2007001102A (en) Heat-shrinkable multilayer polyolefin film
JP2011126581A (en) Polyolefin-based heat shrinkable film excellent in fusion cut sealability
JP5476533B2 (en) Heat shrinkable film for polyolefin sleeve packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250