JP5523501B2 - 光電子分光法を使用した層厚測定 - Google Patents

光電子分光法を使用した層厚測定 Download PDF

Info

Publication number
JP5523501B2
JP5523501B2 JP2012108311A JP2012108311A JP5523501B2 JP 5523501 B2 JP5523501 B2 JP 5523501B2 JP 2012108311 A JP2012108311 A JP 2012108311A JP 2012108311 A JP2012108311 A JP 2012108311A JP 5523501 B2 JP5523501 B2 JP 5523501B2
Authority
JP
Japan
Prior art keywords
layer
species
thickness
emitted
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012108311A
Other languages
English (en)
Other versions
JP2012154950A (ja
Inventor
ブルーノ シューラー
Original Assignee
リヴェラ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リヴェラ インコーポレイテッド filed Critical リヴェラ インコーポレイテッド
Publication of JP2012154950A publication Critical patent/JP2012154950A/ja
Application granted granted Critical
Publication of JP5523501B2 publication Critical patent/JP5523501B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2511Auger spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2516Secondary particles mass or energy spectrometry
    • H01J2237/2522Secondary particles mass or energy spectrometry of electrons (ESCA, XPS)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、一般にはマイクロエレクトロニクス構造体を検査するための技術、特に、光電子分光法を使用して層厚を測定するための技術に関する。
集積回路は、典型的には、シリコン基板上に形成された多くの層を含んでいる。集積回路は更に小さくなり、集積回路を含む層の厚さが減少しているので、これらの層で形成された装置の特性は、特定の層の厚さに依存することが多い。例えば、シリコン基板上に形成されたトランジスタは、トランジスタのゲートの厚さに応じて異なる特性を有する。従って、集積回路のようなマイクロエレクトロニクス装置において、層の厚さを決定することは有用である可能性がある。
集積回路のようなマイクロエレクトロニクス装置における層の厚さは、幾つかの技術の一つを使用して測定されてよい。マイクロエレクトロニクス装置は、典型的には、基板を覆って積層された幾つかの層を含む構造体を含んでいる。エリプソメトリー、波長分散分光計を備えた電子プローブを使用すること、角度分解X線光電子分光法(XPS)、および二次イオン質量分光測定が、構造体内における特定の層の厚さを決定するために使用できる技術である。
エリプソメトリーは、偏光した光を構造体表面に向け、該表面から反射した光の偏光面の変化を測定することを含んでいる。エリプソメトリーを、非常に薄い層(例えば1ナノメータ(nm)未満)と共に使用することは、光学的応答性が弱いので困難である。層が益々薄くなっているので、エリプソメトリーの応用はもっと制限されて来ている。更に、エリプソメトリーは、超薄膜の多層構造体において一つの層の厚さを測定できるだけである。
波長分散分光計を備えた電子プローブは、中程度のエネルギーの電子を層に照射する。異なる層に対応した特性X線の測定によって、複数の層の厚さを推論することができる。しかし、照射による膜の損傷が問題である。更に、この技術は異なる化学状態のシリコンの間を区別できないので、界面の酸化シリコン層(例えば酸化ハフニウム層の下の二酸化シリコン層)は、正確に測定するのが困難である。
角分解能XPSは、光電子分光法を使用して、層の厚さを決定する。光電子分光法は、特定の波長を有する光子(ここではX線光子)をサンプルに衝突させるが、これはサンプルの原子を励起させて、該サンプルの特徴的エネルギーを有する光電子を発生させる。この技術は、例えば電子エネルギー分析器に対してサンプルを傾斜させることによって、サンプル表面から異なる放出角度で光電子を測定することに依存する。計測学の適用について、当該技術は、信号強度に欠けるため高い測定スループット用件に合致せず、これは低い測定精度または長い分析時間をもたらす。
SIMSは、サンプルの表面に向けられた集光されたイオンビームを使用する。低エネルギーもしくは中エネルギーのイオンは、サンプルの表面から中性種および荷電種を放出する。放出された荷電種は、質量分光計を使用して、単一強度の1以上の適切なイオン種を時間の関数としてモニターすることにより測定される。所定の材料および主イオン電流について一定の材料除去速度を仮定すれば、適切なイオン種の信号強度の定義された変化を観察するのに必要な分析時間は、層厚を決定するために使用される深さの尺度に変換される。しかし、放出および分析される種は当該層の一部であるから、SIMSは破壊的プロセスである。
本発明の1以上の実施形態が、限定的ではない例として添付の図面における図に示されており、ここでは同じ参照符号は同様の要素を示している。
本発明の一実施形態に従えば、基板上の単層もしくは多層構造体における1以上の層の厚さを決定するために、電子分光法が使用される。この厚さは、光子電子などで衝撃を受けたときに当該構造体により放出される二つの電子種の強度を測定することによって決定されてよい。層の厚さに依存する予測強度関数が、各電子種について決定される。二つの予測強度関数の間での比が定式化され、この比が反復されて、当該構造体の層の厚さが決定される。一つの実施形態に従えば、単一の層から、該層の厚さを決定するために二つの電子種が測定されてよい。もう一つの実施形態に従えば、一つの層の厚さを決定するために、異なる層または基板からの二つの電子種が測定されてよい。異なる構成の異なる層の厚さを決定するための、幾つかの技術を以下で説明する。
元素種は、特定の層または基板の化学組成を意味する。例えば、酸化ハフニウム層は、ハフニウムおよび酸素の元素種を含んでいる。電子種とは、特徴的エネルギーを持った電子を意味する。単一の元素種は、幾つかの異なった電子種を放出する可能性がある。例えば、シリコン基板は、異なった運動エネルギーを有する二つの異なる特徴的な電子を放出する可能性がある。一つの電子は、シリコン原子の2p軌道から放出され得るのに対して、他の電子はシリコン原子の2s殻から放出され得る。電子信号は、以下では特定の電子種に属する電子の流れを意味する。例えば、「Hf4f信号」はハフニウムの4f軌道によって放出された電子を含んでいる。以下で述べる多くの例は、光電子、または光子が層に衝突したときに放出される電子に言及する。各元素種は、光電子信号を構成し得る1以上の光電子種を放出させる可能性がある。
図1Aは、一つの多層構造体を示している。 図1Bは、光電子分光法にかけたときに該一つの多層構造体が放出する異なる光電子信号の強度を示している。 図1Cは、もう一つの多層構造体を示している。 図1Dは、光電子分光法にかけたときに該もう一つの多層構造体が放出する異なる光電子信号の強度を示している。 図2Aは、本発明の一実施形態に従って、基板上に形成された積層構造体を示している。 図2Bは、基板上の単一層の厚さを決定するためのプロセスを説明するフローチャートである。 図2Cは、XPS分光法によって生じた測定結果のスペクトル図を示している。 図3Aは、基板上の単一層を示している。 図3Bは、基板上の単一層の厚さを決定するためのプロセスを説明するフローチャートである。 図4Aは、二酸化シリコン層を含む二層構造体を示している。 図4Bは、上記構造体のトップ層の厚さを決定するためのプロセスを説明するフローチャートである。 図5Aは、二酸化シリコンの層を含む三層構造体を示している。 図5Bは、上記三層構造体の二つの層の厚さを決定するためのプロセスを説明するフローチャートである。 図6は、上記三層構造体の三つの層の厚さを決定するための別のプロセスを説明するフローチャートである。 図7Aは、二つの二酸化シリコン層を含む構造体を示している。 図7Bは、二つの二酸化シリコン層の間の層の厚さを決定するためのプロセスを説明するフローチャートである。 図8Aは、基板上に形成された三つの層を示している。 図8Bは、上記三つの層の厚さを決定するためのプロセスを説明するフローチャートである。
図1A〜図1Dは、二つの多層構造体、および電子分光法にかけたときに該構造体によって放出される異なる電子信号の強度を示している。図1Aは、基板108上に形成された三つの層102、104、および106を有する多層構造体100を示している。各層102、104、および106、並びに基板108は、光子または電子のようなエネルギー粒子が衝突したときに、特徴的な運動エネルギー(KE)を有する電子を放出する。図1Bは、構造体100の各層によって放出された電子種の強度を示すグラフ110である。図1Cは、基板128上に形成された三つの層122,124および126を有する多層構造体120を示している。図1Dは、基板120の各層によって放出された電子種の強度を示すグラフ130である。
一般に、構造体における層の厚さは、電子信号の二つの予測強度関数の比を生じさせることによって決定されてよい。以下で説明するように、予測強度関数は、電子を生じる層の厚さに依存する。二つの予測強度関数は、電子を発生させるために使用されたビームの強度における変動、および電子信号の相対的強度を変化させ得る他の因子を考慮に入れるために使用される。放出された電子についての予測強度関数を含む比が決定されたら、これら信号の測定された強度が入力され、反復法または他の技術を使用して、層の厚さを決定することができる。以下の種々の例は、厚さを決定するための異なるシナリオを記述するものである。
光電子分光法は、サンプルの組成および電子状態を決定するために使用される。光電子分光法は、実質的に単色(または狭線幅)の放射線源で衝撃を受けたサンプルが放出する光電子を測定する。例えば、サンプルは、特定の予め定められた波長を有するX線または紫外線で衝撃を受けてよい。サンプルの個々の原子が放射線の光子を吸収するときに、これらの原子は、該原子に特徴的な運動エネルギー(KE)を有する電子を放出する。この電子は光電子として知られている。当該原子に吸収された光子は、e=hνのエネルギーを有している。光電子は、以前は放出原子に束縛されていた電子である。光電子の束縛エネルギー(Be)は、該光電子を原子から引き剥がすために必要とされるエネルギーの量である。装置によって測定されるKEは、放出された後に該光電子が有するエネルギーの量である。エネルギー保存の法則の故に、それはKE=hν−BEと決定することができる。原子中の電子についてのBEは既知の値を有するから、サンプルに衝撃を与える光子の波長が既知であれば、放出される光子のKEによって光電子の種を同定することができる。
オージェ電子分光法は、原子をイオン化するのに十分なエネルギーを有する電子線にサンプルを露出させ、それによって原子にオージェ電子を放出させる。原子が該ビームに露出されると、第一の電子が原子のコアレベルから除去されて原子価が形成される。該原子のより高いレベルからの電子がこの空孔を満たし、エネルギーの放出を生じる。放出されたエネルギーは、駆逐されたオージェ電子と共に運び去られる。このオージェ電子、およびオージェ電子信号の強度は、光電子信号が測定される同じ方法で測定することができる。ここで、光電子がモニターされるときは常にオージェ電子種も測定され、厚さを決定するために使用され得ることが理解される。加えて、特徴的エネルギーを有し且つその強度が測定され得る他の電子種もまた、本発明の実施形態と共に使用されてよい。
放出された光電子は、電子エネルギー分析器を使用して計数することができる。特定の運動エネルギーで計数された光電子の数をプロッティングするスペクトルを、生データから作成することができる。次いで、該スペクトルを使用して、サンプルの組成または厚さ等の種々の特性を決定することができる。本発明の一実施形態に従えば、定角(例えば、X線源は一定角度のままである)分光法を使用して、層厚を決定する。
X線光電子分光法(XPS)は、エックス線源を使用する光電子分光法である。XPSまたは同様の技術を使用すれば、層102,104,106,122,124または126の厚さを決定することができる。層102の厚さを決定するために、構造体100はX線源からのX線波長の光子によって衝撃を受け、光電子効果を使用して特徴的光電子の放出が促進される。特徴的波長を有する光子が分子または固体中の原子によって吸収されるときに、当該種の特定の特徴的エネルギーを有するコア(内殻)電子が放出される。この放出された光電子の運動エネルギーは、それを発生させた層の厚さおよび他の特徴を決定するために使用することができる。
構造体100および120の種々の層はそれぞれ、対応する元素種を有する。例えば、層102および層122は同じ元素種を有し、層104および層124は同じ元素種を有し、また層106および層126は同じ元素種を有する。層102および122の元素種は同じなので、層102および122は、同じ特徴的KEを有する光電子を放出するであろう。二つの構造体100および120は、各々の中間層(即ち、層104および124)の厚さを除いて同一である。層102および122が同じ厚さを有し、また層106および126が同じ厚さを有するのに対して、層104は層124よりも厚い。埋め込まれた層から放出される光電子の強度は、それよりも上の層によって減衰されるので、このことは重要である。
図1Bおよび図1Dに示すように、層104により放出された光電子信号の強度112は、層124によって放出された光電子信号の強度132よりも大きい。層104および124により放出された全ての光電子は同じ運動エネルギーを有するが、もっと厚い層104は、より多くの光電子(即ち、より高い強度を有する)を放出し、このことは当該層104が層124よりも厚いことを示している。層の厚さに依存する予測強度関数は、各光電子種について定式化され、該光電子の測定された強度は、構造体100および120の種々の層の厚さを決定するために使用することができる。
図1Bおよび図1Dに見られるように、層102および122により放出された信号の強度118および138は同じである。これは、層118および138が同じ厚さを有しており、且つ層118および138により放出される信号が上の層によって減衰されないからである。基板128により放出される信号の強度136は、基板108により放出される信号の強度116よりも大きい。これは、基板108により放出された信号が、基板128によって放出された信号よりも大きく減衰されるからである。基板108および128は無限に厚いと看做され(即ち、それらは入ってくる光子の波長よりも4倍大きい厚さを有している)、従って同じ条件下では概ね同じ数の特徴的光電子を生じるであろう。より厚い層104は、より薄い層125が基板128により放出された信号を減衰させるよりも、基板108により放出された信号を更に大きく減衰させる。同じ理由で、層106および126は同じ厚さを有するにもかかわらず、層106により放出された信号の強度114は、層126によって放出された信号の強度134よりも低い。層104は層124よりも厚く、且つ厚い層はより多くの光電子を放出するから、層104によって放出された信号の強度112は、層124により放出された信号の強度132よりも大きい。
図2Aは、本発明の一実施形態に従って基板上に形成された積層構造を示している。図2Aに関する議論は、層の厚さを決定するために使用される比の一般的な定式化を議論している。図2Aは、シリコンまたは他の基板204上に形成された層202を含む構造体200を示しており、これは、より大きなマイクロエレクトロニクス装置野一部を表していてよい。層202の厚さは、X線光電子分光法(XPS)または同様の技術、例えば紫外線光電子分光法、オージェ分光法などを使用して測定されてよい。
図2Bは、基板を覆う単一層の厚さを決定するためのプロセスを記載したフローチャートである。該プロセス220は、二つの電子信号(一つは層202からのもの、一つは基板204からのもの)を使用して、層202の厚さを決定する。二つの電子信号の強度が最初に測定される。層202の厚さに依存する予測強度関数が決定される。二つの関数(一方は層202からの信号の強度を予測し、他方は基板204からの信号の強度を予測する)の比が発生され、該比から層202の厚さが抽出される。以下、これについて更に詳細に説明する。図2A〜図2Cは、基板上の単一層からの電子信号および前記基板からの電子信号を使用して、前記層の厚さを決定するためのプロセスを記載している。図3Aおよび図3Bは、基板上を覆う層からの二つの電子信号を使用して、当該層の厚さを決定するための別の方法を示している。或いは、これらの技術を使用することにより、当該層の厚さは前記基板からの二つの電子信号を使用して決定されてもよい。
構造体200は基板204を含んでおり、該基板は構造体200の基礎を形成するものであり、且つ単結晶シリコンから形成されてよい。層202が、基板204を覆って形成される。この例における層202は、酸化ハフニウム層(HfO2)であってよい。ここでは層種の特別な例が使用されるが、如何なる層材料も、本発明の実施形態と共に使用され得ることが理解される。
一実施形態に従えば、層202の厚さは、層202および基板204により放出された光電子の二つの測定された信号強度の比を取ることによって決定することができる。ハフニウム原子は、X線源208により生じたX線波長の光子206で衝撃を受けると、(例えば)4f軌道からの光電子を含んでなる特徴的な光電子信号210を放出する。X線源208は、例えば、X線光子を発生させるために電子をアノードに向ける電子銃、および該X線光子を当該構造体200上に集光させるレンズを含んでいてよい。信号210を含んでなる光電子は特徴的運動エネルギーを有しており、該エネルギーは、電子エネルギー分析器212によって測定およびカウントされる。基板202もまた、Si2p殻により放出され、且つSi−Si結合によって影響される光電子(「Si0」光電子)を含んでなる特徴的な信号を放出する。この信号214はまた、分析器212によって測定される。また、信号210または214の一方または両方が、オージェ電子または他の駆逐された特著いう的エネルギーの電子を含んでいてよい。例えば、信号214はSi0光電子信号であるのに対して、信号210はオージェ電子信号であってよい。
分析器212は、測定された結果を処理システム216へと戻す。該処理システム216は、インテル(登録商標)プロセッサを有するもの等のパーソナルコンピュータ(PC)であってよく、ユニバーサル直列バス(USB)接続を介して分析器212とインターフェースしてよい。測定された結果は、処理システム216によって処理され、ユーザに戻される。
図2Cは、XPS分光法によって発生された測定結果のスペクトラム240を示している。このスペクトラム240は、y軸242に沿う測定された1秒当りのカウントの数、およびx軸244に沿う測定された光電子の運動エネルギー(KE)を示している。スペクトル240は、測定された信号212および210に各々対応する二つのピーク246および248を示している。ピーク246および248に示されたカウントの数は、信号210および212の強度を決定するために使用される。ピーク246は、下限250および上限252を有する。これらの限界の間に入るカウントの数がSi0種の強度を決定し(即ち、より多いカウントはより高い強度に等しい)、次いで、これを使用して層202の厚さが決定される。また、ピーク246および248は操作されてよく(例えば、整形もしくは適合される)、またはバックグラウンド差引きのような標準の技術を使用してノイズを除去されてよい。
或る層(例えば層202)に特徴的な光電子の強度は、層厚、並びに与えられた電子分析器の形状、分析器に対するX線源の角度、操作条件、および所定エネルギーのX線束についての膜中の信号の減衰に依存する式を使用して予測することができる。図2Bに示したプロセス220は、層202からの電子種および基板204からの電子種を使用して、層厚を決定することを記載している。ブロック222において、二つの電子信号210および214の強度は、上記に示した分析器212を使用して測定される。ブロック224においては、信号210についての予測強度関数が決定される。式(1)は、減衰されない信号(即ち、構造体のトップ層により放出される信号)の強度を決定するために使用することができる。
Figure 0005523501
ここで、Xは元素種であり、X1は測定される種Xにより放出される光電子種であり、I(Xi)は光電子信号の強度であり、IinfXiは、厚い(即ち、10ナノメータ(nm)より大きい)層により放出された光電子信号の強度であり、txは信号を放出する層の厚さであり、λXi(X)は基板Xにおける光電子種(Xi)の電子減衰長(EAL)である。EALは、光電子の最初の強度が1/eにまで低下する距離に等しい測定された量である。EALは、例えば、国立科学および技術研究所(NIST)のEALプログラウを使用して決定されてよい。例えば、層202により放出された信号210の強度は、式(1)を使用して予測することができる。
ブロック224では、信号214についての予測強度関数が決定される。厚さtxの基板(または下地層)204により放出された信号214の強度は、層202によって減衰され、従って式(2)を使用して予測され得る
Figure 0005523501
ここで、I(X)は、光電子種Xを含んでなり且つ厚さtyの被覆層Yにより減衰される光電子信号の強度であり、λX(Y)は層Y中の種Xにより放出される光電子のEALであり、λX(X)は層X中の種Xにより放出される光電子のEALである。
層202の厚さを決定するために、ブロック228において、二つの信号210および214の強度の比が決定される。比が使用されるのは、分析器212によって測定される比強度は測定毎に変化し、且つ使用入するX線波長および他の因子に依存するからである。信号210および214の強度の比は、例えば式(3)によって与えられてよい。
Figure 0005523501
式(3)は、ブロック230においてMatlab(登録商標)のようなプログラムを使用して、厚さtHFを決定するために反復して解かれてよい。I(Hf4f)は、ハフニウムの4f殻により放出された光電子(即ち、信号210およびピーク228)の測定された強度であるのに対して、I(Si0)は、基板202により放出された光電子の測定された強度である。I(infHf)およびI(infSi)は、それぞれ酸化ハフニウムおよびシリコンの厚い(即ち10nmより大きい)層により放出された光電子の測定された強度である。λSi(HfO2)およびλHf(HfO2)は、基板204および層202により放出されたシリコン光電子およびハフニウム光電子の測定された電子減衰長(EAL)である。シリコン信号214の強度は、層204によって減衰される。
図3Aは、基板上の単一層を示している。図3Bは、基板上の単一層の厚さを決定するためのプロセスを記載したフローチャートである。プロセス350は、基板304を覆う層302の厚さを決定するために使用されるアルゴリズムの定式化を記載している。該プロセス350は、層302により放出された二つの光電子種を使用して、厚さを決定することを記載している。該アルゴリズムが定式化された後に、Matlab(登録商標)または他の適切な数学的ソフトウエアを使用して厚さを計算する等の何れかの既知の技術を使用して、層302の厚さが決定されてよい。
構造体300は、層302から、二つの光電子信号306および308を放出する。信号306および308は、同じ元素種から放出されてよく(例えば信号306はハフニウムの4p軌道からであってよく、また信号308はハフニウムの4f軌道からであってよい)、または同じ層の異なる元素種により放出されてもよい(例えば、信号306はハフニウムの4f軌道により放出されたものであってよく、また信号308は酸素の2p軌道により放出されたものであってよい)。最も一般的な意味において、この技術を使用することにより、層302によって放出された二つの信号306および308が測定される。二つの信号306および308についての予測強度関数が定式化され、この二つの比が発生される。信号306および308は両者共に、トップ層である層302から放出され、これら信号は上の層によって減衰されない。従って、当該予測強度関数は式(1)の形態を取る。前記の比が定式化されたら、反復法または他の技術を使用して厚さを抽出することができる。
この例において、層302は酸化ハフニウム(HfO2)を含んでいる。しかし、層302は、酸化アルミニウム(Al23)、窒化チタン(TiN)等のような他の元素種を含んでよいことが理解される。プロセス350は、光電子分光法の際に、層302によって放出された二つの光電子種の信号306および308:ハフニウムの4f軌道により放出された光電子(「Hf4f」光電子種)およびハフニウムの4p軌道により放出された光電子(「Hf4p」光電子種)を測定する。他の光電子種(例えばHf4d光電子種)もまた、層302の厚さを決定するために使用され得ることが理解される。
ブロック352では、上記で述べた光電子分光法プロセスを使用して、Hf4fおよびHf4p光電子信号の強度が測定される。ブロック354〜360では式が決定され、比が形成されて、層302の厚さが決定される。下記の式において、層302の厚さはtHfO2として与えられ、Hf4f光電子種のEALはλHf4f(1)として与えられ、Hf4p光電子種のEALはλHf4p(1)として与えられ、また厚い(例えば10nmよりも厚い)層から放出された光電子の強度は、IinfHf4fおよびIinfHf4p(それぞれHf4fおよびHf4p光電子種について)によって与えられる。Hf4f光電子種の信号の測定された強度はI(Hf4f)であり、Hf4pの信号の測定された強度はI(Hf4p)である。
ブロック354では、層302からの第一(例えばHf4f)の光電子種についての予測強度関数が決定される。層302は構造体300のトップ層であり、該層302により放出される光電子は、その上の如何なる層によっても減衰されない。その結果、層302により放出される光電子の強度を予想するために使用される式は、上記の式(1)の形である。Hf4f種についての予測強度関数は、式(4)によって与えられる:
Figure 0005523501
ブロック356では、層302からの第二(例えばHf4p)の光電子種についての予測強度関数が決定される。Hf4p種についての予測強度関数は式(5)によって与えられる:
Figure 0005523501
ブロック358においては、二つの予測強度関数の比が作成される。式(4)および(5)の比は、層302の厚さtHfO2を決定するために使用されてよく、式(6)に示される:
Figure 0005523501
ブロック360では、式(6)に示した比が反復されて、層302の厚さtHfO2が決定される。
図4Aは、二酸化シリコン層を含む二層構造体400を示している。図4Bは、構造体400のトップ層の厚さを決定するためのプロセス450を記載したフローチャートである。構造体400は、トップ層402、二酸化シリコン層404、および基板406を含んでいる。このプロセス450では、二酸化シリコンン層404の厚さが最初に決定され、トップ層402によって放出された光子と、基板406によって放出され且つ二酸化シリコン層404およびトップ層402によって減衰された光子の比が決定される。
図4Aおよび図4Bに関して説明した技術は、何れかの組成のトップ層、基板を覆うシリコンの酸化物(例えば二酸化シリコン、または酸素および窒素に結合されたシリコン(SiON))を含む層を含んだ構造体において、或る層の厚さを決定するために使用することができる。シリコン酸化物の層の厚さは、既知の技術を使用して決定される。トップ層の厚さを決定するためには、トップ層により放出された信号の第一の予測強度関数が最初に決定される。次いで、基板により放出された信号またはシリコン酸化物の層により放出された信号の、第二の予測強度関数が決定される。この第二の予測強度関数は、重なりを説明する減衰因子を含んでおり、従って式(2)の形である。これら二つの予測強度関数の比が形成され、この比を使用して厚さが決定される。
層402および404の厚さを決定するためには、以下の光電子種が測定されてよい。また、他の光電子種も使用されてよいことが理解される。トップ層402は、例えば酸化ハフニウムを含んでよい。ここで測定される光電子信号408は、例えばHf4f種のものである。二酸化シリコン層404(「Si4+」種)から測定された光電子信号410は、シリコン原子の2p軌道からのものであり、二酸化シリコン層404の中ではシリコン−酸素結合により影響を受けている。基板406(「Si0」種)により放出された光電子信号は、シリコン原子の2p軌道から放出されたものであり、基板406におけるシリコン−シリコン結合により影響を受けている。定角XPSは、層厚を決定するための以前の技術とは異なり、Si4+光電子種およびSi0光電子種を区別するために十分な感度を有している。以下において、二酸化シリコン層が記載されるときは何時でも、二酸化シリコン層の代りに、シリコンの他の酸化物(例えば、酸素および窒素に結合されたシリコン(SiON))で置換してよいことが理解される。
ブロック452においては、Hf4f信号408、Si4+信号410、およびSi0信号412の測定された強度が、上記で述べたものに類似したプロセスおよび装置を使用して決定される。
下記の式においては、層402の厚さがtSiO2として与えられ、Hf4f光電子種のEALはλHf4f(HfO2)として与えられ、Si4+光電子種のEALは、HfO2中ではλSi2p(HfO2)として、またSiO2中ではλSi2p(SiO2)として与えられる。厚い(例えば10nmより厚い)層から放出された光電子の強度は、IinfHf4fおよびIinfSi4+(それぞれ、Hf4fおよびSi2p光電子種について)によって与えられる。Hf4f光電子種の信号408の測定された強度はI(Hf4f)であり、Si2p種の信号410の測定された強度はI(Si2p)である。
ブロック454において、二酸化シリコン層404の厚さが決定される。二酸化シリコン層の厚さは、次式(7)を用いて決定される:
Figure 0005523501
ここで、α=構造体400の表面に対する分析器212の角度であり、kはバルク材料強度(使用される材料に依存する定数)である。式(7)は、構造体内における二酸化シリコン層の厚さを決定するための既知の式である。
ブロック456では、基板406により放出されたSi0信号412の予測強度関数が決定される。基板406により放出された信号412は、層404および402によって減衰されるので、予測強度関数(式(8)に示す)は式(2)の形である:
Figure 0005523501
信号は二つの層を通して減衰されるので、二つの減衰因子(一つは酸化ハフニウム層402について、一つは二酸化シリコン層404について)が使用される。
ブロック458では、層402により放出されたHf4f光電子の信号408についての予測強度関数が決定される。層402は、構造体400のトップ層であり、従って、式(9)は式(1)形である:
Figure 0005523501
ブロック460においては、式(10)に示すようにして、式(8)および(9)の比が作成される。
Figure 0005523501
ブロック462では、式(10)が反復されて、層402の厚さが決定される。
図5Aは、二酸化シリコンの層を含む三層構造体を示している。図5Bは、構造体500における二つの層の厚さを決定するためのプロセス550を記載したフローチャートである。該構造体500は、トップ層502、中間層504、二酸化シリコン層506、および基板508を含んでいる。該プロセス550は、トップ層502が二つの特徴的光電子種を有するならば、層502、504および506の厚さを決定するために使用されてよい。層502は、例えば、酸化アルミニウムを含んでよく、また層504は酸化ハフニウムを含んでよい。該プロセス550を使用して、トップ層502からの二つの光電子信号510および512(例えば、Al2s交電子信号510およびAl2p光電子信号512)、中間層504からの一つの光電子信号514(例えばHf4f光電子種)、二酸化シリコン層506からのSi4+信号516、および基板508からのSi0信号が測定される。
一般的に、プロセス550は、基板、該基板を覆うシリコン酸化物層、該シリコン酸化物層を覆う二つの他の層を含む構造体において、配置された層の厚さを決定するために使用されてよい。トップ層からの二つの電子種、中間層からの一つの電子種、シリコン酸化物層からの一つの電子種、および基板からの一つの電子種が使用される。トップ層の厚さは、プロセス350で上述したように、二つの信号を使用して決定される。シリコン酸化物層の厚さは、上記の式(7)を使用して決定される。中間層の厚さは、中間層からの信号の予測強度関数、およびもう一つの予測強度関数(たとえばトップ層からの信号のもの)を含む比を生じさせることによって決定される。次いで、この比を使用して厚さが決定される。
ブロック552においては、上記で述べた種々の信号510〜518が測定される。ブロック554では、二酸化シリコン層506の厚さが決定される。二酸化シリコン層506の厚さは、上記で示した式(7)を使用して決定されてよい。
下記の式において、層502の厚さはtAlで与えられ、層504の厚さはtHfO2で与えられ、Al2s光電子種のEALはλAl2s(Al)で与えられ、Al2p光電子種のEALはλAl2p(Al)で与えられ、Hf4f光電子種のEALはλHf4f(HfO2)で与えられ、また厚い(例えば10nmより厚い)層から放出された光電子の強度は、IinfAl2s、IinfAl2p、およびIinfHf4f(それぞれAl2s、Al2p、およびHf4f光電子種について)で与えられる。Al2s光電子種の信号について測定された強度は、I(Al2s)であり、Al2p光電子種の信号について測定された強度は、I(Al2p)であり、またHf4f光電子種の測定された強度は、I(Hf4f)である。
ブロック556においては、トップ層502の厚さが決定される。トップ層502の厚さは、図3Bに示した技術を使用し、二つの光電子信号510および512(例えば、上記で述べたAl2sおよびAl2p信号)を使用して決定してよい。トップ層502の厚さは、式(11)に与えられた比の反復によって決定されてよい:
Figure 0005523501
ブロック558では、中間層504についての予測強度関数が決定される。中間層504により放出された光電子信号514はトップ層502によって減衰されるので、予測強度関数は式(2)の形である。該予測強度関数は式(12)において与えられる:
Figure 0005523501
ブロック560では比が作成される。この比は、トップ層502における光電子信号510または512の一方の予測強度関数と、式(12)に示した中間層504における光電子信号514の予測強度信号の間で取られてよい。ここで、Al2p光電子種の強度関数(式11参照)は、式(13)において比を発生させるために使用される:
Figure 0005523501
ブロック562では、式(13)に示された比が反復されて、中間層504の厚さが決定される。
図6は、構造体500の層502、504および506の厚さを決定するための別のプロセス600を記載している。このプロセス600は、トップ層502がホウ素を含み、且つ1s殻(「B1s」種)から光電子種(例えば信号510)を放出してよい。中間層504は酸化ハフニウムを含み、且つHf4f光電子種(例えば信号514)を放出する。二酸化シリコン(またはSiON)層506は、Si4+光電子信号516を放出してよく、基板508は二つの信号、即ち、一つは2p殻からのもの(即ち、Si2s0光電子信号518)、もう一つは2s殻からのもの(Si2s0光電子信号520)を放出する。なお、所定の種について二つの異なる光電子信号が存在しない場合は、この種に対応する光電子信号およびオージェ電子信号の比が、同様に使用されてよい。
プロセス600は、信号510または512の一方のみを使用して層502〜506の厚さを決定することを一般的に記載している。プロセス600を使用することにより、二つのトップ層502および504の間の関数的関係が決定される。この比は、トップ層502および504の下で発生した信号(例えば、基板508により放出された信号)の予測強度関数の比に関するものであってよい。トップ層502および中間層504の信号の強度関数の間で、もう一つの比が作成されてよい。次いで、この関数関係は、一つの層の厚さが解かれ得るように当該比の中に置換される。
ブロック602においては、上記光電子種の放出から生じる信号510および514〜520の強度が測定される。ブロック604では、式(7)を使用して、二酸化シリコン層506の厚さtSiO2が決定される。
ブロック606では、トップ層502および中間層504厚さの間の関係が決定される。この関係は、基板508によって放出されたSi2s0光電子信号518およびSi2p0光電子信号520の、予測強度関数の間の強度比として表されてよい。この比は、式(14)に示される:
Figure 0005523501
ここで、t1はトップ層502の厚さであり、t2は中間層504の厚さである。tSiO2がブロック504で決定されたから、式(14)は、式(15)のように書き直すことができる:
Figure 0005523501
ここでのC1は、式(16)において与えられる既知の定数である:
Figure 0005523501
式(15)の自然対数を取って、式(17)に示すように、t1に関してt2を表現することができる:
Figure 0005523501
単純化のために、式(17)を、以下ではt2=f(t1)と書くことにする。
ブロック608では、式(18)に示すように、トップ層502によって放出された光電子信号510(即ち、B1s光電子種)および中間層504によって放出された信号514(即ち、Hf4f光電子種)の、予測強度関数の比が発生される:
Figure 0005523501
2にf(t1)を代入すると、式(19)が得られる:
Figure 0005523501
ブロック610では、式(19)を反復することによって、t1を一義的に決定することができる。次いで、ブロック612においてt1の値を式(17)に入力することによって、t2を決定することができる。
図7Aは、二つの二酸化シリコン層を含む構造体700を示している。図7Bは、二つの二酸化シリコン層間の層の厚さを決定するためのプロセス750を記載したフローチャートである。構造体700は、基板708上に、二酸化シリコンのトップ層702、中間層704および二酸化シリコンのボトム層706を含んでいる。中間層704は、酸化ハフニウムのような何れかの適切な元素種であってよい。中間層704は二つの光電子信号、例えばHf4f信号710およびHf4p信号712を放出する。二つの光電子信号、即ち、Si2p0信号714およびSi2s0信号が、基板708から放出される。
一般に、プロセス750は、二つの酸化シリコン層にサンドイッチされた層を含む構造において、層の厚さを決定することを記載している。前記「サンドイッチされた」層および前記基板からの二つの信号が使用される。中間層の厚さと、全酸化シリコン層の合計厚さとの間の関数関係が決定される。次いで、この関数関係が強度比の中に代入されて、種々の厚さが決定される。
ブロック752では、上記で述べた光電子種の強度が測定される。ブロック754では、二つの二酸化シリコン層702および706の合計厚さ、並びに中間層704の厚さが決定されて、tlayer2=f(tlayer1+tlayer3)が与えられる。この関係は、式(20)に示したように、Si2s0光電子種およびSi2p0光電子種の予測強度関数の比から決定することができる:
Figure 0005523501
ここで、t1SO2は、二酸化シリコントップ層702の厚さであり、t2は中間層704の厚さであり、t3SiO2は二酸化シリコンボトム層706の厚さである。
式(20)は、式(20)の自然対数を決定することによって、式(21)として書き直すことができる:
Figure 0005523501
2は、従って式(22)に示すように表すことができる:
Figure 0005523501
式(22)は、以下では関数関係tlayer2=f(tlayer1+tlayer3)と称することにする。前記Hf4p光電子種および前記Ff4f光電子種の予測強度関数の比を使用して、t1を決定することができる。この比は式(23)によって与えられる:
Figure 0005523501

Figure 0005523501
式(24)から一定の値を除去し、それらを
Figure 0005523501
および
Figure 0005523501
で置きかえることにより、式(25)が得られる:
Figure 0005523501
こうして、中間層704の厚さ、即ちt2は、式(26)において表すことができる:
Figure 0005523501
ここで、
Figure 0005523501
である。
式(26)は、中間層704の厚さ(t2)と、二酸化シリコン層702および704の合計厚さ(t1+t3)との間の関数関係である。二酸化シリコントップ層702の厚さは、式(30)として与えることができる。
Figure 0005523501
Si2p0種およびHf4f種の放出された光電子の予測強度関数の比が、ブロック756において決定され、(t1+t3)、t1、およびt2を決定するために使用することができる。この比は式(31)に示されている:
Figure 0005523501
1およびt2は、(t1+t3)の項で表すことができるので、式(26)および(30)を式(31)に代入することにより、ブロック758での反復によって式(31)を解くことが可能になる。式(32)は、式(31)に代入された式(26)および(30)を示している。
Figure 0005523501
ブロック760において、t2は、(t1+t3)の解かれた値を式(26)に入力することによって決定される。トップ層702の厚さ(t1)は、ブロック762において、(t1+t3)の決定された値を式(30)に入力することによって決定されてよい。次いで、二酸化シリコンボトム層706の厚さの値(t3)は、(上記で決定された)t1の値を、ブロック764において、(t1+t3)の値から差引くことによって決定することができる。
図8Aは、基板上に形成された三つの層を図示している。図8Bは、これら三つの層の厚さを決定するためのプロセスを記載したフローチャートである。構造体800は、トップ層802、中間層804、および基板808を覆って形成されたボトム層806を含んでいる。トップ層802は、例えば酸化アルミニウムであってよく、また二つの光電子種(信号810および812に示されたAl2sおよびAl2p)を放出してよい。この中間層804はまた、例えば酸化ハフニウムであってよく、一つの光電子種(例えば信号814に示したHf4f)を放出してよい。ボトム層806は、例えば窒化チタンであってよく、一つの光電子種(例えば信号816に示したTi2p)を放出してよい。プロセス850を使用すれば、種々の厚さを決定するために、基板808からの光電子信号を使用する必要がない。
一般に、プロセス850は、最初に、上記で述べたプロセス350を使用して、構造体のトップ層の厚さを決定する。トップ層の厚さが決定されたら、減衰因子において該トップ層の厚さを使用し、またトップ層および現在の層によって発生された信号の予測強度関数の比を発生させることによって、その下の次の層の厚さが決定される。この方法において、構造体の二つの層の厚さが決定されてよい。当該構造体が3以上の層を有するならば、これら層の厚さは、種々の強度関数の比を発生させ、且つ重層された層の既知の厚さに依存する減衰因子を使用することによって決定されてもよい。
ブロック852においては、必要な信号810〜816が測定される。ブロック854では、トップ層802の厚さtA1が、上記で述べたプロセス350を使用して決定される。トップ層802によって放出される二つの光電子信号の比は、式(33)によって与えることができる:
Figure 0005523501
トップ層802の厚さtA1は、反復によって決定することができる。中間層804の厚さtHfは、トップ層802の光電子種(例えば、Al2p)の一つの予測強度関数、および中間層804の光電子種(Hf4f)の予測強度関数の比を発生させることによって、決定することができる。この比は、式(34)で与えられる:
Figure 0005523501
Hf4f光電子信号はトップ層802によって減衰されるから、Hf4f光電子種の予測強度関数は式(2)の形である。ブロック856では、式(34)に示した比が反復されて、中間層804の厚さについての一義的な値tHfが与えられる。
ブロック858では、ボトム層806の厚さtTiNが決定される。ボトム層806の厚さは、ボトム層806により放出された光電子(例えばTi2p光電子種)およびもう一つの層による光電子(例えばトップ層802により放出されたAl2p光電子種)の予測強度関数の比を発生させることによって決定されてよい。ボトム層806により放出された光電子は、中間層804およびトップ層802の両方によって減衰されるから、ボトム層806により放出された光電子の予測強度関数は、式(2)の形のものである。この比は式(35)によって与えられる:
Figure 0005523501
AlO2およびtHfO2が既に知られているから、tTiNの一義的な値を解くために、式35が反復されてよい。
ここでの例では特定の材料および光電子種を説明したが、他の構造体における層の厚さを決定するために、他の同様の式を定式化してもよい。本発明は、その特定の実施形態に関して説明されてきた。しかし、この開示の利益を有する人々には、本発明のより広い精神および範囲から逸脱することなく、これら実施形態に対して種々の改変および変更を行い得ることが明らかであろう。従って、本明細書および図面は、限定的意味ではなく、例示的意味において考慮されるべきである。

Claims (8)

  1. 多層構造体における層の厚さを決定する方法であって:
    前記構造体に放射線で衝撃を与える工程と;
    前記層により放出された第一の電子種および前記構造体により放出された第二の電子種を含む、前記構造体により放出された電子を分析する工程であって、前記多層構造体が、二酸化シリコンを含んでなる第二の層を覆う前記層を含んでいる、前記工程と;
    前記層の厚さに依存した前記第一の電子種についての予測強度関数、および前記第二の電子種についての第二の予測強度関数を決定する工程と;
    前記第一および第二の予測強度関数の比を与える式を決定する工程と;
    前記層の厚さを決定するために、前記式を反復法を使用して解く工程と;
    前記第二の層の厚さを、次式:
    SiO2=sin(α)In[I(Si0)/I(Si4+)*k+1]
    (ここで、α=構造体の表面に対する分析器の角度であり、I(Si0)はSi0種の光電子信号の強度であり、I(Si4+)はSi4+種の光電子信号の強度であり、kはバルク材料強度である。)
    を使用して決定する工程と;
    前記比を使用して、前記層の厚さを決定する工程と
    を含んでなり、
    前記第一の電子種は前記層により放出され、且つ前記第一の予測強度関数は次式
    Figure 0005523501
    (ここで、Xは元素種であり、X 1 は測定される種Xにより放出される光電子種であり、I(X i )は光電子信号の強度であり、I infXi は、厚い層により放出された光電子信号の強度であり、t x は信号を放出する層の厚さであり、λ Xi(X) は基板Xにおける光電子種(X i )の電子減衰長(EAL)である。)
    により与えられ;
    前記第二の予測強度関数は、次式:
    Figure 0005523501
    (ここで、I(X)は、光電子種Xを含んでなり且つ厚さt y の被覆層Yにより減衰される光電子信号の強度であり、λ X(Y) は層Y中の種Xにより放出される光電子のEALであり、λ X(X) は層X中の種Xにより放出される光電子のEALである。)
    により与えられる、前記方法。
  2. 請求項1に記載の方法であって:前記構造体に衝撃を与える工程が、
    XPSを使用して、前記構造体にX線で衝撃を与える工程を含んでなり、
    前記第一の電子種および前記第二の電子種が光電子である方法。
  3. 請求項1に記載の方法であって:前記構造体に衝撃を与える工程が、
    オージェ電子分光法を使用して、前記構造体にX線で衝撃を与える工程を含んでなり、 前記第一の電子種および前記第二の電子種がオージェ電子である方法。
  4. 請求項1に記載の方法であって、前記構造体が、前記層を覆う第三の層を含んでいる方法。
  5. 請求項1に記載の方法であって、前記第二の電子種は、前記構造体の基板によって放出される方法。
  6. 多層構造体における層の厚さを決定する方法であって:
    前記構造体に放射線で衝撃を与える工程と;
    前記層により放出された第一の電子種および前記構造体により放出された第二の電子種を含む、前記構造体により放出された電子を分析する工程であって、前記第一の電子種および前記第二の電子種は、両者とも前記層によって放出される、前記工程と;
    前記層の厚さに依存した前記第一の電子種についての予測強度関数、および前記層の厚さに依存した前記第二の電子種についての第二の予測強度関数を決定する工程と;
    前記第一および第二の予測強度関数の比を与える式を決定する工程と;
    前記層の厚さを決定するために、前記式を反復法を使用して解く工程と;
    を含み、
    前記構造体により放出された電子の分析もまた、前記層の厚さを決定するために使用される前記方法。
  7. 請求項6に記載の方法であって:更に、
    前記層の下の第二の層により放出された第三の電子種を分析する工程と;
    前記層の厚さに依存する、第三の予測強度関数を決定する工程と;
    前記第三の予測強度関数、並びに前記第一および第二の予測強度関数の一つを含む比を与える式を決定する工程と;
    前記第二の層の厚さを決定するために前記式を反復法を使用して解く工程
    を含んでなる方法。
  8. 請求項7に記載の方法であって、前記第三の予測強度関数が、次式:
    Figure 0005523501
    (ここで、I(X)は、光電子種Xを含んでなり且つ厚さt y の被覆層Yにより減衰される光電子信号の強度であり、λ X(Y) は層Y中の種Xにより放出される光電子のEALであり、λ X(X) は層X中の種Xにより放出される光電子のEALである。)
    により与えられる方法。
JP2012108311A 2005-04-29 2012-05-10 光電子分光法を使用した層厚測定 Active JP5523501B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/118,035 US7420163B2 (en) 2005-04-29 2005-04-29 Determining layer thickness using photoelectron spectroscopy
US11/118,035 2005-04-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008508946A Division JP5324915B2 (ja) 2005-04-29 2006-04-19 光電子分光法を使用した層厚測定

Publications (2)

Publication Number Publication Date
JP2012154950A JP2012154950A (ja) 2012-08-16
JP5523501B2 true JP5523501B2 (ja) 2014-06-18

Family

ID=37233546

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008508946A Active JP5324915B2 (ja) 2005-04-29 2006-04-19 光電子分光法を使用した層厚測定
JP2012108311A Active JP5523501B2 (ja) 2005-04-29 2012-05-10 光電子分光法を使用した層厚測定

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008508946A Active JP5324915B2 (ja) 2005-04-29 2006-04-19 光電子分光法を使用した層厚測定

Country Status (6)

Country Link
US (1) US7420163B2 (ja)
EP (1) EP1875485A4 (ja)
JP (2) JP5324915B2 (ja)
KR (1) KR101264457B1 (ja)
CN (1) CN101228609B (ja)
WO (1) WO2006118812A2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411188B2 (en) 2005-07-11 2008-08-12 Revera Incorporated Method and system for non-destructive distribution profiling of an element in a film
FR2936057B1 (fr) * 2008-09-17 2010-10-15 Commissariat Energie Atomique Procede de caracterisation de couches dielectriques par spectroscopie de photo-emission ultraviolette
US8229064B2 (en) * 2009-04-30 2012-07-24 Thermo Scientific Portable Analytical Instruments Inc. Localization of an element of interest by XRF analysis of different inspection volumes
US20110299720A1 (en) * 2010-03-18 2011-12-08 The Regents Of The University Of California Systems and methods for material layer identification through image processing
JP5624933B2 (ja) * 2010-04-28 2014-11-12 Hoya株式会社 X線による性能評価方法およびその利用
US9080948B2 (en) * 2013-03-14 2015-07-14 International Business Machines Corporation Dynamic peak tracking in X-ray photoelectron spectroscopy measurement tool
JP2015102452A (ja) * 2013-11-26 2015-06-04 日本電子株式会社 表面分析装置
US11140798B2 (en) 2014-11-19 2021-10-05 Schroff Technologies International, Inc. Ventilation control apparatus and method
CN105717148A (zh) * 2014-12-03 2016-06-29 天津恒电空间电源有限公司 一种碳化硅基底上的石墨烯的层数测量方法
US9892979B2 (en) * 2015-06-19 2018-02-13 Globalfoundries Inc. Non-destructive dielectric layer thickness and dopant measuring method
US9791257B1 (en) * 2015-07-30 2017-10-17 Amazon Technologies, Inc. Determining a thickness of individual layers of a plurality of metal layers
WO2017079322A1 (en) * 2015-11-02 2017-05-11 Revera Incorporated Method and system for non-destructive metrology of thin layers
CN105259197A (zh) * 2015-11-25 2016-01-20 中国科学院兰州化学物理研究所 光照-x射线光电子能谱同步分析测试装置
CN106767628B (zh) * 2015-12-18 2019-04-19 深圳市汇顶科技股份有限公司 一种指纹传感器保护层的厚度检测方法及系统
US10250258B2 (en) * 2016-09-28 2019-04-02 Nxp B.V. Device and method for detecting semiconductor substrate thickness
CN107976154B (zh) * 2017-11-16 2020-03-13 北京工业大学 一种基于荧光强度的通道上/下壁面轮廓的测量方法
CN108535305B (zh) * 2018-03-30 2020-10-02 南京大学 一种基于元素成像的超导纳米线均匀性分析的方法
KR20200072302A (ko) 2018-12-12 2020-06-22 삼성전자주식회사 두께 예측 네트워크 학습 방법, 반도체 소자 제조 방법 및 반도체 물질 퇴적 장비
CN109855549B (zh) * 2019-03-12 2020-10-02 湘潭大学 一种选择性激光烧结铺粉层厚测量及均匀性表征的方法
EP3935371A4 (en) 2019-03-12 2023-03-01 Nova Measuring Instruments, Inc. METHOD AND SYSTEM FOR MONITORING A DEPOSITION PROCESS
CN110231643B (zh) * 2019-06-28 2020-08-14 国家卫星气象中心(国家空间天气监测预警中心) 高能电子暴事件的预报方法、装置及一种存储介质和设备
CN112050759B (zh) * 2020-09-05 2021-05-07 中铁云网信息科技有限公司 基于大数据分析的建筑工程质量验收智能检测管理系统
WO2023031626A1 (en) 2021-09-05 2023-03-09 Photoelectron Intellectual Property Holdings LLC Improved surface analysis process and device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2727505A1 (de) * 1977-06-18 1979-01-04 Ibm Deutschland Roentgenfluoreszenzanalyse zur untersuchung oberflaechennaher schichten
US4492740A (en) 1982-06-18 1985-01-08 Konishiroku Photo Industry Co., Ltd. Support for lithographic printing plate
US4967152A (en) * 1988-03-11 1990-10-30 Ultra-Probe Apparatus including a focused UV light source for non-contact measurement and alteration of electrical properties of conductors
US5280176A (en) * 1992-11-06 1994-01-18 The United States Of America As Represented By The Secretary Of Commerce X-ray photoelectron emission spectrometry system
JPH06222019A (ja) * 1993-01-25 1994-08-12 Hitachi Ltd 多層薄膜の非破壊定量分析方法
JP3373698B2 (ja) * 1995-06-12 2003-02-04 理学電機工業株式会社 X線分析方法およびx線分析装置
US5995916A (en) 1996-04-12 1999-11-30 Fisher-Rosemount Systems, Inc. Process control system for monitoring and displaying diagnostic information of multiple distributed devices
US6326617B1 (en) 1997-09-04 2001-12-04 Synaptic Pharmaceutical Corporation Photoelectron spectroscopy apparatus
US6399944B1 (en) * 1999-07-09 2002-06-04 Fei Company Measurement of film thickness by inelastic electron scattering
US6349128B1 (en) * 2000-04-27 2002-02-19 Philips Electronics North America Corporation Method and device using x-rays to measure thickness and composition of thin films
US6917433B2 (en) * 2000-09-20 2005-07-12 Kla-Tencor Technologies Corp. Methods and systems for determining a property of a specimen prior to, during, or subsequent to an etch process
JP3913555B2 (ja) * 2002-01-17 2007-05-09 ファブソリューション株式会社 膜厚測定方法および膜厚測定装置
JP3519397B1 (ja) * 2002-10-09 2004-04-12 沖電気工業株式会社 固体表面層の膜厚方向組成プロファイル解析方法
US6891158B2 (en) * 2002-12-27 2005-05-10 Revera Incorporated Nondestructive characterization of thin films based on acquired spectrum
US6800852B2 (en) * 2002-12-27 2004-10-05 Revera Incorporated Nondestructive characterization of thin films using measured basis spectra
KR20050043257A (ko) * 2003-11-05 2005-05-11 삼성전자주식회사 3차원 표면 분석 방법
US7231324B2 (en) * 2005-04-29 2007-06-12 Revera Incorporated Techniques for analyzing data generated by instruments

Also Published As

Publication number Publication date
EP1875485A2 (en) 2008-01-09
JP5324915B2 (ja) 2013-10-23
JP2012154950A (ja) 2012-08-16
US20060243904A1 (en) 2006-11-02
KR101264457B1 (ko) 2013-05-14
US7420163B2 (en) 2008-09-02
EP1875485A4 (en) 2012-04-25
WO2006118812A3 (en) 2008-01-24
CN101228609A (zh) 2008-07-23
KR20080018173A (ko) 2008-02-27
JP2008539433A (ja) 2008-11-13
CN101228609B (zh) 2011-06-15
WO2006118812A2 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5523501B2 (ja) 光電子分光法を使用した層厚測定
US12066391B2 (en) Method and system for non-destructive metrology of thin layers
KR102186336B1 (ko) X-선 광전자 및 저 에너지 x-선 형광 분광법에 의해 필름을 특성화하기 위한 시스템 및 방법
US11029148B2 (en) Feed-forward of multi-layer and multi-process information using XPS and XRF technologies
KR102408134B1 (ko) 마이크로 xrf를 사용하여 얇은 기재 상의 작은 특징부의 두께 및/또는 원소 조성을 정확하게 알아내는 방법
JP2023542674A (ja) X線を用いた深さ分解計測および分析のためのシステムおよび方法
JP2008539432A (ja) 計器によって生成されたデータを分析するための技術
JP2005140767A (ja) 3次元表面分析方法
JPH08327566A (ja) 全反射蛍光x線分析の定量法および定量装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250