JP5518510B2 - Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding - Google Patents

Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding Download PDF

Info

Publication number
JP5518510B2
JP5518510B2 JP2010017084A JP2010017084A JP5518510B2 JP 5518510 B2 JP5518510 B2 JP 5518510B2 JP 2010017084 A JP2010017084 A JP 2010017084A JP 2010017084 A JP2010017084 A JP 2010017084A JP 5518510 B2 JP5518510 B2 JP 5518510B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
particles
resin particles
polymerization
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010017084A
Other languages
Japanese (ja)
Other versions
JP2011153261A (en
Inventor
幸雄 新籾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2010017084A priority Critical patent/JP5518510B2/en
Publication of JP2011153261A publication Critical patent/JP2011153261A/en
Application granted granted Critical
Publication of JP5518510B2 publication Critical patent/JP5518510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、種々の包装容器、緩衝材等の用途において有用なポリスチレン系樹脂発泡成形体を製造するために用いる発泡性ポリスチレン系樹脂粒子とその製造方法に関する。   TECHNICAL FIELD The present invention relates to an expandable polystyrene resin particle used for producing a polystyrene resin foam molded article useful in various packaging containers, buffer materials and the like, and a method for producing the same.

ポリスチレン系樹脂粒子に発泡剤を含有させた発泡性ポリスチレン系樹脂粒子は、水蒸気等により軟化点以上に加熱すると、独立気泡を有する粒子状の予備発泡粒子が得られる。
この予備発泡粒子を小さな孔やスリットを有する閉鎖型金型の中に充填して、水蒸気等で内部をさらに加熱する所謂型内発泡成形によって、予備発泡粒子を膨張させて粒子間の隙間を埋めながら互いに融着させて目的の発泡成形体を得る。このような発泡成形体は、形状の自由性及び独立気泡による断熱性、耐水性などの性質に優れることから、従来より魚箱、農産箱等の輸送容器や、精密機器の梱包材、更には住宅などの断熱建材として広く用いられている。
When expandable polystyrene resin particles containing polystyrene resin particles containing a foaming agent are heated above the softening point with water vapor or the like, particulate pre-expanded particles having closed cells are obtained.
The pre-expanded particles are filled into a closed mold having small holes and slits, and the inside of the pre-expanded particles is expanded by so-called in-mold expansion molding in which the interior is further heated with water vapor or the like to fill the gaps between the particles. Then, they are fused together to obtain the desired foamed molded product. Such foamed molded products are superior in properties such as shape freedom, heat insulation by closed cells, water resistance, etc., so conventionally, transport containers such as fish boxes and agricultural boxes, packing materials for precision equipment, Widely used as heat insulating building materials for homes.

近年の省エネルギー化の推進に伴い、発泡成形体については低密度化(0.02g/cm程度以下)できることが強く求められている。従来、発泡体の低密度化の方策としては、発泡剤の増量、及び発泡助剤として炭化水素系溶剤を添加すること、更にはエステル系可塑剤を添加することが知られている。
更にはスチレン系単量体と併用して樹脂のガラス転移温度を低くする重合性単量体を併用することも知られている。
With the recent promotion of energy saving, it is strongly demanded that the foamed molded product can be reduced in density (about 0.02 g / cm 3 or less). Conventionally, as a measure for reducing the density of a foam, it is known to increase the amount of a foaming agent, add a hydrocarbon solvent as a foaming aid, and further add an ester plasticizer.
Furthermore, it is also known to use a polymerizable monomer in combination with a styrene monomer to lower the glass transition temperature of the resin.

しかし、発泡剤や発泡助剤等の添加量を多くしたり、発泡性ポリスチレン系樹脂粒子のガラス転移温度を低くした場合、発泡性ポリスチレン系樹脂粒子の保管時や、輸送時に高温状態に晒されると型内発泡成形して得られる発泡成形体の気泡形成状態が不安定化し、粗大な気泡を生成することが知られている。
このように気泡が粗大化したものは発泡成形体の強度低下を招く結果となり、発泡成形体の使用時に割れなど問題が発生する。
また、発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂粒子に発泡剤を含浸させた直後に予備発泡させると、予備発泡粒子内の気泡の大きさが不均一となる。そこで、予備発泡粒子の気泡形成状態を安定化させ、粗大な気泡の生成を防ぐために、ポリスチレン系樹脂粒子に発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を製造した後、得られた発泡性ポリスチレン系樹脂粒子を長時間(通常は冷暗所に6〜10日程度)放置する「熟成」と称される工程を経て、この熟成後の発泡性ポリスチレン系樹脂粒子に予備発泡処理を施している。そのため、ポリスチレン系樹脂発泡成形体を安定供給するためには、大量の発泡性ポリスチレン系樹脂粒子を低温倉庫にストックしておく必要があり、倉庫の維持管理が嵩み、またポリスチレン系樹脂発泡成形体の生産量の変動要求に対応し難いという問題があった。
However, if the amount of foaming agent or foaming aid added is increased or the glass transition temperature of the expandable polystyrene resin particles is lowered, the foamed polystyrene resin particles are exposed to a high temperature state during storage or transportation. It is known that the foam formation state obtained by foam molding in a mold becomes unstable and coarse bubbles are generated.
Such coarsened bubbles result in a decrease in strength of the foamed molded product, and problems such as cracking occur when the foamed molded product is used.
Further, if the expandable polystyrene resin particles are pre-expanded immediately after the polystyrene resin particles are impregnated with the foaming agent, the size of the bubbles in the pre-expanded particles becomes non-uniform. Therefore, in order to stabilize the bubble formation state of the pre-expanded particles and prevent the formation of coarse bubbles, the foamable polystyrene resin particles obtained after impregnating the polystyrene resin particles with a foaming agent were produced. The expandable polystyrene resin particles after the aging are subjected to a pre-foaming process through a process called “aging” in which the polystyrene resin particles are allowed to stand for a long time (usually about 6 to 10 days in a cool and dark place). Therefore, in order to stably supply polystyrene resin foam moldings, it is necessary to stock a large amount of expandable polystyrene resin particles in a low-temperature warehouse, increasing the maintenance of the warehouse, and polystyrene resin foam molding. There was a problem that it was difficult to meet the demands for fluctuations in body production.

このような問題を改善する方法として、例えば特許文献1(特開平7−090105号公報)、特許文献2(特開平11−279320号公報)には、ヒドロキシステアリン酸アマイドが熟成促進剤として使用できることが提案されている。
特許文献1には、基本樹脂粒子が、高シスポリブタジエンとスチレン系単量体とのグラフト重合で得ることができるスチレン系樹脂粒子であり、発泡剤がn−ペンタンを主成分として含有し、発泡後の成形体が0.015〜0.040g/cmの密度、60〜300μmの平均気泡径、50%以上の独立気泡率を有することを特徴とするスチレン系樹脂発泡成形体が開示され、その実施例1には気泡調整熟成促進剤として12−ヒドロキシステアリン酸アマイドを添加することが記載されている。
特許文献2には、ゴム変性スチレン系樹脂粒子に揮発性発泡剤を含浸させた発泡性スチレン系樹脂粒子であって、前記ゴム変性スチレン系樹脂粒子が、ポリスチレン系樹脂を内包するジエン系ゴム粒子をポリスチレン系樹脂からなる連続相に分散したものであり、かつ前記発泡性スチレン系樹脂粒子の(1) トルエン可溶分の極限粘度数η、(2) 25℃トルエン中におけるトルエン不溶分の膨潤度SI、および(3) ゲル分含有率Gel(質量%)が、式(i) および(ii):8.0≦(SI×η)≦12.0 (i)0.5≦(SI/Gel)≦1.0 (ii)を同時に満たすことを特徴とする発泡性スチレン系樹脂粒子が開示されており、実施例には熟成促進剤としてヒドロキシステアリン酸アマイドを添加することが記載されている。
As a method for improving such a problem, for example, in Patent Document 1 (JP-A-7-090105) and Patent Document 2 (JP-A-11-279320), hydroxystearic acid amide can be used as a ripening accelerator. Has been proposed.
In Patent Document 1, the basic resin particles are styrene resin particles that can be obtained by graft polymerization of high cis polybutadiene and a styrene monomer, the foaming agent contains n-pentane as a main component, and foaming. A styrenic resin foam molded article is disclosed, characterized in that the later molded article has a density of 0.015 to 0.040 g / cm 3 , an average cell diameter of 60 to 300 μm, and a closed cell ratio of 50% or more, In Example 1, it is described that 12-hydroxystearic acid amide is added as a bubble adjusting ripening accelerator.
Patent Document 2 discloses expandable styrene resin particles obtained by impregnating rubber-modified styrene resin particles with a volatile foaming agent, wherein the rubber-modified styrene resin particles contain a polystyrene resin. Is dispersed in a continuous phase made of polystyrene resin, and (1) the intrinsic viscosity number η of toluene soluble in the expandable styrene resin particles, and (2) swelling of toluene insoluble matter in toluene at 25 ° C. Degree SI, and (3) Gel content rate Gel (mass%) is expressed by formulas (i) and (ii): 8.0 ≦ (SI × η) ≦ 12.0 (i) 0.5 ≦ (SI / Gel) ≦ 1.0 (ii) is simultaneously disclosed, and expandable styrenic resin particles are disclosed. The examples describe the addition of hydroxystearic acid amide as a ripening accelerator. .

特開平7−090105号公報JP-A-7-090105 特開平11−279320号公報JP 11-279320 A

しかしながら、特許文献1,2に記載されているように、発泡性ポリスチレン系樹脂粒子に熟成促進剤としてヒドロキシステアリン酸アマイドを添加した場合でも、十分な熟成促進効果が得られず、気泡の大きさが安定した高品質な発泡成形体を得るために必要な熟成の日数を大幅に短縮することはできなかった。特に、ヒドロキシステアリン酸アマイドを添加しても、夏場の気温上昇の際には、規定日数の熟成を行っても予備発泡粒子の気泡の大きさが安定せず、粗大な気泡が生成する場合があった。さらに、ヒドロキシステアリン酸アマイドの添加量を増やすと、得られる発泡成形体の機械強度が低下してしまう問題があった。   However, as described in Patent Documents 1 and 2, even when hydroxystearic acid amide is added as a ripening accelerator to expandable polystyrene resin particles, a sufficient ripening promoting effect cannot be obtained, and the size of the bubbles However, the number of days required for aging to obtain a stable and high-quality foam-molded product could not be significantly shortened. In particular, even when hydroxystearic acid amide is added, when the temperature rises in summer, the size of the pre-expanded particles may not be stable even when aging for a specified number of days, and coarse bubbles may be generated. there were. Furthermore, when the addition amount of hydroxystearic acid amide is increased, there is a problem that the mechanical strength of the obtained foamed molded product is lowered.

本発明は、前記事情に鑑みてなされ、発泡性ポリスチレン系樹脂粒子製造後に行う熟成の時間を短縮し、早期に気泡の大きさを安定化できる発泡性ポリスチレン系樹脂粒子の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the expandable polystyrene resin particle which shortens the time of the aging performed after manufacture of an expandable polystyrene resin particle, and can stabilize the magnitude | size of a bubble early.

前記目的を達成するため、本発明は、発泡剤を含有するポリスチレン系樹脂からなる発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂に対して5〜300質量ppmの範囲でイオウ系酸化防止剤を含有していることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。   In order to achieve the above object, the present invention includes a foaming polystyrene-based resin particle composed of a polystyrene-based resin containing a foaming agent, and a sulfur-based antioxidant in a range of 5 to 300 mass ppm with respect to the polystyrene-based resin. An expandable polystyrene resin particle is provided.

本発明の発泡性ポリスチレン系樹脂粒子において、前記イオウ系酸化防止剤が、ジアルキルチオジプロピオネートからなる群から選択される1種又は2種以上であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the sulfur-based antioxidant is preferably one or more selected from the group consisting of dialkylthiodipropionates.

また本発明は、前記発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子を提供する。   The present invention also provides polystyrene resin pre-expanded particles obtained by heating the expandable polystyrene resin particles.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin pre-expanded particles in a cavity of a molding die and heating and foaming.

また本発明は、水系懸濁液中にスチレン系単量体を主成分とする重合性単量体を分散させ重合を行い、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る該粒子の製造方法において、
重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
In the present invention, a polymerizable monomer containing a styrene monomer as a main component is dispersed in an aqueous suspension for polymerization, and a foaming agent is added during the polymerization or after the completion of the polymerization to expand the polystyrene. In the method for producing the particles to obtain resin particles,
The expandable polystyrene resin particles, wherein 5 to 300 mass ppm of a sulfur-based antioxidant is added to the final polystyrene resin when the polymerization conversion of the polymerizable monomer is 80% or less. A manufacturing method is provided.

また本発明は、水系懸濁液中にポリスチレン系樹脂種粒子を分散させた後に、スチレン系単量体を主成分とする重合性単量体を該種粒子に吸収させて重合し、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る該粒子の製造方法において、
重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
In the present invention, after dispersing polystyrene resin seed particles in an aqueous suspension, a polymerizable monomer containing a styrene monomer as a main component is absorbed into the seed particles and polymerized. Alternatively, in the method for producing the particles, the foamable polystyrene-based resin particles are obtained by containing a foaming agent after the completion of polymerization.
The expandable polystyrene resin particles, wherein 5 to 300 mass ppm of a sulfur-based antioxidant is added to the final polystyrene resin when the polymerization conversion of the polymerizable monomer is 80% or less. A manufacturing method is provided.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記イオウ系酸化防止剤が、ジアルキルチオジプロピオネートからなる群から選択される1種又は2種以上であることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the sulfur-based antioxidant is preferably one or more selected from the group consisting of dialkylthiodipropionates.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記重合性単量体は、スチレン系単量体95.0〜99.5質量%、及びアクリル酸エステル0.5〜5.0質量%からなることが好ましい。   In the method for producing expandable polystyrene resin particles of the present invention, the polymerizable monomer is a styrene monomer of 95.0 to 99.5% by mass and an acrylate ester of 0.5 to 5.0% by mass. Preferably it consists of.

また本発明は、前記発泡性ポリスチレン系樹脂粒子の製造方法により得られた発泡性ポリスチレン系樹脂粒子を加熱してポリスチレン系樹脂予備発泡粒子を得るポリスチレン系樹脂予備発泡粒子の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the polystyrene-type resin pre-expanded particle which heats the expandable polystyrene-type resin particle obtained by the manufacturing method of the said expandable polystyrene-type resin particle, and obtains the polystyrene-type resin pre-expanded particle.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子の製造方法により得られたポリスチレン系樹脂予備発泡粒子を提供する。   Moreover, this invention provides the polystyrene resin pre-expanded particle obtained by the manufacturing method of the said polystyrene-type resin pre-expanded particle.

また本発明は、前記ポリスチレン系樹脂予備発泡粒子の製造方法により得られたポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させてポリスチレン系樹脂発泡成形体を得るポリスチレン系樹脂発泡成形体の製造方法を提供する。   The present invention also provides a polystyrene resin foam molded article obtained by filling the polystyrene resin prefoamed particles obtained by the method for producing polystyrene resin prefoamed particles in a cavity of a mold and heating and foaming. A method for producing a resin foam molded article is provided.

また本発明は、前記ポリスチレン系樹脂発泡成形体の製造方法により得られたポリスチレン系樹脂発泡成形体を提供する。   Moreover, this invention provides the polystyrene-type resin foam molding obtained by the manufacturing method of the said polystyrene-type resin foam molding.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することによって、該イオウ系酸化防止剤が熟成促進剤として機能して、気泡の大きさが安定した高品質な発泡成形体を得るために必要な熟成の日数を大幅に短縮することができる。特に、夏場の気温上昇の際でも、発泡性ポリスチレン系樹脂粒子の熟成時間を短縮化でき、気泡の大きさが安定した高品質な発泡成形体を得ることが可能となる。このように本発明によれば、発泡性ポリスチレン系樹脂粒子製造後に行う熟成の時間を短縮し、早期に気泡の大きさを安定化できる発泡性ポリスチレン系樹脂粒子を提供できるので、ポリスチレン系樹脂発泡成形体を安定供給するための発泡性ポリスチレン系樹脂粒子のストック量を減らすことができ、倉庫の維持管理コストを低減でき、またポリスチレン系樹脂発泡成形体の生産量の変動要求にも迅速に対応することができる。
また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、イオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppmの範囲で添加するので、該イオウ系酸化防止剤の必要量が少なくて済み、該剤の添加によるコスト上昇が僅かであり、また該剤の添加によって得られる発泡成形体の機械強度の低下や外観劣化などの問題を生じることもない。
In the method for producing expandable polystyrene resin particles of the present invention, when the polymerization conversion rate of the polymerizable monomer is 80% or less, the sulfur-based antioxidant is added in an amount of 5 to 300 ppm by mass with respect to the final polystyrene resin. By adding the sulfur-based antioxidant functions as a ripening accelerator, the number of aging days required to obtain a high-quality foamed molded article having a stable bubble size can be greatly shortened. . In particular, even when the temperature rises in summer, the aging time of the expandable polystyrene resin particles can be shortened, and it becomes possible to obtain a high-quality foamed molded article having a stable bubble size. As described above, according to the present invention, it is possible to provide foamable polystyrene resin particles capable of shortening the aging time after the production of expandable polystyrene resin particles and stabilizing the bubble size at an early stage. Reduces the amount of expandable polystyrene resin particles stock for stable supply of molded products, reduces warehouse maintenance costs, and responds quickly to demands for fluctuations in the production volume of polystyrene resin foam molded products can do.
Moreover, since the manufacturing method of the expandable polystyrene-type resin particle of this invention adds sulfur type antioxidant in the range of 5-300 mass ppm with respect to the final production | generation polystyrene type resin, it is necessary for this sulfur type antioxidant. The amount is small, the cost increase due to the addition of the agent is slight, and problems such as a decrease in mechanical strength and appearance deterioration of the foamed molded article obtained by the addition of the agent are not caused.

本発明の実施例の結果を示し、実施例1と比較例1で製造した発泡性ポリスチレン系樹脂粒子の熟成時間と予備発泡粒子の気泡径との関係を示すグラフである。It is a graph which shows the result of the Example of this invention, and shows the relationship between the ageing | curing | ripening time of the expandable polystyrene-type resin particle manufactured by Example 1 and the comparative example 1, and the bubble diameter of a pre-expanded particle.

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、
(1)水系懸濁液中にスチレン系単量体を主成分とする重合性単量体を分散させ重合を行い、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る、いわゆる懸濁重合法、又は、
(2)水系懸濁液中にポリスチレン系樹脂種粒子を分散させた後に、スチレン系単量体を主成分とする重合性単量体を該種粒子に吸収させて重合し、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る、いわゆるシード重合法、
のいずれかの方法によって発泡性ポリスチレン系樹脂粒子を得る製造方法において、重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することを特徴としている。
The method for producing the expandable polystyrene resin particles of the present invention,
(1) Polymerization is carried out by dispersing a polymerizable monomer containing a styrene monomer as a main component in an aqueous suspension, and a foaming agent is added during the polymerization or after completion of the polymerization to expand the polystyrene resin particles. So-called suspension polymerization method, or
(2) After dispersing the polystyrene resin seed particles in the aqueous suspension, the seed particles are allowed to absorb the polymerizable monomer and polymerize, and during the polymerization, A so-called seed polymerization method in which a foaming polystyrene resin particle is obtained by adding a foaming agent after completion of the polymerization,
In the production method for obtaining expandable polystyrene resin particles by any one of the methods, when the polymerization conversion rate of the polymerizable monomer is 80% or less, the sulfur-based antioxidant is added to the final produced polystyrene resin. It is characterized by adding ~ 300 mass ppm.

本発明に使用される重合性単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系単量体を主成分とし、スチレン系単量体を通常、50質量%以上、好ましくは80質量%以上含む。これらのスチレン系単量体の中でも、スチレンが特に好ましい。
更にスチレン系単量体に併用可能な重合性単量体としては、スチレン系単量体と共重合可能なものであれば特に限定されず、ジビニルベンゼン、アルキレングリコールジメタクリレート、アクリロニトリル、メチルメタクリレート等が挙げられる。
本発明の好ましい実施形態において、前記重合性単量体は、スチレン系単量体95.0〜99.5質量%、及びアクリル酸エステル0.5〜5.0質量%からなることが好ましい。
The polymerizable monomer used in the present invention is mainly composed of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene. The styrene monomer is usually contained in an amount of 50% by mass or more, preferably 80% by mass or more. Of these styrene monomers, styrene is particularly preferable.
Further, the polymerizable monomer that can be used in combination with the styrene monomer is not particularly limited as long as it is copolymerizable with the styrene monomer, and divinylbenzene, alkylene glycol dimethacrylate, acrylonitrile, methyl methacrylate, and the like. Is mentioned.
In a preferred embodiment of the present invention, the polymerizable monomer preferably comprises 95.0 to 99.5% by mass of a styrene monomer and 0.5 to 5.0% by mass of an acrylate ester.

一方、本発明において(2)シード重合法で発泡性ポリスチレン系樹脂粒子を製造する場合、前記懸濁重合法により得られるポリスチレン系樹脂粒子を種粒子として使用したり、ポリスチレン系樹脂を押出機によりあらかじめ所望の粒子径に調整した後、種粒子として使用しても良い。押出機を用いて種粒子を作製する場合、使用するポリスチレン系樹脂は、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料などが挙げられる。   On the other hand, in the present invention, when producing expandable polystyrene resin particles by (2) seed polymerization method, polystyrene resin particles obtained by the suspension polymerization method can be used as seed particles, or polystyrene resin can be used by an extruder. After adjusting to a desired particle diameter in advance, it may be used as seed particles. When seed particles are produced using an extruder, the polystyrene resin used is not a recycled material such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization. A polystyrene resin (virgin polystyrene) can be used, and a recycled raw material obtained by regenerating a used polystyrene resin foam molded article can be used. Examples of this recycled material include recycled polystyrene resin foam molded products such as fish boxes, household appliance cushioning materials, food packaging trays, etc., and recycled by the limonene dissolution method or heating volume reduction method. It is done.

シード重合法における種粒子の使用割合は、重合終了時の重合生成物全量に対して、10〜90質量%程度、好ましくは15〜50質量%である。種粒子の使用割合が10質量%を下回るとスチレン系単量体を供給する際に、重合体粒子の重合率を適正範囲に制御することが困難となり、得られた重合体が高分子化したり、微粉末状重合体を発生させて、製造効率を低下させる等、工業的に不利となるので好ましくない。また、種粒子の使用量が90質量%を上回ると熟成短縮効果が低下するだけでなく、優れた発泡成形性が得られ難くなるので好ましくない。   The use ratio of the seed particles in the seed polymerization method is about 10 to 90% by mass, preferably 15 to 50% by mass with respect to the total amount of the polymerization product at the end of the polymerization. When the use ratio of the seed particles is less than 10% by mass, it becomes difficult to control the polymerization rate of the polymer particles within an appropriate range when supplying the styrene monomer, and the resulting polymer may be polymerized. It is not preferable because it produces industrial disadvantages such as generation of a fine powdery polymer to reduce production efficiency. On the other hand, if the amount of seed particles used exceeds 90% by mass, not only the effect of shortening the ripening is reduced, but it becomes difficult to obtain excellent foam moldability.

本発明において、製造する発泡性ポリスチレン系樹脂粒子の粒子径は、特に限定されないが、成形時の成形型キャビティ内への予備発泡粒子の充填性等から、通常、0.3〜2.0mm程度であり、0.3〜1.4mmが好ましい。   In the present invention, the particle diameter of the expandable polystyrene resin particles to be produced is not particularly limited, but is usually about 0.3 to 2.0 mm from the filling property of the pre-expanded particles in the mold cavity at the time of molding. And 0.3 to 1.4 mm is preferable.

本発明において、製造する発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂の分子量は、GPC法による質量平均分子量(Mw)が17万〜70万であるのが好ましい。スチレン系樹脂粒子の分子量が17万を下回ると発泡成形体の強度が低下し、また70万を上回ると充分な発泡性が得られ難くなるので好ましくない。   In the present invention, the molecular weight of the polystyrene resin in the expandable polystyrene resin particles to be produced preferably has a mass average molecular weight (Mw) by GPC method of 170,000 to 700,000. If the molecular weight of the styrenic resin particles is less than 170,000, the strength of the foamed molded product is lowered, and if it exceeds 700,000, it is difficult to obtain sufficient foamability, which is not preferable.

前記(1)懸濁重合法および(2)シード重合法で使用する重合開始剤としては、通常、スチレンの懸濁重合において用いられるものであれば特に限定されず、例えばラジカル発生型重合開始剤を用いることができる。具体的には、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独で、または2種以上を組合わせて用いることができる。   The polymerization initiator used in the above (1) suspension polymerization method and (2) seed polymerization method is not particularly limited as long as it is usually used in suspension polymerization of styrene. For example, a radical generating polymerization initiator is used. Can be used. Specifically, benzoyl peroxide, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butylperoxide Organic peroxides such as oxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobisdimethylvaleronitrile, etc. Of the azo compound. These polymerization initiators can be used alone or in combination of two or more.

前記の重合において、ポリスチレン系樹脂粒子中に残留するスチレン系単量体を低減するために、高温分解型の重合開始剤を使用し、最終の重合温度を115℃以上に設定するのが好ましい。高温分解型の重合開始剤としては、例えばt−ブチルパーオキシベンゾエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタンなどの半減期10時間を得るための温度が100〜115℃のものが挙げられる。なお、高温分解型の重合開始剤を過剰に加えると分解副生成物であるアルコール類が発生するので好ましくない。
また、前記の重合において、ポリスチレン系樹脂粒子の分子量を調整し、単量体の残留量を減少させるという点で、10時間の半減期を得るための分解温度が80〜120℃の範囲にある重合開始剤を2種以上組合わせて用いるのが好ましい。
In the polymerization described above, in order to reduce the styrene monomer remaining in the polystyrene resin particles, it is preferable to use a high temperature decomposition type polymerization initiator and set the final polymerization temperature to 115 ° C. or higher. Examples of the high-temperature decomposition type polymerization initiator include t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butyl peroxy. Examples include butane having a temperature of 100 to 115 ° C. for obtaining a half-life of 10 hours. An excessive addition of a high temperature decomposition type polymerization initiator is not preferable because alcohols as decomposition byproducts are generated.
In the polymerization, the decomposition temperature for obtaining a half-life of 10 hours is in the range of 80 to 120 ° C. in terms of adjusting the molecular weight of the polystyrene resin particles and reducing the residual amount of monomer. It is preferable to use a combination of two or more polymerization initiators.

前記(1)懸濁重合または(2)シード重合を行う際に、スチレン系単量体の小滴または種粒子を水性媒体中に分散させるために、懸濁剤を用いてもよい。懸濁剤としては、例えばポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。なお、難水溶性無機化合物を用いる場合にはアニオン界面活性剤を併用するのが好ましい。
前記アニオン界面活性剤としては、例えば脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩などが挙げられる。前記のようにして得られるポリスチレン系樹脂粒子に、懸濁重合含浸法あるいは後含浸法によって発泡剤および可塑剤を含浸させることにより、発泡性ポリスチレン系樹脂粒子を製造することができる。
In carrying out the (1) suspension polymerization or (2) seed polymerization, a suspending agent may be used to disperse styrene monomer droplets or seed particles in an aqueous medium. Examples of the suspending agent include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly water-soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. In addition, when using a slightly water-soluble inorganic compound, it is preferable to use an anionic surfactant together.
Examples of the anionic surfactant include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzenesulfonates, alkylnaphthalenesulfonates, dialkylsulfosuccinates, alkylsulfates. Sulfates such as acetates and α-olefin sulfonates; sulfates such as higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; alkyls And phosphoric acid ester salts such as ether phosphoric acid ester salts and alkyl phosphoric acid ester salts. Expandable polystyrene resin particles can be produced by impregnating the polystyrene resin particles obtained as described above with a foaming agent and a plasticizer by a suspension polymerization impregnation method or a post-impregnation method.

本発明において、使用するイオウ系酸化防止剤としては、特に限定されないが、例えばジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジトリデシルチオジプロピオネートなどのジアルキルチオジプロピオネート;4,6−ビス(オクチルチオメチル)−O−クレゾール等が挙げられ、これらのイオウ系酸化防止剤は、単独使用あるいは、2種類以上を併用しても良い。本発明に使用するイオウ系酸化防止剤の分子量としては特に限定されない。   In the present invention, the sulfur-based antioxidant to be used is not particularly limited. Alkylthiodipropionate; 4,6-bis (octylthiomethyl) -O-cresol and the like. These sulfur-based antioxidants may be used alone or in combination of two or more. The molecular weight of the sulfur-based antioxidant used in the present invention is not particularly limited.

本発明において、イオウ系酸化防止剤の添加量としては、最終生成ポリスチレン系樹脂粒子に対して5〜300質量ppmの範囲であり、好ましくは5〜200質量ppmの範囲、更に好ましくは10〜150質量ppmの範囲である。
添加するイオウ系酸化防止剤が5質量ppm未満では、発泡性ポリスチレン系樹脂粒子製造後に行う熟成の時間を短縮し、早期に気泡の大きさを安定化できると言う本発明の効果が十分に得られなくなり、熟成にかなりの日数を要するようになる。添加するイオウ系酸化防止剤が300質量ppmを超えると、その発泡性ポリスチレン系樹脂粒子を予備発泡し、得られた予備発泡粒子を型内発泡成形して発泡成形体を製造する場合に、成形時の成形性が低下して好ましくない。
In the present invention, the addition amount of the sulfur-based antioxidant is in the range of 5 to 300 mass ppm, preferably in the range of 5 to 200 mass ppm, more preferably in the range of 10 to 150, based on the final polystyrene resin particles. It is the range of mass ppm.
When the sulfur-based antioxidant to be added is less than 5 ppm by mass, the effect of the present invention that the time for aging after the production of expandable polystyrene resin particles can be shortened and the size of bubbles can be stabilized at an early stage can be sufficiently obtained. It will no longer be possible and will take a considerable number of days to mature. When the sulfur-based antioxidant to be added exceeds 300 ppm by mass, the foamable polystyrene resin particles are pre-foamed, and the pre-foamed particles thus obtained are molded in-mold to produce a foam molded product. The moldability at the time is lowered, which is not preferable.

本発明においてイオウ系酸化防止剤を添加する場合、(1)懸濁重合では、重合性単量体の重合転化率が80%以下である時点で添加し、好ましくは70%以下の時点で添加する。また、(2)シード重合では、種粒子の重合転化率が80%以下である時点で添加し、好ましくは70%以下である時点で添加する。重合転化率が80%を超えた時点では、イオウ系酸化防止剤を添加する効果が非常に少ない。   When adding a sulfur-based antioxidant in the present invention, (1) In suspension polymerization, it is added when the polymerization conversion rate of the polymerizable monomer is 80% or less, preferably when it is 70% or less. To do. In addition, in (2) seed polymerization, it is added when the polymerization conversion rate of the seed particles is 80% or less, preferably when it is 70% or less. When the polymerization conversion rate exceeds 80%, the effect of adding the sulfur-based antioxidant is very small.

本発明で用いられる発泡剤としては、一般の熱可塑性樹脂発泡体の製造に用いられている炭素数5以下の脂肪族炭化水素、例えばn−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等が挙げられ、2種以上を併用しても良い。中でもブタン(イソブタンを含む)が好ましい。   Examples of the foaming agent used in the present invention include aliphatic hydrocarbons having 5 or less carbon atoms, such as n-butane, isobutane, n-pentane, isopentane, and neopentane, which are used in the production of general thermoplastic resin foams. 2 or more may be used in combination. Of these, butane (including isobutane) is preferred.

前記発泡剤の含有割合は、ポリスチレン系樹脂粒子に対して5〜9質量%の範囲が好ましく、5〜8質量%がより好ましい。前記含有割合が5質量%を下回ると、低密度化が困難であるばかりでなく、成形時の二次発泡力を高める効果が得られないために発泡成形体の外観が劣るようになる。また、含有割合が9質量%を上回ると、発泡成形時の収縮、予備発泡粒子中の残存ガスの調整時間の遅延、かつ成形サイクルが長くなり、生産性の点から好ましくない。   The content of the foaming agent is preferably in the range of 5 to 9% by mass, more preferably 5 to 8% by mass with respect to the polystyrene resin particles. When the content ratio is less than 5% by mass, not only is it difficult to reduce the density, but the effect of increasing the secondary foaming power during molding cannot be obtained, so that the appearance of the foamed molded product is deteriorated. On the other hand, if the content ratio exceeds 9% by mass, the shrinkage during foam molding, the delay in adjusting the residual gas in the pre-expanded particles, and the molding cycle become longer, which is not preferable from the viewpoint of productivity.

本発明の発泡性ポリスチレン系樹脂粒子の製造においては、物性を損なわない範囲内において、従来から発泡性ポリスチレン系樹脂粒子の製造に使用されている、可塑剤、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等を必要に応じて適宜使用してもよい。また、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。   In the production of the expandable polystyrene resin particles of the present invention, the plasticizer, the foamed cell nucleating agent, the filler, which have been conventionally used for the production of expandable polystyrene resin particles within the range that does not impair the physical properties. A flame retardant, a flame retardant aid, a lubricant, a colorant, and the like may be appropriately used as necessary. In addition, if powder metal soaps such as zinc stearate are applied to the surface of the expandable styrene resin particles, the bonding between the polystyrene resin pre-expanded particles is reduced in the pre-expanding step of the expandable polystyrene resin particles. This is preferable.

本発明で用いられる可塑剤としては、発泡性ポリスチレン系樹脂粒子に含有させることにより、高発泡倍率(低密度)の発泡成形体が得られるという点で重要な物質である。そのような可塑剤としては、一般にスチレン系樹脂に使用されるものであれば特に限定されず、例えばフタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート等のグリセリン脂肪酸エステル、ジアセチル化モノステアリン酸グリセリド、ジイソブチルアジペート等のアジピン酸エステル等が挙げられる。なかでも、発泡成形体が建築用断熱材として用いられた場合、室内の空気を汚染しないという点で、ジイソブチルアジペートのようなアジピン酸エステル等が好適である。   The plasticizer used in the present invention is an important substance in that a foamed molded article having a high expansion ratio (low density) can be obtained by incorporating it into expandable polystyrene resin particles. Such a plasticizer is not particularly limited as long as it is generally used for a styrene resin, and examples thereof include glycerin fatty acid esters such as phthalic acid ester, glycerin diacetomonolaurate, and glycerin tristearate, and diacetylated monostearin. Examples thereof include acid glycerides and adipic acid esters such as diisobutyl adipate. Especially, when a foaming molding is used as a heat insulating material for construction, adipic acid ester such as diisobutyl adipate is preferable in that it does not contaminate indoor air.

可塑剤の含有割合は、ポリスチレン系樹脂粒子に対して0.2〜2質量%程度であり、0.3〜1.8質量%が好ましい。可塑剤の含有割合が0.2質量%を下回ると十分な可塑化効果が得られず、高発泡化が困難である。一方、可塑剤の含有割合が2質量%を上回ると発泡成形時に収縮および溶けが発生するばかりか、製造コストが高くなり好ましくない。
可塑剤は、ポリスチレン系樹脂粒子の重合段階および/またはポリスチレン系樹脂粒子に発泡剤を含浸させる工程等で添加されてもよい。また、押出機等で造粒する際に添加してポリスチレン系樹脂種粒子に含有させてもよい。発泡剤および可塑剤をポリスチレン系樹脂粒子に含有させる温度は、ポリスチレン系樹脂粒子の粒子径により異なるが、通常60〜120℃程度、好ましくは70〜100℃である。含有させるときの温度が60℃を下回ると処理時間が長くなり好ましくない。また、120℃を上回ると樹脂粒子同士の結合粒が多くなり好ましくない。
The content rate of a plasticizer is about 0.2-2 mass% with respect to a polystyrene-type resin particle, and 0.3-1.8 mass% is preferable. When the content of the plasticizer is less than 0.2% by mass, a sufficient plasticizing effect cannot be obtained, and it is difficult to achieve high foaming. On the other hand, when the content of the plasticizer exceeds 2% by mass, not only shrinkage and melting occur during foam molding, but also the production cost increases, which is not preferable.
The plasticizer may be added in a polymerization step of polystyrene resin particles and / or a step of impregnating polystyrene resin particles with a foaming agent. Moreover, you may add when granulating with an extruder etc. and you may make it contain in a polystyrene-type resin seed particle. The temperature at which the foaming agent and the plasticizer are contained in the polystyrene resin particles varies depending on the particle diameter of the polystyrene resin particles, but is usually about 60 to 120 ° C, preferably 70 to 100 ° C. When the temperature at the time of inclusion is less than 60 ° C., the treatment time becomes long, which is not preferable. Moreover, when it exceeds 120 degreeC, the bond particle | grains of resin particles will increase and it is unpreferable.

前記難燃剤としては、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤が好ましい。特に好ましい難燃剤としては、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上が挙げられる。これらの難燃剤の中でも、特に、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。   The flame retardant has a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a 5% by mass decomposition temperature of the flame retardant of 200 to 300. Flame retardants that are in the range of ° C are preferred. Particularly preferred flame retardants include one or more selected from the group consisting of tetrabromobisphenol A or derivatives thereof. Among these flame retardants, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A- It is preferable that it is 1 type, or 2 or more types selected from the group consisting of bis (allyl ether).

前述した製造方法によって製造された本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂発泡成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、ポリスチレン系樹脂予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべきポリスチレン系樹脂発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.015〜0.2g/cmの範囲とし、0.02〜0.10g/cmの範囲が好ましく、0.02〜0.05g/cmの範囲がより好ましい。 The expandable polystyrene resin particles of the present invention manufactured by the above-described manufacturing method are pre-expanded by heating with water vapor heating or the like using a well-known apparatus and method in the manufacturing field of polystyrene resin foam moldings. Resin pre-expanded particles (hereinafter referred to as pre-expanded particles). The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the polystyrene-based resin foam molding to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.015~0.2g / cm 3, preferably in the range of 0.02~0.10g / cm 3, 0.02~0.05g A range of / cm 3 is more preferable.

前記予備発泡粒子は、ポリスチレン系樹脂発泡成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、ポリスチレン系樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、通常は0.015〜0.2g/cmの範囲とし、0.02〜0.10g/cmの範囲が好ましく、0.02〜0.05g/cmの範囲がより好ましい。該発泡成形体の密度が0.015g/cm未満であると、該発泡成形体の強度が低下するため好ましくない。一方、0.2g/cmを超えると、予備発泡粒子製造時にばらつきが大きくなり好ましくない。
The pre-expanded particles are formed by in-mold foam molding by filling the pre-expanded particles into a cavity of a molding die using a well-known apparatus and technique in the field of manufacturing polystyrene resin foam moldings, and heating by steam heating or the like. A polystyrene resin foam molded body (hereinafter referred to as a foam molded body) is produced.
Although the density of the foamed molded article of the present invention is not particularly limited, usually in the range of 0.015~0.2g / cm 3, preferably in the range of 0.02~0.10g / cm 3, 0.02~0 A range of 0.05 g / cm 3 is more preferable. If the density of the foamed molded product is less than 0.015 g / cm 3 , the strength of the foamed molded product decreases, which is not preferable. On the other hand, if it exceeds 0.2 g / cm 3 , the variation becomes large during the production of the pre-foamed particles, which is not preferable.

なお、本発明において、予備発泡粒子の嵩密度・嵩発泡倍数、及び発泡成形体の密度・発泡倍数は、次の通り測定された値を指す。   In the present invention, the bulk density / bulk foaming factor of the pre-expanded particles and the density / foaming factor of the foamed molded product indicate values measured as follows.

<予備発泡粒子の嵩密度・嵩発泡倍数>
約5gの予備発泡粒子の質量(a)を小数以下2位で秤量する。次に、最小目盛り単位が5cmである500cmメスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、次式により予備発泡粒子の嵩密度と嵩発泡倍数を求めた。
嵩密度(g/cm)=(b)/(a)
嵩発泡倍数=1/嵩密度(g/cm
<Bulk density / bulk expansion ratio of pre-expanded particles>
The mass (a) of about 5 g of pre-expanded particles is weighed in the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum scale unit of 5 cm 3 , and a circular resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide in the center, A pressure tool in which a rod-shaped resin plate having a length of about 30 cm was fixed upright was applied, the volume (b) of the pre-expanded particles was read, and the bulk density and the bulk expansion factor of the pre-expanded particles were determined by the following equations.
Bulk density (g / cm 3 ) = (b) / (a)
Bulk foaming factor = 1 / bulk density (g / cm 3 )

<発泡成形体の密度・発泡倍数>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数(倍)=1/密度(g/cm
<Density and expansion ratio of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test specimen condition adjustment and measurement specimens were cut from a sample that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C ± 2 ° C x 50% ± 5% or 27 ° C ± 2 ° C x 65% ± 5%. It has been left for more than an hour.
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming multiple (times) = 1 / density (g / cm 3 )

本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することによって、該イオウ系酸化防止剤が熟成促進剤として機能して、気泡の大きさが安定した高品質な発泡成形体を得るために必要な熟成の日数を大幅に短縮することができる。特に、夏場の気温上昇の際でも、発泡性ポリスチレン系樹脂粒子の熟成時間を短縮化でき、気泡の大きさが安定した高品質な発泡成形体を得ることが可能となる。このように本発明によれば、発泡性ポリスチレン系樹脂粒子製造後に行う熟成の時間を短縮し、早期に気泡の大きさを安定化できる発泡性ポリスチレン系樹脂粒子を提供できるので、ポリスチレン系樹脂発泡成形体を安定供給するための発泡性ポリスチレン系樹脂粒子のストック量を減らすことができ、倉庫の維持管理コストを低減でき、またポリスチレン系樹脂発泡成形体の生産量の変動要求にも迅速に対応することができる。
また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、イオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppmの範囲で添加するので、該イオウ系酸化防止剤の必要量が少なくて済み、該剤の添加によるコスト上昇が僅かであり、また該剤の添加によって得られる発泡成形体の機械強度の低下や外観劣化などの問題を生じることもない。
In the method for producing expandable polystyrene resin particles of the present invention, when the polymerization conversion rate of the polymerizable monomer is 80% or less, the sulfur-based antioxidant is added in an amount of 5 to 300 ppm by mass with respect to the final polystyrene resin. By adding the sulfur-based antioxidant functions as a ripening accelerator, the number of aging days required to obtain a high-quality foamed molded article having a stable bubble size can be greatly shortened. . In particular, even when the temperature rises in summer, the aging time of the expandable polystyrene resin particles can be shortened, and it becomes possible to obtain a high-quality foamed molded article having a stable bubble size. As described above, according to the present invention, it is possible to provide foamable polystyrene resin particles capable of shortening the aging time after the production of expandable polystyrene resin particles and stabilizing the bubble size at an early stage. Reduces the amount of expandable polystyrene resin particles stock for stable supply of molded products, reduces warehouse maintenance costs, and responds quickly to demands for fluctuations in the production volume of polystyrene resin foam molded products can do.
Moreover, since the manufacturing method of the expandable polystyrene-type resin particle of this invention adds sulfur type antioxidant in the range of 5-300 mass ppm with respect to the final production | generation polystyrene type resin, it is necessary for this sulfur type antioxidant. The amount is small, the cost increase due to the addition of the agent is slight, and problems such as a decrease in mechanical strength and appearance deterioration of the foamed molded article obtained by the addition of the agent are not caused.

以下、本発明を実施例および比較例にて詳細に説明するが、本発明はこれら実施例により限定されるものではない。
後述する実施例、比較例において、イオウ系酸化防止剤(以下、酸化防止剤と略記する場合がある)添加時の重合転化率、製造した発泡性ポリスチレン系樹脂粒子の熟成時間、成形性評価及び総合評価は、下記の方法により行う。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by these Examples.
In Examples and Comparative Examples described later, the polymerization conversion rate at the time of addition of a sulfur-based antioxidant (hereinafter sometimes abbreviated as an antioxidant), the aging time of the produced expandable polystyrene resin particles, the moldability evaluation, and Comprehensive evaluation is performed by the following method.

<酸化防止剤添加時の重合転化率>
なお、本発明における重合転化率は、以下の式で示される。
重合転化率(質量%)=(A−B)×100/A
ただし、Aは、分散媒から分離し水分を除いた未反応の単量体を含んだスチレン系樹脂粒子の質量(g)であり、Bは、上記未反応単量体を含む樹脂粒子中の未反応単量体の質量(g)である。AおよびBは、例えば、ガスクロマトグラフ等で定量される。
<Polymerization conversion rate when antioxidant is added>
In addition, the polymerization conversion rate in this invention is shown by the following formula | equation.
Polymerization conversion rate (% by mass) = (A−B) × 100 / A
However, A is the mass (g) of the styrene resin particle containing the unreacted monomer separated from the dispersion medium and excluding moisture, and B is the resin particle containing the unreacted monomer. It is the mass (g) of the unreacted monomer. A and B are quantified by, for example, a gas chromatograph or the like.

<発泡性ポリスチレン系樹脂粒子の熟成完了評価>
発泡性ポリスチレン系樹脂粒子を1kg、厚み0.3mmのポリエチレン製の袋に入れ、45±2℃に設定した循環式温風恒温槽に保管し、1時間加熱した。
加熱後、発泡性ポリスチレン系樹脂粒子を嵩密度0.0125g/cmに予備発泡し、下記の方法にて予備発泡粒子の平均気泡径を測定した。
(平均気泡径)
平均気泡径は、ASTM D−2842−69に準拠し、以下の条件で測定した。
走査型電子顕微鏡として日立製作所社製 S−3000Nを用い、予備発泡粒子断面の写真撮影(撮影倍数:100倍)を行い、写真上にて切断面の一直線(60mm)上にかかる気泡数から平均弦長(t)を測定し、気泡の直径(d)は次式により算出した。
平均弦長(t)=60/(気泡数×撮影倍数)、平均気泡径(d)=t/0.616
一方、加熱前の発泡性ポリスチレン系樹脂粒子においても同様の評価を行い、加熱前後で平均気泡径を比較した。
所定の加熱条件下で加熱前後の平均気泡径の差が±20μmである場合を熟成完了、加熱前後の平均気泡径の差が20μmを超える場合、熟成は未完了とした。この方法で、熟成完了時間を日単位で測定し、次の判断基準で熟成完了までの日数を評価した。
熟成完了日数:3日以内 :良好(◎)
熟成完了日数:3日〜5日 :やや良好(○)
熟成完了日数:5日以上 :不良(×)
<Rating completion evaluation of expandable polystyrene resin particles>
1 kg of expandable polystyrene resin particles were put in a polyethylene bag having a thickness of 0.3 mm, stored in a circulating hot air thermostat set at 45 ± 2 ° C., and heated for 1 hour.
After heating, the expandable polystyrene resin particles were pre-expanded to a bulk density of 0.0125 g / cm 3, and the average cell diameter of the pre-expanded particles was measured by the following method.
(Average bubble diameter)
The average cell diameter was measured under the following conditions based on ASTM D-2842-69.
Using S-3000N manufactured by Hitachi, Ltd. as a scanning electron microscope, a photograph of the cross-section of the pre-expanded particles (photographing magnification: 100 times) was taken, and the average was calculated from the number of bubbles on a straight line (60 mm) of the cut surface on the photograph. The chord length (t) was measured, and the bubble diameter (d) was calculated by the following equation.
Average chord length (t) = 60 / (number of bubbles × multiple of photographing), average bubble diameter (d) = t / 0.616
On the other hand, the same evaluation was performed on expandable polystyrene resin particles before heating, and the average cell diameter was compared before and after heating.
Aging was completed when the difference in average bubble diameter before and after heating was ± 20 μm under predetermined heating conditions, and aging was not completed when the difference in average bubble diameter before and after heating exceeded 20 μm. By this method, the aging completion time was measured in units of days, and the number of days until aging was completed was evaluated according to the following criteria.
Aging completion days: Within 3 days: Good (◎)
Aging completion days: 3 to 5 days: Slightly good (○)
Aging completion days: 5 days or more: Defect (x)

<成形性評価>
発泡性ポリスチレン系樹脂粒子を水蒸気にて加熱し、嵩密度が0.0125g/cm(発泡倍数80倍)の予備発泡粒子を得た。
この予備発泡粒子温度23℃、湿度50℃で24時間保管した後、型内発泡成形を行った。型内発泡成形は、下記の条件にて行い、得られた発泡成形体に収縮が発生するかを目視にて確認した。
(型内成形条件)
・発泡ポリスチレン用成形機:積水工機社製 ACE−3SP
・発泡成形体外寸 : 300×400×25mm
・発泡成形体密度 : 0.0125g/cm(発泡倍数80倍)
・成形蒸気圧力 : 0.08MPa
・加熱・冷却条件 : 成形型加熱(3秒)、一方加熱(5秒)、逆一方加熱(3秒)、両面加熱(10秒)、水冷(3秒)、冷却時間150秒
ここで、発泡成形体に収縮が見られない場合を良好(○)とし、収縮が見られた場合を不良(×)として評価した。
<Formability evaluation>
The expandable polystyrene resin particles were heated with water vapor to obtain pre-expanded particles having a bulk density of 0.0125 g / cm 3 (expansion factor 80 times).
After pre-expanded particle temperature of 23 ° C. and humidity of 50 ° C. for 24 hours, in-mold foam molding was performed. In-mold foam molding was performed under the following conditions, and it was visually confirmed whether shrinkage occurred in the obtained foam molded article.
(In-mold molding conditions)
-Foam polystyrene molding machine: ACE-3SP manufactured by Sekisui Koki Co., Ltd.
-Foam molded body outer dimensions: 300 x 400 x 25 mm
-Foam molded body density: 0.0125 g / cm 3 (expansion factor 80 times)
・ Forming steam pressure: 0.08MPa
Heating / cooling conditions: Mold heating (3 seconds), one-side heating (5 seconds), reverse one-side heating (3 seconds), double-sided heating (10 seconds), water cooling (3 seconds), cooling time 150 seconds Here, foaming The case where shrinkage was not observed in the molded product was evaluated as good (◯), and the case where shrinkage was observed was evaluated as defective (x).

<総合評価>
前記<発泡性ポリスチレン系樹脂粒子の熟成完了評価>及び<成形性評価>において、不良(×)が無い場合に総合評価良好(○)とし、一つでも不良(×)がある場合に総合評価不良(×)として評価した。
<Comprehensive evaluation>
In the above <Evaluation of completion of maturation of expandable polystyrene resin particles> and <Moldability evaluation> Evaluated as defective (x).

[実施例1]
内容量100Lの攪拌機付き重合容器に、水40.0L、第三リン酸カルシウム(懸濁剤)100gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)2.0gを入れ、続いて攪拌しながらジステアリルチオジプロピオネート(イオウ系酸化防止剤)2.0g、ベンゾイルパーオキサイド(重合開始剤)96.0g、t−ブチルパーオキシベンゾエート(重合開始剤)28.0gを溶解したスチレン40.0kgを添加し、90℃に昇温して重合温度とした。この温度で6時間保持し、さらに125℃に昇温してから2時間後、90℃まで冷却した。
次いで、90℃に保持したままで、ジイソブチルアジペート(可塑剤)320.0g、シクロヘキサン400.0gを重合容器内に入れ、更にブタン(発泡剤)3200gを圧入して6時間保持した。次いで、30℃以下まで冷却し、発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡性ポリスチレン系樹脂粒子を13℃にて保管し、1日ごとに熟成状態を確認したところ、2日目で熟成が完了していた。
更に、嵩密度0.0125g/cmに予備発泡を行い、成形性評価した結果、収縮もなく良好な発泡成形体が得られた。
[Example 1]
In a polymerization vessel equipped with a stirrer with an internal volume of 100 L, 40.0 L of water, 100 g of tribasic calcium phosphate (suspension) and 2.0 g of calcium dodecylbenzenesulfonate (surfactant) are added, and then distearylthiodipro is stirred. Add 40.0 kg of styrene in which 2.0 g of pionate (sulfur antioxidant), 96.0 g of benzoyl peroxide (polymerization initiator) and 28.0 g of t-butylperoxybenzoate (polymerization initiator) were dissolved, The temperature was raised to 90 ° C. to obtain a polymerization temperature. The temperature was maintained at this temperature for 6 hours, and the temperature was further raised to 125 ° C., and then 2 hours later, it was cooled to 90 ° C.
Next, while maintaining the temperature at 90 ° C., 320.0 g of diisobutyl adipate (plasticizer) and 400.0 g of cyclohexane were placed in the polymerization vessel, and 3200 g of butane (foaming agent) was further injected and held for 6 hours. Subsequently, it cooled to 30 degrees C or less, and the expandable polystyrene-type resin particle was obtained.
The obtained expandable polystyrene resin particles were stored at 13 ° C., and the aging state was confirmed every day. The aging was completed on the second day.
Furthermore, preliminary foaming was performed to a bulk density of 0.0125 g / cm 3 and the moldability was evaluated. As a result, a good foamed molded article without shrinkage was obtained.

[実施例2]
内容量100Lの攪拌機付き重合容器に、水40.0L、第三リン酸カルシウム(懸濁剤)100gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)2.0gを入れ、続いて攪拌しながらベンゾイルパーオキサイド(重合開始剤)96.0g、t−ブチルパーオキシベンゾエート(重合開始剤)28.0g、スチレン40.0kgを添加し、90℃に昇温して重合温度とした。この温度で6時間保持し、さらに125℃に昇温してから2時間後、90℃まで冷却し、スチレン系樹脂粒子(A)を得た。
スチレン樹脂粒子(A)を篩分けして粒子径0.6〜0.9mmのスチレン樹脂粒子(B)とした。
内容量100Lの攪拌機付き重合容器に、水40.0L、スチレン樹脂粒子(B)10.0kg、ピロリン酸マグネシウム(懸濁剤)100.0gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)30.0gを入れ、攪拌しながら75℃に昇温した。次いで、ベンゾイルパーオキサイド(重合開始剤)144.0g、t−ブチルパーオキシベンゾエート(重合開始剤)24.0g、ジステアリルチオジプロピオネート(イオウ系酸化防止剤)2.0gをスチレン4300gに溶解し重合容器に入れた。30分後108℃まで150分で昇温しながらを溶解したスチレン25700gを150分間かけてポンプで一定量づつ重合容器に供給した。次いで、125℃に昇温してから2時間後に90℃まで冷却した。次いで、ジイソブチルアジペート(可塑剤)320.0g、シクロヘキサン400.0gを重合容器内に入れ、ブタン(炭化水素系発泡剤)3200gを圧入して6時間保持した。次いで、30℃以下まで冷却し、発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子を13℃にて保管し、1日ごとに熟成状態を確認したところ、2日目で熟成が完了していた。更に、嵩密度0.0125g/cmに予備発泡を行い、成形性評価した結果、収縮もなく良好な発泡成形体が得られた。
[Example 2]
In a polymerization vessel equipped with a stirrer having an internal volume of 100 L, 40.0 L of water, 100 g of tribasic calcium phosphate (suspension) and 2.0 g of calcium dodecylbenzenesulfonate (surfactant) were added, followed by stirring with benzoyl peroxide ( Polymerization initiator) 96.0 g, t-butyl peroxybenzoate (polymerization initiator) 28.0 g, and styrene 40.0 kg were added, and the temperature was raised to 90 ° C. to obtain a polymerization temperature. The temperature was maintained at this temperature for 6 hours, and further raised to 125 ° C., then 2 hours later, cooled to 90 ° C. to obtain styrene resin particles (A).
The styrene resin particles (A) were sieved to obtain styrene resin particles (B) having a particle diameter of 0.6 to 0.9 mm.
In a polymerization vessel equipped with a stirrer with an internal volume of 100 L, 40.0 L of water, 10.0 kg of styrene resin particles (B), 100.0 g of magnesium pyrophosphate (suspending agent) and 30.0 g of calcium dodecylbenzenesulfonate (surfactant) The mixture was heated to 75 ° C. with stirring. Next, 144.0 g of benzoyl peroxide (polymerization initiator), 24.0 g of t-butylperoxybenzoate (polymerization initiator), and 2.0 g of distearyl thiodipropionate (sulfur antioxidant) are dissolved in 4300 g of styrene. And placed in a polymerization vessel. Thirty minutes later, 25700 g of styrene dissolved while heating up to 108 ° C. over 150 minutes was fed into the polymerization vessel by a constant amount over 150 minutes. Subsequently, after raising the temperature to 125 ° C., it was cooled to 90 ° C. 2 hours later. Next, 320.0 g of diisobutyl adipate (plasticizer) and 400.0 g of cyclohexane were placed in the polymerization vessel, and 3200 g of butane (hydrocarbon foaming agent) was injected and held for 6 hours. Subsequently, it cooled to 30 degrees C or less, and the expandable polystyrene-type resin particle was obtained. The obtained expandable polystyrene resin particles were stored at 13 ° C., and the aging state was confirmed every day. The aging was completed on the second day. Furthermore, preliminary foaming was performed to a bulk density of 0.0125 g / cm 3 and the moldability was evaluated. As a result, a good foamed molded article without shrinkage was obtained.

[実施例3]
ジステアリルチオジプロピオネートを0.28gとしたこと以外は、実施例2と同様にして、発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡性ポリスチレン系樹脂粒子は3日目で熟成が完了し、成形性評価した結果、収縮もなく良好な発泡成形体が得られた。
[Example 3]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that 0.28 g of distearyl thiodipropionate was used.
The obtained expandable polystyrene resin particles were fully aged on the third day, and as a result of evaluation of moldability, a good expanded molded article without shrinkage was obtained.

[実施例4]
ジステアリルチオジプロピオネートを10.0gとしたこと以外は、実施例2と同様にして、発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡性ポリスチレン系樹脂粒子は1日目で熟成が完了し、成形性評価した結果、収縮もなく良好な発泡成形体が得られた。
[Example 4]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that 10.0 g of distearyl thiodipropionate was used.
The obtained expandable polystyrene resin particles were fully aged on the first day, and the moldability was evaluated. As a result, a good expanded molded article without shrinkage was obtained.

[実施例5]
イオウ系酸化防止剤としてジトリデシルチオジプロピオネートを使用したこと以外は、実施例2と同様にして、発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡性ポリスチレン系樹脂粒子は2日目で熟成が完了し、成形性評価した結果、収縮もなく良好な成形体が得られた。
[Example 5]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that ditridecylthiodipropionate was used as the sulfur-based antioxidant.
The obtained expandable polystyrene resin particles were fully aged on the second day, and as a result of moldability evaluation, a good molded body without shrinkage was obtained.

[実施例6]
イオウ系酸化防止剤として、4,6−ビス(オクチルチオメチル)−O−クレゾールを2.0g使用したこと以外は、実施例2と同様にして発泡性ポリスチレン系樹脂粒子を得た。
得られた発泡性ポリスチレン系樹脂粒子は2日目で熟成が完了し、成形評価でも収縮もなく良好な発泡成形体が得られた。
[Example 6]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that 2.0 g of 4,6-bis (octylthiomethyl) -O-cresol was used as the sulfur antioxidant.
The obtained expandable polystyrene resin particles were fully aged on the second day, and a good foamed molded product was obtained without any shrinkage or molding evaluation.

[比較例1]
ジステアリルチオジプロピオネートを添加しないこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
[Comparative Example 1]
Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that distearyl thiodipropionate was not added.

[比較例2]
ジステアリルチオジプロピオネートを添加しない他は実施例2と同様にして発泡性ポリスチレン系樹脂粒子を得た。
[Comparative Example 2]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that distearyl thiodipropionate was not added.

[比較例3]
ジステアリルチオジプロピオネートを0.12gとしたこと以外は、実施例2と同様にして、発泡性ポリスチレン系樹脂粒子を得た。
[Comparative Example 3]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that 0.12 g of distearyl thiodipropionate was used.

[比較例4]
ジステアリルチオジプロピオネートを14.0gとしたこと以外は、実施例2と同様にして、発泡性ポリスチレン系樹脂粒子を得た。
[Comparative Example 4]
Expandable polystyrene resin particles were obtained in the same manner as in Example 2 except that 14.0 g of distearyl thiodipropionate was used.

[比較例5]
内容量100Lの攪拌機付き重合容器に、水40.0L、第三リン酸カルシウム(懸濁剤)100gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)2.0gを入れ、続いて攪拌しながらベンゾイルパーオキサイド(重合開始剤)96.0g、t−ブチルパーオキシベンゾエート(重合開始剤)28.0gを溶解したスチレン40.0kgを添加し、90℃に昇温して重合温度とした。この温度で6時間保持し、さらに125℃に昇温してから2時間後、90℃まで冷却し、スチレン系樹脂粒子(A)を得た。
スチレン樹脂粒子(A)を篩分けして粒子径0.6〜0.9mmのスチレン樹脂粒子(B)とした。
内容量100Lの攪拌機付き重合容器に、水40.0L、スチレン樹脂粒子(B)10.0kg、ピロリン酸マグネシウム(懸濁剤)100.0gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)30.0gを入れ、攪拌しながら75℃に昇温した。次いで、ベンゾイルパーオキサイド(重合開始剤)144.0g、t−ブチルパーオキシベンゾエート(重合開始剤)24.0gをスチレン4300gに溶解し重合容器に入れた。30分後108℃まで150分で昇温しながらスチレン25700gを150分間かけてポンプで一定量づつ重合容器に供給した。
このスチレン25700gを供給する工程中において、100分目(重合転化率89%)にてジステアリルチオジプロピオネート2.0gを重合容器に供給したこと以外は、実施例2と同様にした。
[Comparative Example 5]
In a polymerization vessel equipped with a stirrer having an internal volume of 100 L, 40.0 L of water, 100 g of tribasic calcium phosphate (suspension) and 2.0 g of calcium dodecylbenzenesulfonate (surfactant) were added, followed by stirring with benzoyl peroxide ( 40.0 kg of styrene in which 96.0 g of polymerization initiator) and 28.0 g of t-butyl peroxybenzoate (polymerization initiator) were dissolved was added, and the temperature was raised to 90 ° C. to obtain the polymerization temperature. The temperature was maintained at this temperature for 6 hours, and further raised to 125 ° C., then 2 hours later, cooled to 90 ° C. to obtain styrene resin particles (A).
The styrene resin particles (A) were sieved to obtain styrene resin particles (B) having a particle diameter of 0.6 to 0.9 mm.
In a polymerization vessel equipped with a stirrer with an internal volume of 100 L, 40.0 L of water, 10.0 kg of styrene resin particles (B), 100.0 g of magnesium pyrophosphate (suspending agent) and 30.0 g of calcium dodecylbenzenesulfonate (surfactant) The mixture was heated to 75 ° C. with stirring. Next, 144.0 g of benzoyl peroxide (polymerization initiator) and 24.0 g of t-butyl peroxybenzoate (polymerization initiator) were dissolved in 4300 g of styrene and placed in a polymerization vessel. After 30 minutes, while raising the temperature to 108 ° C. over 150 minutes, 25700 g of styrene was supplied to the polymerization vessel in a certain amount by a pump over 150 minutes.
In the step of supplying 25700 g of styrene, the same procedure as in Example 2 was conducted except that 2.0 g of distearyl thiodipropionate was supplied to the polymerization vessel at 100 minutes (polymerization conversion rate 89%).

前述した実施例1〜6、比較例1〜5で用いたイオウ系酸化防止剤の種類、該酸化防止剤の添加量、該酸化防止剤添加時の重合転化率を表1にまとめて記す。
また、前述した実施例1〜6、比較例1〜5について行った<発泡性ポリスチレン系樹脂粒子の熟成完了評価>、<成形性評価>及び<総合評価>の結果を表2にまとめて記す。
なお、実施例2〜6は、参考例である。
Table 1 summarizes the types of sulfur-based antioxidants used in Examples 1 to 6 and Comparative Examples 1 to 5 described above, the amount of the antioxidant added, and the polymerization conversion rate when the antioxidant is added.
The results of <Maturation completion evaluation of expandable polystyrene-based resin particles>, <Moldability evaluation> and <Comprehensive evaluation> performed for Examples 1 to 6 and Comparative Examples 1 to 5 are described in Table 2. .
Examples 2 to 6 are reference examples.

Figure 0005518510
Figure 0005518510

Figure 0005518510
Figure 0005518510

表2の結果より、本発明に係る実施例1〜6で製造した発泡性ポリスチレン系樹脂粒子は、全て3日以内に熟成完了でき、また成形性も良好であり、良好な発泡成形体が得られることが実証された。
本発明に係る実施例1〜6において、(1)懸濁重合により発泡性ポリスチレン系樹脂粒子を得た実施例1と、(2)シード重合により発泡性ポリスチレン系樹脂粒子を得た実施例2とは、得られた発泡性ポリスチレン系樹脂粒子の熟成完了時間及び成形性評価の点で差は見られなかった。
また、実施例6では、実施例1〜5において用いたジアルキルチオプロピオネートに属するイオウ系酸化防止剤に代えて、4,6−ビス(オクチルチオメチル)−O−クレゾールを用いたが、得られた発泡性ポリスチレン系樹脂粒子の熟成完了時間及び成形性評価の点で実施例1〜5との間に差は見られなかった。
From the results in Table 2, all of the expandable polystyrene resin particles produced in Examples 1 to 6 according to the present invention can be aged within 3 days, have good moldability, and obtain a good foam molded article. It has been demonstrated that
In Examples 1 to 6 according to the present invention, (1) Example 1 in which expandable polystyrene resin particles were obtained by suspension polymerization, and (2) Example 2 in which expandable polystyrene resin particles were obtained by seed polymerization. No difference was found in terms of the aging completion time and moldability evaluation of the obtained expandable polystyrene resin particles.
In Example 6, 4,6-bis (octylthiomethyl) -O-cresol was used in place of the sulfur-based antioxidant belonging to the dialkylthiopropionate used in Examples 1-5. No difference was found between Examples 1 to 5 in terms of the aging completion time and moldability evaluation of the obtained expandable polystyrene resin particles.

一方、イオウ系酸化防止剤を添加していない比較例1,2で製造した発泡性ポリスチレン系樹脂粒子は、熟成完了がいずれも6日と長くなった。
また、イオウ系酸化防止剤の添加量が3質量ppmと、本発明のイオウ系酸化防止剤の添加量下限(5質量ppm)未満の微量添加した比較例3は、熟成完了が6日と長くなった。
また、イオウ系酸化防止剤の添加量が350質量ppmと、本発明のイオウ系酸化防止剤の添加量上限(300質量ppm)を超える量で添加した比較例4は、熟成完了が1日と短縮できたものの、型内発泡成形して得られた発泡成形体の表面に収縮が認められ、外観が悪くなり、成形性評価不良(×)となった。
また、イオウ系酸化防止剤を実施例2と同等に点かするものの、その添加時の重合転化率が本発明の範囲(重合転化率80%以下)を超える89%で添加した比較例5は、熟成完了が6日と長くなり、熟成時間短縮の効果が得られなかった。
On the other hand, in the expandable polystyrene resin particles produced in Comparative Examples 1 and 2 to which no sulfur-based antioxidant was added, the completion of aging was as long as 6 days.
Further, in Comparative Example 3 in which the addition amount of the sulfur-based antioxidant was 3 mass ppm and less than the lower limit (5 mass ppm) of the sulfur-based antioxidant of the present invention was added, the ripening completion was as long as 6 days. became.
In addition, in Comparative Example 4 in which the addition amount of the sulfur-based antioxidant is 350 mass ppm and exceeds the upper limit (300 mass ppm) of the addition amount of the sulfur-based antioxidant of the present invention, the completion of ripening is 1 day. Although shortened, shrinkage was observed on the surface of the foam molded product obtained by in-mold foam molding, the appearance deteriorated, and the moldability evaluation was poor (x).
Further, although the sulfur-based antioxidant is applied in the same manner as in Example 2, Comparative Example 5 in which the polymerization conversion rate at the time of addition exceeds 89% exceeding the range of the present invention (polymerization conversion rate of 80% or less) is The completion of ripening was as long as 6 days, and the effect of shortening the aging time was not obtained.

図1は、前記実施例1と比較例1でそれぞれ製造した発泡性ポリスチレン系樹脂粒子について、製造直後から熟成1日経過毎にサンプリングし、予備発泡を行って得られた予備発泡粒子の気泡径を測定し、熟成時間と気泡径の関係をプロットしたグラフである。
図1に示すように、イオウ系酸化防止剤を添加した実施例1は、該剤を添加しない比較例1に比べ、より短い熟成時間で予備発泡粒子中の気泡径の大きさが安定し、2日間という短時間で熟成完了できることが分かる。
FIG. 1 shows the foamed polystyrene resin particles produced in Example 1 and Comparative Example 1, respectively, sampled every one day after aging immediately after production, and the bubble diameter of pre-expanded particles obtained by pre-foaming. Is a graph plotting the relationship between aging time and bubble diameter.
As shown in FIG. 1, in Example 1 to which a sulfur-based antioxidant was added, the size of the bubble diameter in the pre-expanded particles was stabilized in a shorter aging time compared to Comparative Example 1 in which the agent was not added, It can be seen that ripening can be completed in a short time of 2 days.

本発明は、種々の包装容器、緩衝材等の用途において有用なポリスチレン系樹脂発泡成形体を製造するために用いる発泡性ポリスチレン系樹脂粒子とその製造方法に関する。
本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、重合性単量体の重合転化率が80%以下である時点でイオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppm添加することによって、該イオウ系酸化防止剤が熟成促進剤として機能して、気泡の大きさが安定した高品質な発泡成形体を得るために必要な熟成の日数を大幅に短縮することができる。特に、夏場の気温上昇の際でも、発泡性ポリスチレン系樹脂粒子の熟成時間を短縮化でき、気泡の大きさが安定した高品質な発泡成形体を得ることが可能となる。このように本発明によれば、発泡性ポリスチレン系樹脂粒子製造後に行う熟成の時間を短縮し、早期に気泡の大きさを安定化できる発泡性ポリスチレン系樹脂粒子を提供できるので、ポリスチレン系樹脂発泡成形体を安定供給するための発泡性ポリスチレン系樹脂粒子のストック量を減らすことができ、倉庫の維持管理コストを低減でき、またポリスチレン系樹脂発泡成形体の生産量の変動要求にも迅速に対応することができる。
また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、イオウ系酸化防止剤を最終生成ポリスチレン系樹脂に対して5〜300質量ppmの範囲で添加するので、該イオウ系酸化防止剤の必要量が少なくて済み、該剤の添加によるコスト上昇が僅かであり、また該剤の添加によって得られる発泡成形体の機械強度の低下や外観劣化などの問題を生じることもない。
TECHNICAL FIELD The present invention relates to an expandable polystyrene resin particle used for producing a polystyrene resin foam molded article useful in various packaging containers, buffer materials and the like, and a method for producing the same.
In the method for producing expandable polystyrene resin particles of the present invention, when the polymerization conversion rate of the polymerizable monomer is 80% or less, the sulfur-based antioxidant is added in an amount of 5 to 300 ppm by mass with respect to the final polystyrene resin. By adding the sulfur-based antioxidant functions as a ripening accelerator, the number of aging days required to obtain a high-quality foamed molded article having a stable bubble size can be greatly shortened. . In particular, even when the temperature rises in summer, the aging time of the expandable polystyrene resin particles can be shortened, and it becomes possible to obtain a high-quality foamed molded article having a stable bubble size. As described above, according to the present invention, it is possible to provide foamable polystyrene resin particles capable of shortening the aging time after the production of expandable polystyrene resin particles and stabilizing the bubble size at an early stage. Reduces the amount of expandable polystyrene resin particles stock for stable supply of molded products, reduces warehouse maintenance costs, and responds quickly to demands for fluctuations in the production volume of polystyrene resin foam molded products can do.
Moreover, since the manufacturing method of the expandable polystyrene-type resin particle of this invention adds sulfur type antioxidant in the range of 5-300 mass ppm with respect to the final production | generation polystyrene type resin, it is necessary for this sulfur type antioxidant. The amount is small, the cost increase due to the addition of the agent is slight, and problems such as a decrease in mechanical strength and appearance deterioration of the foamed molded article obtained by the addition of the agent are not caused.

Claims (5)

水系懸濁液中にスチレン系単量体を主成分とする重合性単量体を分散させ重合を行い、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る該粒子の製造方法において、
最終生成ポリスチレン系樹脂に対して5〜300質量ppmのイオウ系酸化防止剤を前記重合性単量体に予め溶解し、これを分散させ重合を行うことを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。
Polymerization is performed by dispersing a polymerizable monomer having a styrene monomer as a main component in an aqueous suspension, and a foaming agent is added during or after the polymerization to obtain expandable polystyrene resin particles. In the method for producing particles,
5 to 300 ppm by mass of a sulfur-based antioxidant is dissolved in the polymerizable monomer in advance with respect to the final polystyrene-based resin, and dispersed to conduct polymerization . Production method.
前記イオウ系酸化防止剤が、ジアルキルチオジプロピオネートからなる群から選択される1種又は2種以上である請求項に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The method for producing expandable polystyrene resin particles according to claim 1 , wherein the sulfur-based antioxidant is one or more selected from the group consisting of dialkylthiodipropionates. 前記重合性単量体は、スチレン系単量体95.0〜99.5質量%、及びアクリル酸エステル0.5〜5.0質量%からなる請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The expandable polystyrene system according to claim 1 or 2 , wherein the polymerizable monomer comprises 95.0 to 99.5 mass% of a styrene monomer and 0.5 to 5.0 mass% of an acrylate ester. A method for producing resin particles. 請求項1〜3のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子の製造方法を有する工程と、前記発泡性ポリスチレン系樹脂粒子を加熱する工程とを有する、ポリスチレン系樹脂予備発泡粒子の製造方法。 Manufacture of polystyrene-based resin pre-expanded particles , comprising: a step having the method for manufacturing expandable polystyrene-based resin particles according to any one of claims 1 to 3; and a step of heating the expandable polystyrene-based resin particles. Method. 請求項に記載のポリスチレン系樹脂予備発泡粒子の製造方法を有する工程と前記ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させる工程とを有する、ポリスチレン系樹脂発泡成形体の製造方法。 And a step having a manufacturing method of the polystyrene-based resin pre-expanded particles according to claim 4, heated by filling the polystyrene-based resin pre-expanded particles into the mold cavity, and a step of foaming, polystyrene resin A method for producing a foam molded article.
JP2010017084A 2010-01-28 2010-01-28 Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding Active JP5518510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017084A JP5518510B2 (en) 2010-01-28 2010-01-28 Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017084A JP5518510B2 (en) 2010-01-28 2010-01-28 Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding

Publications (2)

Publication Number Publication Date
JP2011153261A JP2011153261A (en) 2011-08-11
JP5518510B2 true JP5518510B2 (en) 2014-06-11

Family

ID=44539451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017084A Active JP5518510B2 (en) 2010-01-28 2010-01-28 Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding

Country Status (1)

Country Link
JP (1) JP5518510B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279320A (en) * 1998-03-26 1999-10-12 Sekisui Plastics Co Ltd Expandable styrene resin particle and expanded molding using this
JP4480435B2 (en) * 2004-03-25 2010-06-16 積水化成品工業株式会社 Expandable styrene resin particles, method for producing the same, and foam molded product
JP5014653B2 (en) * 2006-03-16 2012-08-29 積水化成品工業株式会社 Expandable styrene resin particles and method for producing styrene resin foam molded article
JP4948028B2 (en) * 2006-04-25 2012-06-06 Psジャパン株式会社 Styrene resin extruded foam sheet and container
JP5464631B2 (en) * 2007-05-02 2014-04-09 Psジャパン株式会社 Styrenic resin, extruded foam sheet and container, and plate-like extruded foam

Also Published As

Publication number Publication date
JP2011153261A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
JP2019049011A (en) Foamable particle of styrenic resin, manufacturing method thereof, forming particle, foam product and use thereof
JP3732418B2 (en) Expandable styrene resin particles
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP5518510B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP2012153826A (en) Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP2010189535A (en) Expansion molded product of styrenic resin particle
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP5666796B2 (en) Method for producing styrenic polymer particles
JP2012201827A (en) Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2012131953A (en) Expandable polystyrene-based colored resin particle, method for producing the same, colored resin pre-expanded particle and colored resin expansion molded product
JP2017132971A (en) Styrenic resin foamed particle and styrenic resin foamed molding
JP2017095621A (en) Manufacturing method of expandable polystyrene resin particle
JP2016121324A (en) Styrenic resin expandable particle and manufacturing method therefor, expanded particle, expanded molded body and use thereof
JP2012067215A (en) Styrene-based resin foam and method for producing foamable styrene-based resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131225

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150