JP5541135B2 - 増幅回路 - Google Patents

増幅回路 Download PDF

Info

Publication number
JP5541135B2
JP5541135B2 JP2010277303A JP2010277303A JP5541135B2 JP 5541135 B2 JP5541135 B2 JP 5541135B2 JP 2010277303 A JP2010277303 A JP 2010277303A JP 2010277303 A JP2010277303 A JP 2010277303A JP 5541135 B2 JP5541135 B2 JP 5541135B2
Authority
JP
Japan
Prior art keywords
potential
drain
inductor
bias node
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010277303A
Other languages
English (en)
Other versions
JP2012129635A (ja
Inventor
俊秀 鈴木
陽一 川野
亜希子 峰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010277303A priority Critical patent/JP5541135B2/ja
Publication of JP2012129635A publication Critical patent/JP2012129635A/ja
Application granted granted Critical
Publication of JP5541135B2 publication Critical patent/JP5541135B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、増幅回路に関する。
無線送信装置に使用される電力増幅率が変更可能な高周波電力増幅装置が知られている(例えば、特許文献1参照)。消費電力低減のために、高周波電力増幅手段の動作点を変更しようとするとき、制御手段からバイアス電圧印加手段に対して高周波電力増幅手段に印加するバイアス電圧の変更が指令されるとともに、整合手段に対してインピーダンスの変更が指令される。出力整合手段のインピーダンスが変更されることにより、高周波電力増幅手段の交流負荷線がバイアス電圧変換後においても最も効率の良い増幅が行われるように自動的に設定され、電力のロスなく消費電力が抑えられる。
特開平5−175757号公報
本発明の目的は、ドレインバイアスノードの電位を変化させた場合に、信号通過位相の変化を抑制することができる増幅回路を提供することである。
増幅回路は、一次側インダクタ及び二次側インダクタを含み、前記一次側インダクタが入力端子に接続され、前記二次側インダクタの中点がゲートバイアスノードに接続されるトランスフォーマー回路と、第1のゲートが前記トランスフォーマー回路の前記二次側インダクタの一端に接続され、第1のドレインが第1の出力端子に接続され、第1のソースが基準電位ノードに接続される第1の電界効果トランジスタと、第2のゲートが前記トランスフォーマー回路の前記二次側インダクタの他端に接続され、第2のドレインが第2の出力端子に接続され、第2のソースが前記基準電位ノードに接続される第2の電界効果トランジスタと、前記第1の電界効果トランジスタの前記第1のドレイン及びドレインバイアスノード間に接続される第1のインダクタと、前記第2の電界効果トランジスタの前記第2のドレイン及び前記ドレインバイアスノード間に接続される第2のインダクタと、前記トランスフォーマー回路の前記二次側インダクタに並列に接続され、前記ドレインバイアスノードの電位に応じて容量値が変化する可変容量とを有する。
可変容量を設けることにより、ドレインバイアスノードの電位を変化させた場合に、信号通過位相の変化を抑制することができる。
参考技術による増幅回路の構成例を示す回路図である。 ドレインバイアスノードの電位に対する信号通過位相の例を示すグラフである。 第1の実施形態による増幅回路の構成例を示す回路図である。 可変容量の容量値に対する信号通過位相を示すグラフである。 ドレインバイアスノードの電位に対するトータルの信号通過位相を示すグラフである。 第2の実施形態による増幅回路の構成例を示す回路図である。 図7(A)はインバータの構成例を示す回路図であり、図7(B)はインバータの入出力特性を示す図である。 第3の実施形態による増幅回路の構成例を示す回路図である。
(参考技術)
図1は、参考技術による増幅回路の構成例を示す回路図である。増幅回路は、入力端子INに単相信号を入力し、第1の出力端子OUT1及び第2の出力端子OUT2から増幅した差動信号を出力する。トランスフォーマー回路101は、一次側インダクタ102及び二次側インダクタ103を有する。一次側インダクタ102は、入力端子IN及び基準電位ノード間に接続される。二次側インダクタ103の中点は、ゲートバイアスノードVGに接続される。トランスフォーマー回路101は、入力端子INの単相信号を差動信号に変換し、第1の電界効果トランジスタ104の第1のゲート及び第2の電界効果トランジスタ105の第2のゲートに差動信号を出力する。第1の電界効果トランジスタ104のゲート電圧と第2の電界効果トランジスタ105のゲート電圧は、相互に位相が反転した差動信号となる。第1の電界効果トランジスタ104は、第1のゲートがトランスフォーマー回路101の二次側インダクタ103の一端に接続され、第1のドレインが第1の出力端子OUT1に接続され、第1のソースが基準電位ノードに接続される。第2の電界効果トランジスタ105は、第2のゲートがトランスフォーマー回路101の二次側インダクタ103の他端に接続され、第2のドレインが第2の出力端子OUT2に接続され、第2のソースが基準電位ノードに接続される。第1の整合回路108は第1のインダクタ110を有し、第2の整合回路109は第2のインダクタ111を有する。第1のインダクタ110は、第1の電界効果トランジスタ104の第1のドレイン及びドレインバイアスノードVDD1間に接続される。第2のインダクタ111は、第2の電界効果トランジスタ105の第2のドレイン及びドレインバイアスノードVDD1間に接続される。
増幅回路では、直流バイアス電力をRF(高周波)出力電力に変換するときに高い電力変換効率が求められる。RF出力電力が小さい場合には、電力変換効率が低下するため、ドレインバイアスノードVDD1の電位を下げることによって効率を上げることができる。しかし、ドレインバイアスノードVDD1の電位を変化させた場合、第1の電界効果トランジスタ104のゲート−ドレイン間寄生容量106及び第2の電界効果トランジスタ105のゲート−ドレイン間寄生容量107がドレインバイアスノードVDD1の電位変化に伴って変化し、信号通過位相が変化する。
図2は、ドレインバイアスノードVDD1の電位に対する信号通過位相の例を示すグラフである。信号通過位相は、入力信号に対する出力信号の位相である。ドレインバイアスノードVDD1の電位が高くなるほど、信号通過位相が大きくなる(遅れる)。ドレインバイアスノードVDD1の電位変化に対して、信号通過位相が一定であれば、問題がない。しかし、位相変調の無線送信装置に増幅回路を使用する場合、ドレインバイアスノードVDD1の電位変化に対して、信号通過位相が変化してしまうと、データを正しく復号することが困難であり、データエラーが発生する可能性が高くなる。
そこで、以下、電力変換効率を向上させるためにドレインバイアスノードVDD1の電位を変化させた場合に、信号通過位相の変化を抑制することができる増幅回路を、第1〜第3の実施形態として説明する。
(第1の実施形態)
図3は、第1の実施形態による増幅回路の構成例を示す回路図である。増幅回路は、例えば無線送信装置の高出力増幅回路であり、入力端子INに高周波数の単相信号を入力し、第1の出力端子OUT1及び第2の出力端子OUT2から増幅した高周波数の差動信号を出力する。図3の増幅回路は、図1の増幅回路に対して、第1の可変容量301、第2の可変容量302及び調整回路303を追加したものである。
トランスフォーマー回路101は、一次側インダクタ102及び二次側インダクタ103を有する。一次側インダクタ102は、入力端子IN及び基準電位ノード(グランド電位ノード)間に接続される。二次側インダクタ103の中点(センタータップ)は、ゲートバイアスノードVGに接続される。ゲートバイアスノードVGには、一定の直流ゲートバイアス電位が供給される。トランスフォーマー回路101は、入力端子INの単相信号を差動信号に変換し、第1の電界効果トランジスタ104の第1のゲート及び第2の電界効果トランジスタ105の第2のゲートに差動信号を出力する。第1の電界効果トランジスタ104のゲート電圧と第2の電界効果トランジスタ105のゲート電圧は、相互に位相が反転した差動信号となる。第1の電界効果トランジスタ104は、第1のゲートがトランスフォーマー回路101の二次側インダクタ103の一端に接続され、第1のドレインが第1の出力端子OUT1に接続され、第1のソースが基準電位ノードに接続される。第2の電界効果トランジスタ105は、第2のゲートがトランスフォーマー回路101の二次側インダクタ103の他端に接続され、第2のドレインが第2の出力端子OUT2に接続され、第2のソースが基準電位ノードに接続される。第1の整合回路108は第1のインダクタ110を有し、第2の整合回路109は第2のインダクタ111を有する。第1のインダクタ110は、第1の電界効果トランジスタ104の第1のドレイン及びドレインバイアスノードVDD1間に接続される。第2のインダクタ111は、第2の電界効果トランジスタ105の第2のドレイン及びドレインバイアスノードVDD1間に接続される。第1の電界効果トランジスタ104は、第1のゲートに入力された信号を増幅し、第1のドレインから出力する。第2の電界効果トランジスタ105は、第2のゲートに入力された信号を増幅し、第2のドレインから出力する。第1の出力端子OUT1及び第2の出力端子OUT2からは、相互に位相が反転した差動信号が出力される。無線送信装置の場合、出力端子OUT1及びOUT2の差動信号は、後段のトランスフォーマー回路により単相信号に変換され、アンテナを介して無線送信される。
第1の可変容量301は、第1の電界効果トランジスタ104の第1のゲート及びノードN1間に接続される。第2の可変容量302は、第2の電界効果トランジスタ105の第2のゲート及びノードN1間に接続される。第1の可変容量301及び第2の可変容量302の直列接続回路は、トランスフォーマー回路101の二次側インダクタ103に並列に接続される。調整回路303は、ドレインバイアスノードVDD1の電位に応じた電位をノードN1に供給する。第1の可変容量301及び第2の可変容量302は、ノードN1の電位に応じて容量値が変化する。すなわち、第1の可変容量301及び第2の可変容量302は、ドレインバイアスノードVDD1の電位に応じて容量値が変化する。
増幅回路では、直流バイアス電力をRF出力電力に変換するときに高い電力変換効率が求められる。RF出力電力が小さい場合には、電力変換効率が低下するため、ドレインバイアスノードVDD1の電位を下げることによって効率を上げることができる。これに対し、RF出力電力が大きい場合には、雑音特性を向上させるため、ドレインバイアスノードVDD1の電位を上げる必要がある。このように、小さい電力を出力端子OUT1及びOUT2から出力する場合にはドレインバイアスノードVDD1の電位を低くし、大きい電力を出力端子OUT1及びOUT2から出力する場合にはドレインバイアスノードVDD1の電位を高くすることにより、電力変換効率及び雑音特性を向上させることができる。例えば、この増幅回路は、無線送信装置に使用され、増幅された信号はアンテナを介して基地局に無線送信される。無線送信装置から近い基地局へ信号を送信する場合には、ドレインバイアスノードVDD1に低い直流バイアス電位を供給し、小電力の送信信号を出力端子OUT1及びOUT2から出力する。これに対し、無線送信装置から遠い基地局へ信号を送信する場合には、ドレインバイアスノードVDD1に高い直流バイアス電位を供給し、大電力の送信信号を出力端子OUT1及びOUT2から出力する。
インダクタ110及び111は、ドレインバイアスノードVDD1に接続され、ショートインダクタとして機能し、ハイパスフィルタ110を構成する。出力端子OUT1及びOUT2の信号周波数が高いときには、インダクタ110及び111のインピーダンスが極めて大きくなり、高周波数の信号はハイパスフィルタを通過し、出力端子OUT1及びOUT2から出力される。これに対し、出力端子OUT1及びOUT2の信号周波数が低いときには、インダクタ110及び111のインピーダンスが小さくなり、高周波数の信号はハイパスフィルタにより遮断され、出力端子OUT1及びOUT2の信号が減衰する。
ここで、ドレインバイアスノードVDD1の電位を変化させた場合、第1の電界効果トランジスタ104のゲート−ドレイン間寄生容量106及び第2の電界効果トランジスタ105のゲート−ドレイン間寄生容量107がドレインバイアスノードVDD1の電位変化に伴って変化し、信号通過位相が変化する。図2に示したように、ドレインバイアスノードVDD1の電位が高くなるほど、信号通過位相が大きくなる(遅れる)。ドレインバイアスノードVDD1の電位変化に対して、信号通過位相が一定であれば、問題がない。しかし、位相変調の無線送信装置に増幅回路を使用する場合、ドレインバイアスノードVDD1の電位変化に対して、信号通過位相が変化してしまうと、データを正しく復号することが困難であり、データエラーが発生する可能性が高くなる。本実施形態では、可変容量301及び302を設けることにより、信号通過位相の変化を低減させる。
図4は、可変容量301及び302の容量値に対する信号通過位相を示すグラフである。横軸は可変容量301及び302の容量値であり、縦軸は信号通過位相である。トランスフォーマー回路101の二次側インダクタ103は、ゲートバイアスノードVGに接続され、ショートインダクタとして機能するので、可変容量301及び302の容量値の変化により信号通過位相が変化する。可変容量301及び302の容量値が大きくなるほど、信号通過位相は小さくなる(進む)。可変容量301及び302により位相制御された信号が第1の電界効果トランジスタ104の第1のゲート及び第2の電界効果トランジスタ105の第2のゲートに入力される。本実施形態では、可変容量301及び302の容量値の変化によって信号通過位相が変わる特性を用いて、図2の信号通過位相の特性を相殺することによって、トータルの信号通過位相の変化を抑制する。具体的には、調整回路303は、ドレインバイアスノードVDD1の電位が低いときには可変容量301及び302の容量値が小さくなり、ドレインバイアスノードVDD1の電位が高いときには可変容量301及び302の容量値が大きくなるように、ノードN1の電位を制御する。可変容量301及び302は、ドレインバイアスノードVDD1の電位が高くなるほど容量値が大きくなる。これにより、信号通過位相は、図2の特性とは逆に、ドレインバイアスノードVDD1の電位が高くなるほど小さくなる(進む)。すなわち、図4の特性は、図2の特性に対して逆特性になる。ドレインバイアスノードVDD1の電位が低いときには、図2の特性により信号通過位相が小さくなり、図4の特性により信号通過位相が大きくなる。これに対し、ドレインバイアスノードVDD1の電位が高いときには、図2の特性により信号通過位相が大きくなり、図4の特性により信号通過位相が小さくなる。図2の信号通過位相の特性と図4の信号通過位相の特性が相殺され、トータルの信号通過位相はドレインバイアスノードVDD1の電位が変化してもほぼ一定になる。これにより、通信時のデータエラー等を防止することができる。
図5は、ドレインバイアスノードVDD1の電位に対するトータルの信号通過位相を示すグラフである。横軸はドレインバイアスノードVDD1の電位を示し、縦軸は増幅回路のトータルの信号通過位相を示す。特性501は本実施形態の図3の増幅回路の特性を示し、特性502は図1の増幅回路の特性を示す。特性502は、図1の増幅回路において可変容量301及び302がないため、図2の信号通過位相特性と同じになり、ドレインバイアスノードVDD1の電位が変化すると、信号通過位相が大きく変化してしまう。これに対し、特性501は、図3の増幅回路において可変容量301及び302を設けているので、図2の信号通過位相特性と図4の信号通過位相特性が合成され、ドレインバイアスノードVDD1の電位が変化しても信号通過位相は変化が極めて小さく、ほとんど変化しない。図3の増幅回路の特性501は、図1の増幅回路の特性502と比較して、ドレインバイアスノードVDD1の電位変化による信号通過位相の変化が抑制されていることが分かる。
図3の増幅回路は、小さなサイズの補正回路(可変容量301,302及び調整回路303)で信号通過位相の変化を抑制することができるため、回路面積の増大及び補正回路における信号損失を抑制することができる。
(第2の実施形態)
図6は、第2の実施形態による増幅回路の構成例を示す回路図である。図6の増幅回路は、図3の増幅回路の第1の可変容量301、第2の可変容量302及び調整回路303の例を示したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。第1のダイオード601は、図3の第1の可変容量301の一例であるバラクタダイオードであり、アノードがノードN1に接続され、カソードが第1の電界効果トランジスタ104の第1のゲートに接続される。第2のダイオード602は、図3の第1の可変容量302の一例であるバラクタダイオードであり、アノードがノードN1に接続され、カソードが第2の電界効果トランジスタ105の第2のゲートに接続される。インバータ603は、図3の調整回路303の一例であり、入力端子がドレインバイアスノードVDD1に接続され、出力端子がノードN1に接続される。
図7(A)は、図6のインバータ603の構成例を示す回路図である。インバータ603は、第3の電界効果トランジスタ701、第1の抵抗702及び第2の抵抗703を有する。第3の電界効果トランジスタ701は、第3のゲートがドレインバイアスノードVDD1に接続され、第3のドレインがノードN1に接続される。第1の抵抗702は、第3の電界効果トランジスタ701の第3のソース及び基準電位ノード間に接続される。第2の抵抗703は、電源電位ノードVDD2及びノードN1間に接続される。
図7(B)は、インバータ603の入出力特性を示す図である。横軸は時間を示し、縦軸は電位を示す。時間経過に伴って、入力のドレインバイアスノードVDD1の電位が徐々に増加すると、出力のノードN1の電位が徐々に減少する。インバータ603は、ドレインバイアスノードVDD1の電位を反転させた電位をノードN1に出力する。すなわち、インバータ603は、ドレインバイアスノードVDD1の電位が低いときにはノードN1の電位を高くし、ドレインバイアスノードVDD1の電位が高いときにはノードN1の電位を低くする。第1のダイオード701及び第2のダイオード702は、ノードN1の電位が高いときには容量値が小さくなり、ノードN1の電位が低いときには容量値が大きくなる。これにより、ドレインバイアスノードVDD1の電位が高くなるほど、図4に示すように、第1のダイオード701及び第2のダイオード702は容量値が大きくなり、信号通過位相が小さくなる。
ドレインバイアスノードVDD1の電位が低いときには図2の特性により信号通過位相が小さくなるため、ノードN1の電位を高くすることにより、ダイオード601及び602の容量値が小さくなり、図4の特性により信号通過位相が大きくなる。これに対し、ドレインバイアスノードVDD1の電位が高いときには図2の特性により信号通過位相が大きくなるため、ノードN1の電位を低くすることにより、ダイオード601及び602の容量値が大きくなり、図4の特性により信号通過位相が小さくなる。これにより、ドレインバイアスノードVDD1のノードの電位が変化しても、トータルの信号通過位相の変化を抑制することができる。
(第3の実施形態)
図8は、第3の実施形態による増幅回路の構成例を示す回路図である。図8の増幅回路は、図3の増幅回路の第1の可変容量301及び第2の可変容量302の他の例を示したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。複数の容量801,802及びスイッチ803は、図3の第1の可変容量301及び第2の可変容量302の一例である。容量801,802及びスイッチ803は、直列に接続される。複数の容量801,802及びスイッチ803の直列接続回路は、トランスフォーマー回路101の二次側インダクタ103に対して、並列に接続される。調整回路303は、ドレインバイアスノードVDD1のノードの電位をアナログからデジタルに変換し、そのデジタル値に応じてスイッチ803をオンさせる。スイッチ803がオンする数が多いほど、可変容量301及び302の容量値が大きくなる。調整回路303は、ドレインバイアスノードVDD1の電位が低いときにはスイッチ803がオンする数を少なくし、可変容量301及び302の容量値を小さくし、図4に示すように、信号通過位相を大きくする。これに対し、調整回路303は、ドレインバイアスノードVDD1の電位が高いときにはスイッチ803がオンする数を多くし、可変容量301及び302の容量値を大きくし、図4に示すように、信号通過位相を小さくする。本実施形態も第1の実施形態と同様の効果を得ることができる。
第1〜第3の実施形態によれば、ドレインバイアスノードVDD1の電位を変化させることにより、増幅回路の電力変換効率及び雑音特性を向上させることができる。ドレインバイアスノードVDD1の電位を変化させると、図2の信号通過位相特性が発生するが、可変容量301及び302を設けることにより、図4の信号通過位相特性を得ることができる。図2の信号通過位相特性と図4の信号通過位相特性が相殺し、ドレインバイアスノードVDD1の電位を変化させても、信号通過位相の変化が抑制される。以上のように、可変容量301,302を設けることにより、ドレインバイアスノードVDD1の電位を変化させた場合に、信号通過位相の変化を抑制することができる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
101 トランスフォーマー回路
102 一次側インダクタ
103 二次側インダクタ
104 第1の電界効果トランジスタ
105 第2の電界効果トランジスタ
106,107 ゲート−ドレイン間寄生容量
108 第1の整合回路
109 第2の整合回路
110 第1のインダクタ
111 第2のインダクタ
301 第1の可変容量
302 第2の可変容量
303 調整回路

Claims (4)

  1. 一次側インダクタ及び二次側インダクタを含み、前記一次側インダクタが入力端子に接続され、前記二次側インダクタの中点がゲートバイアスノードに接続されるトランスフォーマー回路と、
    第1のゲートが前記トランスフォーマー回路の前記二次側インダクタの一端に接続され、第1のドレインが第1の出力端子に接続され、第1のソースが基準電位ノードに接続される第1の電界効果トランジスタと、
    第2のゲートが前記トランスフォーマー回路の前記二次側インダクタの他端に接続され、第2のドレインが第2の出力端子に接続され、第2のソースが前記基準電位ノードに接続される第2の電界効果トランジスタと、
    前記第1の電界効果トランジスタの前記第1のドレイン及びドレインバイアスノード間に接続される第1のインダクタと、
    前記第2の電界効果トランジスタの前記第2のドレイン及び前記ドレインバイアスノード間に接続される第2のインダクタと、
    前記トランスフォーマー回路の前記二次側インダクタに並列に接続され、前記ドレインバイアスノードの電位に応じて容量値が変化する可変容量と
    を有することを特徴とする増幅回路。
  2. 前記可変容量は、ダイオードであることを特徴とする請求項1記載の増幅回路。
  3. さらに、前記ドレインバイアスノード及び前記可変容量間に接続されるインバータを有することを特徴とする請求項1又は2記載の増幅回路。
  4. 前記可変容量は、複数の容量及びスイッチの直列接続回路を有し、前記複数の容量及びスイッチの直列接続回路が並列に接続されていることを特徴とする請求項1記載の増幅回路。
JP2010277303A 2010-12-13 2010-12-13 増幅回路 Expired - Fee Related JP5541135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277303A JP5541135B2 (ja) 2010-12-13 2010-12-13 増幅回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277303A JP5541135B2 (ja) 2010-12-13 2010-12-13 増幅回路

Publications (2)

Publication Number Publication Date
JP2012129635A JP2012129635A (ja) 2012-07-05
JP5541135B2 true JP5541135B2 (ja) 2014-07-09

Family

ID=46646246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277303A Expired - Fee Related JP5541135B2 (ja) 2010-12-13 2010-12-13 増幅回路

Country Status (1)

Country Link
JP (1) JP5541135B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732014B2 (ja) * 2012-09-20 2015-06-10 旭化成エレクトロニクス株式会社 ドハティ増幅器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174367A (ja) * 1997-08-29 1999-03-16 Toshiba Lighting & Technol Corp 半導体装置及び増幅器
JP3523125B2 (ja) * 1999-09-24 2004-04-26 株式会社東芝 電界効果トランジスタ、電力増幅器及び移動携帯通信装置
JP3790704B2 (ja) * 2001-12-18 2006-06-28 三菱電機株式会社 高周波信号用トランジスタの位相調整回路、及び、半導体集積回路
WO2004086608A1 (en) * 2003-03-28 2004-10-07 Koninklijke Philips Electronics N.V. Neutralization of feedback capacitance in amplifiers
JP2005143089A (ja) * 2003-10-15 2005-06-02 Sharp Corp バランス型増幅回路および高周波通信装置

Also Published As

Publication number Publication date
JP2012129635A (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
US10135408B2 (en) Amplifier with termination circuit and resonant circuit
JP4808814B2 (ja) パワー変換のためのスイッチング式インバータ及びコンバータ
US7768350B2 (en) Output gain stage for a power amplifier
US9806673B2 (en) Class-E outphasing power amplifier with efficiency and output power enhancement circuits and method
JP5711354B2 (ja) クラス特性可変増幅器
JP6680235B2 (ja) 電力増幅回路および高周波モジュール
US10601382B2 (en) Power amplifier circuit
KR102598591B1 (ko) 전력 증폭 회로
JP6492062B2 (ja) パワーアンプ制御回路
JP2021103851A (ja) 電力増幅回路
JP2018519760A (ja) 可変利得電力増幅器
US9755594B1 (en) Power amplifying circuit
JP5541135B2 (ja) 増幅回路
Singh et al. A digitally-tuned triple-band transformer power combiner for CMOS power amplifiers
Kim et al. A fully integrated CMOS RF power amplifier with tunable matching network for GSM/EDGE dual-mode application
Park et al. A 1.9-GHz triple-mode class-E power amplifier for a polar transmitter
JPWO2008114311A1 (ja) 低雑音増幅器
JP2005341447A (ja) 高周波電力増幅器
Liu et al. A class-E RF power amplifier with a novel matching network for high-efficiency dynamic load modulation
US7898328B2 (en) Differential amplifier
JP6211325B2 (ja) 直交変調器
Hwang et al. Study of the inter-stage capacitor effects of a RF CMOS power amplifier to enhance its efficiency
JP6581477B2 (ja) 増幅器
JP7514051B2 (ja) 可変利得電力増幅器
US9281790B2 (en) Amplifier circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5541135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees