JP4480435B2 - Expandable styrene resin particles, method for producing the same, and foam molded product - Google Patents

Expandable styrene resin particles, method for producing the same, and foam molded product Download PDF

Info

Publication number
JP4480435B2
JP4480435B2 JP2004088654A JP2004088654A JP4480435B2 JP 4480435 B2 JP4480435 B2 JP 4480435B2 JP 2004088654 A JP2004088654 A JP 2004088654A JP 2004088654 A JP2004088654 A JP 2004088654A JP 4480435 B2 JP4480435 B2 JP 4480435B2
Authority
JP
Japan
Prior art keywords
particles
styrene
weight
dispersion
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004088654A
Other languages
Japanese (ja)
Other versions
JP2005272665A (en
Inventor
修邦 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2004088654A priority Critical patent/JP4480435B2/en
Publication of JP2005272665A publication Critical patent/JP2005272665A/en
Application granted granted Critical
Publication of JP4480435B2 publication Critical patent/JP4480435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、発泡性スチレン系樹脂粒子及びこの発泡性スチレン系樹脂粒子を用いて得られた発泡成形品並びに発泡性スチレン系樹脂粒子の製造方法に関する。   The present invention relates to an expandable styrene resin particle, an expanded molded article obtained by using the expandable styrene resin particle, and a method for producing the expandable styrene resin particle.

従来から、スチレン系樹脂粒子中に発泡剤を含浸させてなる発泡性スチレン系樹脂粒子を予備発泡させて予備発泡粒子を製造し、この予備発泡粒子を成形機の金型内に充填した上で加熱、発泡させて互いに融着一体化させて所望形状を有する発泡成形容器を製造していた。   Conventionally, pre-expanded particles are produced by pre-expanding expandable styrene resin particles obtained by impregnating a foaming agent into styrene-based resin particles, and the pre-expanded particles are filled in a mold of a molding machine. A foam-molded container having a desired shape has been manufactured by heating and foaming and fusing together.

上述のように、発泡成形容器は、予備発泡粒子自身の発泡圧力によって、予備発泡粒子が発泡してなる発泡粒子同士を熱融着一体化してなるものであるが、発泡粒子同士は、これら発泡粒子同士の対向部分において全面的に熱融着しているものではなく、部分的にしか熱融着一体化していない。   As described above, the foam-molded container is formed by thermally fusing together the foam particles obtained by foaming the pre-foamed particles by the foaming pressure of the pre-foamed particles themselves. The particles are not entirely heat-sealed at the opposed portions of the particles, but are only partially heat-sealed and integrated.

従って、発泡成形容器は、たとえ発泡粒子同士が良好な状態、即ち、発泡成形容器の断面において発泡粒子の表面同士が目視にて完全に熱融着一体化した状態であっても、発泡粒子同士の対向部分における非熱融着部分に起因する隙間が内外方向に連続することによって、目視では確認できないような微細な毛細管が発泡成形容器の内外面間に亘って貫通した状態に形成されている。   Therefore, even if the foam-molded container is in a state where the foam particles are in good condition, that is, in a state where the surfaces of the foam particles are completely heat-sealed and integrated in the cross section of the foam-molded container, As the gap due to the non-heat-sealed part in the opposite part of the slab is continuous in the inner and outer directions, a fine capillary that cannot be visually confirmed is formed in a state penetrating between the inner and outer surfaces of the foam molded container. .

このことは、発泡成形容器内に界面活性剤を含有する染料水を入れて所定時間に亘って放置すると、発泡成形容器内の染料水が発泡粒子間にできた毛細管を通じて外部に滲み出してくる現象が生じ、この現象によって上記毛細管の存在を確認することができる。   This is because if the dye water containing the surfactant is put in the foam molded container and left for a predetermined time, the dye water in the foam molded container oozes out to the outside through the capillary formed between the foam particles. A phenomenon occurs, and the presence of the capillary can be confirmed by this phenomenon.

そして、このような発泡成形容器をコーヒーのような飲料用コップとして用いる場合には実用上において何ら支障は生じないものの、発泡成形容器内に油性食品類、例えば、ドーナツ、ハンバーガー、フライドチキン、マーガリンなどのサラダ油、油脂などを含有する食品を長期間に亘って保存しておくと、これら油性食品類に含有されていた油分が発泡成形容器に形成された毛細管を通じて外部に滲み出してくるといった問題点があった。   When such a foam molded container is used as a drinking cup such as coffee, there is no practical problem, but oil-based foods such as donuts, hamburgers, fried chicken, margarine are contained in the foam molded container. When foods containing salad oil, fats, etc. are stored for a long period of time, the oil contained in these oily foods oozes out through capillaries formed in foam molded containers There was a point.

同様に、発泡成形容器内に、即席麺と共にカレー粉を含有するかやく類を収納して保存しておくと、カレー粉の黄色色素が発泡成形容器の毛細管を通じて発泡成形容器外面に滲み出してきて商品価値が損なわれるといった問題点があった。   Similarly, if the foamed container contains the noodles containing curry powder together with the instant noodles, the yellow pigment of the curry powder oozes out to the outer surface of the foam molded container through the capillary of the foam molded container. As a result, there was a problem that the commercial value was impaired.

そこで、特許文献1には、スチレン系重合体種粒子を含む水性懸濁液に、スチレン系単量体と重合開始剤とを連続的にまたは断続的に添加することにより、該スチレン系重合体種粒子に該スチレン系単量体を重合させて、スチレン系重合体粒子をえ、該スチレン系重合体粒子に易揮発性発泡剤を含浸させる発泡性スチレン系重合体粒子の製法であって、前記スチレン系重合体種粒子の量と目的とするスチレン系重合体粒子をうるために必要なスチレン系単量体の量との合計量を100重量部とするとき、該スチレン系重合体種粒子の量と添加したスチレン系単量体の量との合計量が90重量部になったときから該スチレン系単量体の添加が終了し重合反応が完結するまでの間に、該合計量100重量部に対して0.005〜0.02重量部の架橋剤を添加する発泡性スチレン系重合体粒子の製法(シード重合法)が開示されている。   Therefore, in Patent Document 1, the styrene polymer is added by continuously or intermittently adding a styrene monomer and a polymerization initiator to an aqueous suspension containing styrene polymer seed particles. A method for producing expandable styrene polymer particles by polymerizing the styrene monomer on seed particles to obtain styrene polymer particles, and impregnating the styrene polymer particles with a readily volatile foaming agent, When the total amount of the amount of the styrenic polymer seed particles and the amount of the styrene monomer necessary for obtaining the target styrene polymer particles is 100 parts by weight, the styrenic polymer seed particles From the time when the total amount of the styrene monomer added to 90 parts by weight until the addition of the styrene monomer is completed and the polymerization reaction is completed, the total amount of 100 0.005 to 0.02 parts by weight with respect to parts by weight Preparation of expandable styrene polymer particles added a bridge agent (seed polymerization method) is disclosed.

しかしながら、上記製造方法によって製造された発泡性スチレン系重合体粒子は、該発泡性スチレン系重合体粒子を用いて得られた発泡成形品の外観性を向上させるのに有効な手段ではあるものの、上述したような、油分や黄色色素が発泡成形容器に形成された毛細管を通じて外部に滲み出してくるという問題点を充分に解決するものではなかった。
特許第3474995号公報
However, although the expandable styrene polymer particles produced by the above production method are effective means for improving the appearance of the foam molded product obtained using the expandable styrene polymer particles, The above-described problem that oil and yellow pigment ooze out to the outside through a capillary tube formed in a foam molded container has not been sufficiently solved.
Japanese Patent No. 3474995

そこで、本発明者は、鋭意研究したところ、発泡成形容器において油分や黄色色素の滲み出しが発生した部分では、発泡粒子の熱融着部分が波打って皺になっており、油分や黄色色素によって変質されている一方、油分や黄色色素の滲み出しが発生していない部分では発泡粒子の熱融着部分に波打ち現象は発生しておらず歪みのない状態であり、油分や黄色色素によって変質されていないことを知見し、発泡成形容器において油分や黄色色素の滲み出しを防止するには、発泡成形品の耐油性、特に、発泡成形品の発泡粒子同士の熱融着部分の耐油性を向上させることが必要であることを見出した。   Therefore, the present inventor has intensively studied, and in the portion where the oil component and the yellow pigment ooze out in the foam molded container, the heat-sealed portion of the foam particles is wavy and wrinkled. On the other hand, in the parts where no oil or yellow pigment oozes out, there is no waviness phenomenon in the heat-sealed part of the expanded particles, and there is no distortion. In order to prevent oil and yellow pigment from seeping out in the foam molded container, the oil resistance of the foam molded product, in particular, the oil resistance of the heat-sealed part between the foam particles of the foam molded product is known. I found it necessary to improve.

本発明は、食品などに含まれた油分やカレー粉などの色素を長期間に亘って内部に保存し或いは界面活性剤などを含む液体を所定時間に亘って内部に収納した場合にあっても外部に滲み出すことのない発泡成形品を得ることができ且つ発泡性に優れた発泡性スチレン系樹脂粒子及びその製造方法並びに発泡性スチレン系樹脂粒子を用いて成形された発泡成形品を提供する。   Even in the case where the oil contained in food or the like and the pigment such as curry powder are stored in the interior for a long period of time or the liquid containing the surfactant is stored in the interior for a predetermined time. Provided is an expandable styrenic resin particle having excellent foamability, a foamable styrenic resin particle that can be obtained without exuding to the outside, and a foamed styrene resin particle molded using the expandable styrenic resin particle. .

本発明の発泡性スチレン系樹脂粒子は、ゲル分率が10〜50重量%であり且つ100℃の水に5分間浸漬して予備発泡させた時の嵩密度が0.025〜0.06g/cm3 であると共に、蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子において、その表層部の気泡の平均気泡径が10〜70μmであり且つ表層部の気泡の平均気泡径と中央部の気泡の平均気泡径との比が下記式を満たすことを特徴とする。
0.4≦表層部の気泡の平均気泡径/中央部の気泡の平均気泡径≦0.8
The expandable styrene resin particles of the present invention have a gel fraction of 10 to 50% by weight and a bulk density of 0.025 to 0.06 g / min when pre-foamed by being immersed in water at 100 ° C. for 5 minutes. In the pre-foamed particles that are cm 3 and pre-foamed by steam at a bulk magnification of 10 times, the average bubble diameter of the surface layer portion is 10 to 70 μm, and the average bubble diameter of the surface layer portion and the central portion The ratio of the bubble to the average bubble diameter satisfies the following formula.
0.4 ≦ average bubble diameter of bubbles in the surface layer portion / average bubble diameter of bubbles in the central portion ≦ 0.8

本発明の発泡性スチレン系樹脂粒子を構成するスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレンなどのスチレン系単量体の単独重合体又はこれらの共重合体などが挙げられる。   The styrene resin constituting the expandable styrene resin particles of the present invention is not particularly limited, and examples thereof include styrene, α-methyl styrene, vinyl toluene, chlorostyrene, ethyl styrene, i-propyl styrene, and dimethyl styrene. Examples include homopolymers of styrene monomers or copolymers thereof.

又、上記スチレン系樹脂としては、上記スチレン系単量体を主成分とする、上記スチレン系単量体とこのスチレン系単量体と共重合可能なビニル単量体との共重合体であってもよく、このようなビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートなどが挙げられる。なお、上記スチレン系樹脂の重量平均分子量は、15万〜40万が好ましく、25万〜35万がより好ましい。   The styrenic resin is a copolymer of the styrenic monomer and a vinyl monomer copolymerizable with the styrenic monomer, the main component of which is the styrenic monomer. Examples of such vinyl monomers include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate, (meth) Examples include acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, and ethyl fumarate. In addition, 150,000-400,000 are preferable and, as for the weight average molecular weight of the said styrene resin, 250,000-350,000 are more preferable.

そして、発泡性スチレン系樹脂粒子のゲル分率は、低いと、発泡性スチレン系樹脂粒子を用いて得られる発泡成形品の耐油性が低下して、油分や色素或いは界面活性剤などを含む液体が発泡成形品を通じて外部に滲み出す一方、高いと、発泡性スチレン系樹脂粒子の発泡性が低下して、発泡性スチレン系樹脂粒子の発泡成形時に長時間の加熱が必要となり生産効率が低下するので、10〜50重量%に限定され、20〜35重量%が好ましい。   If the gel fraction of the expandable styrene resin particles is low, the oil resistance of the foam molded product obtained by using the expandable styrene resin particles is lowered, and a liquid containing oil, pigment, surfactant, etc. Ooze out to the outside through the foam molded product, while if it is high, the foamability of the expandable styrenic resin particles will be reduced, and it will be necessary to heat the foamable styrenic resin particles for a long time, resulting in lower production efficiency. Therefore, it is limited to 10 to 50% by weight, and preferably 20 to 35% by weight.

なお、発泡性スチレン系樹脂粒子のゲル分率は下記の要領で測定されたものをいう。即ち、発泡性スチレン系樹脂粒子を140℃のオーブンで1時間に亘って加熱し、発泡性スチレン系樹脂粒子中の発泡剤を除去して測定試料を作製し、この測定試料の重量W1 を測定する。 In addition, the gel fraction of expandable styrene resin particle means what was measured in the following way. That is, the expandable styrene resin particles are heated in an oven at 140 ° C. for 1 hour, the foaming agent in the expandable styrene resin particles is removed to prepare a measurement sample, and the weight W 1 of the measurement sample is calculated. taking measurement.

次に、測定試料をトルエン100g中に浸漬させて140℃で20時間に亘って還流した後、80メッシュの金網を用いて濾過し、金網上の残渣をデシケータ内に供給して140℃で2時間に亘って7.98×104 Paの減圧下にて減圧乾燥後にデシケータ内で室温まで自然冷却し、乾燥残渣の重量W2 を測定し、下記式により算出した。
ゲル分率(重量%)=100×W2 /W1
Next, the measurement sample was immersed in 100 g of toluene and refluxed at 140 ° C. for 20 hours, followed by filtration using an 80-mesh wire mesh. The residue on the wire mesh was supplied into a desiccator and supplied at 140 ° C. for 2 hours. After drying under reduced pressure under a reduced pressure of 7.98 × 10 4 Pa over time, it was naturally cooled to room temperature in a desiccator, and the weight W 2 of the dried residue was measured and calculated by the following formula.
Gel fraction (% by weight) = 100 × W 2 / W 1

そして、発泡性スチレン系樹脂粒子を100℃の水に5分間浸漬して予備発泡させた時の嵩密度は、低いと、発泡性スチレン系樹脂粒子の発泡性が高すぎ、発泡成形品を得た後、発泡粒子が膨張しなくなるまで冷却するのに余分な時間を要する一方、高いと、発泡性スチレン系樹脂粒子の発泡性が低下して、発泡成形時の加熱時間に長時間を要するので、0.025〜0.06g/cm3 に限定され、0.027〜0.04g/cm3 が好ましい。 If the bulk density when the foamable styrene resin particles are pre-foamed by immersing them in water at 100 ° C. for 5 minutes is too low, the foamability of the foamable styrene resin particles is too high, and a foam molded product is obtained. After that, it takes extra time to cool the foamed particles until they no longer expand, whereas if it is high, the foamability of the foamable styrene resin particles is reduced, and the heating time during foam molding takes a long time. , limited to 0.025~0.06g / cm 3, 0.027~0.04g / cm 3 are preferred.

ここで、本発明において、発泡性スチレン系樹脂粒子を予備発泡させて得られる予備発泡粒子の嵩密度は下記要領で測定されたものをいう。即ち、予備発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積Vcm3 をJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて予備発泡粒子の嵩密度を測定した。
予備発泡粒子の嵩密度(g/cm3
=測定試料の重量(W)/測定試料の体積(V)
Here, in the present invention, the bulk density of the pre-expanded particles obtained by pre-expanding the expandable styrenic resin particles refers to those measured in the following manner. That is, the bulk density of the pre-expanded particles is measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. First, Wg was sampled from pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured using an apparent density measuring instrument based on JIS K6911. The bulk density of the pre-expanded particles was measured based on the following formula.
Bulk density of pre-expanded particles (g / cm 3 )
= Weight of measurement sample (W) / Volume of measurement sample (V)

なお、発泡性スチレン系樹脂粒子を100℃の水に5分間浸漬して予備発泡させた時の嵩密度を測定する際の測定試料は下記の要領で作製されたものを用いる。先ず、発泡性スチレン系樹脂粒子を100℃の水に5分間浸漬して予備発泡させ、得られた予備発泡粒子を80メッシュの金網を用いて水から分離した後、金網上にて40℃で20時間乾燥させたものを測定試料として用いる。   In addition, what was produced in the following way is used for the measurement sample at the time of measuring the bulk density when foaming styrene resin particles are immersed in water at 100 ° C. for 5 minutes and pre-foamed. First, expandable styrenic resin particles are immersed in water at 100 ° C. for 5 minutes to be pre-expanded, and the obtained pre-expanded particles are separated from water using an 80-mesh wire mesh, and then on the wire mesh at 40 ° C. What was dried for 20 hours is used as a measurement sample.

更に、発泡性スチレン系樹脂粒子を蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子の表層部の気泡の平均気泡径は、小さいと、発泡性スチレン系樹脂粒子を用いて発泡成形品を成形する際に気泡が成形時の熱によって破れ、発泡成形品の外観が低下する一方、大きいと、発泡性スチレン系樹脂粒子を用いて得られた発泡成形品の光沢が損なわれるので、10〜70μmに限定され、20〜60μmが好ましい。なお、予備発泡粒子の嵩倍率とは、発泡性スチレン系樹脂粒子を構成するスチレン系樹脂の密度を上述の予備発泡粒子の嵩密度で除したものをいう。   Further, if the average cell diameter of the surface layer portion of the pre-expanded particles obtained by pre-expanding the expandable styrene resin particles with steam to 10 times the bulk ratio is small, a foam-molded product is formed using the expandable styrene resin particles. When molding, the bubbles are broken by the heat during molding, and the appearance of the foamed molded product is deteriorated.On the other hand, if the foamed product is large, the gloss of the foamed molded product obtained using the expandable styrenic resin particles is impaired. It is limited to 70 μm, and preferably 20 to 60 μm. The bulk magnification of the pre-expanded particles is obtained by dividing the density of the styrenic resin constituting the expandable styrene-based resin particles by the bulk density of the pre-expanded particles.

加えて、発泡性スチレン系樹脂粒子を蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子における表層部の気泡の平均気泡径と中央部の気泡の平均気泡径との比(以下「平均気泡径比」という)が下記式1を満たしている必要があり、下記式2を満たしていることが好ましい。
0.4≦(表層部の気泡の平均気泡径/中央部の気泡の平均気泡径)≦0.8・・・式10.6≦(表層部の気泡の平均気泡径/中央部の気泡の平均気泡径)≦0.8・・・式2
In addition, the ratio of the average cell diameter of the cells in the surface layer to the average cell size of the cells in the central part of the pre-expanded particles obtained by pre-expanding the expandable styrene resin particles with a bulk ratio of 10 times by steam (hereinafter referred to as “average cell size”). The diameter ratio ”needs to satisfy the following formula 1, and preferably satisfies the following formula 2.
0.4 ≦ (average bubble diameter of the bubbles in the surface layer portion / average bubble diameter of the bubbles in the center portion) ≦ 0.8... 10.6 ≦ (average bubble diameter of the bubbles in the surface layer portion / the bubbles in the center portion) Average bubble diameter) ≤ 0.8 Formula 2

これは、上記平均気泡径比が小さいと、発泡性スチレン系樹脂粒子の表層部における発泡性が低下して、発泡粒子同士の熱融着に必要な発泡圧を得ることができず、発泡粒子同士の熱融着が不充分となって、油分や色素或いは界面活性剤などを含む液体が発泡成形品を通じて滲み出す虞れがある一方、上記平均気泡径比が大きいと、発泡性スチレン系樹脂粒子を用いて得られる発泡成形品の耐油性が低下して、油分や色素或いは界面活性剤などを含む液体が発泡成形品を通じて滲み出す虞れがあるからである。   This is because when the average cell diameter ratio is small, the foamability in the surface layer portion of the expandable styrene resin particles is lowered, and the foaming pressure necessary for heat-sealing the expanded particles cannot be obtained. If the average cell diameter ratio is large, the foamable styrenic resin may result in insufficient heat fusion between the liquids and the liquid containing oil, pigment, or surfactant may ooze out through the foamed molded product. This is because the oil resistance of the foam molded product obtained using the particles is lowered, and there is a possibility that a liquid containing an oil component, a pigment or a surfactant may ooze out through the foam molded product.

ここで、蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子の表層部及び中央部並びにこれらの気泡の平均気泡径は下記要領で定められる。即ち、発泡性スチレン系樹脂粒子を蒸気によって嵩倍率10倍に予備発泡させる。そして、この嵩倍率10倍に予備発泡させた予備発泡粒子をその重心を通る面で予備発泡粒子の重量が二等分されるように切断する。   Here, the surface layer part and the center part of the pre-expanded particles pre-expanded to 10 times the bulk magnification by steam and the average cell diameter of these bubbles are determined as follows. That is, the expandable styrenic resin particles are pre-foamed with steam at a bulk magnification of 10 times. Then, the pre-expanded particles that have been pre-expanded to a bulk magnification of 10 times are cut so that the weight of the pre-expanded particles is bisected on the surface passing through the center of gravity.

そして、この嵩倍率10倍の予備発泡粒子の切断面全体を走査型電子顕微鏡を用いて倍率80〜100倍の走査型電子顕微鏡写真を得る。この走査型電子顕微鏡写真に写された予備発泡粒子の切断面全体を包囲する最小径の真円(外側円)を描く。   And the scanning electron micrograph of magnification 80-80 times is obtained for the whole cut surface of this pre-expanded particle of 10 times the bulk magnification using a scanning electron microscope. A perfect circle (outer circle) with the smallest diameter is drawn that surrounds the entire cut surface of the pre-expanded particles shown in this scanning electron micrograph.

この外側円の中心を中心とし且つ該外側円の直径の1/3の半径を有する真円(中央円)を描き、この中央円内に存する予備発泡粒子部分を中央部とし、この中央部内に存在する気泡から任意に20個の気泡を抽出する。なお、対象となる気泡は、中央部内に気泡全体が包含されているものを対象とし、一部でも中央部外にはみ出している気泡は対象外とする。又、中央部内に存在する気泡数が20個未満である場合には中央部内に存在する全ての気泡を対象とする。   A perfect circle (center circle) centered on the center of the outer circle and having a radius that is 1/3 of the diameter of the outer circle is drawn, and the pre-foamed particle portion existing in the center circle is defined as the center portion. Optionally, 20 bubbles are extracted from the existing bubbles. It should be noted that the target bubbles are those in which the entire bubble is contained in the central portion, and any bubbles protruding outside the central portion are excluded. If the number of bubbles present in the central portion is less than 20, all the bubbles present in the central portion are targeted.

次に、この抽出した各気泡における最大弦長を測定し、各気泡の最大弦長の相加平均を中央部の気泡の平均気泡径とする。なお、気泡の最大弦長とは、一の気泡に注目した際、この気泡を構成する気泡壁内面の任意部分間を直線で結んだ時の最も長い直線(但し、一部でも気泡外を通過する直線(例えば、図1の点線状の直線)は除く)の長さRをいう(図1参照)。   Next, the maximum chord length of each extracted bubble is measured, and the arithmetic average of the maximum chord length of each bubble is taken as the average bubble diameter of the bubbles in the center. Note that the maximum chord length of a bubble is the longest straight line when any part of the inner surface of the bubble wall that forms this bubble is connected with a straight line when a single bubble is focused (however, even a part of the bubble passes outside the bubble) The length R of the straight line (excluding the dotted straight line in FIG. 1) (see FIG. 1).

一方、外側円の中心を中心とし且つ該外側円の直径の2/5の半径を有する真円(表層円)を描き、この表層円と上記外側円との間に存在する予備発泡粒子部分を表層部とし、この表層部内に存在する気泡から任意に20個の気泡を抽出する。なお、対象となる気泡は、表層部内に気泡全体が包含されているものを対象とし、一部でも表層部外にはみ出している気泡は対象外とする。又、表層部内に存在する気泡数が20個未満である場合には表層部内に存在する全ての気泡を対象とする。次に、この抽出した各気泡における最大弦長を測定し、各気泡の最大弦長の相加平均を中央部の気泡の平均気泡径とする。   On the other hand, a perfect circle (surface layer circle) centered on the center of the outer circle and having a radius 2/5 of the diameter of the outer circle is drawn, and the pre-expanded particle portion existing between the surface layer circle and the outer circle is drawn. As the surface layer portion, 20 bubbles are arbitrarily extracted from the bubbles existing in the surface layer portion. The target bubbles are those in which the entire bubbles are included in the surface layer portion, and any bubbles that protrude outside the surface layer portion are excluded. When the number of bubbles existing in the surface layer portion is less than 20, all the bubbles existing in the surface layer portion are targeted. Next, the maximum chord length of each extracted bubble is measured, and the arithmetic average of the maximum chord length of each bubble is taken as the average bubble diameter of the bubbles in the center.

次に、上記発泡性スチレン系樹脂粒子の製造方法について説明する。先ず、スチレン系樹脂種粒子を水中に分散させてなる分散液を作製する。このスチレン系樹脂種粒子の製造方法としては、汎用の方法が用いられ、例えば、上記スチレン系単量体に必要に応じてビニル単量体を加えた上で水中にて懸濁重合させてスチレン系樹脂種粒子を製造する方法、上記スチレン系樹脂を押出機に供給して溶融混練し、押出機からストランド状に押出して所定長さ毎に切断し、スチレン系樹脂種粒子を製造する方法などが挙げられる。   Next, the manufacturing method of the said expandable styrene resin particle is demonstrated. First, a dispersion liquid in which styrene resin seed particles are dispersed in water is prepared. As a method for producing the styrene-based resin seed particles, a general-purpose method is used. For example, a styrene-based monomer is added to the styrene-based monomer as necessary, followed by suspension polymerization in water and styrene. A method of producing a styrene-based resin seed particle, a method of supplying the styrene-based resin to an extruder, melt-kneading, extruding it into a strand from the extruder and cutting it at a predetermined length, and the like Is mentioned.

そして、上記スチレン系樹脂種粒子を水中に分散させてなる分散液中に上記スチレン系単量体を継続的に又は断続的に供給して重合開始剤の存在下にてシード重合させてスチレン系樹脂種粒子を種粒子として成長させてスチレン系樹脂粒子を製造する。なお、本発明において、スチレン系樹脂種粒子を種粒子として成長途上にある樹脂粒子を「スチレン系樹脂成長粒子」としている。又、スチレン系単量体と共にこのスチレン系単量体と共重合可能な上記ビニル単量体を分散液中に供給してもよい。   Then, the styrenic monomer is continuously or intermittently supplied into a dispersion obtained by dispersing the styrenic resin seed particles in water, and seed polymerization is performed in the presence of a polymerization initiator to produce a styrenic Resin seed particles are grown as seed particles to produce styrene resin particles. In the present invention, resin particles that are in the process of growth using styrene resin seed particles as seed particles are referred to as “styrene resin growth particles”. Further, the vinyl monomer copolymerizable with the styrene monomer may be supplied together with the styrene monomer into the dispersion.

この時、上記分散液中に既に供給されたスチレン系単量体及び上記スチレン系樹脂種粒子の総量(以下「供給済み総量」という)が、上記スチレン系樹脂種粒子及び上記スチレン系樹脂粒子の製造に要するスチレン系単量体の総量(以下「供給必要総量」という)の60重量%以上で且つ90重量%未満に相当する量となった時点、好ましくは75〜85重量%に相当する量となった時点から架橋性単量体を上記分散液中に供給し始める。   At this time, the total amount of the styrene monomer and the styrene resin seed particles already supplied in the dispersion (hereinafter referred to as “total amount supplied”) is the same as the styrene resin seed particles and the styrene resin particles. When the total amount of styrene monomer required for production (hereinafter referred to as “total amount required for supply”) is 60% by weight or more and less than 90% by weight, preferably 75 to 85% by weight At that time, the crosslinkable monomer is started to be fed into the dispersion.

これは、供給済み総量が供給必要総量の60重量%未満の時点で架橋性単量体を上記分散液中に供給し始めると、得られる発泡性スチレン系樹脂粒子の内部が必要以上に架橋され、発泡性スチレン系樹脂粒子の発泡性が低下する一方、供給済み総量が供給必要総量の90重量%以上の時点で架橋性単量体を上記分散液中に供給し始めると、発泡性スチレン系樹脂粒子の表面部が必要以上に架橋されてしまい、発泡性スチレン系樹脂粒子の表面部の発泡性が低下し、発泡粒子同士の熱融着が不充分となって良好な発泡成形品が得られないからである。   This is because, when the total amount supplied is less than 60% by weight of the total amount required for supply, when the crosslinkable monomer is started to be fed into the dispersion, the inside of the resulting expandable styrene resin particles is unnecessarily crosslinked. When the foamability of the expandable styrenic resin particles is reduced, and when the total amount supplied is 90% by weight or more of the total supply amount, the supply of the crosslinkable monomer into the dispersion liquid, The surface part of the resin particle is cross-linked more than necessary, the foamability of the surface part of the expandable styrene resin particle is lowered, and the thermal fusion between the expanded particles is insufficient, and a good foam molded product is obtained. Because it is not possible.

ここで、上記架橋性単量体としては、発泡性スチレン系樹脂粒子に架橋構造を付与することができるものであれば、特に限定されず、例えば、ジビニルベンゼン、ポリエチレングリコールジタクリレートなどのアルキレングリコールジメタクリレートなどの多官能性単量体などが挙げられ、ジビニルベンゼンが好ましい。   Here, the crosslinkable monomer is not particularly limited as long as the crosslinkable structure can be imparted to the expandable styrenic resin particles. For example, alkylene such as divinylbenzene and polyethylene glycol ditaacrylate is used. Examples thereof include polyfunctional monomers such as glycol dimethacrylate, and divinylbenzene is preferred.

そして、上記架橋性単量体の分散液中への供給は、上述のタイミングで開始された後、分散液中へのスチレン系単量体の供給が完了するまで、継続的に又は断続的に行なわれる。具体的には、上記架橋性単量体の分散液中への供給は、上述のタイミングで開始された後、スチレン系単量体がさらに分散液中に供給されて供給済み総量が供給必要総量の90重量%以上となった以降も引き続き架橋性単量体を分散液中に継続的に又は断続的に供給する。   Then, the supply of the crosslinkable monomer into the dispersion liquid is started at the above timing, and then continuously or intermittently until the supply of the styrenic monomer into the dispersion liquid is completed. Done. Specifically, after the supply of the crosslinkable monomer into the dispersion liquid is started at the above-mentioned timing, the styrene monomer is further supplied into the dispersion liquid and the supplied total amount is the total supply amount required. After reaching 90% by weight or more, the crosslinkable monomer is continuously or intermittently supplied into the dispersion.

なお、供給済み総量が供給必要総量の90重量%以上となった以降も架橋性単量体が分散液中に供給されておれば、架橋性単量体の分散液中への供給の完了時点と、スチレン系単量体の分散液中への供給の完了時点とが合致しなくてもよく、架橋性単量体の分散液中への供給の完了時点が、スチレン系単量体の分散液中への供給の完了時点より早くてもよい。   In addition, if the crosslinkable monomer is supplied in the dispersion even after the supplied total amount becomes 90% by weight or more of the total supply required, the point of completion of the supply of the crosslinkable monomer into the dispersion And the completion of the supply of the styrenic monomer into the dispersion liquid may not match, and the completion of the supply of the crosslinkable monomer into the dispersion liquid may It may be earlier than the completion of the supply to the liquid.

このように、供給済み総量が供給必要総量の90重量%以上となった以降も架橋性単量体を分散液中に供給することによって、発泡性スチレン系樹脂粒子の表面部における所定厚み部分を発泡に適したゲル分率(架橋度)とすることができる。   Thus, even after the supplied total amount reaches 90% by weight or more of the total supply required amount, a predetermined thickness portion in the surface portion of the expandable styrene resin particles can be obtained by supplying the crosslinkable monomer into the dispersion. The gel fraction (crosslinking degree) suitable for foaming can be obtained.

上記架橋性単量体の分散液中への供給は、架橋性単量体をスチレン系単量体とは別に分散液中に供給してもよいが、分散液中に未だ供給していない残余のスチレン系単量体の全量に、分散液中に供給される全ての架橋性単量体を溶解させ、この架橋性単量体を溶解させたスチレン系単量体を分散液中に供給するのが好ましい。   As for the supply of the crosslinkable monomer into the dispersion, the crosslinkable monomer may be supplied into the dispersion separately from the styrenic monomer, but the residual not yet supplied into the dispersion. All the crosslinkable monomers supplied in the dispersion are dissolved in the total amount of the styrene monomer, and the styrene monomer in which the crosslinkable monomer is dissolved is supplied in the dispersion. Is preferred.

このように、架橋性単量体をスチレン系単量体中に溶解させた上で分散液中に供給すると、スチレン系樹脂種粒子を種粒子として成長途上にあるスチレン系樹脂成長粒子中における架橋性単量体とスチレン系単量体との割合をシード重合中、略一定に保持することができ、得られる発泡性スチレン系樹脂粒子におけるゲル分率をその表面から所定厚みに亘って発泡に適し且つ略均一なものとすることができ、発泡性スチレン系樹脂粒子の発泡性を確保しつつ、得られる発泡成形品の耐油性を優れたものとすることができる。   In this way, when the crosslinkable monomer is dissolved in the styrene monomer and then supplied to the dispersion, the styrene resin seed particles are used as seed particles to crosslink in the growing styrene resin growing particles. The ratio of the polymerizable monomer and the styrene monomer can be kept substantially constant during the seed polymerization, and the gel fraction in the resulting expandable styrene resin particles can be foamed from the surface over a predetermined thickness. It can be made suitable and substantially uniform, and the foamed molded article obtained can have excellent oil resistance while ensuring foamability of the expandable styrene resin particles.

そして、スチレン系樹脂粒子の製造に要するスチレン系単量体の総量は、少ないと、一回のシード重合で重合させるスチレン系単量体の量が少なくなって不経済となる虞れがある一方、多いと、シード重合に要する時間が長くなって生産性が低下する虞れがあるので、スチレン系樹脂種粒子がスチレン系樹脂粒子中、10〜90重量%となるように調整することが好ましく、20〜80重量%となるように調整することがより好ましい。   And if the total amount of the styrene monomer required for the production of the styrene resin particles is small, the amount of the styrene monomer to be polymerized by one seed polymerization may decrease, which may be uneconomical. If the amount is too large, the time required for seed polymerization may become long and the productivity may be lowered. Therefore, it is preferable to adjust the styrene resin seed particles to 10 to 90% by weight in the styrene resin particles. It is more preferable to adjust so that it may become 20 to 80 weight%.

更に、分散液中に供給される架橋性単量体の総量は、少ないと、発泡性スチレン系樹脂粒子のゲル分率が低くなって、得られる発泡成形品の耐油性が低下することがある一方、多いと、発泡性スチレン系樹脂粒子のゲル分率が高くなり過ぎて発泡性が低下することがあるので、分散液中に架橋性単量体の供給を開始した以降に該分散液中に供給され、且つスチレン系樹脂粒子の製造に要するスチレン系単量体100重量部に対して0.25〜0.50重量部に限定され、0.25〜0.45重量部がより好ましい。 Further, if the total amount of the crosslinkable monomer supplied to the dispersion is small, the gel fraction of the expandable styrene resin particles is lowered, and the oil resistance of the obtained foamed molded product may be lowered. On the other hand, if the amount is too large, the gel fraction of the expandable styrenic resin particles may become too high and the foamability may decrease. Therefore, after the supply of the crosslinkable monomer is started in the dispersion, And 0.25 to 0.50 parts by weight, more preferably 0.25 to 0.45 parts by weight based on 100 parts by weight of the styrene monomer required for the production of styrene resin particles.

又、上記分散液中へ架橋性単量体の供給を開始した後におけるスチレン系樹脂成長粒子中のスチレン系単量体の含有量は、少ないと、発泡性スチレン系樹脂粒子の表面部が必要以上に架橋されてしまって、発泡性スチレン系樹脂粒子の成形性が低下する一方、多いと、スチレン系単量体がスチレン系樹脂成長粒子内部に必要以上に含浸され、このスチレン系単量体のスチレン系樹脂成長粒子内部への含浸に伴って架橋性単量体もスチレン系樹脂成長粒子内部に含浸されてしまい、発泡性スチレン系樹脂粒子全体が架橋されて、発泡性スチレン系樹脂粒子の発泡性が低下するので、3〜15重量%となるように、好ましくは3〜12重量%となるように調整する必要がある。   In addition, if the content of the styrene monomer in the styrene resin growing particles after the supply of the crosslinkable monomer into the dispersion liquid is small, the surface portion of the expandable styrene resin particles is necessary. While the cross-linking is carried out as above, the moldability of the expandable styrene resin particles is lowered. On the other hand, the styrene monomer is impregnated more than necessary inside the styrene resin growth particles. As the styrene resin-grown particles are impregnated inside, the crosslinkable monomer is also impregnated inside the styrene-resin-grown particles, and the entire expandable styrene resin particles are crosslinked, Since the foaming property is lowered, it is necessary to adjust to 3 to 15% by weight, preferably 3 to 12% by weight.

なお、スチレン系樹脂成長粒子中のスチレン系単量体の含有量は下記の要領で測定されたものをいう。即ち、スチレン系樹脂成長粒子を分散液中から取り出し、スチレン系樹脂成長粒子の表面に付着した水分をガーゼを用いて拭き取り除去する。   In addition, content of the styrene-type monomer in a styrene-type resin growth particle means what was measured in the following way. That is, the styrene-based resin growth particles are taken out from the dispersion, and the water adhering to the surface of the styrene-based resin growth particles is wiped off using gauze.

そして、スチレン系樹脂成長粒子を0.08g採取し、この採取したスチレン系樹脂成長粒子をトルエン25ミリリットル中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10ミリリットル、5重量%のヨウ化カリウム水溶液30ミリリットル及び1重量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定して試料の滴定数(ミリリットル)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。   Then, 0.08 g of styrene resin growing particles are collected, and the collected styrene resin growing particles are dissolved in 25 ml of toluene to prepare a toluene solution. Next, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution are supplied into this toluene solution, and titrated with an N / 40 sodium thiosulfate solution. Set the drop constant (milliliter). The Wis reagent is obtained by dissolving 8.7 g of iodine and 7.9 g of iodine trichloride in 2 liters of glacial acetic acid.

一方、スチレン系樹脂成長粒子を溶解させることなく、トルエン25ミリリットル中に、ウイス試薬10ミリリットル、5重量%のヨウ化カリウム水溶液30ミリリットル及び1重量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定してブランクの滴定数(ミリリットル)とする。   On the other hand, without dissolving the styrene-based resin growth particles, 10 ml of Wis reagent, 30 ml of 5 wt% potassium iodide aqueous solution and 30 ml of 1 wt% starch aqueous solution were supplied in 25 ml of toluene, and N / 40 Titrate with sodium thiosulfate solution to blank titration (in milliliters).

そして、スチレン系樹脂成長粒子中におけるスチレン系単量体量を下記式に基づいて算出することができる。
スチレン系樹脂成長粒子中におけるスチレン系単量体量(重量%)
=0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
And the amount of styrene-type monomers in a styrene-type resin growth particle is computable based on a following formula.
Amount of styrene monomer in styrene resin growth particles (wt%)
= 0.1322 × (blank drop constant−sample drop constant) / sample drop constant

又、上記スチレン系単量体をスチレン系樹脂種粒子中に含浸させてシード重合させる際に用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられ、単独で用いられても併用されてもよいが、10時間の半減期を得るための分解温度が50℃以上で且つ80℃未満の重合開始剤と、10時間の半減期を得るための分解温度が80℃以上で且つ120℃以下の重合開始剤とを併用することが好ましい。なお、重合開始剤の添加量としては、スチレン系単量体100重量部に対して0.01〜3重量部が好ましい。   The polymerization initiator used when the styrene monomer is impregnated into the styrene resin seed particles and seed polymerization is not particularly limited, and examples thereof include benzoyl peroxide, lauryl peroxide, and t-butyl. Peroxybenzoate, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butylperoxybutane, t-butylperoxy- Organic peroxides such as 3, 3, 5 trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile, azobisdimethylvaleronitrile, etc. Or may be used in combination with a half-life of 10 hours A polymerization initiator having a decomposition temperature of 50 ° C. or higher and lower than 80 ° C. and a polymerization initiator having a decomposition temperature of 80 ° C. or higher and 120 ° C. or lower to obtain a half-life of 10 hours may be used in combination. preferable. In addition, as addition amount of a polymerization initiator, 0.01-3 weight part is preferable with respect to 100 weight part of styrene-type monomers.

なお、上記分散液には、スチレン系種粒子及びこれを種粒子として成長中のスチレン系樹脂成長粒子の分散安定性を向上させるために、懸濁安定剤や安定助剤を添加してもよい。   In addition, a suspension stabilizer or a stabilizing aid may be added to the dispersion to improve the dispersion stability of the styrene-based seed particles and the styrene resin-grown particles that are growing using the seed particles as seed particles. .

上記懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難溶性無機化合物などが挙げられ、難溶性無機化合物を用いる場合には、アニオン界面活性剤が通常、併用される。   Examples of the suspension stabilizer include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds such as tribasic calcium phosphate and magnesium pyrophosphate. When an is used, an anionic surfactant is usually used in combination.

このようなアニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などが挙げられる。   Examples of such anionic surfactants include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. Etc.

次に、上記シード重合によって得られたスチレン系樹脂粒子に発泡剤を含浸させ、或いは、上記シード重合の途上にてスチレン系樹脂成長粒子に発泡剤を含浸させて、発泡性スチレン系樹脂粒子を製造する。   Next, the styrenic resin particles obtained by the seed polymerization are impregnated with a foaming agent, or the styrenic resin growth particles are impregnated with the foaming agent in the course of the seed polymerization to obtain expandable styrenic resin particles. To manufacture.

上記発泡剤としては、汎用のものが用いられ、例えば、プロパン、ブタン、ペンタンなどの脂肪族炭化水素;1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1,1,1,2−テトラフルオロエタン(HFC−134a)、1,1−ジフルオロエタン(HFC−152a)などのフロン系発泡剤が挙げられ、脂肪族炭化水素が好ましい。なお、発泡剤は単独で使用されても併用されてもよい。更に、上記発泡性スチレン系樹脂粒子には、チオジプロピオン酸エステル、チオジブチル酸エステル、エチレンビスステアリン酸アミドなどの気泡調整剤、紫外線吸収剤、増量剤、着色剤などの汎用の添加剤が添加されていてもよい。   As the blowing agent, general-purpose ones are used. For example, aliphatic hydrocarbons such as propane, butane, pentane; 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1 -Difluoroethane (HCFC-142b), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1- Examples thereof include CFC-based blowing agents such as difluoroethane (HFC-152a), and aliphatic hydrocarbons are preferable. In addition, a foaming agent may be used independently or may be used together. Furthermore, general-purpose additives such as bubble regulators such as thiodipropionic acid ester, thiodibutyric acid ester, ethylenebisstearic acid amide, ultraviolet absorbers, extenders, and colorants are added to the expandable styrene resin particles. May be.

又、発泡性スチレン系樹脂粒子の平均粒子径は、得られる発泡成形品の用途によって調整されるが、発泡成形品が発泡成形容器であって厚みが薄い場合には、0.2〜1mmが好ましい。   The average particle diameter of the expandable styrenic resin particles is adjusted depending on the use of the obtained foam molded product. When the foam molded product is a foam molded container and the thickness is thin, 0.2 to 1 mm is used. preferable.

このようにして得られた発泡性スチレン系樹脂粒子は、予備発泡機で予備発泡されて予備発泡粒子とされ、得られた予備発泡粒子は発泡成形機の金型内に充填された上で加熱蒸気などの加熱媒体により発泡させられて発泡圧によって互いに熱融着一体化して所望形状を有する発泡成形品とされる。なお、予備発泡粒子の嵩密度は、0.015〜0.500g/cm3 が好ましい。 The expandable styrenic resin particles thus obtained are pre-foamed by a pre-foaming machine to be pre-foamed particles, and the pre-foamed particles obtained are filled in a mold of the foam molding machine and heated. It is foamed by a heating medium such as steam, and is heat-fusion integrated with each other by foaming pressure to obtain a foamed molded product having a desired shape. The bulk density of the pre-expanded particles is preferably 0.015 to 0.500 g / cm 3 .

又、上記発泡成形品としては種々の形態のものが挙げられるが、コップ状、どんぶり状、トレー状、箱状などの発泡成形容器が本発明の作用、効果を効果的に奏する点で好ましく、この発泡成形容器内には、牛脂、大豆油、菜種油、しそ油、オリーブ油、ごま油、べに花油、コーン油などの植物油、ラード、即席麺、シチュー、マヨネーズ、ドレッシングソース、カレールー、バター、マーガリン、ホワイトソース、ヨーグルト類、アイスクリーム、ドーナツ、ハンバーガー、フライドチキンなどの油性食品や脂肪食品、界面活性剤を含む水溶液などを収納することができる。   In addition, the foamed molded article includes various forms, but is preferably a cup-shaped, bowl-shaped, tray-shaped, box-shaped or other foam-molded container in that the effects and effects of the present invention are effectively exhibited. In this foamed container, beef tallow, soybean oil, rapeseed oil, sesame oil, olive oil, sesame oil, bean flower oil, corn oil and other vegetable oils, lard, instant noodles, stew, mayonnaise, dressing sauce, curry roux, butter, margarine, white Oily foods such as sauces, yogurts, ice creams, donuts, hamburgers, and fried chicken, fat foods, aqueous solutions containing surfactants, and the like can be stored.

そして、上記発泡成形品は、上述のように、所定の発泡性スチレン系樹脂粒子を発泡させて得られたものであるので、発泡粒子同士がそれらの界面において強固に熱融着一体化していると共に、発泡粒子同士が熱融着している界面部分は架橋密度が高くて耐油性に優れている。   The foamed molded product is obtained by foaming predetermined foamable styrene resin particles as described above, and therefore, the foamed particles are firmly heat-sealed and integrated at the interface between them. At the same time, the interface part where the foamed particles are heat-sealed has high crosslink density and excellent oil resistance.

従って、油分を含んだ食品やカレー粉などの色素を含むものを長期間に亘って発泡成形品内に収納し、或いは、界面活性剤を含む液体などを発泡成形品内に収納した場合にあっても、発泡粒子同士の熱融着界面が油分、色素或いは界面活性剤などによっておかされるようなことはなく、よって、発泡粒子同士の熱融着界面を通じて油分や色素、界面活性剤を含んだ液体などが発泡成形品の外面に滲み出るといった事態を略防止することができる。   Therefore, when food containing oil or pigments such as curry powder is stored in the foam molded product for a long period of time, or liquid containing a surfactant is stored in the foam molded product. However, the thermal fusion interface between the expanded particles is not affected by the oil, the dye, or the surfactant, and therefore the oil, the dye, and the surfactant are included through the thermal fusion interface between the expanded particles. It is possible to substantially prevent the situation that the liquid oozes out from the outer surface of the foam molded product.

本発明の発泡性スチレン系樹脂粒子は、ゲル分率が10〜50重量%であり且つ100℃の水に5分間浸漬して予備発泡させた時の嵩密度が0.025〜0.06g/cm3 であると共に、蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子において、その表層部の気泡の平均気泡径が10〜70μmであり且つ表層部の気泡の平均気泡径と中央部にある気泡の平均気泡径との比が所定範囲内にあることを特徴とするので、優れた発泡性を有し、この発泡性スチレン系樹脂粒子を発泡させて得られる発泡成形品は、その優れた発泡性に起因した充分な発泡圧力によって発泡粒子同士が強固に熱融着一体化していると共に、発泡粒子同士の熱融着部分は、発泡性スチレン系樹脂粒子の表面部が発泡してなるものであることから、その高いゲル分率に由来して優れた耐油性を発揮する。 The expandable styrene resin particles of the present invention have a gel fraction of 10 to 50% by weight and a bulk density of 0.025 to 0.06 g / min when pre-foamed by being immersed in water at 100 ° C. for 5 minutes. In the pre-foamed particles that are cm 3 and pre-foamed with steam at a bulk magnification of 10 times, the average cell diameter of the bubbles in the surface layer portion is 10 to 70 μm, and the average cell diameter of the bubbles in the surface layer portion and the central portion Since the ratio of a certain bubble to the average bubble diameter is within a predetermined range, it has excellent foamability, and a foam molded product obtained by foaming the expandable styrene resin particles is excellent in that. The foam particles are firmly heat-sealed and integrated with each other by sufficient foaming pressure due to the foaming property, and the heat-sealed part between the foam particles is formed by foaming the surface portion of the foamable styrene resin particles. Because it is a thing, its high Demonstrates excellent oil resistance derived from the water fraction.

従って、発泡成形品内に油分を含んだ食品を長期間に亘って収納したり或いは界面活性剤を含んだ液体を収納した場合にあっても、発泡成形品の発泡粒子同士の熱融着部分が油分や界面活性剤によって変質したりすることはなく、発泡成形品内に収納した油分や界面活性剤を含んだ液体が外部に滲み出すといったことは殆どなく、発泡成形品を実用上、問題なく用いることができる。   Therefore, even when a food containing oil is stored for a long period of time in a foamed molded product or a liquid containing a surfactant is stored, the heat-sealed portion between the foamed particles of the foamed molded product However, the oil or surfactant contained in the foamed molded product hardly oozes out and the foamed product is practically problematic. Can be used.

そして、上記発泡性スチレン系樹脂粒子において、ゲル分率が20〜35重量%である場合には、発泡性スチレン系樹脂粒子の優れた発泡性を維持しつつ、この発泡性スチレン系樹脂粒子を発泡させて得られる発泡成形品は、その発泡粒子同士の熱融着界面においてさらに優れた耐油性を有している。   And in the said expandable styrene resin particle, when the gel fraction is 20 to 35% by weight, this expandable styrene resin particle is maintained while maintaining the excellent foamability of the expandable styrene resin particle. The foamed molded product obtained by foaming has further excellent oil resistance at the heat fusion interface between the foamed particles.

更に、上記発泡性スチレン系樹脂粒子を発泡させて得られる発泡成形品において、その発泡粒子同士の熱融着部分は、発泡性スチレン系樹脂粒子におけるゲル分率の高い表面部に由来するものであることから、優れた耐油性を有しており、よって、発泡成形品内に油分を含んだ食品を長期間に亘って収納したり或いは界面活性剤を含んだ液体を収納した場合にあっても、発泡成形品の発泡粒子同士の熱融着部分が油分や界面活性剤によって変質したりすることはなく、発泡成形品内に収納した油分や界面活性剤を含んだ液体が外部に滲み出すといったことは殆どなく、発泡成形品を実用上、問題なく用いることができる。   Furthermore, in the foam molded product obtained by foaming the expandable styrene resin particles, the heat-sealed portion between the expanded particles is derived from the surface portion having a high gel fraction in the expandable styrene resin particles. Therefore, it has excellent oil resistance. Therefore, when a food containing oil is stored for a long period of time in a foamed molded product or a liquid containing a surfactant is stored. However, the heat-sealed part between the foamed particles of the foamed molded product is not altered by the oil or surfactant, and the liquid containing the oil or surfactant contained in the foamed molded product oozes out to the outside. There is almost no such thing, and the foamed molded product can be used practically without any problem.

(実施例1)
攪拌装置を備えたステンレス製の100リットルのオートクレーブ内に、イオン交換水32000重量部、平均粒径が0.3〜0.5mmで且つ重量平均分子量が28万のポリスチレン種粒子20000重量部、ピロリン酸マグネシウム200重量部及びドデシルベンゼンスルホン酸ナトリウム8重量部を供給して攪拌し、分散液を作製した。
Example 1
In a stainless steel 100 liter autoclave equipped with a stirrer, 32,000 parts by weight of ion exchange water, 20000 parts by weight of polystyrene seed particles having an average particle size of 0.3 to 0.5 mm and a weight average molecular weight of 280,000, pyrroline 200 parts by weight of magnesium oxide and 8 parts by weight of sodium dodecylbenzenesulfonate were supplied and stirred to prepare a dispersion.

一方、イオン交換水6000重量部に、ドデシルベンゼンスルホン酸ナトリウム1重量部及びピロリン酸マグネシウム10重量部を分散させた後、ベンゾイルパーオキサイド(10時間の半減期を得るための分解温度:74℃)70重量部及びt−ブチルパーオキシベンゾエート(10時間の半減期を得るための分解温度:104℃)15重量部をスチレン5000重量部に溶解させたものをさらに加えて攪拌して乳濁させてスチレン乳濁液を作製した。   On the other hand, after dispersing 1 part by weight of sodium dodecylbenzenesulfonate and 10 parts by weight of magnesium pyrophosphate in 6000 parts by weight of ion-exchanged water, benzoyl peroxide (decomposition temperature for obtaining a half-life of 10 hours: 74 ° C.) 70 parts by weight and 15 parts by weight of t-butyl peroxybenzoate (decomposition temperature for obtaining a half-life of 10 hours: 104 ° C.) dissolved in 5000 parts by weight of styrene were further added and stirred to be emulsified. A styrene emulsion was prepared.

そして、上記分散液を85℃に加熱した上で該分散液中に上記スチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、分散液中にスチレン5000重量部を40分間に亘って連続的に終始、同一滴下速度にて滴下してシード重合を行なった。   And after heating the said dispersion liquid to 85 degreeC, the said styrene emulsion is supplied in this dispersion liquid, and immediately after hold | maintaining the said dispersion liquid at 85 degreeC for 40 minutes, this dispersion liquid is 85 degreeC. In the dispersion liquid, 5000 parts by weight of styrene was continuously dropped over 40 minutes and dropped at the same dropping rate to perform seed polymerization.

しかる後、上記分散液を引き続き85℃に保持しつつ、この分散液中に、ジビニルベンゼン25重量部をスチレン10000重量部に溶解させてなるスチレン溶液を80分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。続いて、上記分散液を85℃に1時間に亘って保持した後、50分かけて125℃まで昇温し、分散液を125℃に2時間に亘って保持して重合を完了し、その後、上記分散液を90℃に冷却、保持した。なお、ジビニルベンゼンを分散液中に供給し始めてから20分間隔毎に、ポリスチレン種粒子を種粒子として成長途上にあるポリスチレン成長粒子中のスチレン含有量を測定した。又、分散液中に供給したスチレンは全てシード重合に用いられていた。   Thereafter, while maintaining the above dispersion at 85 ° C., a styrene solution in which 25 parts by weight of divinylbenzene was dissolved in 10000 parts by weight of styrene was continuously added to this dispersion over 80 minutes at the same dropping rate. The seed polymerization was conducted dropwise. Subsequently, after the dispersion was held at 85 ° C. for 1 hour, the temperature was raised to 125 ° C. over 50 minutes, and the dispersion was held at 125 ° C. for 2 hours to complete the polymerization. The dispersion was cooled to 90 ° C. and held. In addition, the styrene content in the growing polystyrene particles was measured every 20 minutes from the start of supplying divinylbenzene into the dispersion using the polystyrene seed particles as seed particles. Moreover, all the styrene supplied in the dispersion was used for seed polymerization.

一方、ジラウリルチオジプロピオネート10重量部及びドデシルベンゼンスルホン酸ナトリウム0.5重量部をイオン交換水500重量部に供給して攪拌、分散させてなるものを上記分散液中に供給した。   On the other hand, 10 parts by weight of dilauryl thiodipropionate and 0.5 parts by weight of sodium dodecylbenzenesulfonate were supplied to 500 parts by weight of ion-exchanged water and stirred and dispersed.

しかる後、上記分散液が入っているオートクレーブ内にノルマルペンタン2240重量部及びイソペンタン560重量部を圧入して30分かけて115℃まで昇温して2時間に亘って保持した後に30℃に冷却して水を分離除去した上で乾燥させて、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、発泡性ポリスチレン粒子を水蒸気によって嵩倍率10倍に予備発泡させて得られた予備発泡粒子の平均気泡径比を測定する際に撮影した走査型電子顕微鏡写真を図2に示した。   Thereafter, 2240 parts by weight of normal pentane and 560 parts by weight of isopentane are injected into the autoclave containing the above dispersion, heated to 115 ° C. over 30 minutes, held for 2 hours, and then cooled to 30 ° C. Then, after separating and removing water, drying was performed to obtain expandable polystyrene particles having an average particle diameter of 450 μm. In addition, the scanning electron micrograph image | photographed when measuring the average cell diameter ratio of the pre-expanded particle obtained by pre-expanding expandable polystyrene particle | grains with water vapor | steam by 10 times the bulk magnification was shown in FIG.

(実施例2)
実施例1と同様の要領で作製した分散液を85℃に加熱した上で該分散液中に、実施例1と同様の要領で作製したスチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、分散液中にスチレン10000重量部を80分間に亘って終始、同一滴下速度にて連続的に滴下した。
(Example 2)
The dispersion prepared in the same manner as in Example 1 was heated to 85 ° C., and then the styrene emulsion prepared in the same manner as in Example 1 was supplied into the dispersion. Immediately after being held for 40 minutes, 10000 parts by weight of styrene was continuously added dropwise to the dispersion over the course of 80 minutes while maintaining the dispersion at 85 ° C.

しかる後、上記分散液を引き続き85℃に保持しつつ、上記分散液中に、ジビニルベンゼン15重量部をスチレン5000重量部に溶解させてなるスチレン溶液を40分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。その後の要領は、実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。   Thereafter, while maintaining the dispersion at 85 ° C., a styrene solution prepared by dissolving 15 parts by weight of divinylbenzene in 5,000 parts by weight of styrene was continuously taken over 40 minutes at the same dropping rate. The seed polymerization was conducted dropwise. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 450 μm. All styrene supplied in the dispersion was used for seed polymerization.

(実施例3)
実施例1と同様の要領で作製した分散液を85℃に加熱した上で該分散液中に、実施例1と同様の要領で作製したスチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、ジビニルベンゼン40重量部をスチレン15000重量部に溶解させてなるスチレン溶液を120分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。その後の要領は、実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。
(Example 3)
The dispersion prepared in the same manner as in Example 1 was heated to 85 ° C., and then the styrene emulsion prepared in the same manner as in Example 1 was supplied into the dispersion. Immediately after being held for 40 minutes, while maintaining this dispersion at 85 ° C., a styrene solution prepared by dissolving 40 parts by weight of divinylbenzene in 15,000 parts by weight of styrene was taken over 120 minutes at the same dropping rate. Seed polymerization was carried out by dripping continuously. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 450 μm. Note that all styrene supplied in the dispersion was used for seed polymerization.

(実施例4)
攪拌装置を備えたステンレス製の100リットルのオートクレーブ内に、イオン交換水32000重量部、平均粒径が0.3〜0.5mmで且つ重量平均分子量が28万のポリスチレン種粒子32000重量部、ピロリン酸マグネシウム200重量部及びドデシルベンゼンスルホン酸ナトリウム8重量部を供給して攪拌して分散液を作製した。
Example 4
In a 100 liter stainless steel autoclave equipped with a stirrer, 32,000 parts by weight of ion-exchanged water, 32,000 parts by weight of polystyrene seed particles having an average particle size of 0.3 to 0.5 mm and a weight average molecular weight of 280,000, pyrroline 200 parts by weight of magnesium oxide and 8 parts by weight of sodium dodecylbenzenesulfonate were supplied and stirred to prepare a dispersion.

一方、イオン交換水6000重量部に、ドデシルベンゼンスルホン酸ナトリウム1重量部及びピロリン酸マグネシウム10重量部を分散させた後、ベンゾイルパーオキサイド28重量部及びt−ブチルパーオキシベンゾエート15重量部をスチレン2000重量部に溶解させたものをさらに加えて攪拌して乳濁させてスチレン乳濁液を作製した。   On the other hand, 1 part by weight of sodium dodecylbenzenesulfonate and 10 parts by weight of magnesium pyrophosphate were dispersed in 6000 parts by weight of ion-exchanged water, and then 28 parts by weight of benzoyl peroxide and 15 parts by weight of t-butylperoxybenzoate were added to styrene 2000. What was melt | dissolved in the weight part was further added, and it agitated and emulsified and produced the styrene emulsion.

そして、上記分散液を85℃に加熱した上で該分散液中に上記スチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、分散液中に、ジビニルベンゼン27重量部をスチレン6000重量部に溶解させてなるスチレン溶液を60分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。その後の要領は、実施例1と同様にして、平均粒子径が400μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。   And after heating the said dispersion liquid to 85 degreeC, the said styrene emulsion is supplied in this dispersion liquid, and immediately after hold | maintaining the said dispersion liquid at 85 degreeC for 40 minutes, this dispersion liquid is 85 degreeC. The styrene solution prepared by dissolving 27 parts by weight of divinylbenzene in 6000 parts by weight of styrene was continuously dropped over 60 minutes at the same dropping rate to carry out seed polymerization. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 400 μm. All styrene supplied in the dispersion was used for seed polymerization.

(実施例5)
実施例1と同様の要領で分散液を作製する一方、ベンゾイルパーオキサイドを70重量部の代わりに90重量部としたこと以外は実施例1と同様の要領でスチレン乳濁液を作製した。
(Example 5)
While a dispersion was prepared in the same manner as in Example 1, a styrene emulsion was prepared in the same manner as in Example 1 except that 90 parts by weight of benzoyl peroxide was used instead of 70 parts by weight.

上記分散液を85℃に加熱した上で該分散液中に上記スチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液中にスチレン10000重量部を90分間に亘って連続的に終始、同一滴下速度にて滴下すると共に、このスチレンの分散液内への供給中、分散液の温度を0.2℃/分の一定の昇温速度で昇温した。   The dispersion is heated to 85 ° C., and then the styrene emulsion is supplied into the dispersion. Immediately after the dispersion is held at 85 ° C. for 40 minutes, 10,000 weight of styrene is added to the dispersion. The solution is continuously dropped over 90 minutes at the same dropping rate, and while the styrene is being supplied into the dispersion, the temperature of the dispersion is kept constant at a rate of 0.2 ° C./min. The temperature rose.

しかる後、上記分散液中に、ジビニルベンゼン20重量部をスチレン5000重量部に溶解させてなるスチレン溶液を30分かけて終始、同一滴下速度で連続的に滴下すると共に、このスチレン溶液の分散液内への供給中、分散液の温度を0.2℃/分の一定の昇温速度で昇温してシード重合を行なった。その後の要領は、実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。   Thereafter, a styrene solution prepared by dissolving 20 parts by weight of divinylbenzene in 5,000 parts by weight of styrene is continuously dropped over 30 minutes into the above dispersion at the same dropping rate. During the supply to the inside, the temperature of the dispersion was increased at a constant temperature increase rate of 0.2 ° C./min to perform seed polymerization. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 450 μm. All styrene supplied in the dispersion was used for seed polymerization.

(比較例1)
スチレン溶液の代わりに、スチレン10000重量部を分散液中に滴下したこと以外は実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、スチレン溶液の代わりに分散液中にスチレンを滴下し始めてから40分経過時、及び、その後、20分間隔毎にポリスチレン種粒子を種粒子として成長途上にあるポリスチレン成長粒子中のスチレン含有量を測定した。又、発泡性ポリスチレン粒子を水蒸気によって嵩倍率10倍に予備発泡させて得られた予備発泡粒子の平均気泡径比を測定する際に撮影した走査型電子顕微鏡写真を図3に示した。
(Comparative Example 1)
Expandable polystyrene particles having an average particle diameter of 450 μm were obtained in the same manner as in Example 1 except that 10000 parts by weight of styrene was dropped into the dispersion instead of the styrene solution. In addition, the styrene content in the growing polystyrene particles 40 minutes after the start of dropping styrene into the dispersion instead of the styrene solution, and every 20 minutes thereafter, using the polystyrene seed particles as seed particles. Was measured. Further, FIG. 3 shows a scanning electron micrograph taken when measuring the average cell diameter ratio of the pre-expanded particles obtained by pre-expanding the expandable polystyrene particles with water vapor to 10 times the bulk magnification.

(比較例2)
スチレン溶液として、ジビニルベンゼン7重量部をスチレン10000重量部に溶解させてなるスチレン溶液を用いたこと以外は実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。
(Comparative Example 2)
As the styrene solution, expandable polystyrene particles having an average particle diameter of 450 μm were obtained in the same manner as in Example 1 except that a styrene solution obtained by dissolving 7 parts by weight of divinylbenzene in 10000 parts by weight of styrene was used.

(比較例3)
スチレン溶液として、ジビニルベンゼン60重量部をスチレン10000重量部に溶解させてなるスチレン溶液を用いたこと以外は実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。
(Comparative Example 3)
As the styrene solution, expandable polystyrene particles having an average particle diameter of 450 μm were obtained in the same manner as in Example 1 except that a styrene solution obtained by dissolving 60 parts by weight of divinylbenzene in 10,000 parts by weight of styrene was used.

(比較例4)
実施例1と同様の要領で作製した分散液を85℃に加熱した上で該分散液中に、実施例1と同様の要領で作製したスチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、この分散液中にスチレン12000重量部を100分間に亘って終始、同一滴下速度にて連続的に滴下した。
(Comparative Example 4)
The dispersion prepared in the same manner as in Example 1 was heated to 85 ° C., and then the styrene emulsion prepared in the same manner as in Example 1 was supplied into the dispersion. Immediately after being held for 40 minutes, 12,000 parts by weight of styrene was continuously added dropwise to the dispersion at the same dropping rate for 100 minutes while maintaining the dispersion at 85 ° C.

しかる後、上記分散液を引き続き85℃に保持しつつ、分散液中に、ジビニルベンゼン9重量部をスチレン3000重量部に溶解させてなるスチレン溶液を20分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。その後の要領は、実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。   Thereafter, while maintaining the above dispersion at 85 ° C., a styrene solution prepared by dissolving 9 parts by weight of divinylbenzene in 3000 parts by weight of styrene was continuously taken over 20 minutes and continuously at the same dropping rate. The seed polymerization was carried out by dripping the solution. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 450 μm. All styrene supplied in the dispersion was used for seed polymerization.

(比較例5)
分散液を125℃に昇温する以前の分散液の温度を85℃の代わりに75℃としたこと以外は実施例1と同様にして、平均粒子径が450μmの発泡性ポリスチレン粒子を得た。なお、発泡性ポリスチレン粒子を水蒸気によって嵩倍率10倍に予備発泡させて得られた予備発泡粒子の平均気泡径比を測定する際に撮影した走査型電子顕微鏡写真を図4に示した。
(Comparative Example 5)
Expandable polystyrene particles having an average particle diameter of 450 μm were obtained in the same manner as in Example 1 except that the temperature of the dispersion before raising the temperature to 125 ° C. was 75 ° C. instead of 85 ° C. In addition, the scanning electron micrograph image | photographed when measuring the average bubble diameter ratio of the pre-expanded particle obtained by pre-expanding expandable polystyrene particles with water vapor | steam by 10 times the bulk magnification was shown in FIG.

(比較例6)
ポリスチレン粒子を20000重量部の代わりに15000重量部用いて分散液を作製する一方、ベンゾイルパーオキサイドを70重量部の代わりに90重量部用いてスチレン乳濁液を作製した。
(Comparative Example 6)
A dispersion was prepared using 15000 parts by weight of polystyrene particles instead of 20000 parts by weight, while a styrene emulsion was prepared using 90 parts by weight of benzoyl peroxide instead of 70 parts by weight.

そして、上記分散液を85℃に加熱した上で該分散液中に上記スチレン乳濁液を供給し、上記分散液を85℃に40分間に亘って保持した直後に、この分散液を85℃に保持しつつ、該分散液中に、ジビニルベンゼン60重量部をスチレン20000重量部に溶解させてなるスチレン溶液を160分かけて終始、同一滴下速度で連続的に滴下してシード重合を行なった。続いて、上記分散液を85℃に1時間に亘って保持した後、50分かけて125℃まで昇温し、分散液を125℃に2時間に亘って保持して重合を完了し、その後、上記分散液を90℃に冷却、保持した。その後の要領は、実施例1と同様にして、平均粒子径が500μmの発泡性ポリスチレン粒子を得た。なお、分散液中に供給したスチレンは全てシード重合に用いられていた。   And after heating the said dispersion liquid to 85 degreeC, the said styrene emulsion is supplied in this dispersion liquid, and immediately after hold | maintaining the said dispersion liquid at 85 degreeC for 40 minutes, this dispersion liquid is 85 degreeC. The styrene solution obtained by dissolving 60 parts by weight of divinylbenzene in 20000 parts by weight of styrene was continuously dropped over 160 minutes in the dispersion and continuously dropped at the same dropping rate to perform seed polymerization. . Subsequently, after the dispersion was held at 85 ° C. for 1 hour, the temperature was raised to 125 ° C. over 50 minutes, and the dispersion was held at 125 ° C. for 2 hours to complete the polymerization. The dispersion was cooled to 90 ° C. and held. Thereafter, the same procedure as in Example 1 was carried out to obtain expandable polystyrene particles having an average particle diameter of 500 μm. All styrene supplied in the dispersion was used for seed polymerization.

上記の如くして得られた発泡性ポリスチレン粒子のゲル分率及び100℃の水に5分間浸漬して予備発泡させた時の嵩密度(表1では単に「嵩密度」とした)、発泡性ポリスチレン粒子を嵩倍率10倍に予備発泡させた予備発泡粒子における表層部の気泡の平均気泡径(表1では「表層部平均気泡径」とした)、上記予備発泡粒子における表層部の気泡の平均気泡径と中央部の気泡の平均気泡径との比(表層部の気泡の平均気泡径/中央部の気泡の平均気泡径)(平均気泡径比)、並びに、発泡性ポリスチレン粒子の製造時におけるポリスチレン成長粒子中の最大スチレン単量体含有量(表1では「最大スチレン含有量」とした)、最小スチレン単量体含有量(表1では「最小スチレン含有量」とした)及びジビニルベンゼン供給開始時のポリスチレン成長粒子中のスチレン単量体含有量(表1では「開始時スチレン含有量」とした)を上述の要領で測定すると共に、油分滲出性及び界面活性剤滲出性を下記の要領で測定し、その結果を表1に示した。   The gel fraction of the expandable polystyrene particles obtained as described above and the bulk density when pre-expanded by immersing in water at 100 ° C. for 5 minutes (in Table 1, simply “bulk density”), foamability The average cell diameter of bubbles in the surface layer part of the pre-expanded particles obtained by pre-expanding polystyrene particles at a bulk magnification of 10 times (referred to as “surface layer average cell diameter” in Table 1), the average of the bubbles in the surface layer part of the pre-expanded particles The ratio of the bubble diameter to the average bubble diameter in the central part (average bubble diameter in the surface layer / average bubble diameter in the central part) (average bubble diameter ratio), as well as during the production of expandable polystyrene particles Maximum styrene monomer content in polystyrene-grown particles (referred to as “maximum styrene content” in Table 1), minimum styrene monomer content (referred to as “minimum styrene content” in Table 1), and divinylbenzene supply Start point The styrene monomer content in the styrene-grown particles (referred to as “starting styrene content” in Table 1) was measured as described above, and the oil leaching property and surfactant leaching property were measured as follows. The results are shown in Table 1.

又、表1には、ジビニルベンゼンを分散液中に供給し始めた時点における供給済み総量の供給必要総量に対する百分率(表1では「供給時期」とした)と、分散液中にジビニルベンゼンの供給を開始した以降に該分散液中に供給されたスチレン総量を100重量部に換算した時の上記分散液中に供給されたジビニルベンゼンの換算量(表1では「供給量」とした)を記載した。   Table 1 also shows the percentage of the total supply amount at the time when divinylbenzene began to be supplied into the dispersion (referred to as “supply time” in Table 1) and the supply of divinylbenzene into the dispersion. Describes the converted amount of divinylbenzene supplied to the dispersion when the total amount of styrene supplied to the dispersion after conversion to 100 parts by weight was started (referred to as “supply amount” in Table 1). did.

(油分滲出性)
発泡性ポリスチレン粒子2000g及び表面処理剤としてステアリン酸亜鉛(粉砕品、平均最大長20μm)4gをスーパーミキサーに供給して2分間に亘って攪拌した。次に、スーパーミキサー内にポリエチレングリコール(重量平均分子量:300)0.8gを供給して5分間に亘って攪拌して、発泡性ポリスチレン粒子の表面にステアリン酸亜鉛及びポリエチレングリコールを均一に付着させた。
(Oil exudation)
2000 g of expandable polystyrene particles and 4 g of zinc stearate (ground product, average maximum length of 20 μm) as a surface treatment agent were supplied to a supermixer and stirred for 2 minutes. Next, 0.8 g of polyethylene glycol (weight average molecular weight: 300) is supplied into the super mixer and stirred for 5 minutes to uniformly attach zinc stearate and polyethylene glycol to the surface of the expandable polystyrene particles. It was.

しかる後、上記発泡性ポリスチレン粒子を予備発泡機に供給して水蒸気を用いて嵩密度0.1g/cm3 に予備発泡させて予備発泡粒子を得た。この予備発泡粒子を常温にて1日放置して乾燥させた。 Thereafter, the expandable polystyrene particles were supplied to a pre-foaming machine and pre-foamed to a bulk density of 0.1 g / cm 3 using water vapor to obtain pre-foamed particles. The pre-expanded particles were left to dry at room temperature for 1 day.

次に、上記予備発泡粒子を発泡成形機の金型内に供給、充填し、予備発泡粒子を0.2MPaの水蒸気を用いて6秒間に亘って加熱、発泡させて、内容積量が450cm3 で且つ肉厚が2mmのカップ状の発泡成形容器を得た。なお、カップ状の発泡成形容器は、平面円形状の底面部の外周縁から一定高さの周壁部を上方における斜め外方に向かって突設してなるものであった。 Next, the pre-expanded particles are supplied and filled into a mold of a foam molding machine, and the pre-expanded particles are heated and foamed with 0.2 MPa of water vapor for 6 seconds, so that the internal volume is 450 cm 3. And a cup-shaped foam-molded container having a wall thickness of 2 mm was obtained. In addition, the cup-shaped foam-molded container was formed by protruding a peripheral wall portion having a certain height from the outer peripheral edge of the bottom surface portion having a flat circular shape toward the upper diagonally outward direction.

そして、得られた発泡成形容器内に、即席麺に用いられている、カレー粉を含む調味料及びかやくを満杯になるまで供給した上で、発泡成形容器を延伸ポリプロピレンフィルムで全面的に被覆した。次に、上記発泡成形容器を60℃に保持されたオーブン内に48時間に亘って放置した。   Then, in the obtained foam molded container, the seasoning used in instant noodles, containing the seasoning and curry containing curry powder, is supplied until it is full, and then the foam molded container is entirely covered with a stretched polypropylene film. did. Next, the foam-molded container was left in an oven maintained at 60 ° C. for 48 hours.

次に、発泡成形容器の周壁部外面の全面を紙に写し取ると共に、発泡成形容器の周壁部外面に滲み出したカレー粉による黄色色素部分を上記紙に写し取り、写し取った発泡成形容器の周壁部外面全面に対応する部分の紙の重量W3 を測定する一方、写し取った黄色色素部分に対応する部分の紙の重量W4 を測定して下記式により百分率を算出し、下記基準により判断した。
油分滲出性(%)=100×W4 /W3
Next, copy the entire outer surface of the peripheral wall portion of the foam-molded container onto paper, and copy the yellow pigment portion of curry powder that has oozed out on the outer peripheral surface of the foam-molded container onto the paper, and copy the peripheral wall portion of the foam-molded container While measuring the weight W 3 of the paper corresponding to the entire outer surface, the weight W 4 of the paper corresponding to the copied yellow pigment part was measured, and the percentage was calculated by the following formula, and judged according to the following criteria.
Oil exudation (%) = 100 × W 4 / W 3

◎・・・10%未満
○・・・10%以上で且つ20%未満
×・・・20%以上
◎ ・ ・ ・ less than 10% ○ ・ ・ ・ 10% or more and less than 20% × ... 20% or more

(界面活性剤滲出性)
先ず、水1リットル内にノニオン系界面活性剤(花王社製 商品名「花王エマルゲン810」)1.0g及び黒系着色剤(和光純薬社製 商品名「エリオクロムブラックT」)0.05gを均一に溶解、分散させて着色水を作製した。
(Surfactant leaching property)
First, 1.0 g of a nonionic surfactant (trade name “Kao Emulgen 810” manufactured by Kao Corporation) and 0.05 g of black colorant (trade name “Eriochrome Black T” manufactured by Wako Pure Chemical Industries, Ltd.) in 1 liter of water. Was uniformly dissolved and dispersed to prepare colored water.

そして、油分滲出性の測定時と同様の要領で作製した発泡成形容器内に上記着色水を満杯となるまで供給して発泡成形容器の周壁部外面に着色水が滲み出てくるのを目視観察し、発泡成形容器内に着色水を供給し終わってから発泡成形容器の周壁部外面に着色水が最初に滲み出してきたのを確認するまでの時間を測定し,下記基準により判断した。
◎・・・30分以上
○・・・20分以上で且つ30分未満
×・・・20分未満
Then, the colored water is supplied to the foam molded container prepared in the same manner as the measurement of oil leaching until it fills up, and the colored water oozes out to the outer surface of the peripheral wall portion of the foam molded container. Then, after supplying colored water into the foam molded container, the time until it was confirmed that the colored water first oozed out on the outer surface of the peripheral wall portion of the foam molded container was measured and judged according to the following criteria.
◎ ・ ・ ・ 30 minutes or more ○ ・ ・ ・ 20 minutes or more and less than 30 minutes × ・ ・ ・ less than 20 minutes

気泡の最大弦長の一例を示した模式図である。It is the schematic diagram which showed an example of the maximum chord length of a bubble. 実施例1の発泡性ポリスチレン粒子を用いて得られた予備発泡粒子の切断面を写した倍率80倍の走査型電子顕微鏡写真である。2 is a scanning electron micrograph at a magnification of 80 times showing a cut surface of pre-expanded particles obtained using the expandable polystyrene particles of Example 1. FIG. 比較例1の発泡性ポリスチレン粒子を用いて得られた予備発泡粒子の切断面を写した倍率80倍の走査型電子顕微鏡写真である。2 is a scanning electron micrograph at a magnification of 80 times showing a cut surface of pre-expanded particles obtained using the expandable polystyrene particles of Comparative Example 1. FIG. 比較例5の発泡性ポリスチレン粒子を用いて得られた予備発泡粒子の切断面を写した倍率100倍の走査型電子顕微鏡写真である。6 is a scanning electron micrograph at a magnification of 100, showing a cut surface of pre-expanded particles obtained using the expandable polystyrene particles of Comparative Example 5. FIG.

Claims (3)

ゲル分率が10〜50重量%であり且つ100℃の水に5分間浸漬して予備発泡させた時の嵩密度が0.025〜0.06g/cm3 であると共に、蒸気によって嵩倍率10倍に予備発泡させた予備発泡粒子において、その表層部の気泡の平均気泡径が10〜70μmであり且つ表層部の気泡の平均気泡径と中央部の気泡の平均気泡径との比が下記式を満たすことを特徴とする発泡性スチレン系樹脂粒子。
0.4≦(表層部の気泡の平均気泡径/中央部の気泡の平均気泡径)≦0.8
The gel fraction is 10 to 50% by weight and the bulk density when pre-foamed by immersion in water at 100 ° C. for 5 minutes is 0.025 to 0.06 g / cm 3 , and the bulk magnification is 10 by steam. In the pre-expanded particles that have been pre-expanded twice, the average cell diameter of the cells in the surface layer portion is 10 to 70 μm, and the ratio between the average cell diameter of the cells in the surface layer portion and the average cell diameter of the bubbles in the center portion is Expandable styrenic resin particles characterized by satisfying
0.4 ≦ (Average bubble diameter of bubbles in the surface layer portion / Average bubble diameter of bubbles in the center portion) ≦ 0.8
ゲル分率が20〜35重量%であることを特徴とする請求項1に記載の発泡性スチレン系樹脂粒子。 The expandable styrenic resin particles according to claim 1, wherein the gel fraction is 20 to 35% by weight. 請求項1又は請求項2に記載の発泡性スチレン系樹脂粒子を予備発泡させ、得られた予備発泡粒子を発泡させて得られたことを特徴とする発泡成形品。 A foam-molded article obtained by pre-expanding the expandable styrenic resin particles according to claim 1 or 2 and foaming the obtained pre-expanded particles.
JP2004088654A 2004-03-25 2004-03-25 Expandable styrene resin particles, method for producing the same, and foam molded product Expired - Lifetime JP4480435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088654A JP4480435B2 (en) 2004-03-25 2004-03-25 Expandable styrene resin particles, method for producing the same, and foam molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088654A JP4480435B2 (en) 2004-03-25 2004-03-25 Expandable styrene resin particles, method for producing the same, and foam molded product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010018731A Division JP5219301B2 (en) 2010-01-29 2010-01-29 Method for producing expandable styrene resin particles

Publications (2)

Publication Number Publication Date
JP2005272665A JP2005272665A (en) 2005-10-06
JP4480435B2 true JP4480435B2 (en) 2010-06-16

Family

ID=35172677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088654A Expired - Lifetime JP4480435B2 (en) 2004-03-25 2004-03-25 Expandable styrene resin particles, method for producing the same, and foam molded product

Country Status (1)

Country Link
JP (1) JP4480435B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925620B2 (en) * 2005-07-29 2012-05-09 積水化成品工業株式会社 Polystyrene resin in-mold foam molded product and food packaging
JP4982301B2 (en) * 2006-11-30 2012-07-25 積水化成品工業株式会社 Expandable polystyrene resin particles, foamed molded products, production methods thereof, pre-expanded particles
JP5436768B2 (en) * 2007-10-31 2014-03-05 株式会社ジェイエスピー Styrenic resin expanded particles and molded articles of styrene resin expanded particles
JP5518510B2 (en) * 2010-01-28 2014-06-11 積水化成品工業株式会社 Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
EP2548915A4 (en) * 2010-03-17 2015-05-06 Tomoegawa Co Ltd Polymer expanded particle, expanded toner and method for producing polymer expanded particle and expanded toner
JP2012201827A (en) * 2011-03-25 2012-10-22 Sekisui Plastics Co Ltd Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
JP5732358B2 (en) * 2011-09-12 2015-06-10 積水化成品工業株式会社 Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP5914079B2 (en) * 2012-03-23 2016-05-11 積水化成品工業株式会社 Styrene-based foamed resin particles and foamed molded article
DE102014009338A1 (en) * 2014-06-27 2015-12-31 Evonik Röhm Gmbh Pressure-dependent foam molding of poly (meth) acrylimide particles in closed tools for the production of rigid foam cores
CN110204773A (en) * 2019-05-30 2019-09-06 北京化工大学 The preparation process of EPS base light flame-retardant Wood plastic boards
JP7307655B2 (en) * 2019-10-16 2023-07-12 株式会社ジェイエスピー Polypropylene-based resin-colored expanded beads, polypropylene-based resin-colored expanded beads molded article, and method for producing the polypropylene-based resin-colored expanded beads

Also Published As

Publication number Publication date
JP2005272665A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4480435B2 (en) Expandable styrene resin particles, method for producing the same, and foam molded product
US9000060B2 (en) Expandable modified resin beads, expanded modified resin beads, and foamed molded article formed from expanded modified resin beads
TWI478968B (en) Pre-expanded particles, a method for producing the same, and a foamed molded article
JP5831175B2 (en) Expandable composite resin particle and composite resin foam particle molded body
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
JP5219301B2 (en) Method for producing expandable styrene resin particles
JP2007091780A (en) Foamable polystyrene-based resin particle and its production method, pre-foamed particle, foamed molded article and food package
JP2013209608A (en) Styrene-based resin particle, method for producing the same, expandable particle, foamed particle, and foamed molded article
US4698367A (en) Expandable thermoplastic resin particles
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JPH09221563A (en) Preparation of expandable styrene polymer particle
JP2003335891A (en) Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP4925620B2 (en) Polystyrene resin in-mold foam molded product and food packaging
JP4928965B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded product
JP2013032449A (en) Foamable polystyrene-based resin particle, foamed particle, and foamed molding
JP2014237747A (en) Composite resin expanded particle and composite resin expanded particle molded body
JP6216237B2 (en) Expandable thermoplastic resin particles
JP2006036993A (en) Expandable styrene resin particle and its production method
JP5219300B2 (en) Expandable styrene resin particles
JPH11255945A (en) Foamable styrene-based resin particle and its production
TWI344971B (en) Foam molding material, production method thereof, and packaging material for food
JP4622155B2 (en) Expandable polystyrene resin particles and foamed moldings using the same
JP3597109B2 (en) Method for producing expandable styrene resin particles, expandable styrene resin particles, and molded foam
JP2003205925A (en) Foamed polystyrene resin container
JP4101706B2 (en) Expandable styrenic resin particles and foam molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4