JP2014237747A - Composite resin expanded particle and composite resin expanded particle molded body - Google Patents

Composite resin expanded particle and composite resin expanded particle molded body Download PDF

Info

Publication number
JP2014237747A
JP2014237747A JP2013120397A JP2013120397A JP2014237747A JP 2014237747 A JP2014237747 A JP 2014237747A JP 2013120397 A JP2013120397 A JP 2013120397A JP 2013120397 A JP2013120397 A JP 2013120397A JP 2014237747 A JP2014237747 A JP 2014237747A
Authority
JP
Japan
Prior art keywords
resin
composite resin
particles
foamed
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013120397A
Other languages
Japanese (ja)
Other versions
JP6136601B2 (en
Inventor
中岫 弘
Hiroshi Nakakuki
弘 中岫
浅野 一生
Kazuo Asano
一生 浅野
島 昌臣
Masaomi Shima
昌臣 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2013120397A priority Critical patent/JP6136601B2/en
Publication of JP2014237747A publication Critical patent/JP2014237747A/en
Application granted granted Critical
Publication of JP6136601B2 publication Critical patent/JP6136601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite resin expanded particle and a composite resin expanded particle molded body having excellent rigidity and restoration property even when bulk density is made low.SOLUTION: There are provided a composite resin expanded particle 1 containing a composite resin 2 of a straight-chain low-density polyethylene resin (A) and a polystyrene-based resin (B) obtained by impregnating a styrenic monomer into the resin (A) and polymerizing the styrenic monomer, as a base resin, and a composite resin expanded particle molded body manufactured by molding the composite resin expanded particle 1 in a mold. The composite resin 2 contains resin (A) of 20 to 50 mass% and the resin (B) of 50 to 80 wt.%, and shows morphology such that the resin (A) forms a dispersion phase, and the resin (B) forms a continuous phase. The composite resin expanded particle 1 has a bulk density of 5 to 15 kg/mand a closed cell ratio of 90% or more.

Description

本発明は、ポリエチレン系樹脂とポリスチレン系樹脂との複合樹脂を基材樹脂とする複合樹脂発泡粒子及びこれを用いた複合樹脂発泡粒子成形体に関する。   The present invention relates to a composite resin foam particle using a composite resin of a polyethylene resin and a polystyrene resin as a base resin, and a composite resin foam particle molded body using the composite resin foam particle.

従来、クッション、マットレス等の充填材として、発泡樹脂粒子が使用されている。これらの用途には発泡樹脂粒子の中でも発泡ポリスチレン粒子を用いるのが一般的である。例えば、伸縮性のある袋体に、スチレン系樹脂からなる、平均粒子径が0.4〜1.4mmの発泡樹脂粒子を充填するクッション体が知られている(特許文献1参照)。また、発泡スチロール粒を充填したマットが知られている(特許文献2参照)。   Conventionally, foamed resin particles have been used as fillers such as cushions and mattresses. For these applications, it is common to use expanded polystyrene particles among the expanded resin particles. For example, a cushion body is known in which a stretchable bag body is filled with foamed resin particles made of styrene resin and having an average particle diameter of 0.4 to 1.4 mm (see Patent Document 1). Further, a mat filled with expanded polystyrene particles is known (see Patent Document 2).

特開2004−223002号公報JP 2004-223002 A 特開昭63−79760号公報JP-A-63-79760

発泡ポリスチレン粒子は、発泡剤の保持性が高く優れた発泡性を有するため、発泡倍率を高くして軽量化が可能であり、さらに剛性に優れるという特徴を有している。その反面、発泡ポリスチレン粒子は、復元性に劣るため、例えばクッション、マットレス等の充填材として長期間使用すると粒子が潰れてしまうという問題がある。発泡ポリスチレン粒子の潰れを抑制するためには、発泡倍率を下げて発泡ポリスチレン粒子の嵩密度を高くする必要がある。実際に、発泡ポリスチレン粒子は、一般的に見かけ密度が33〜25kg/m3の範囲で用いられている。しかし、この嵩密度においても、発泡ポリスチレン粒子の潰れ抑制効果は不十分であり、更なる改善が望まれている。 Since the expanded polystyrene particles have high foaming agent retainability and excellent foamability, they can be reduced in weight by increasing the expansion ratio, and further have excellent rigidity. On the other hand, since the expanded polystyrene particles are inferior in restoring properties, there is a problem that the particles are crushed when used for a long time as a filler such as a cushion or a mattress. In order to suppress the collapse of the expanded polystyrene particles, it is necessary to lower the expansion ratio and increase the bulk density of the expanded polystyrene particles. Actually, expanded polystyrene particles are generally used in an apparent density range of 33 to 25 kg / m 3 . However, even at this bulk density, the effect of suppressing the collapse of the expanded polystyrene particles is insufficient, and further improvement is desired.

一方、発泡ポリスチレン粒子に比べて復元性に優れる発泡ポリエチレン粒子、発泡ポリプロピレン粒子などの発泡オレフィン系樹脂粒子も知られているが、オレフィン系樹脂は発泡剤の保持性が低く発泡性が著しく劣るため、発泡倍率を高くすることが困難である。そのため、軽量化が要求される上述の充填材等の用途には適していない。また、発泡オレフィン系樹脂粒子は、発泡ポリスチレン粒子と比較して剛性が劣るため、十分な剛性を得るためには嵩密度を高くする(発泡倍率を低くする)必要があった。   On the other hand, foamed olefin resin particles such as foamed polyethylene particles and foamed polypropylene particles, which are excellent in resilience compared to expanded polystyrene particles, are also known, but olefinic resins have a low foaming agent retention and significantly poor foamability. It is difficult to increase the expansion ratio. Therefore, it is not suitable for uses such as the above-described fillers that require weight reduction. In addition, since the foamed olefin resin particles are inferior in rigidity to the foamed polystyrene particles, it is necessary to increase the bulk density (lower the expansion ratio) in order to obtain sufficient rigidity.

本発明は、かかる背景に鑑みてなされたものであり、嵩密度を低くしても、優れた剛性と復元性を兼ね備える複合樹脂発泡粒子、及び複合樹脂発泡粒子成形体を提供しようとするものである。   The present invention has been made in view of such a background, and intends to provide a composite resin foamed particle having excellent rigidity and restorability, and a composite resin foam particle molded body even when the bulk density is lowered. is there.

本発明者らは、上記の課題を解決するために、直鎖状低密度ポリエチレン樹脂と、該直鎖状低密度ポリエチレン樹脂にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂との複合樹脂を基材樹脂とする複合樹脂発泡粒子のモルフォロジーについて、鋭意研究した。その結果、複合樹脂発泡粒子におけるエチレン系樹脂とスチレン系樹脂が所定のモルフォロジーを示すことにより、複合樹脂発泡粒子は、その発泡倍率を高めて嵩密度を極めて低くしても、独立気泡構造を維持でき、優れた剛性及び復元性を示すことを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have prepared a composite resin of a linear low density polyethylene resin and a polystyrene resin obtained by impregnating and polymerizing the linear low density polyethylene resin with a styrene monomer. We have intensively studied the morphology of the composite resin foam particles used as the base resin. As a result, the ethylene resin and styrene resin in the composite resin foam particles exhibit a predetermined morphology, so that the composite resin foam particles maintain a closed cell structure even when the foam density is increased and the bulk density is extremely low. It has been found that it exhibits excellent rigidity and resilience, and the present invention has been completed.

即ち、本発明の一態様は、直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との複合樹脂を基材樹脂とする複合樹脂発泡粒子であって、
上記複合樹脂は、上記樹脂(A)20〜50質量%及び上記樹脂(B)50〜80重量%を含有し(ただし、上記樹脂(A)及び上記樹脂(B)の合計が100質量%)、かつ上記樹脂(A)が分散相を形成し、上記樹脂(B)が連続相を形成するモルフォロジーを示し、
嵩密度が5〜15kg/m3、独立気泡率が90%以上であることを特徴とする複合樹脂発泡粒子にある(請求項1)。
That is, in one embodiment of the present invention, a base resin is a composite resin of a linear low density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer. A composite resin foam particle,
The composite resin contains 20-50% by mass of the resin (A) and 50-80% by weight of the resin (B) (however, the total of the resin (A) and the resin (B) is 100% by mass). And the resin (A) forms a dispersed phase and the resin (B) forms a continuous phase,
The composite resin foamed particle has a bulk density of 5 to 15 kg / m 3 and a closed cell ratio of 90% or more (Claim 1).

本発明の他の態様は、上記複合樹脂発泡粒子を型内成形してなる見掛け密度5〜15kg/mの複合樹脂発泡粒子成形体にある(請求項6)。 Another aspect of the present invention resides in a composite resin foam particle molded body having an apparent density of 5 to 15 kg / m 3 formed by molding the composite resin foam particles in a mold.

上記複合樹脂発泡粒子は、直鎖状低密度ポリエチレン樹脂(A)(適宜「樹脂(A)」という)と、該直鎖状低密度ポリエチレン樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)(適宜「樹脂(B)」という)との複合樹脂を基材樹脂とする。そして、複合樹脂は、上記樹脂(A)及び上記樹脂(B)を特定の配合割合で含有し、上記樹脂(A)が分散相を形成し、上記樹脂(B)が連続相を形成するという特定のモルフォロジーを示し、さらに、上記複合樹脂発泡粒子は、樹脂組成比が同等の従来の発泡粒子に比べて、発泡倍率を高くして5〜15kg/m3という低嵩密度にであり、このような高発泡倍率でも独立気泡構造を維持することでき、独立気泡率を90%以上にすることができる。このような複合樹脂発泡粒子は、低嵩密度において、スチレン系樹脂の特性である優れた剛性と、ポリエチレン系樹脂の特性である優れた復元性を兼ね備える。 The composite resin foamed particles are obtained by impregnating and polymerizing a linear low density polyethylene resin (A) (referred to as “resin (A)” as appropriate) and a linear low density polyethylene resin (A) with a styrene monomer. A composite resin with a polystyrene resin (B) (referred to as “resin (B)” as appropriate) is used as a base resin. The composite resin contains the resin (A) and the resin (B) at a specific blending ratio, the resin (A) forms a dispersed phase, and the resin (B) forms a continuous phase. The composite resin foam particles exhibit a specific morphology. Furthermore, the composite resin foam particles have a low bulk density of 5 to 15 kg / m 3 by increasing the foaming ratio as compared with conventional foam particles having the same resin composition ratio. The closed cell structure can be maintained even at such a high expansion ratio, and the closed cell rate can be 90% or more. Such composite resin foamed particles have excellent rigidity, which is a characteristic of a styrene resin, and excellent restorability, which is a characteristic of a polyethylene resin, at a low bulk density.

また、上記複合樹脂発泡粒子を型内成形してなる上記所定の見掛け密度の複合樹脂発泡粒子成形体は、軽量でありながらも、上記複合樹脂発泡粒子の高い剛性と優れた復元性を維持することができる。   Further, the composite resin foamed particle molded body having the predetermined apparent density formed by molding the composite resin foamed particles in a mold maintains the high rigidity and excellent resilience of the composite resin foamed particles while being lightweight. be able to.

実施例における、複合樹脂発泡粒子の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the composite resin foam particle in an Example. 実施例1における、発泡性複合樹脂粒子の中心断面の透過型電子顕微鏡写真(倍率1万倍)を示す図面代用写真。The drawing substitute photograph which shows the transmission electron micrograph (magnification 10,000 times) of the center cross section of the expandable composite resin particle in Example 1. 実施例1における、複合樹脂発泡粒子の中心断面の透過型電子顕微鏡写真(倍率1万倍)を示す図面代用写真。The drawing substitute photograph which shows the transmission electron micrograph (magnification 10,000 times) of the center cross section of the composite resin expanded particle in Example 1. FIG. 実施例1における、複合樹脂発泡粒子の中心断面の樹脂溜まり部の透過型電子顕微鏡写真(倍率5万倍)を示す図面代用写真。The drawing substitute photograph which shows the transmission electron micrograph (50,000 times magnification) of the resin reservoir part of the center cross section of the composite resin expanded particle in Example 1. FIG. 実施例1における、複合樹脂発泡粒子の中心断面におけるセル膜部の透過型電子顕微鏡写真(倍率5万倍)を示す図面代用写真。The drawing substitute photograph which shows the transmission electron microscope photograph (magnification 50,000 times) of the cell membrane part in the center cross section of the composite resin foam particle in Example 1. FIG.

次に、上記複合樹脂発泡粒子の好ましい実施形態について説明する。
本発明の複合樹脂発泡粒子は、直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との特定比率の複合樹脂を基材樹脂とし、該複合樹脂が特定のモルフォロジーを示し、特定の嵩密度及び独立気泡率を有することにより、剛性が高く、かつ復元性に優れた発泡粒子となる。
Next, a preferred embodiment of the composite resin expanded particle will be described.
The composite resin foamed particle of the present invention comprises a composite resin having a specific ratio of a linear low density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer. By using the composite resin as a base resin and exhibiting a specific morphology and having a specific bulk density and a closed cell ratio, foamed particles having high rigidity and excellent resilience are obtained.

上記複合樹脂発泡粒子は、直鎖状低密度ポリエチレン樹脂(A)とポリスチレン系樹脂(B)とを必須成分とする複合樹脂からなる。複合樹脂において、樹脂(B)が多すぎて樹脂(A)が少なすぎる場合には、オレフィン系樹脂である直鎖状低密度ポリエチレン樹脂の特性が損なわれてしまう虞がある。即ち、複合樹脂発泡粒子の復元性等が低下する虞がある。一方、樹脂(A)が多すぎて樹脂(B)が少なすぎる場合には、スチレン系樹脂の特性が損なわれ、複合樹脂発泡粒子の剛性等が低下する虞がある。したがって、樹脂(A)及び樹脂(B)の合計量を100質量%とすると、複合樹脂は、樹脂(A)を20〜50質量%、樹脂(B)を50〜80質量%含有することが好ましく、樹脂(A)を20〜30重量%、樹脂(B)を70〜80重量%含有することがより好ましい。   The composite resin foamed particles are composed of a composite resin having a linear low density polyethylene resin (A) and a polystyrene resin (B) as essential components. In the composite resin, when the resin (B) is too much and the resin (A) is too little, the properties of the linear low density polyethylene resin that is an olefin resin may be impaired. That is, there is a possibility that the restoration property and the like of the composite resin foam particles may be lowered. On the other hand, when the amount of the resin (A) is too much and the amount of the resin (B) is too small, the characteristics of the styrenic resin are impaired, and the rigidity of the composite resin foamed particles may be lowered. Therefore, when the total amount of the resin (A) and the resin (B) is 100% by mass, the composite resin may contain 20-50% by mass of the resin (A) and 50-80% by mass of the resin (B). Preferably, the resin (A) is contained in an amount of 20 to 30% by weight and the resin (B) is contained in an amount of 70 to 80% by weight.

複合樹脂発泡粒子において、複合樹脂は、樹脂(A)が分散相を形成し、樹脂(B)が連続相を形成するモルフォロジーを形成する。即ち、複合樹脂は、樹脂(A)が島構造で、樹脂(B)が海構造となる島海構造を有している。発泡粒子を構成する複合樹脂が前記島海構造を示すことにより、該発泡粒子は優れた復元性を発現する。なお、複合樹脂における樹脂(A)と樹脂(B)のモルフォロジーは、複合樹脂発泡粒子の中心部断面の透過型電子顕微鏡写真(例えば倍率10000倍〜50000倍)において確認することができる。   In the composite resin foamed particles, the composite resin forms a morphology in which the resin (A) forms a dispersed phase and the resin (B) forms a continuous phase. That is, the composite resin has an island sea structure in which the resin (A) has an island structure and the resin (B) has an sea structure. When the composite resin constituting the expanded particles exhibits the island-sea structure, the expanded particles exhibit excellent restoration properties. In addition, the morphology of the resin (A) and the resin (B) in the composite resin can be confirmed in a transmission electron micrograph (for example, a magnification of 10,000 to 50,000 times) of the cross section of the central portion of the composite resin expanded particle.

また、上記複合樹脂発泡粒子において、嵩密度が小さすぎる場合には、剛性が不十分となる虞がある。一方、嵩密度が大きすぎる場合には、軽量化が不十分になる。したがって、複合樹脂発泡粒子の嵩密度は5〜15kg/m3であることが好ましく、7kg/m3以上、12kg/m3未満であることがより好ましい。 Moreover, in the said composite resin expanded particle, when a bulk density is too small, there exists a possibility that rigidity may become inadequate. On the other hand, when the bulk density is too large, the weight reduction is insufficient. Therefore, it is preferable that the bulk density of the composite resin foamed particles is 5~15kg / m 3, 7kg / m 3 or more, and more preferably less than 12 kg / m 3.

また、上記複合樹脂発泡粒子において、独立気泡率が小さすぎる場合には、剛性及び復元性が不十分となる虞がある。したがって、複合樹脂発泡粒子の独立気泡率は90%以上であることが好ましく、93%以上であることがより好ましい。このような独立気泡率の高い複合樹脂粒子は、後述の分散工程、改質工程、及び含浸工程を行って得られる発泡性複合樹脂粒子を発泡させることにより得ることができる。なお、独立気泡率の測定方法は、後述の実施例において説明する。   Further, in the composite resin foamed particles, when the closed cell ratio is too small, there is a possibility that rigidity and restorability are insufficient. Therefore, the closed cell ratio of the composite resin expanded particles is preferably 90% or more, and more preferably 93% or more. Such composite resin particles having a high closed cell ratio can be obtained by foaming expandable composite resin particles obtained by performing a dispersion step, a modification step, and an impregnation step described later. In addition, the measuring method of a closed cell rate is demonstrated in the below-mentioned Example.

また、樹脂(A)中でスチレン系モノマーを重合させることにより、樹脂(A)にスチレン系モノマーがグラフト重合し、複合樹脂における、樹脂(A)とスチレン系単量体を重合してなる樹脂(B)との界面張力が低下する。そのため、このような複合樹脂を高発泡倍率に発泡させた場合に、高い独立気泡率を有する発泡粒子となるものと考えられる。
さらに、このような複合樹脂を基材樹脂とする粒子を極めて低い嵩密度まで発泡させることにより、発泡粒子の気泡膜中において、分散相である樹脂(A)を気泡膜に沿って(気泡膜厚み方向とは直交する方向に)延伸配向させることができ、その結果、該発泡粒子を圧縮した場合においても高い独立気泡率を維持することができるものと考えられる。
Further, by polymerizing a styrene monomer in the resin (A), the styrene monomer is graft polymerized to the resin (A), and the resin (A) and the styrene monomer in the composite resin are polymerized. Interfacial tension with (B) decreases. Therefore, it is considered that when such a composite resin is foamed at a high foaming ratio, foamed particles having a high closed cell ratio are obtained.
Further, by foaming particles having such a composite resin as a base resin to an extremely low bulk density, the resin (A) which is a dispersed phase is expanded along the cell membrane (cell membrane). It is considered that the film can be stretched and oriented (in a direction perpendicular to the thickness direction), and as a result, a high closed cell ratio can be maintained even when the foamed particles are compressed.

複合樹脂発泡粒子は、発泡性複合樹脂粒子を発泡させて製造することができる。発泡性複合樹脂粒子は、上記樹脂(A)と上記樹脂(B)とを上記所定の配合割合で含有する複合樹脂の粒子からなり、該粒子には発泡剤が含浸されている。
発泡性複合樹脂粒子における複合樹脂のモルフォロジーは、樹脂(A)と樹脂(B)とが共連続相(海海構造)であっても、樹脂(A)が分散相(島構造)で樹脂(B)が連続相(海構造)となる島海構造であっても、樹脂(A)が連続相(海構造)で樹脂(B)が分散相(島構造)となる海島構造であってもよい。好ましくは、発泡性複合樹脂粒子における複合樹脂のモルフォロジーは、樹脂(A)と樹脂(B)とが共連続相(海海構造)であることがよい。発泡性複合樹脂粒子における複合樹脂のモルフォロジーが海海構造を形成していると、発泡時に気泡膜の破壊を効果的に抑制することができるため、高い独立気泡率を有する発泡粒子を得ることができるものと考えられる。
上記発泡性複合樹脂粒子における複合樹脂のモルフォロジーは、発泡性複合樹脂粒子の中心部断面の透過型電子顕微鏡写真(例えば倍率10000倍)において確認することができる。
The composite resin foam particles can be produced by foaming expandable composite resin particles. The expandable composite resin particles are composed of composite resin particles containing the resin (A) and the resin (B) in the predetermined blending ratio, and the particles are impregnated with a foaming agent.
The morphology of the composite resin in the foamable composite resin particles is such that even if the resin (A) and the resin (B) are in a co-continuous phase (sea-sea structure), the resin (A) is in a dispersed phase (island structure) ( Even if B) has an island-sea structure in which the continuous phase (sea structure) is formed, or if the resin (A) has a continuous phase (sea structure) and the resin (B) has a dispersed phase (island structure), Good. Preferably, the morphology of the composite resin in the expandable composite resin particles is such that the resin (A) and the resin (B) are in a co-continuous phase (sea-sea structure). If the morphology of the composite resin in the foamable composite resin particles forms a sea-sea structure, it is possible to effectively suppress the destruction of the bubble film during foaming, so that it is possible to obtain foamed particles having a high closed cell ratio It is considered possible.
The morphology of the composite resin in the expandable composite resin particles can be confirmed in a transmission electron micrograph (for example, 10,000 times magnification) of the cross section of the center of the expandable composite resin particles.

上記発泡性複合樹脂粒子の中心断面の透過型電子顕微鏡写真においては、上記樹脂(A)と上記樹脂(B)との界面の長さ(μm)の総和を、該界面を観察した領域の面積(μm2)で除して求められる界面割合が6μm/μm2以下であることが好ましい。この場合には、発泡性複合樹脂粒子における発泡性が向上する。 In the transmission electron micrograph of the center cross section of the expandable composite resin particle, the total length of the interface (μm) between the resin (A) and the resin (B) is the area of the region where the interface is observed. The interface ratio obtained by dividing by (μm 2 ) is preferably 6 μm / μm 2 or less. In this case, the foamability in the foamable composite resin particles is improved.

上記界面割合μm/μm2は以下の方法で求めることができる。
具体的には、発泡性複合樹脂粒子の中心部断面(発泡性複合樹脂粒子を2等分する断面の中央部)の透過型電子顕微鏡写真(拡大倍率10000倍が好ましい)から、写真上の全領域に存在する樹脂(A)と樹脂(B)の相について、界面割合を測定する。界面割合は、発泡性複合樹脂粒子の中心部断面(発泡性複合樹脂粒子を2等分する断面の中央部)の透過型電子顕微鏡写真で観察される樹脂(A)の相と樹脂(B)の相との界面の長さ(μm)の総和を、界面を観察した全領域の面積(μm2)で除して求められる。
以上の操作を、無作為に選んだ5個の発泡性複合樹脂粒子に対して行い、その平均を界面割合(μm/μm2)とすることができる。
The interface ratio μm / μm 2 can be determined by the following method.
Specifically, from a transmission electron micrograph (preferably at a magnification of 10,000 times) of the cross section of the center of the expandable composite resin particles (the center of the cross section that divides the expandable composite resin particles into two equal parts) The interface ratio is measured for the phase of the resin (A) and the resin (B) present in the region. The interface ratio is the phase of the resin (A) and the resin (B) observed in the transmission electron micrograph of the central cross section of the expandable composite resin particles (the central portion of the cross section that bisects the expandable composite resin particles). The total length of the interface (μm) with the other phase is divided by the area (μm 2 ) of the entire region where the interface is observed.
The above operation is performed on five randomly selected expandable composite resin particles, and the average can be defined as the interface ratio (μm / μm 2 ).

上記複合樹脂中のキシレン不溶分は30質量%以下であることが好ましい(請求項2)。この場合には、発泡倍率を高くして、上述のように嵩密度の小さい複合樹脂発泡粒子を製造し易くなると共に、該複合樹脂発泡粒子は、復元性や剛性に優れるものとなる。キシレン不溶分(ゲル量)は、25質量%以下がより好ましく、20質量%以下がさらに好ましい。   The xylene-insoluble matter in the composite resin is preferably 30% by mass or less (claim 2). In this case, the expansion ratio is increased to facilitate the production of the composite resin foam particles having a low bulk density as described above, and the composite resin foam particles are excellent in resilience and rigidity. The xylene-insoluble content (gel amount) is more preferably 25% by mass or less, and further preferably 20% by mass or less.

複合樹脂発泡粒子の平均粒子径が小さすぎる場合には、発泡粒子が帯電しやすく、例えば、クッション用途に使用される場合には、袋に入れる際の作業性が悪くなる虞がある。一方、平均粒子径が大きすぎる場合には、該発泡粒子が、例えば、クッション用途に使用される場合には、感触が悪くなる虞があり、型内成形に用いられる場合には金型への充填性が低下する虞がある。したがって、複合樹脂発泡粒子の平均粒子径は、4〜8mmであることが好ましく(請求項3)、4〜7mmであることがより好ましい。   When the average particle diameter of the composite resin foamed particles is too small, the foamed particles are easily charged. For example, when used for cushioning, there is a possibility that workability when putting into a bag is deteriorated. On the other hand, when the average particle diameter is too large, the foamed particles may be deteriorated in the touch when used for cushioning, for example, and when used for in-mold molding, There is a possibility that the filling property is lowered. Therefore, the average particle diameter of the composite resin foamed particles is preferably 4 to 8 mm (Claim 3), and more preferably 4 to 7 mm.

また、上記直鎖状低密度ポリエチレン樹脂(A)の密度は、通常、0.88〜0.945g/cm3であるが、好ましくは0.88〜0.94g/cm3、より好ましくは0.88〜0.93g/cm3であることがよい。上記樹脂(A)のメルトマスフローレート(MFR:190℃、2.16kgf)は、複合樹脂発泡粒子の製造に用いる発泡性複合樹脂粒子の発泡性の観点から、0.5〜4.0g/10分が好ましく、1.0〜3.0g/10分がより好ましい。更に好ましくは、発泡性の観点から、樹脂(A)は、メタロセン系触媒により重合された直鎖状低密度ポリエチレンであることがよい。 The density of the linear low-density polyethylene resin (A) is usually 0.88 to 0.945 g / cm 3 , preferably 0.88 to 0.94 g / cm 3 , more preferably 0. It is good that it is .88-0.93 g / cm < 3 >. The melt mass flow rate (MFR: 190 ° C., 2.16 kgf) of the resin (A) is 0.5 to 4.0 g / 10 from the viewpoint of foamability of the foamable composite resin particles used for producing the composite resin foam particles. Minute is preferable, and 1.0 to 3.0 g / 10 minutes is more preferable. More preferably, from the viewpoint of foamability, the resin (A) is preferably a linear low density polyethylene polymerized with a metallocene catalyst.

また、上記ポリスチレン系樹脂(B)は、スチレン系モノマーを主成分とする樹脂であり、スチレン系モノマーの重合体、又は、スチレン系モノマーと該スチレン系モノマーと共重合可能なモノマーとの共重合体が挙げられる。上記ポリスチレン系樹脂(B)100質量%におけるスチレン系モノマー成分の含有量は、50質量%以上であることが好ましく、より好ましくは60質量%以上であり、さらに好ましくは80質量%である。   The polystyrene resin (B) is a resin mainly composed of a styrene monomer, and is a polymer of a styrene monomer, or a copolymer of a styrene monomer and a monomer copolymerizable with the styrene monomer. Coalescence is mentioned. The content of the styrene monomer component in 100% by mass of the polystyrene resin (B) is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 80% by mass.

スチレン系モノマーとしては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4,6−トリブロモスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウムなどが挙げられる。上記スチレン系モノマーは、単独で重合させることもできるが、2種類以上を重合させることもできる。   Styrene monomers include styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-ethyl styrene, 2,4-dimethyl styrene, p-methoxy styrene, pn-butyl. Examples thereof include styrene, pt-butylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4,6-tribromostyrene, styrene sulfonic acid, sodium styrene sulfonate, and the like. Although the said styrenic monomer can also be polymerized independently, two or more types can also be polymerized.

また、スチレン系モノマーと共重合可能なモノマーとしては、アクリル酸エステル、メタクリル酸エステル、水酸基を含有するビニル化合物、ニトリル基を含有するビニル化合物、有機酸ビニル化合物、オレフィン化合物、ジエン化合物、ハロゲン化ビニル化合物、ハロゲン化ビニリデン化合物、マレイミド化合物などのビニルモノマーが挙げられる。   Monomers that can be copolymerized with styrenic monomers include acrylic acid esters, methacrylic acid esters, vinyl compounds containing hydroxyl groups, vinyl compounds containing nitrile groups, vinyl acid organic compounds, olefin compounds, diene compounds, and halogenated compounds. Examples of the vinyl monomer include vinyl compounds, vinylidene halide compounds, and maleimide compounds.

アクリル酸エステルとしては、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等がある。
また、メタクリル酸エステルとしては、具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル等がある。
水酸基を含有するビニル化合物としては、具体的には、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート等がある。
ニトリル基を含有するビニル化合物としては、具体的には、アクリロニトリル、メタクリロニトリル等がある。
Specific examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate.
Specific examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate.
Specific examples of the vinyl compound containing a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate.
Specific examples of the vinyl compound containing a nitrile group include acrylonitrile and methacrylonitrile.

有機酸ビニル化合物としては、具体的には、酢酸ビニル、プロピオン酸ビニル等がある。
オレフィン化合物としては、具体的には、エチレン、プロピレン、1−ブテン、2−ブテン等がある。
ジエン化合物としては、具体的には、ブタジエン、イソプレン、クロロプレン等がある。
ハロゲン化ビニル化合物としては、具体的には、塩化ビニル、臭化ビニル等がある。
ハロゲン化ビニリデン化合物としては、具体的には塩化ビニリデン等がある。
マレイミド化合物としては、N−フェニルマレイミド、N−メチルマレイミド等がある。
Specific examples of the organic acid vinyl compound include vinyl acetate and vinyl propionate.
Specific examples of the olefin compound include ethylene, propylene, 1-butene, and 2-butene.
Specific examples of the diene compound include butadiene, isoprene, chloroprene and the like.
Specific examples of the vinyl halide compound include vinyl chloride and vinyl bromide.
Specific examples of the vinylidene halide compound include vinylidene chloride.
Examples of maleimide compounds include N-phenylmaleimide and N-methylmaleimide.

上記ポリスチレン系樹脂(B)の具体例としては、ポリスチレン、ゴム変性ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−エチレンプロピレンゴム−スチレン共重合体などが挙げられる。上記複合樹脂において、ポリスチレン系樹脂(B)は、単独で存在しても、2種類以上で存在しても良い。   Specific examples of the polystyrene resin (B) include polystyrene, rubber-modified polystyrene, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-ethylenepropylene rubber-styrene copolymer, and the like. In the composite resin, the polystyrene resin (B) may be present alone or in two or more kinds.

また、上記複合樹脂発泡粒子の製造に用いる発泡性複合樹脂粒子の発泡性を向上させることができるという観点から、上記樹脂(B)としては、スチレン系モノマーとアクリル系モノマーとの共重合体が好ましい。より好ましくは、スチレンとアクリル酸ブチルとの共重合体がよい。
また、スチレンとアクリル酸ブチルとの共重合体を用いる場合には、複合樹脂中のアクリル酸ブチル成分の含有量は、複合樹脂全体に対して0.5〜10質量%であることが好ましく、1〜8質量%であることがより好ましく、2〜5質量%であることがさらに好ましい。
In addition, from the viewpoint that the foamability of the foamable composite resin particles used for the production of the composite resin foam particles can be improved, the resin (B) includes a copolymer of a styrene monomer and an acrylic monomer. preferable. More preferred is a copolymer of styrene and butyl acrylate.
Further, when using a copolymer of styrene and butyl acrylate, the content of the butyl acrylate component in the composite resin is preferably 0.5 to 10% by mass with respect to the entire composite resin, It is more preferably 1 to 8% by mass, and further preferably 2 to 5% by mass.

また、上記樹脂(B)の重量平均分子量は、10万〜30万であることが好ましい。
この場合には、復元性や剛性に優れた発泡粒子となる。より好ましくは、樹脂(B)の重量平均分子量は15万〜25万であることがよい。
樹脂(B)のガラス転移温度(Tg)は75℃〜105℃であることが好ましく、より好ましくは、樹脂(B)のガラス転移温度(Tg)は80℃〜95℃であることがよい。
Moreover, it is preferable that the weight average molecular weights of the said resin (B) are 100,000-300,000.
In this case, the foamed particles are excellent in resilience and rigidity. More preferably, the weight average molecular weight of the resin (B) is 150,000 to 250,000.
The glass transition temperature (Tg) of the resin (B) is preferably 75 ° C. to 105 ° C., and more preferably the glass transition temperature (Tg) of the resin (B) is 80 ° C. to 95 ° C.

また、上記複合樹脂は、上記樹脂(A)及び上記樹脂(B)の他に、エチレン−酢酸ビニル共重合体(C)(以下、適宜「樹脂(C)という)を含有することができるが、複合樹脂における樹脂(C)の含有量は5質量%以下(但し、樹脂(A)と樹脂(B)と樹脂(C)との合計量が100質量%)であることが好ましい。樹脂(C)の含有量は0質量%であってもよい。樹脂(C)の含有量が5質量%を超えると、優れた復元性が発現されなくなる。また、複合樹脂発泡粒子の製造に用いる発泡性複合樹脂粒子の発泡性が低下し、5〜15kg/m3という所望の嵩密度で、かつ高独立気泡率の複合樹脂発泡粒子を得ることができなくなる虞がある。かかる観点から、複合樹脂における樹脂(C)の含有量は2質量%以下であることがより好ましく、複合樹脂におけるポリオレフィン系樹脂は、樹脂(A)のみからなることがさらに好ましい。 In addition to the resin (A) and the resin (B), the composite resin can contain an ethylene-vinyl acetate copolymer (C) (hereinafter referred to as “resin (C)” as appropriate). The content of the resin (C) in the composite resin is preferably 5% by mass or less (however, the total amount of the resin (A), the resin (B), and the resin (C) is 100% by mass). The content of C) may be 0% by mass, and if the content of the resin (C) exceeds 5% by mass, the excellent restorability cannot be expressed. In view of this, the foamability of the composite resin particles may be reduced, making it impossible to obtain composite resin foam particles having a desired bulk density of 5 to 15 kg / m 3 and a high closed cell ratio. The content of the resin (C) in is preferably 2% by mass or less Preferably, the polyolefin resin in the composite resin is more preferably composed of only the resin (A).

また、上記界面割合とするためには、上記複合樹脂は、樹脂(A)と樹脂(B)との合計質量100質量部に対して、アクリロニトリル−スチレン共重合体及び/又は(メタ)アクリル酸アルキルエステル−スチレン共重合体からなる樹脂(D)を1〜10質量部を含有することが好ましい。
複合樹脂発泡粒子の製造に用いられる発泡性複合樹脂粒子においては、樹脂(D)(以下、適宜「分散径拡大剤(D)」という)は、上記樹脂(B)の相中に分散していることが好ましい。
樹脂(A)と樹脂(B)との合計量100質量部に対する分散径拡大剤(D)の含有量は、1〜7質量部であることがより好ましく、5質量部以下であることがさらに好ましい。
Moreover, in order to set it as the said interface ratio, the said composite resin is an acrylonitrile styrene copolymer and / or (meth) acrylic acid with respect to 100 mass parts of total mass of resin (A) and resin (B). It is preferable to contain 1-10 mass parts resin (D) which consists of an alkylester styrene copolymer.
In the foamable composite resin particles used for the production of the composite resin foam particles, the resin (D) (hereinafter referred to as “dispersion diameter expanding agent (D)” as appropriate) is dispersed in the phase of the resin (B). Preferably it is.
The content of the dispersion diameter-enlarging agent (D) with respect to 100 parts by mass of the total amount of the resin (A) and the resin (B) is more preferably 1 to 7 parts by mass, and further preferably 5 parts by mass or less. preferable.

上記分散径拡大剤(D)は、アクリロニトリル−スチレン共重合体及び/又は(メタ)アクリル酸アルキルエステル−スチレン共重合体からなる。好ましくは、アクリロニトリル−スチレン共重合体からなることがよい。アクリロニトリル−スチレン共重合体中のアクリロニトリル成分量は20〜40質量%であることが好ましい。   The dispersion diameter expanding agent (D) is composed of an acrylonitrile-styrene copolymer and / or a (meth) acrylic acid alkyl ester-styrene copolymer. Preferably, it consists of an acrylonitrile-styrene copolymer. The amount of acrylonitrile component in the acrylonitrile-styrene copolymer is preferably 20 to 40% by mass.

上記分散径拡大剤(D)のメルトマスフローレート(MFR(200℃,5kgf))は、1g/10min〜20g/10minであることが好ましく、2.5g/10min〜15g/10minであることがより好ましい。   The melt mass flow rate (MFR (200 ° C., 5 kgf)) of the dispersion diameter expanding agent (D) is preferably 1 g / 10 min to 20 g / 10 min, more preferably 2.5 g / 10 min to 15 g / 10 min. preferable.

分散径拡大剤(D)のMFR(200℃、5kgf)の測定は、次のようにして行うことができる。
まず、メルトインデクサー(例えば宝工業(株)製の型式L203)を用いて、分散径拡大剤に温度200℃で5000gの荷重をかけてダイ(内径2.09mm、長さ8.00mm)から分散径拡大剤を押出す。そして、10分間でダイから流出した上記分散径拡大剤の重量を測定し、これをMFR(200℃,5kgf)とする。
The MFR (200 ° C., 5 kgf) of the dispersion diameter expanding agent (D) can be measured as follows.
First, using a melt indexer (for example, model L203 manufactured by Takara Kogyo Co., Ltd.), a 5000 g load was applied to the dispersion diameter expanding agent at a temperature of 200 ° C., and the die (inner diameter 2.09 mm, length 8.00 mm) was used. Extrude the dispersion diameter expanding agent. And the weight of the said dispersion diameter expansion agent which flowed out from die | dye in 10 minutes is measured, and let this be MFR (200 degreeC, 5 kgf).

また、分散径拡大剤(D)の重量平均分子量は、5万〜15万であることが好ましく、6万〜12万であることがより好ましい。   Further, the weight average molecular weight of the dispersion diameter expanding agent (D) is preferably 50,000 to 150,000, and more preferably 60,000 to 120,000.

発泡性複合樹脂粒子において、樹脂(B)の相中に分散された分散径拡大剤(D)からなる分散相は、透過型顕微鏡による発泡性複合樹脂粒子の内部断面観察において、例えば図2に示されるように、スチレン系樹脂(B)の連続相中にサラミ状に分散された相として確認することができる。   In the foamable composite resin particles, the dispersed phase composed of the dispersion diameter expanding agent (D) dispersed in the phase of the resin (B) is, for example, shown in FIG. 2 in the internal cross-sectional observation of the foamable composite resin particles by a transmission microscope. As shown, it can be confirmed as a phase dispersed in the form of salami in the continuous phase of the styrene resin (B).

発泡性複合樹脂粒子は、物理発泡剤を含有する。物理発泡剤としては、沸点が80℃以下の揮発性有機化合物が好ましい。
このような揮発性有機化合物としては、例えば飽和炭化水素化合物、低級アルコール、エーテル化合物などがある。
The foamable composite resin particles contain a physical foaming agent. As the physical foaming agent, a volatile organic compound having a boiling point of 80 ° C. or less is preferable.
Examples of such volatile organic compounds include saturated hydrocarbon compounds, lower alcohols, ether compounds, and the like.

飽和炭化水素化合物としては、例えばメタン、エタン、プロパン、n−ブタン、イソブタン、シクロブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、n−ヘキサン、シクロヘキサンなどを用いることができる。
低級アルコールとしては、例えばメタノール、エタノールなどを用いることができる。
エーテル化合物としては、例えばジメチルエーテル、ジエチルエーテルなどを用いることができる。
これらの物理発泡剤は、単独で又は2種以上の混合物で用いることができる。
As the saturated hydrocarbon compound, for example, methane, ethane, propane, n-butane, isobutane, cyclobutane, n-pentane, isopentane, neopentane, cyclopentane, n-hexane, cyclohexane and the like can be used.
As the lower alcohol, for example, methanol, ethanol and the like can be used.
As the ether compound, for example, dimethyl ether, diethyl ether or the like can be used.
These physical foaming agents can be used alone or in a mixture of two or more.

また、物理発泡剤は、イソブタン30〜100質量%とその他の炭素数4〜6の炭化水素0〜70質量%とからなることが好ましい。但し、イソブタンとその他の炭素数4〜6の炭化水素との合計量は100質量%である。この場合には、上記発泡性複合樹脂粒子に物理発泡剤を充分に含浸、保持させることができる。
上述のその他の炭素数4〜6の炭化水素としては、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタン、ノルマルヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、シクロブタン、シクロペンタン、シクロヘキサン等が挙げられる。
Moreover, it is preferable that a physical foaming agent consists of 30-100 mass% of isobutanes, and 0-70 mass% of other C4-C6 hydrocarbons. However, the total amount of isobutane and other hydrocarbons having 4 to 6 carbon atoms is 100% by mass. In this case, the foamable composite resin particles can be sufficiently impregnated and held with a physical foaming agent.
Examples of the other hydrocarbons having 4 to 6 carbon atoms include normal butane, normal pentane, isopentane, neopentane, normal hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethyl. Examples include butane, cyclobutane, cyclopentane, and cyclohexane.

発泡剤として炭素数が4〜6の炭化水素化合物を使用することにより、発泡性複合樹脂粒子の発泡剤保持性を向上させ、発泡性を向上させることができる。
また、物理発泡剤中のイソブタンが占める割合が30質量%以上の場合には、発泡性複合樹脂粒子の発泡剤保持性をより向上させることができる。より好ましくは、物理発泡剤中におけるイソブタンの占める割合は50質量%以上であることがよい。
By using a hydrocarbon compound having 4 to 6 carbon atoms as the foaming agent, the foaming agent retention of the foamable composite resin particles can be improved and the foamability can be improved.
Moreover, when the ratio which isobutane accounts in a physical foaming agent is 30 mass% or more, the foaming agent holding | maintenance property of an expandable composite resin particle can be improved more. More preferably, the proportion of isobutane in the physical foaming agent is 50% by mass or more.

また、発泡性複合樹脂粒子における物理発泡剤の含有量は、3〜10質量%であること好ましい。この場合には、発泡性複合樹脂粒子の発泡性をより向上させることができ、発泡時の収縮を防止することができる。より好ましくは、物理発泡剤の含有量は4〜9質量%がよい。   Moreover, it is preferable that content of the physical foaming agent in an expandable composite resin particle is 3-10 mass%. In this case, the foamability of the foamable composite resin particles can be further improved, and shrinkage during foaming can be prevented. More preferably, the content of the physical foaming agent is 4 to 9% by mass.

次に、発泡性複合樹脂粒子の製造方法について、好ましい実施形態を説明する。
発泡性複合樹脂粒子は、直鎖状低密度ポリエチレン樹脂(A)を含有するオレフィン系樹脂核粒子(以下、適宜「核粒子」という)を水性媒体中に懸濁させた懸濁液中に、スチレン系モノマーを添加し、核粒子にスチレン系モノマーを含浸させ、スチレン系モノマーを重合させることにより製造することができる。スチレン系モノマーの添加量は、核粒子100質量部に対して100〜400質量部にすることができる。核粒子にスチレン系モノマーを含浸させて重合させるにあたって、スチレン系モノマーは、使用量の全量を一括して添加することもできる。発泡粒子の基材樹脂を特定のモルフォロジーにするという観点からは、後述の分散工程及び改質工程のように、スチレン系モノマーの使用量を例えば第1モノマー及び第2モノマーに分割し、これらのモノマーを異なるタイミングで添加することが好ましい。
Next, a preferred embodiment of the method for producing expandable composite resin particles will be described.
The expandable composite resin particles are obtained by suspending an olefin-based resin core particle (hereinafter referred to as “core particle” as appropriate) containing the linear low-density polyethylene resin (A) in an aqueous medium. It can be produced by adding a styrene monomer, impregnating the core particles with the styrene monomer, and polymerizing the styrene monomer. The addition amount of the styrene monomer can be 100 to 400 parts by mass with respect to 100 parts by mass of the core particles. When the core particles are impregnated with a styrene monomer and polymerized, the styrene monomer can be added all at once. From the viewpoint of making the base resin of the expanded particles into a specific morphology, the amount of styrenic monomer used is divided into, for example, a first monomer and a second monomer, as in the dispersion step and the modification step described below, and these It is preferable to add the monomers at different timings.

上記発泡性複合樹脂粒子は、例えば下記の分散工程、改質工程、及び含浸工程を行うことにより製造することが好ましい。
上記分散工程においては、上記樹脂(A)を含有する核粒子を水性媒体中に懸濁させた懸濁液中に、第1モノマーと重合開始剤とを添加し、上記懸濁液中に上記第1モノマーを分散させる。第1モノマーは、スチレン系モノマー、又はスチレン系モノマーとこれと共重合可能なモノマーとの混合モノマーからなる。
上記改質工程においては、所定温度に加熱した懸濁液中に、所定の添加時間をかけて連続的に第2モノマーを添加し、核粒子にスチレン系モノマーを含浸させて重合させる。第2モノマーは、スチレン系モノマー、又はスチレン系モノマーとこれと共重合可能なモノマーとの混合モノマーからなる。
上記含浸工程においては、スチレン系モノマーの重合中及び/又は重合後に、樹脂粒子に物理発泡剤を含浸させることにより、発泡性複合樹脂粒子を得る。
The expandable composite resin particles are preferably produced, for example, by performing the following dispersion step, modification step, and impregnation step.
In the dispersion step, a first monomer and a polymerization initiator are added to a suspension obtained by suspending the core particles containing the resin (A) in an aqueous medium, and the suspension is mixed with the above-described suspension. The first monomer is dispersed. The first monomer is composed of a styrene monomer or a mixed monomer of a styrene monomer and a monomer copolymerizable therewith.
In the reforming step, the second monomer is continuously added to the suspension heated to a predetermined temperature over a predetermined addition time, and the core particles are impregnated with the styrene monomer and polymerized. The second monomer is composed of a styrene monomer or a mixed monomer of a styrene monomer and a monomer copolymerizable therewith.
In the impregnation step, expandable composite resin particles are obtained by impregnating the resin particles with a physical foaming agent during and / or after polymerization of the styrene monomer.

上記分散工程、上記改質工程、及び上記含浸工程を行うことにより、発泡性複合樹脂粒子を得ることができる。そして、発泡性複合樹脂粒子を発泡させることにより、上記複合樹脂発泡粒子を得ることができる。   Expandable composite resin particles can be obtained by performing the dispersion step, the modification step, and the impregnation step. And the said composite resin foaming particle can be obtained by making a foamable composite resin particle foam.

以下、上述の各工程における好ましい実施形態について説明する。
上記分散工程においては、例えば懸濁剤、界面活性剤、水溶性重合禁止剤等を含む水性媒体中に、樹脂(A)を含有する核粒子を懸濁することにより、懸濁液を作製することができる。また、分散工程においては、懸濁液に第1モノマーと重合開始剤を添加する。第1モノマーは、スチレン系モノマー、又はスチレン系モノマーと該スチレン系モノマーと共重合可能なモノマーとの混合モノマーからなる。
Hereinafter, a preferred embodiment in each of the above steps will be described.
In the dispersion step, a suspension is prepared by suspending the core particles containing the resin (A) in an aqueous medium containing, for example, a suspending agent, a surfactant, a water-soluble polymerization inhibitor and the like. be able to. In the dispersion step, the first monomer and the polymerization initiator are added to the suspension. The first monomer is composed of a styrene monomer or a mixed monomer of a styrene monomer and a monomer copolymerizable with the styrene monomer.

核粒子は、オレフィン系樹脂として上記樹脂(A)を含有する。
また、核粒子におけるオレフィン系樹脂の融点(Tm)は95℃〜115℃であることが好ましい。この場合には、発泡性複合樹脂粒子の製造時に、オレフィン系樹脂にスチレン系モノマーを充分に含浸させることができ、重合時に懸濁系が不安定化することを防止することができる。より好ましくは、オレフィン系樹脂の融点(Tm)は100〜110℃であることがよい。融点は、示差走査熱量測定(DSC)にて測定することができる。
The core particles contain the resin (A) as an olefin resin.
Moreover, it is preferable that melting | fusing point (Tm) of the olefin resin in a core particle is 95 to 115 degreeC. In this case, the olefin resin can be sufficiently impregnated with the styrene monomer during the production of the expandable composite resin particles, and the suspension system can be prevented from becoming unstable during the polymerization. More preferably, the melting point (Tm) of the olefin resin is 100 to 110 ° C. The melting point can be measured by differential scanning calorimetry (DSC).

また、核粒子におけるオレフィン系樹脂(A)の結晶化度は20〜35%であることが好ましく、20〜30%であることがより好ましい。
この場合には、発泡性複合樹脂粒子の発泡性をより向上させることができる。この理由は次のように考えられる。即ち、樹脂(A)の結晶化度が高い場合には、気体分子(発泡剤)が樹脂(A)の高分子鎖を押し広げにくくなり、発泡剤の透過性が低くなるため、発泡剤の保持性が高くなると推察できる。結晶化度は、示差走査熱量測定(DSC)にて測定することができる。
Moreover, it is preferable that the crystallinity degree of the olefin resin (A) in a core particle is 20 to 35%, and it is more preferable that it is 20 to 30%.
In this case, the foamability of the foamable composite resin particles can be further improved. The reason is considered as follows. That is, when the crystallinity of the resin (A) is high, the gas molecules (foaming agent) are difficult to spread the polymer chain of the resin (A), and the permeability of the foaming agent is lowered. It can be inferred that the retention will be high. The crystallinity can be measured by differential scanning calorimetry (DSC).

また、上記分散径拡大剤(D)を用いる場合には、核粒子として、樹脂(A)と分散径拡大剤(D)を含有する樹脂粒子を用いることができる。この場合には、分散工程、改質工程、含浸工程を行った後に、分散径拡大剤(D)からなる分散相が樹脂(B)の相に分散された発泡性複合樹脂粒子を得ることができる。
また、核粒子は、本発明の効果を損なわない限り、気泡調整剤、顔料、スリップ剤、帯電防止剤、及び難燃剤等の添加剤を含有することができる。
Moreover, when using the said dispersion diameter expansion agent (D), the resin particle containing resin (A) and a dispersion diameter expansion agent (D) can be used as a core particle. In this case, after performing the dispersion step, the modification step, and the impregnation step, it is possible to obtain expandable composite resin particles in which the dispersed phase composed of the dispersion diameter expanding agent (D) is dispersed in the phase of the resin (B). it can.
Further, the core particles can contain additives such as a bubble adjusting agent, a pigment, a slip agent, an antistatic agent, and a flame retardant, as long as the effects of the present invention are not impaired.

核粒子は、樹脂(A)及び必要に応じて添加される分散径拡大剤(D)を配合し、溶融混練してから細粒化して製造することができる。溶融混練は押出機により行うことができる。このとき、均一な混練を行うために、予め各樹脂成分を混合した後に押出を行うことが好ましい。各樹脂成分の混合は、例えばヘンシェルミキサー、リボンブレンダー、Vブレンダー、レディーゲミキサーなどの混合機を用いて行うことができる。   The core particles can be produced by blending the resin (A) and a dispersion diameter expanding agent (D) added as necessary, melt-kneading, and then finely pulverizing. Melt kneading can be performed by an extruder. At this time, in order to perform uniform kneading, it is preferable to perform extrusion after mixing the resin components in advance. Mixing of each resin component can be performed using mixers, such as a Henschel mixer, a ribbon blender, a V blender, a ladyge mixer, for example.

また、発泡性を向上させ、さらにオレフィン系樹脂(樹脂(A))の特徴である優れた復元性を示す複合樹脂発泡粒子をより確実に得るためには、分散径拡大剤(D)を核粒子の樹脂(A)中に均一に分散させることが好ましい。そのため、例えばダルメージタイプ、マドックタイプ、及びユニメルトタイプ等の高分散タイプのスクリュや二軸押出機を用いて溶融混練を行うことが好ましい。
核粒子における樹脂(A)に分散されている分散径拡大剤の分散径は10〜1000nmが好ましく、10〜500nmがより好ましい。
Further, in order to improve the foaming property and to obtain more reliably composite resin foamed particles exhibiting the excellent resilience characteristic of the olefin resin (resin (A)), the dispersion diameter expanding agent (D) is used as a core. It is preferable to uniformly disperse the particles in the resin (A). Therefore, it is preferable to perform melt kneading using a high dispersion type screw such as a dalmage type, a Maddock type, and a unimelt type, or a twin screw extruder.
10-1000 nm is preferable and, as for the dispersion diameter of the dispersion diameter expansion agent currently disperse | distributed to resin (A) in a core particle, 10-500 nm is more preferable.

また、核粒子には、複合樹脂発泡粒子の気泡サイズを調整するため、気泡調整剤を添加することができる。気泡調整剤としては、例えば、高級脂肪酸ビスアミド及び高級脂肪酸金属塩等の有機物、又は無機物等を用いることができる。
気泡調整剤として有機物を用いる場合には、核粒子用の樹脂100質量部に対して有機物(気泡調整剤)の配合量を0.01〜2質量部にすることが好ましい。
また、気泡調整剤として無機物を用いる場合には、核粒子用の樹脂100質量部に対して無機物(気泡調整剤)の配合量を0.1〜5質量部にすることが好ましい。
気泡調整剤の添加量が少なすぎる場合には、気泡サイズを小さくする十分な効果が得られなくなる虞がある。一方、添加量が多すぎる場合には、気泡サイズが極端に小さくなり、発泡時に発泡粒子の気泡が破壊され収縮し、高い発泡倍率を得ることが困難になる虞がある。
Moreover, in order to adjust the bubble size of the composite resin foam particles, a bubble regulator can be added to the core particles. As a bubble regulator, organic substances, such as higher fatty acid bisamide and higher fatty acid metal salt, or an inorganic substance can be used, for example.
When an organic substance is used as the bubble regulator, it is preferable that the blending amount of the organic substance (bubble regulator) is 0.01 to 2 parts by mass with respect to 100 parts by mass of the resin for the core particles.
Moreover, when using an inorganic substance as a bubble regulator, it is preferable that the compounding quantity of an inorganic substance (bubble regulator) shall be 0.1-5 mass parts with respect to 100 mass parts of resin for nucleus particles.
When the amount of the bubble regulator added is too small, there is a possibility that a sufficient effect of reducing the bubble size cannot be obtained. On the other hand, when the addition amount is too large, the bubble size becomes extremely small, the bubbles of the expanded particles are destroyed and contracted at the time of foaming, and it may be difficult to obtain a high expansion ratio.

核粒子の微細化は、押出機で溶融混練した後、ストランドカット方式、ホットカット方式、及び水中カット方式等により行うことができる。所望の粒子径が得られる方法であれば他の方法により行うこともできる。なお、押出機を用いる場合には、粒子径の調整は、例えば所望の粒子径とほぼ同じ大きさの口径を有する孔から樹脂を押出し、カットスピードを変えて所望の粒子径の範囲内の長さに切断することにより行うことができる。   The core particles can be refined by melt-kneading with an extruder, and then by a strand cut method, a hot cut method, an underwater cut method, or the like. Any other method can be used as long as the desired particle size can be obtained. In the case of using an extruder, the particle diameter is adjusted by, for example, extruding a resin from a hole having a diameter substantially the same as the desired particle diameter, and changing the cut speed to a length within the desired particle diameter range. This can be done by cutting it.

核粒子の粒子径は、好ましくは0.1〜3.0mmがよく、より好ましくは0.3〜1.5mmがよい。粒子径が小さすぎる場合には、発泡剤の保持性が低下する虞がある。一方、粒子径が大きすぎる場合には、発泡後の発泡粒子の粒径も大きくなり、5〜15kg/m3という所定の嵩密度を満足する複合樹脂発泡粒子の平均粒子径を上述の4〜8mmという好ましい範囲にすることができなくなる虞がある。 The particle diameter of the core particles is preferably 0.1 to 3.0 mm, more preferably 0.3 to 1.5 mm. If the particle size is too small, the retention of the foaming agent may be reduced. On the other hand, when the particle size is too large, the particle size of the expanded foamed particles is also increased, and the average particle size of the composite resin expanded particles satisfying a predetermined bulk density of 5 to 15 kg / m 3 is set to 4 to 4 above. There is a possibility that the preferable range of 8 mm cannot be obtained.

核粒子の粒子径は、例えば次のようにして測定できる。
即ち、核粒子を顕微鏡写真により観察し、200個以上の核粒子について各々の核粒子の最大径を測定し、測定された最大径の算術平均値を核粒子の粒子径とする。
The particle diameter of the core particle can be measured, for example, as follows.
That is, the core particles are observed with a micrograph, the maximum diameter of each core particle is measured for 200 or more core particles, and the arithmetic average value of the measured maximum diameters is defined as the particle diameter of the core particles.

核粒子は、通常、水性媒体中に懸濁させて懸濁液とする。水性媒体中への分散は、例えば撹拌機を備えた密閉容器を用いて行うことができる。水性媒体としては、例えば脱イオン水等が挙げられる。
核粒子は、懸濁剤とともに水性媒体中に分散させることが好ましい。
懸濁剤としては、例えばリン酸三カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム、リン酸マグネシウム、水酸化アルミニウム、水酸化第2鉄、水酸化チタン、水酸化マグネシウム、リン酸バリウム、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、タルク、カオリン、及びベントナイト等の微粒子状の無機懸濁剤を用いることができる。また、例えばポリビニルピロリドン、ポリビニルアルコール、エチルセルロース、及びヒドロキシプロピルメチルセルロース等の有機懸濁剤を用いることもできる。好ましくは、リン酸三カルシウム、ハイドロキシアパタイト、及びピロリン酸マグネシウムがよい。これらの懸濁剤は単独で、または2種以上を組み合わせて用いることができる。
The core particles are usually suspended in an aqueous medium to form a suspension. Dispersion in the aqueous medium can be performed using, for example, a closed container equipped with a stirrer. Examples of the aqueous medium include deionized water.
The core particles are preferably dispersed in an aqueous medium together with a suspending agent.
Examples of the suspending agent include tricalcium phosphate, hydroxyapatite, magnesium pyrophosphate, magnesium phosphate, aluminum hydroxide, ferric hydroxide, titanium hydroxide, magnesium hydroxide, barium phosphate, calcium carbonate, magnesium carbonate. In addition, particulate inorganic suspending agents such as barium carbonate, calcium sulfate, barium sulfate, talc, kaolin, and bentonite can be used. Moreover, organic suspension agents such as polyvinyl pyrrolidone, polyvinyl alcohol, ethyl cellulose, and hydroxypropyl methyl cellulose can also be used. Preferred are tricalcium phosphate, hydroxyapatite, and magnesium pyrophosphate. These suspending agents can be used alone or in combination of two or more.

懸濁剤が少なすぎる場合には、スチレン系モノマーを懸濁して安定化させることが困難になり、樹脂の塊状物が発生する虞がある。一方、懸濁剤が多すぎる場合には、製造コストが増大してしまうだけでなく、粒子径分布が広がってしまう虞がある。したがって、懸濁剤の使用量は、懸濁重合系の水性媒体(反応生成物含有スラリーなどの水を含む系内の全ての水)100質量部に対して、固形分量で0.05〜10質量部が好ましい。より好ましくは0.3〜5質量部がよい。   When the amount of the suspending agent is too small, it becomes difficult to suspend and stabilize the styrene monomer, and there is a possibility that a lump of resin is generated. On the other hand, when there are too many suspending agents, not only manufacturing cost will increase, but there exists a possibility that particle size distribution may spread. Therefore, the amount of the suspending agent used is 0.05 to 10 in terms of solid content with respect to 100 parts by mass of the suspension polymerization aqueous medium (all water in the system including water such as the reaction product-containing slurry). Part by mass is preferred. More preferably, 0.3-5 mass parts is good.

また、懸濁液には界面活性剤を添加することができる。
界面活性剤としては、例えばアニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、及び両性界面活性剤等を用いることができる。
A surfactant can be added to the suspension.
As the surfactant, for example, an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.

アニオン系界面活性剤としては、例えばアルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、α‐オレフィンスルホン酸ナトリウム、及びドデシルフェニルエーテルジスルホン酸ナトリウム等を用いることができる。
ノニオン系界面活性剤としては、例えばポリオキシエチレンドデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル等を用いることができる。
As the anionic surfactant, for example, sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium α-olefin sulfonate, sodium dodecylphenyl ether disulfonate, and the like can be used.
Examples of nonionic surfactants that can be used include polyoxyethylene dodecyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, and the like.

カチオン系界面活性剤としては、ココナットアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩を用いることができる。また、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等の第四級アンモニウム等を用いることもできる。
両性界面活性剤としては、ラウリルベタイン、及びステアリルベタイン等のアルキルベタインを用いることができる。また、ラウリルジメチルアミンオキサイド等のアルキルアミンオキサイドを用いることもできる。
上述の界面活性剤は、単独で、又は複数組み合わせて用いることができる。
As the cationic surfactant, alkylamine salts such as coconut amine acetate and stearylamine acetate can be used. Further, quaternary ammonium such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride can also be used.
As the amphoteric surfactant, alkylbetaines such as lauryl betaine and stearyl betaine can be used. Moreover, alkylamine oxides, such as lauryl dimethylamine oxide, can also be used.
The above-mentioned surfactants can be used alone or in combination.

好ましくは、アニオン系界面活性剤を用いることがよい。より好ましくは、炭素数8〜20のアルキルスルホン酸アルカリ金属塩(好ましくはナトリウム塩)がよい。これにより、懸濁を充分に安定化させることができる。   Preferably, an anionic surfactant is used. More preferably, it is an alkylsulfonic acid alkali metal salt (preferably a sodium salt) having 8 to 20 carbon atoms. Thereby, the suspension can be sufficiently stabilized.

また、懸濁液には、必要に応じて、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム等の無機塩類からなる電解質を添加することができる。   In addition, an electrolyte made of an inorganic salt such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate, sodium bicarbonate or the like can be added to the suspension as necessary.

また、懸濁液には、水溶性重合禁止剤を添加することができる。水溶性重合禁止剤としては、例えば亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム、L−アスコルビン酸、クエン酸等を用いることができる。
水溶性重合禁止剤は、核粒子内に含浸し難く、水性媒体中に溶解する。したがって、核粒子に含浸したスチレン系モノマーの重合は行われるが、核粒子に含浸されていない水性媒体中のスチレン系モノマーの微小液滴、及び核粒子に吸収されつつある核粒子表面付近のスチレン系モノマーの重合を抑制することができる。その結果、発泡性複合樹脂粒子の表面のスチレン系樹脂の量を少なく制御することができ、発泡剤の保持性がさらに向上すると推察される。
In addition, a water-soluble polymerization inhibitor can be added to the suspension. As the water-soluble polymerization inhibitor, for example, sodium nitrite, potassium nitrite, ammonium nitrite, L-ascorbic acid, citric acid and the like can be used.
The water-soluble polymerization inhibitor is difficult to impregnate into the core particles and dissolves in an aqueous medium. Therefore, polymerization of the styrenic monomer impregnated in the core particles is performed, but styrene monomer near the surface of the core particles being absorbed by the core particles, and fine droplets of the styrenic monomer in the aqueous medium not impregnated in the core particles. Polymerization of the monomer can be suppressed. As a result, the amount of the styrene resin on the surface of the expandable composite resin particles can be controlled to be small, and it is assumed that the retention of the foaming agent is further improved.

水溶性重合禁止剤の添加量は、水性媒体(反応生成物含有スラリーなどの水を含む系内の全ての水をいう)100質量部に対して0.001〜0.1質量部が好ましく、より好ましくは0.005〜0.06質量部がよい。   The addition amount of the water-soluble polymerization inhibitor is preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the aqueous medium (referring to all water in the system including water such as the reaction product-containing slurry). More preferably, 0.005-0.06 mass part is good.

また、核粒子内でスチレン系モノマーを均一に重合させるためには、スチレン系モノマーを核粒子に含浸させて重合させる。この場合には、スチレン系モノマーの重合と共に架橋が生じることがある。スチレン系モノマーの重合においては重合開始剤を用いるが、必要に応じて架橋剤を併用することができる。また、重合開始剤及び/又は架橋剤を使用する際には、予めスチレン系モノマーに重合開始剤及び/又は架橋剤を溶解しておくことが好ましい。
なお、スチレン系モノマーの重合過程においては、核粒子中に含まれるオレフィンの架橋が生じる場合があることから、本明細書において、「重合」は「架橋」を含む場合がある。
In order to uniformly polymerize the styrene monomer in the core particles, the core particles are impregnated with the styrene monomer and polymerized. In this case, crosslinking may occur together with the polymerization of the styrene monomer. In the polymerization of the styrene monomer, a polymerization initiator is used, and a crosslinking agent can be used in combination as necessary. Moreover, when using a polymerization initiator and / or a crosslinking agent, it is preferable to previously dissolve the polymerization initiator and / or the crosslinking agent in a styrene monomer.
In the polymerization process of the styrenic monomer, the olefin contained in the core particle may be cross-linked. Therefore, in this specification, “polymerization” may include “cross-linking”.

重合開始剤としては、スチレン系モノマーの懸濁重合法に用いられるもの、例えばビニルモノマーに可溶で、10時間半減期温度が50〜120℃である重合開始剤を用いることができる。具体的には、例えばクメンヒドロキシパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキシルカーボネート、ヘキシルパーオキシ−2−エチルヘキシルカーボネート、及びラウロイルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ化合物等を用いることができる。これらの重合開始剤は1種類または2種類以上組み合わせて用いることができる。   As the polymerization initiator, those used in the suspension polymerization method of a styrene monomer, for example, a polymerization initiator that is soluble in a vinyl monomer and has a 10-hour half-life temperature of 50 to 120 ° C. can be used. Specifically, for example, cumene hydroxy peroxide, dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, benzoyl peroxide, t-butylperoxyisopropyl carbonate, t- Organic peroxides such as amylperoxy-2-ethylhexyl carbonate, hexylperoxy-2-ethylhexyl carbonate, and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile can be used. These polymerization initiators can be used alone or in combination of two or more.

重合開始剤は、溶剤に溶解させて添加し、核粒子に含浸させることもできる。
重合開始剤を溶解する溶剤としては、例えばエチルベンゼン及びトルエン等の芳香族炭化水素、ヘプタン及びオクタン等の脂肪族炭化水素等が用いられる。
重合開始剤は、スチレン系モノマー100質量部に対して0.01〜3質量部で使用することが好ましい。
The polymerization initiator may be added after being dissolved in a solvent and impregnated into the core particles.
Examples of the solvent that dissolves the polymerization initiator include aromatic hydrocarbons such as ethylbenzene and toluene, and aliphatic hydrocarbons such as heptane and octane.
The polymerization initiator is preferably used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the styrene monomer.

また、架橋剤としては、重合温度では分解せず、架橋温度で分解する10時間半減期温度が重合温度よりも5℃〜50℃高いものを用いることが好ましい。具体的には、例えばジクミルパーオキサイド、2,5−t−ブチルパーベンゾエート、1,1−ビス−t−ブチルパーオキシシクロヘキサン等の過酸化物を用いることができる。架橋剤は、単独または2種類以上併用して用いることができる。架橋剤の配合量は、スチレン系モノマー100質量部に対して0.1〜5質量部であることが好ましい。
なお、重合開始剤及び架橋剤としては、同じ化合物を採用することもできる。
Further, as the crosslinking agent, it is preferable to use a crosslinking agent that does not decompose at the polymerization temperature but has a 10-hour half-life temperature that is 5 to 50 ° C. higher than the polymerization temperature. Specifically, for example, peroxides such as dicumyl peroxide, 2,5-t-butyl perbenzoate, and 1,1-bis-t-butyl peroxycyclohexane can be used. A crosslinking agent can be used individually or in combination of 2 or more types. It is preferable that the compounding quantity of a crosslinking agent is 0.1-5 mass parts with respect to 100 mass parts of styrene-type monomers.
In addition, the same compound can also be employ | adopted as a polymerization initiator and a crosslinking agent.

また、スチレン系モノマー又は溶剤には、気泡調整剤を添加することができる。
気泡調整剤としては、例えば脂肪酸モノアミド、脂肪酸ビスアミド、タルク、シリカ、ポリエチレンワックス、メチレンビスステアリン酸、メタクリル酸メチル系共重合体、及びシリコーンなどを用いることができる。脂肪酸モノアミドとしては、例えばオレイン酸アミド、及びステアリン酸アミド等を用いることができる。脂肪酸ビスアミドとしては、例えばエチレンビスステアリン酸アミド等を用いることができる。
気泡調整剤は、スチレン系モノマー100重量部に対して0.01〜2重量部用いることが好ましい。
Moreover, a bubble regulator can be added to the styrene monomer or solvent.
Examples of the air conditioner include fatty acid monoamide, fatty acid bisamide, talc, silica, polyethylene wax, methylene bis stearic acid, methyl methacrylate copolymer, and silicone. Examples of fatty acid monoamides that can be used include oleic acid amide and stearic acid amide. As the fatty acid bisamide, for example, ethylene bis stearic acid amide can be used.
The bubble regulator is preferably used in an amount of 0.01 to 2 parts by weight with respect to 100 parts by weight of the styrene monomer.

また、スチレン系モノマーには、必要に応じて可塑剤、油溶性重合禁止剤、難燃剤、染料等を添加することができる。
可塑剤としては、例えばグリセリントリステアレート、グリセリントリオクトエート、グリセリントリラウレート、ソルビタントリステアレート、ソルビタンモノステアレート、ブチルステアレート等の脂肪酸エステルを用いることができる。また、グリセリンジアセトモノラウレート等のアセチル化モノグリセライド、硬化牛脂及び硬化ひまし油等の油脂類、シクロヘキサン及び流動パラフィン等の有機化合物等を用いることもできる。
油溶性重合禁止剤としては、例えばパラ−t−ブチルカテコール、ハイドロキノン、ベンゾキノン等を用いることができる。
Moreover, a plasticizer, an oil-soluble polymerization inhibitor, a flame retardant, a dye, etc. can be added to a styrene-type monomer as needed.
Examples of the plasticizer include fatty acid esters such as glycerin tristearate, glycerin trioctate, glycerin trilaurate, sorbitan tristearate, sorbitan monostearate, and butyl stearate. Further, acetylated monoglycerides such as glycerin diacetomonolaurate, fats and oils such as hardened beef tallow and hardened castor oil, and organic compounds such as cyclohexane and liquid paraffin can be used.
As the oil-soluble polymerization inhibitor, for example, para-t-butylcatechol, hydroquinone, benzoquinone and the like can be used.

核粒子とスチレン系モノマーとの配合は、核粒子中に含まれるオレフィン系樹脂100質量部に対するスチレン系樹脂の配合割合が100〜400質量部となるように調整することが好ましい。オレフィン系樹脂100質量部に対してスチレン系樹脂が230〜400質量部となるように調整することがより好ましい。   The blending of the core particles and the styrene monomer is preferably adjusted so that the blending ratio of the styrene resin to 100 parts by weight of the olefin resin contained in the core particles is 100 to 400 parts by weight. It is more preferable to adjust the styrene resin to 230 to 400 parts by mass with respect to 100 parts by mass of the olefin resin.

次に、上記改質工程においては、分散工程後の懸濁液の加熱を開始し、所定温度に到達した懸濁液中に、所定の添加時間をかけて連続的に第2モノマーを添加する。これにより、核粒子へスチレン系モノマーを含浸させ、重合させることができる。第2モノマーは、スチレン系モノマー、又はスチレン系モノマーとこれと共重合可能なモノマーとの混合モノマーからなる。核粒子におけるオレフィン系樹脂の融点をTmとすると、懸濁液中への第2モノマーの添加温度は、(Tm−30)〜(Tm+20)℃であることが好ましい。第2モノマーの添加温度が上述の(Tm−30)〜(Tm+20)℃という温度範囲から外れる場合には、懸濁系が不安定化し、樹脂の塊状物が発生する虞がある。第2モノマーの添加温度は、より好ましくはTm−25〜Tm+10(℃)、更に好ましくはTm−25〜Tm(℃)であることがよい。   Next, in the reforming step, heating of the suspension after the dispersing step is started, and the second monomer is continuously added to the suspension that has reached a predetermined temperature over a predetermined addition time. . As a result, the core particles can be impregnated with the styrene monomer and polymerized. The second monomer is composed of a styrene monomer or a mixed monomer of a styrene monomer and a monomer copolymerizable therewith. When the melting point of the olefin resin in the core particle is Tm, the addition temperature of the second monomer into the suspension is preferably (Tm-30) to (Tm + 20) ° C. When the addition temperature of the second monomer deviates from the above temperature range of (Tm-30) to (Tm + 20) ° C., there is a possibility that the suspension system becomes unstable and a lump of resin is generated. The addition temperature of the second monomer is more preferably Tm-25 to Tm + 10 (° C.), and further preferably Tm-25 to Tm (° C.).

また、分散工程における核粒子の添加量をD(質量部)とし、分散工程における核粒子100質量部(D=100)に対する第1モノマーの添加量をE(質量部)、改質工程における第2モノマーの添加量をF(質量部)とし、さらに改質工程における第2モノマーの添加時間をG(h)とした時、下記の式(1)及び式(2)を満足するように上記分散工程及び上記改質工程を行うことが好ましい。
1≦E/F≦8 式(1)
F/(D×G)≦1 式(2)
Further, the addition amount of the core particles in the dispersion step is D (parts by mass), the addition amount of the first monomer with respect to 100 parts by mass (D = 100) of the core particles in the dispersion step is E (parts by mass), and the addition amount in the reforming step. When the addition amount of 2 monomers is F (parts by mass) and the addition time of the second monomer in the reforming step is G (h), the above formulas (1) and (2) are satisfied. It is preferable to perform a dispersion | distribution process and the said modification | reformation process.
1 ≦ E / F ≦ 8 Formula (1)
F / (D × G) ≦ 1 Formula (2)

分散工程で添加する第1モノマーと改質工程で添加する第2モノマーの配合比(質量比)であるE/Fが1未満の場合には、重合後に樹脂粒子の形状が扁平になる虞がある。
一方、E/Fが8を超える場合には、スチレン系モノマーを核粒子に充分に含浸させることができず、懸濁系が不安定化して樹脂の塊状物が発生する虞がある。また、この場合において分散径拡大剤(D)を含む場合には、樹脂(B)の相中に分散される分散径拡大剤(D)の分散相の分散径が小さくなる虞がある。そのため、分散径拡大剤を添加することによる上述の発泡剤の保持性の向上効果が十分に得られなくなる虞がある。より好ましくは1≦E/F≦4、更に好ましくは1.5≦E/F≦3であることがよい。
If E / F, which is the blending ratio (mass ratio) of the first monomer added in the dispersion step and the second monomer added in the modification step, is less than 1, the shape of the resin particles may become flat after polymerization. is there.
On the other hand, if E / F exceeds 8, the styrene monomer cannot be sufficiently impregnated into the core particles, and the suspension system may become unstable and a resin mass may be generated. In this case, when the dispersion diameter expanding agent (D) is included, the dispersion diameter of the dispersion phase of the dispersion diameter expanding agent (D) dispersed in the phase of the resin (B) may be reduced. Therefore, there is a possibility that the effect of improving the retention of the above-mentioned foaming agent by adding the dispersion diameter expanding agent cannot be sufficiently obtained. More preferably, 1 ≦ E / F ≦ 4, and even more preferably 1.5 ≦ E / F ≦ 3.

また、F/(D×G)が1を超える場合には、スチレン系モノマーを核粒子に充分に含浸させることができず、懸濁系が不安定化して樹脂の塊状物が発生する虞がある。より好ましくはF/(D×G)≦0.5がよく、更に好ましくはF/(D×G)≦0.3がよい。   When F / (D × G) exceeds 1, the core particles cannot be sufficiently impregnated with the styrenic monomer, and the suspension system may be destabilized to generate a lump of resin. is there. More preferably, F / (D × G) ≦ 0.5 is preferable, and F / (D × G) ≦ 0.3 is even more preferable.

また、改質工程における重合温度は、使用する重合開始剤の種類によって異なるが、60〜105℃が好ましい。また、架橋温度は使用する架橋剤の種類によって異なるが、100〜150℃が好ましい。   Moreover, although the polymerization temperature in a modification process changes with kinds of polymerization initiator to be used, 60-105 degreeC is preferable. Moreover, although a crosslinking temperature changes with kinds of crosslinking agent to be used, 100-150 degreeC is preferable.

また、核粒子におけるオレフィン系樹脂の融点(Tm)と、改質工程における重合により生成するポリスチレン系樹脂(B)のガラス転移温度(Tg)とが−5≦Tm−Tg≦20(℃)の関係を満足することが好ましい。
この場合には、発泡性複合樹脂粒子の製造時に、オレフィン系樹脂及びポリスチレン系樹脂(B)に発泡剤をムラなく含浸させ易くなり、発泡性複合樹脂粒子の発泡性をより向上させることができる。より好ましくは−5≦Tm−Tg≦15(℃)であり、更に好ましくは−5≦Tm−Tg≦10(℃)である。
Further, the melting point (Tm) of the olefin resin in the core particles and the glass transition temperature (Tg) of the polystyrene resin (B) produced by the polymerization in the modification step satisfy −5 ≦ Tm−Tg ≦ 20 (° C.). It is preferable to satisfy the relationship.
In this case, the olefin resin and the polystyrene resin (B) can be easily impregnated with the foaming agent evenly during the production of the expandable composite resin particles, and the expandability of the expandable composite resin particles can be further improved. . More preferably, −5 ≦ Tm−Tg ≦ 15 (° C.), and further preferably −5 ≦ Tm-Tg ≦ 10 (° C.).

次に、上記含浸工程においては、上記スチレン系モノマーの重合中及び/又は重合後に、樹脂粒子に物理発泡剤を含浸させ、発泡性複合樹脂粒子を得る。即ち、物理発泡剤の含浸は、改質工程におけるスチレン系モノマーの重合中または重合後に行うことができる。具体的には、重合中の又は重合後の樹脂粒子を収容する容器内に物理発泡剤を圧入し、樹脂粒子中に含浸させる。   Next, in the impregnation step, the resin particles are impregnated with a physical foaming agent during and / or after the polymerization of the styrenic monomer to obtain expandable composite resin particles. That is, the impregnation with the physical foaming agent can be performed during or after the polymerization of the styrenic monomer in the modification step. Specifically, a physical foaming agent is press-fitted into a container containing the resin particles during or after polymerization, and impregnated in the resin particles.

ポリスチレン系樹脂のガラス転移温度をTg(℃)とすると、物理発泡剤の含浸温度は、Tg−10〜Tg+40℃の範囲内であることが好ましく、Tg−5(℃)〜Tg+25(℃)の範囲内であることがより好ましい。
物理発泡剤の含浸温度がTg−10℃未満の場合には、初期の発泡剤含有量が多くなり、発泡性複合樹脂粒子を常温(25℃)以上の雰囲気下で保管又は輸送した後に発泡させる場合には、発泡剤の保持性が低下し発泡性が低下する虞がある。また、この場合には、可塑化が不充分になり、発泡性複合樹脂粒子の発泡時に負荷がかかり、発泡後に得られる複合樹脂発泡粒子において独立気泡率や復元性が低下する虞がある。これは、物理発泡剤が含浸されやすいオレフィン系樹脂の相に物理発泡剤が含浸されるが、スチレン系樹脂相には物理発泡剤が充分に含浸されず、物理発泡剤が散逸しやすいオレフィン系樹脂の相から物理発泡剤が抜けてしまうためと推定される。一方、物理発泡剤の含浸温度がTg+40℃を超える場合には、発泡剤含浸時に発泡性複合樹脂粒子同士が凝結する虞がある。
When the glass transition temperature of the polystyrene resin is Tg (° C.), the impregnation temperature of the physical foaming agent is preferably in the range of Tg−10 to Tg + 40 ° C., and Tg−5 (° C.) to Tg + 25 (° C.). More preferably within the range.
When the impregnation temperature of the physical foaming agent is less than Tg-10 ° C, the initial foaming agent content increases, and the foamable composite resin particles are foamed after being stored or transported in an atmosphere at room temperature (25 ° C) or higher. In such a case, the retention of the foaming agent may be reduced and the foamability may be reduced. Further, in this case, plasticization becomes insufficient, and a load is applied when the foamable composite resin particles are foamed, and there is a possibility that the closed cell ratio and the restorability are lowered in the composite resin foam particles obtained after foaming. This is because the olefin resin phase that is easily impregnated with the physical foaming agent is impregnated with the physical foaming agent, but the styrene resin phase is not sufficiently impregnated with the physical foaming agent, and the physical foaming agent is easily dissipated. It is presumed that the physical foaming agent escapes from the resin phase. On the other hand, when the impregnation temperature of the physical foaming agent exceeds Tg + 40 ° C., the foamable composite resin particles may be condensed during the foaming agent impregnation.

また、物理発泡剤の含浸後には、発泡性複合樹脂粒子を脱水乾燥し、必要に応じて発泡性複合樹脂粒子の表面に表面被覆剤を被覆させることができる。
表面被覆剤としては、例えばジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油などが挙げられる。また、機能性の表面被覆剤として帯電防止剤などを使用することもできる。上記表面被覆剤の添加量は、上記発泡性複合樹脂粒子100質量部に対して0.01〜2質量部であることが好ましい。
In addition, after the impregnation with the physical foaming agent, the foamable composite resin particles can be dehydrated and dried, and the surface of the foamable composite resin particles can be coated on the surface as necessary.
Examples of the surface coating agent include zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, and castor oil. Moreover, an antistatic agent etc. can also be used as a functional surface coating agent. The amount of the surface coating agent added is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the expandable composite resin particles.

発泡性複合樹脂粒子における複合樹脂のモルフォロジーは、核粒子中のオレフィン系樹脂量に対するスチレン系モノマーの添加量、重合温度、重合開始剤量、改質工程で添加するスチレンモノマーの添加速度等を調整することにより制御することができる。   The morphology of the composite resin in the foamable composite resin particles adjusts the amount of styrene monomer added to the amount of olefin resin in the core particles, the polymerization temperature, the amount of polymerization initiator, the addition rate of styrene monomer added in the modification process, etc. Can be controlled.

上記発泡性複合樹脂粒子を加熱媒体により加熱して発泡させることにより、上記複合樹脂発泡粒子を得ることができる。具体的には、スチーム等の加熱媒体を、発泡性複合樹脂粒子を供給した予備発泡機に導入することにより、発泡性複合樹脂粒子を発泡させることができる。   The foamed composite resin particles can be obtained by heating the foamed composite resin particles with a heating medium to cause foaming. Specifically, the foamable composite resin particles can be foamed by introducing a heating medium such as steam into a pre-foaming machine supplied with the foamable composite resin particles.

発泡性複合樹脂粒子の発泡は、例えば5〜15kg/m3という目的の嵩密度の複合樹脂発泡粒子が得られるまで一段階で行うこともできるが、多段階で行うこともできる。多段階で発泡させる場合には、発泡性複合樹脂粒子を発泡させて目的の嵩密度よりも大きな嵩密度の発泡粒子(1次発泡粒子)を製造し、この発泡粒子をさらに1回以上発泡させることにより、目的の嵩密度の複合樹脂発泡粒子を得ることができる。 Foaming of the expandable composite resin particles can be performed in one stage until a composite resin foam particle having a target bulk density of, for example, 5 to 15 kg / m 3 is obtained, but can also be performed in multiple stages. In the case of foaming in multiple stages, foamable composite resin particles are foamed to produce foam particles (primary foam particles) having a bulk density larger than the target bulk density, and the foam particles are further foamed one or more times. As a result, it is possible to obtain composite resin foamed particles having a desired bulk density.

好ましくは、上記複合樹脂発泡粒子は、上記発泡性複合樹脂粒子を発泡させて嵩密度20〜50kg/m3の1次発泡粒子を作製し、該1次発泡粒子をさらに1回以上発泡してなることがよい(請求項4)。
この場合には、特に復元性に優れた発泡粒子となる。1次発泡粒子は、上記発泡性複合樹脂粒子を発泡させることに得ることができる(1次発泡)。1次発泡粒子の嵩密度を上述のように20〜50kg/m3とすることにより、高い独立気泡率を有する発泡粒子が得られやすく、さらに該発泡粒子をさらに発泡させることにより、気泡膜中で樹脂(A)をより高度に延伸配向させやすくなる。かかる観点から、20〜30kg/m3であることがより好ましい。1次発泡粒子のさらなる発泡は、1回(2次発泡)又は2回以上(3次発泡以上)行うことができる。なお、発泡粒子をさらに発泡させる際には、発泡後の発泡粒子を1日以上熟成させたり、発泡粒子を加圧したりして、気泡内の空気分圧を高めておくことが好ましい。
Preferably, the composite resin foamed particles are produced by foaming the foamable composite resin particles to produce primary foamed particles having a bulk density of 20 to 50 kg / m 3 , and the primary foamed particles are further foamed one or more times. (Claim 4).
In this case, the foamed particles are particularly excellent in resilience. The primary foamed particles can be obtained by foaming the foamable composite resin particles (primary foaming). By setting the bulk density of the primary foamed particles to 20 to 50 kg / m 3 as described above, it is easy to obtain foamed particles having a high closed cell ratio, and by further foaming the foamed particles, Thus, the resin (A) can be more easily stretched and oriented. From this viewpoint, it is more preferably 20 to 30 kg / m 3 . Further foaming of the primary foamed particles can be performed once (secondary foaming) or two or more times (third foaming or more). When the foamed particles are further foamed, it is preferable to increase the air partial pressure in the bubbles by aging the foamed particles after foaming for one day or more or pressurizing the foamed particles.

上記複合樹脂発泡粒子は、該複合樹脂発泡粒子を袋体に充填してクッション又はマットレスとして用いられることが好ましい(請求項5)。
この場合には、軽量で、剛性と復元性とを兼ね備えるという複合樹脂発泡粒子の上述の特性を十分にいかすことができる。また、上記複合樹脂発泡粒子は、クッション用途だけではなく、型内成形用途に用いることもできる。この場合にも、軽量でありながらも、高い剛性と優れた復元性を維持することができる。
It is preferable that the composite resin foam particles are used as a cushion or a mattress by filling the composite resin foam particles into a bag.
In this case, the above-described characteristics of the composite resin foamed particles that are lightweight and have both rigidity and resilience can be sufficiently utilized. The composite resin foamed particles can be used not only for cushioning but also for in-mold molding. In this case as well, high rigidity and excellent resilience can be maintained while being lightweight.

上記複合樹脂発泡粒子成形体は、上記複合樹脂発泡粒子を所望形状のキャビティが形成された金型内に充填し、該金型内にスチーム等の加熱媒体を導入し、複合樹脂発泡粒子同士を融着させることにより製造することができる。優れた軽量性、剛性、及び復元性を兼ね備えるという観点から上記複合樹脂発泡粒子成形体の見掛け密度は、5〜15kg/mであることが好ましい。複合樹脂発泡粒子成形体の見掛け密度は、成形体の外形寸法から体積を求め、次いで成形体の質量を測定し、該質量を体積で除することにより算出することができる。 The composite resin foamed particle molded body is filled with the composite resin foam particles in a mold in which a cavity having a desired shape is formed, a heating medium such as steam is introduced into the mold, and the composite resin foam particles are bonded together. It can be manufactured by fusing. From the viewpoint of combining excellent lightweight properties, rigidity, and restoring properties, the apparent density of the composite resin foamed particle molded body is preferably 5 to 15 kg / m 3 . The apparent density of the composite resin foam particle molded body can be calculated by obtaining the volume from the outer dimensions of the molded body, then measuring the mass of the molded body, and dividing the mass by the volume.

次に、複合樹脂発泡粒子の実施例及び比較例について説明する。
(実施例1)
図1に示すごとく、本例の複合樹脂発泡粒子1は、直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との複合樹脂2を基材樹脂とし、内部に多数の気泡3を有している。複合樹脂2は、樹脂(A)と樹脂(B)とを所定の配合割合で含有している。複合樹脂発泡粒子1において、複合樹脂2は、樹脂(A)が分散相21を形成し、上記樹脂(B)が連続相を形成するモルフォロジーを示す(図3〜図5参照)。また、本例の複合樹脂発泡粒子1は、11kg/m3という低い嵩密度を有し、96%という高い独立気泡率を有する。
Next, examples and comparative examples of the composite resin foam particles will be described.
Example 1
As shown in FIG. 1, the composite resin foamed particle 1 of this example includes a linear low-density polyethylene resin (A), a polystyrene resin (B) formed by impregnating and polymerizing the resin (A) with a styrene monomer. The composite resin 2 is used as a base resin and has a large number of bubbles 3 inside. The composite resin 2 contains the resin (A) and the resin (B) at a predetermined blending ratio. In the composite resin foamed particle 1, the composite resin 2 shows a morphology in which the resin (A) forms the dispersed phase 21 and the resin (B) forms a continuous phase (see FIGS. 3 to 5). Moreover, the composite resin foamed particle 1 of this example has a low bulk density of 11 kg / m 3 and a high closed cell ratio of 96%.

以下、本例の複合樹脂発泡粒子の製造方法について説明する。
複合樹脂発泡粒子の製造にあたっては、まず、核粒子を製造し、この核粒子を用いて発泡性複合樹脂粒子を製造する。次いで、発泡性複合樹脂粒子を発泡させて目的の複合樹脂発泡粒子を製造する。以下、詳細に説明する。
Hereinafter, the manufacturing method of the composite resin expanded particle of this example is demonstrated.
In the production of the composite resin foam particles, first, core particles are manufactured, and expandable composite resin particles are manufactured using the core particles. Next, the foamable composite resin particles are foamed to produce the desired composite resin foam particles. Details will be described below.

(1)核粒子の作製
まず、メタロセン系触媒により重合された直鎖状低密度ポリエチレン(東ソー社製「ニポロンZ 9P51A」20kg、および分散径拡大剤としてのアクリロニトリル−スチレン共重合体(電気化学工業(株)製「AS−XGS、重量平均分子量:10.9万、アクリロニトリル成分量:28質量%、MFR(200℃、5kgf):2.8g/10min)1kgをヘンシェルミキサー(三井三池化工機社製;型式FM−75E)に投入し、5分間混合した。ここで用いた配合の樹脂混合物を樹脂aとし、樹脂aのMFR(190℃、2.16kgf)を後述の表1に示す。
次いで、この樹脂混合物を押出機(アイケージー(株)製;型式MS50−28;50mmφ単軸押出機、マドックタイプのスクリュ)にて温度230〜250℃で溶融混練し、水中カット方式により0.4〜0.6mg/個(平均0.5mg/個)に切断し、オレフィン樹脂よりなる核粒子(オレフィン系樹脂粒子)を得た。
(1) Production of core particles First, 20 kg of linear low density polyethylene polymerized by a metallocene catalyst (“Nipolon Z 9P51A” manufactured by Tosoh Corporation) and an acrylonitrile-styrene copolymer (electrochemical industry as a dispersion diameter expanding agent) "AS-XGS,""AS-XGS, weight average molecular weight: 109000, acrylonitrile component amount: 28 mass%, MFR (200 ° C, 5 kgf): 2.8 g / 10 min) 1 kg of Henschel mixer (Mitsui Miike Chemical Co., Ltd.) Made in Model FM-75E) and mixed for 5 minutes.The resin mixture of the composition used here is Resin a, and MFR (190 ° C., 2.16 kgf) of Resin a is shown in Table 1 below.
Next, this resin mixture was melt-kneaded at a temperature of 230 to 250 ° C. with an extruder (manufactured by Icage Co., Ltd .; model MS50-28; 50 mmφ single screw extruder, Maddock type screw), and 0.4 by an underwater cutting method. It cut | disconnected to -0.6 mg / piece (average 0.5 mg / piece), and obtained the core particle (olefin resin particle) which consists of olefin resin.

(2)発泡性複合樹脂粒子の作製
撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水1000gを入れ、更にピロリン酸ナトリウム6.0gを加えた後、粉末状の硝酸マグネシウム・6水和物12.9gを加え、室温で30分撹拌した。これにより、懸濁剤としてのピロリン酸マグネシウムスラリーを作製した。
次に、この懸濁剤に界面活性剤としてのラウリルスルホン酸ナトリウム(10質量%水溶液)1.5g、水溶性重合禁止剤としての亜硝酸ナトリウム0.5g、及び核粒子125gを投入した。
(2) Production of expandable composite resin particles 1000 g of deionized water was added to an autoclave with a stirrer and a volume of 3 L, and 6.0 g of sodium pyrophosphate was added, followed by powdered magnesium nitrate and 6 water. 12.9 g of the Japanese product was added, and the mixture was stirred at room temperature for 30 minutes. This produced the magnesium pyrophosphate slurry as a suspending agent.
Next, 1.5 g of sodium lauryl sulfonate (10% by mass aqueous solution) as a surfactant, 0.5 g of sodium nitrite as a water-soluble polymerization inhibitor, and 125 g of core particles were added to this suspension.

次いで、重合開始剤としての過酸化ベンゾイル1.29g(日本油脂(株)製「ナイパーBW」、水希釈粉体品)とt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート2.58g(日本油脂社製「パーブチルE」)、及び架橋剤としてのジクミルパーオキサイド(日本油脂社製「パークミルD」)0.86gを、モノマーとしてのスチレン245g及びアクリル酸ブチル15gに溶解させ、溶解物を撹拌速度500rpmで撹拌しながらオートクレーブ内の懸濁剤中に投入した。
次いで、オートクレーブ内を窒素置換した後、昇温を開始し、1時間30分かけて温度88℃まで昇温させた。昇温後、この温度88℃で30分間保持した後、撹拌速度を450rpmに下げた。30分かけて温度88℃から80℃まで冷却し、この重合温度80℃で8時間保持した。なお、温度80℃到達時にモノマーとしてスチレン115gを5時間かけてオートクレーブ内に添加した。
Next, 1.29 g of benzoyl peroxide (“Nyper BW” manufactured by NOF Corporation, water-diluted powder product) as a polymerization initiator and 2.58 g of t-butylperoxy-2-ethylhexyl monocarbonate (NOF Corporation) “Perbutyl E”) and 0.86 g of dicumyl peroxide (“Park Mill D” manufactured by NOF Corporation) as a cross-linking agent are dissolved in 245 g of styrene and 15 g of butyl acrylate as monomers, and the solution is stirred. While stirring at 500 rpm, it was put into the suspension in the autoclave.
Next, after the inside of the autoclave was purged with nitrogen, the temperature increase was started and the temperature was raised to 88 ° C. over 1 hour 30 minutes. After the temperature increase, this temperature was maintained at 88 ° C. for 30 minutes, and then the stirring speed was lowered to 450 rpm. The temperature was cooled from 88 ° C. to 80 ° C. over 30 minutes, and the polymerization temperature was maintained at 80 ° C. for 8 hours. When the temperature reached 80 ° C., 115 g of styrene as a monomer was added into the autoclave over 5 hours.

次いで、温度125℃まで4時間かけて昇温させ、そのまま温度125℃で2時間30分保持した。
その後、温度90℃まで1時間かけて冷却し、撹拌速度を400rpmに下げ、そのまま温度90℃で3時間保持した。そして、温度90℃到達時に、発泡剤としてシクロヘキサン20gとブタン(ノルマルブタン約20体積%、イソブタン約80体積%の混合物)65gを約1時間かけオートクレーブ内に添加した。さらに、温度105℃まで2時間かけて昇温し、そのまま温度105℃で5時間保持した後、温度30℃まで約6時間かけて冷却した。
Next, the temperature was raised to 125 ° C. over 4 hours, and the temperature was maintained at 125 ° C. for 2 hours and 30 minutes.
Thereafter, the mixture was cooled to a temperature of 90 ° C. over 1 hour, the stirring speed was lowered to 400 rpm, and the temperature was kept at 90 ° C. for 3 hours. When the temperature reached 90 ° C., 20 g of cyclohexane and 65 g of butane (a mixture of normal butane of about 20% by volume and isobutane of about 80% by volume) were added to the autoclave over about 1 hour as a blowing agent. Further, the temperature was raised to 105 ° C. over 2 hours, kept at 105 ° C. for 5 hours, and then cooled to 30 ° C. over about 6 hours.

冷却後、内容物を取り出し、硝酸を添加して樹脂粒子の表面に付着したピロリン酸マグネシウムを溶解させた。その後、遠心分離機で脱水・洗浄し、気流乾燥装置で表面に付着した水分を除去し、平均粒径(d63)が約1.4mmの発泡性複合樹脂粒子を得た。
本例で得られた発泡性複合樹脂粒子は、直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との複合樹脂を基材樹脂とし、発泡剤を含有する。この発泡性複合樹脂粒子の中心部断面の透過型電子顕微鏡写真(拡大倍率10000倍)を図2に示す。透過型電子顕微鏡としては、日本電子(株)製のJEM1010を用いた。図2においては、濃い黒色部が直鎖状低密度ポリエチレン樹脂(A)の相であり、薄い灰色部がポリスチレン系樹脂(B)の相である。同図より知られるように、本例の発泡性複合樹脂粒子において、複合樹脂は、樹脂(A)と樹脂(B)とが共連続相となる海海構造となっている。
After cooling, the contents were taken out, and nitric acid was added to dissolve the magnesium pyrophosphate adhering to the surface of the resin particles. Thereafter, dehydration and washing were performed with a centrifugal separator, and water adhering to the surface was removed with an airflow drying device, thereby obtaining expandable composite resin particles having an average particle diameter (d 63 ) of about 1.4 mm.
The expandable composite resin particles obtained in this example are a composite resin of a linear low density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer. Is a base resin and contains a foaming agent. FIG. 2 shows a transmission electron micrograph (magnification of 10,000 times) of the cross section of the center portion of the expandable composite resin particles. As the transmission electron microscope, JEM1010 manufactured by JEOL Ltd. was used. In FIG. 2, the dark black part is the phase of the linear low-density polyethylene resin (A), and the light gray part is the phase of the polystyrene resin (B). As can be seen from the figure, in the expandable composite resin particles of this example, the composite resin has a sea-sea structure in which the resin (A) and the resin (B) are in a co-continuous phase.

得られた発泡性複合樹脂粒子を篩いにかけて直径が0.7〜2.0mmの粒子を取り出し、発泡性複合樹脂粒子100質量部に対して、帯電防止剤であるN,N―ビス(2−ヒドロキシエチル)アルキルアミン0.008質量部を添加し、さらにステアリン酸亜鉛0.12質量部、グリセリンモノステアレート0.04質量部、グリセリンジステアレート0.04質量部の混合物で被覆した。得られた発泡性複合樹脂粒子について、直鎖状低密度ポリエチレン樹脂(PE)とポリスチレン系樹脂(PS)とその他のエチレン系樹脂(エチレン−酢酸ビニル共重合体(EVA)との質量比(PE/PS/EVA)を後述の表2に示す。   The obtained foamable composite resin particles are sieved to take out particles having a diameter of 0.7 to 2.0 mm, and N, N-bis (2- Hydroxyethyl) alkylamine (0.008 parts by mass) was added, and the mixture was further coated with a mixture of 0.12 parts by mass of zinc stearate, 0.04 parts by mass of glycerol monostearate, and 0.04 parts by mass of glycerol distearate. About the obtained foamable composite resin particles, the mass ratio (PE of linear low density polyethylene resin (PE), polystyrene resin (PS) and other ethylene resin (ethylene-vinyl acetate copolymer (EVA)) (PE / PS / EVA) is shown in Table 2 below.

次に、上記のようにして得られた発泡性複合樹脂粒子について、物理発泡剤の含有量、物理発泡剤の保持率、発泡性、モルフォロジー、PEとPSとの界面割合、ゲル量、ポリスチレン系樹脂のガラス転移温度(Tg)、ポリスチレン系樹脂の重量平均分子量(Mw)、オレフィン系樹脂粒子の融点(Tm)、オレフィン系樹脂の結晶化度、及び発泡性複合樹脂粒子の平均粒子径を以下のようにして調べた。その結果を後述の表2に示す。   Next, for the foamable composite resin particles obtained as described above, the content of the physical foaming agent, the retention rate of the physical foaming agent, the foamability, the morphology, the interface ratio between PE and PS, the gel amount, the polystyrene series The glass transition temperature (Tg) of the resin, the weight average molecular weight (Mw) of the polystyrene resin, the melting point (Tm) of the olefin resin particles, the crystallinity of the olefin resin, and the average particle diameter of the expandable composite resin particles are as follows: I investigated as follows. The results are shown in Table 2 below.

「物理発泡剤の含有量」
発泡性複合樹脂粒子を1g計量し、メトラー・トレド社製「コンパクトハロゲン水分計HB-43S」にて195℃で加熱した。そして、加熱前後の重量変化量を測定することにより物理発泡剤の含有量を求めた。具体的には、以下の式に基づいて、発泡複合樹脂粒子中の物理発泡剤の含有量(質量%)を算出した。
物理発泡剤の含有量=(加熱前の重量−加熱後の重量)/加熱前の重量 ×100
"Physical foaming agent content"
1 g of the foamable composite resin particles was weighed and heated at 195 ° C. with a “compact halogen moisture meter HB-43S” manufactured by METTLER TOLEDO. And the content of the physical foaming agent was calculated | required by measuring the amount of weight changes before and behind a heating. Specifically, the content (mass%) of the physical foaming agent in the foamed composite resin particles was calculated based on the following formula.
Content of physical foaming agent = (weight before heating−weight after heating) / weight before heating × 100

「物理発泡剤の保持率」
まず、前述のようにして加熱前後の重量変化量から発泡剤の含有量(質量%)を測定した。これをS0とする。
また、発泡性複合樹脂粒子を温度23℃の開放状態で24時間放置した後、前述の方法により物理発泡剤の含有量(質量%)を測定した。これをS1とする。
次に、温度23℃で24時間放置した後の物理発泡剤の含有量(S1)を初期の物理発泡剤の含有量(S0)で除して100分率で表した。これを物理発泡剤の保持率(%)とする。即ち、保持率=S1/S0×100という式から物理発泡剤の保持率を算出した。
"Retention rate of physical foaming agent"
First, the content (mass%) of the foaming agent was measured from the weight change before and after heating as described above. This is S 0 .
The foamable composite resin particles were allowed to stand for 24 hours in an open state at a temperature of 23 ° C., and then the content (mass%) of the physical foaming agent was measured by the method described above. This is referred to as S 1.
Next, the physical foaming agent content (S 1 ) after being allowed to stand at a temperature of 23 ° C. for 24 hours was divided by the initial physical foaming agent content (S 0 ), and expressed as a percentage. This is the retention rate (%) of the physical foaming agent. That is, the retention rate of the physical foaming agent was calculated from the formula: retention rate = S 1 / S 0 × 100.

「発泡性」
発泡性複合樹脂粒子を温度23℃の開放状態で24時間放置し、物理発泡剤を散逸させた。次に、物理発泡剤を散逸させた発泡性複合樹脂粒子を加熱スチーム温度107℃で270秒間加熱し、温度23℃で24時間乾燥させた。そして、乾燥後の発泡粒子の嵩密度(kg/m3)を測定し、これを発泡性とした。なお、発泡粒子の嵩密度(kg/m3)は、1Lのメスシリンダーを用意し、空のメスシリンダー中に複合樹脂発泡粒子を1Lの標線まで充填し、1Lあたりの複合樹脂発泡粒子の重量(g)を測定することより求めた。
"Foaming"
The foamable composite resin particles were left in an open state at a temperature of 23 ° C. for 24 hours to dissipate the physical foaming agent. Next, the foamable composite resin particles from which the physical foaming agent was dissipated were heated at a heating steam temperature of 107 ° C. for 270 seconds and dried at a temperature of 23 ° C. for 24 hours. And the bulk density (kg / m < 3 >) of the foamed particle after drying was measured, and this was made foamable. In addition, the bulk density (kg / m 3 ) of the expanded particles is prepared by preparing a 1 L graduated cylinder, filling the composite resin expanded particles up to the 1 L mark in an empty graduated cylinder, and adding the composite resin expanded particles per 1 L. It calculated | required by measuring a weight (g).

「モルフォロジー、及びPEとPSとの界面割合」
発泡性複合樹脂粒子中心部から観察用のサンプルを切り出した。観察用サンプルをエポキシ樹脂に包埋し、四酸化ルテニウム染色を行った後、ウルトラミクロトームにより超薄切片を作製した。この超薄切片をグリッドに載せ、発泡性複合樹脂粒子の中心部断面のモルフォロジーを倍率10000倍の透過型電子顕微鏡(日本電子社製のJEM1010)で観察し、断面写真(TEM写真)を撮影した。その結果を図2に示す。
断面写真から、発泡性複合樹脂粒子における直鎖状低密度ポリエチレン樹脂の相とポリスチレン系樹脂の相のモルフォロジーを目視にて観察した。
次に、断面写真をスキャナ(600dpi/カラー写真)で取込んだ。取り込んだ画像を、画像処理ソフト(ナノシステム(株)のNanoHunter NS2K−Pro)で解析し、発泡性複合樹脂粒子の中心部断面(発泡性複合樹脂粒子を2等分する断面の中央部)の透過型電子顕微鏡写真(拡大倍率10000倍が好ましい)から、写真上の全ての直鎖状低密度ポリエチレン樹脂(PE)の相とポリスチレン系樹脂(PS)の相について、界面割合を測定した。なお、界面割合は、発泡性複合樹脂粒子の中心部断面(発泡性複合樹脂粒子を2等分する断面の中央部)の透過型電子顕微鏡写真で観察される直鎖状低密度ポリエチレン樹脂(PE)とポリスチレン系樹脂(PS)との界面の長さ(μm)の総和を意味する。
以上の操作を、無作為に選んだ5個の発泡性複合樹脂粒子に対して行い、顕微鏡写真5枚以上に存在するPEとPSとの界面の長さ(μm)の総和を、観察した範囲の面積(μm2)で除して求められる値を、PEとPSとの界面割合(μm/μm2)とする。
なお、画像処理ソフトによりPEとPSとの界面割合を求めるにあたっては、次の(1)〜(8)の処理条件で行った。
(1)モノクロ変換→(2)平滑化フィルタ(3×3、8近傍、処理回数=1)→(3)NS法2値化(背景より明るい、鮮明度=100、感度=5、ノイズ除去、濃度範囲=0〜255)→(4)穴埋め→(5)収縮(8近傍、処理回数=3)→(6)特徴量(面積)による画像のみ選択(0.01〜∞μm2、8近傍)→(7)隣と隣接しない膨張(8近傍、処理回数=3)→(8)周径(界面長さ)計測
“Morphology and the interface ratio between PE and PS”
A sample for observation was cut out from the center of the expandable composite resin particles. The observation sample was embedded in an epoxy resin and stained with ruthenium tetroxide, and then an ultrathin section was prepared with an ultramicrotome. This ultrathin slice was placed on a grid, and the morphology of the cross section at the center of the foamable composite resin particle was observed with a transmission electron microscope (JEM1010 manufactured by JEOL Ltd.) at a magnification of 10,000 times, and a cross-sectional photograph (TEM photograph) was taken. . The result is shown in FIG.
From the cross-sectional photograph, the morphology of the phase of the linear low density polyethylene resin and the phase of the polystyrene resin in the expandable composite resin particles was visually observed.
Next, a cross-sectional photograph was captured with a scanner (600 dpi / color photograph). The captured image is analyzed by image processing software (NanoHunter NS2K-Pro of Nano System Co., Ltd.), and the central cross section of the expandable composite resin particle (the central portion of the cross section that divides the expandable composite resin particle into two equal parts) From the transmission electron micrograph (magnification of 10,000 times is preferable), the interface ratio was measured for all phases of the linear low-density polyethylene resin (PE) and polystyrene-based resin (PS) on the photo. The interfacial ratio is a linear low density polyethylene resin (PE) observed in a transmission electron micrograph of the central cross section of the expandable composite resin particles (the central portion of the cross section that bisects the expandable composite resin particles). ) And the polystyrene-based resin (PS).
The above operation was performed on five randomly selected foamable composite resin particles, and the total length of the interface (μm) between PE and PS existing in five or more micrographs was observed. The value obtained by dividing by the area (μm 2 ) is defined as the interface ratio (μm / μm 2 ) between PE and PS.
In addition, when calculating | requiring the interface ratio of PE and PS with image processing software, it carried out on the processing conditions of following (1)-(8).
(1) Monochrome conversion → (2) Smoothing filter (3 × 3, 8 neighborhoods, processing count = 1) → (3) Binarization with NS method (brighter than background, sharpness = 100, sensitivity = 5, noise removal) , Density range = 0 to 255) → (4) filling in hole → (5) shrinkage (near 8; number of processing = 3) → (6) selecting only image based on feature quantity (area) (0.01 to ∞ μm 2 , 8 (Near) → (7) Expansion that is not adjacent to the neighbor (8 vicinity, number of treatments = 3) → (8) Circumference (interface length) measurement

「キシレン不溶分(ゲル量)」
まず、150メッシュの金網袋中に発泡性複合樹脂粒子1.0gを入れた。次に、丸型フラスコ200mlにキシレン約200mlを入れ、上記金網袋に入れた発泡性複合樹脂粒子のサンプルをソックスレー抽出管にセットした。マントルヒーターで8時間加熱することによりソックスレー抽出を行い、抽出終了後に空冷で冷却した。
次に1000mlのビーカーにアセトン約600mlを入れ、このアセトンにより、抽出終了後に抽出管からとりだした金網内のサンプルを洗浄した。次いで、アセトンを揮発させてから温度120℃の乾燥器内でサンプルを4時間乾燥させた。残留分をゲル分とし、初期の発泡性複合樹脂粒子量(質量)に対するゲル分量(質量)の割合を百分率で表し、これをキシレンに不溶なゲル量(質量%)とした。
"Xylene insoluble matter (gel amount)"
First, 1.0 g of expandable composite resin particles were placed in a 150 mesh wire mesh bag. Next, about 200 ml of xylene was placed in a 200 ml round flask, and a sample of expandable composite resin particles placed in the wire mesh bag was set in a Soxhlet extraction tube. Soxhlet extraction was performed by heating with a mantle heater for 8 hours, and cooling was performed by air cooling after the extraction was completed.
Next, about 600 ml of acetone was put into a 1000 ml beaker, and the sample in the wire mesh taken out from the extraction tube after the completion of extraction was washed with this acetone. Next, after acetone was volatilized, the sample was dried in a drier at a temperature of 120 ° C. for 4 hours. The residual content was defined as the gel content, and the ratio of the gel content (mass) to the initial foamable composite resin particle content (mass) was expressed as a percentage, and this was defined as the gel content (mass%) insoluble in xylene.

「ポリスチレン系樹脂のガラス転移温度(Tg)」
まず、150メッシュの金網袋中に発泡性複合樹脂粒子1.0gを入れた。次に、丸型フラスコ200mlにキシレン約200mlを入れ、上記金網袋に入れた発泡性複合樹脂粒子のサンプルをソックスレー抽出管にセットした。マントルヒーターで8時間加熱することによりソックスレー抽出を行った。ここで抽出したキシレン溶液をアセトン600mlへ投下し、デカンテーション及び減圧蒸発乾固を行い、アセトン可溶分としてスチレン系樹脂を得た。
得られたポリスチレン系樹脂2〜4mgについて、熱流束示差走査熱量測定を行った。熱流束示差走査熱量の測定は、ティ・エイ・インスツルメント社製の2010型DSC測定器を用い、JIS K7121(1987年)に従って行った。そして、加熱速度10℃/分の条件で得られるDSC曲線の中間点ガラス転移温度を求め、これをポリスチレン系樹脂のガラス転移温度(Tg)とした。
"Glass transition temperature (Tg) of polystyrene resin"
First, 1.0 g of expandable composite resin particles were placed in a 150 mesh wire mesh bag. Next, about 200 ml of xylene was placed in a 200 ml round flask, and a sample of expandable composite resin particles placed in the wire mesh bag was set in a Soxhlet extraction tube. Soxhlet extraction was performed by heating with a mantle heater for 8 hours. The xylene solution extracted here was dropped into 600 ml of acetone, followed by decantation and evaporation under reduced pressure to obtain a styrene resin as an acetone-soluble component.
About 2 to 4 mg of the obtained polystyrene resin, heat flux differential scanning calorimetry was performed. The heat flux differential scanning calorific value was measured according to JIS K7121 (1987) using a 2010 DSC measuring instrument manufactured by TI Instruments. And the midpoint glass transition temperature of the DSC curve obtained on the conditions of a heating rate of 10 degree-C / min was calculated | required, and this was made into the glass transition temperature (Tg) of a polystyrene-type resin.

「ポリスチレン系樹脂の重量平均分子量(Mw)」
まず、上述の方法と同様にして、発泡性複合樹脂粒子からアセトン可溶分として、ポリスチレン系樹脂を得た。得られたスチレン系樹脂の重量平均分子量は、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法(高分子測定用ミックスゲルカラム)により測定した。具体的には、東ソー(株)製の測定装置(GPC−8020ModelII)を用いて、溶離液:テトラヒドロフラン(THF)、流量:2ml/分、カラム:東ソー(株)製のTSK−GEL GMHという測定条件で測定を行うことができる。重量平均分子量は、ポリスチレン系樹脂をテトラヒドロフランに溶解させ、ゲルパーミエーションクロマトグラフィ(GPC)で測定し、標準ポリスチレンで校正して求めた。
"Weight average molecular weight (Mw) of polystyrene resin"
First, in the same manner as described above, a polystyrene resin was obtained as an acetone-soluble component from the foamable composite resin particles. The weight average molecular weight of the obtained styrene resin was measured by a gel permeation chromatography (GPC) method (mixed gel column for polymer measurement) using polystyrene as a standard substance. Specifically, using a measuring device (GPC-8020Model II) manufactured by Tosoh Corporation, measurement of eluent: tetrahydrofuran (THF), flow rate: 2 ml / min, column: TSK-GEL GMH manufactured by Tosoh Corporation Measurement can be performed under conditions. The weight average molecular weight was obtained by dissolving a polystyrene resin in tetrahydrofuran, measuring with gel permeation chromatography (GPC), and calibrating with standard polystyrene.

「オレフィン系樹脂の融点及び結晶化度」
まず、150メッシュの金網袋中に発泡性複合樹脂粒子1.0gを入れた。次に、丸型フラスコ200mlにキシレン約200mlを入れ、上記金網袋に入れた発泡性複合樹脂粒子のサンプルをソックスレー抽出管にセットした。マントルヒーターで8時間加熱することによりソックスレー抽出を行った。ここで、抽出したキシレン溶液をアセトン600mlへ投下し、デカンテーション及び減圧蒸発乾固を行い、アセトン不溶分としてオレフィン系樹脂を得た。
得られたオレフィン系樹脂について、熱流束示差走査熱量測定を行った。熱流束示差走査熱量の測定は、ティ・エイ・インスツルメント社製の2010型DSC測定器を用い、JIS K7121(1987年)に従って行った。
具体的には、サンプルパンに2〜4mgのオレフィン系樹脂のサンプルを秤量した後、窒素雰囲気下でサンプルを温度190℃まで昇温した。その後、降温速度10℃/分で−50℃まで低下させ、もう一度、昇温速度10℃/分で190℃まで昇温した時に得られるDSC曲線の吸熱ピーク面積から融解熱量を求めた。そして、融解熱量の値とポリエチレン結晶の融解熱量との比から結晶化度(%)を計算した。尚、完全ポリエチレン結晶の融解熱量は286.7J/gの値を用いた。
また、DSC曲線上の吸熱ピークの頂点の温度をもって、オレフィン系樹脂の融点(Tm)とした。
"Melting point and crystallinity of olefin resin"
First, 1.0 g of expandable composite resin particles were placed in a 150 mesh wire mesh bag. Next, about 200 ml of xylene was placed in a 200 ml round flask, and a sample of expandable composite resin particles placed in the wire mesh bag was set in a Soxhlet extraction tube. Soxhlet extraction was performed by heating with a mantle heater for 8 hours. Here, the extracted xylene solution was dropped into 600 ml of acetone, followed by decantation and evaporation under reduced pressure to obtain an olefin resin as an acetone insoluble matter.
About the obtained olefin resin, heat flux differential scanning calorimetry was performed. The heat flux differential scanning calorific value was measured according to JIS K7121 (1987) using a 2010 DSC measuring instrument manufactured by TI Instruments.
Specifically, after weighing a sample of 2 to 4 mg of an olefin resin in a sample pan, the sample was heated to a temperature of 190 ° C. in a nitrogen atmosphere. Thereafter, the temperature was decreased to −50 ° C. at a temperature decrease rate of 10 ° C./min, and the heat of fusion was determined from the endothermic peak area of the DSC curve obtained when the temperature was increased to 190 ° C. at a temperature increase rate of 10 ° C./min. Then, the degree of crystallinity (%) was calculated from the ratio between the value of heat of fusion and the heat of fusion of polyethylene crystals. In addition, the value of 286.7 J / g was used for the heat of fusion of complete polyethylene crystals.
The temperature at the top of the endothermic peak on the DSC curve was defined as the melting point (Tm) of the olefin resin.

「平均粒子径」
上記発泡性樹脂粒子の平均粒子径は、次のようにして測定することができる。
即ち、まず、温度23℃の水の入ったメスシリンダーを用意し、相対湿度50%、温度23℃、1atmの条件にて2日放置した任意の量の発泡性樹脂粒子群(発泡性樹脂粒子群の質量W1)を上記メスシリンダー内の水中に金網などの道具を使用して沈める。そして、金網などの道具の体積を考慮し、水位上昇分より読みとられる発泡性樹脂粒子群の容積V1[L]を測定し、この容積V1をメスシリンダーに入れた発泡性樹脂粒子の個数(N)にて割り算(V1/N)することにより、発泡性樹脂粒子1個あたりの平均体積を算出する。そして、得られた平均体積と同じ体積を有する仮想真球の直径をもって発泡性樹脂粒子の平均粒子径[mm]とする。
"Average particle size"
The average particle diameter of the expandable resin particles can be measured as follows.
That is, first, a graduated cylinder containing water at a temperature of 23 ° C. was prepared, and an arbitrary amount of expandable resin particles (expandable resin particles) left for 2 days under conditions of 50% relative humidity, 23 ° C. and 1 atm. The mass W 1 ) of the group is submerged in water in the graduated cylinder using a tool such as a wire mesh. The volume V 1 [L] of the expandable resin particle group read from the rise in the water level is measured in consideration of the volume of the tool such as a wire mesh, and the volume V 1 of the expandable resin particle placed in the measuring cylinder is measured. By dividing (V 1 / N) by the number (N), the average volume per one expandable resin particle is calculated. And let the diameter of the virtual sphere which has the same volume as the obtained average volume be the average particle diameter [mm] of the expandable resin particles.

(3)複合樹脂発泡粒子の作製
次に、上記のようにして得られた発泡性複合樹脂粒子を用いて、嵩密度25.1kg/m3の一次発泡粒子を作製した。
具体的には、まず、上記のようにして得られた発泡性複合樹脂粒子を30L常圧バッチ発泡機内に入れ、この発泡機内にスチームを供給した。これにより、発泡性複合樹脂粒子を嵩密度25.1kg/m3まで発泡させ、発泡倍率40倍の一次発泡粒子を得た。
上記で得られた一次発泡粒子を室温で1日熟成した後、一次発泡粒子を30L常圧バッチ発泡機内に入れ、この発泡機内にスチームを供給した。これにより、一次発泡粒子を嵩密度11.0kg/m3までさらに発泡させ、発泡倍率91倍の二次発泡粒子を得た。これを本例の複合樹脂発泡粒子とする。
(3) Preparation of Composite Resin Expanded Particles Next, primary expanded particles having a bulk density of 25.1 kg / m 3 were prepared using the expandable composite resin particles obtained as described above.
Specifically, first, the expandable composite resin particles obtained as described above were placed in a 30 L atmospheric pressure batch foaming machine, and steam was supplied into the foaming machine. Thereby, the expandable composite resin particles were expanded to a bulk density of 25.1 kg / m 3 to obtain primary expanded particles having an expansion ratio of 40 times.
After aging the primary foamed particles obtained above at room temperature for 1 day, the primary foamed particles were placed in a 30 L atmospheric pressure batch foaming machine, and steam was supplied into the foaming machine. Thereby, the primary expanded particles were further expanded to a bulk density of 11.0 kg / m 3 to obtain secondary expanded particles having an expansion ratio of 91 times. This is the composite resin foamed particle of this example.

複合樹脂発泡粒子の嵩密度(kg/m3)は、1Lのメスシリンダーを用意し、空のメスシリンダー中に複合樹脂発泡粒子を1Lの標線まで入れ、メスシリンダー中に入れた複合樹脂発泡粒子の重量を測定することにより求めた。この操作にて求められた嵩体積1Lあたりの複合樹脂発泡粒子の重量を単位換算して複合樹脂発泡粒子の嵩密度(kg/m3)を算出した。また、複合樹脂発泡粒子の発泡倍率は、発泡倍率=1000/嵩密度(kg/m3)という式により算出した。 For the bulk density (kg / m 3 ) of the composite resin foam particles, prepare a 1L graduated cylinder, put the composite resin foam particles up to the 1L mark in an empty graduated cylinder, and put the composite resin foam in the graduated cylinder. It was determined by measuring the weight of the particles. The bulk density (kg / m 3 ) of the composite resin foam particles was calculated by converting the weight of the composite resin foam particles per liter of the bulk volume obtained by this operation into a unit. Moreover, the expansion ratio of the composite resin expanded particles was calculated by the formula: expansion ratio = 1000 / bulk density (kg / m 3 ).

次に、本例の複合樹脂発泡粒子について、モルフォロジー、平均粒子径、独立気泡率、最大圧縮応力、及び圧縮歪を以下のようにして調べた。その結果を表2に示す。なお、複合樹脂発泡粒子におけるPE/PS/EVAの質量比、分散径拡大剤の含有量、キシレン不溶分(ゲル量)等の値は、上述の発泡性複合樹脂粒子に関する値と同じである(表2参照)。   Next, the morphology, average particle diameter, closed cell ratio, maximum compressive stress, and compressive strain of the composite resin foam particles of this example were examined as follows. The results are shown in Table 2. In addition, the values of the mass ratio of PE / PS / EVA in the composite resin foam particles, the content of the dispersion diameter expanding agent, the xylene insoluble matter (gel amount), and the like are the same as the values related to the foamable composite resin particles described above ( (See Table 2).

「モルフォロジー」
上述の発泡性複合樹脂粒子と同様の方法により、断面の透過型電子顕微鏡写真を撮影し、断面写真から、複合樹脂発泡粒子における直鎖状低密度ポリエチレン樹脂の相とポリスチレン系樹脂の相のモルフォロジーを目視にて観察した。本例の複合樹脂発泡粒子については、倍率10000倍と50000倍の透過型電子顕微鏡写真を撮影した。倍率10000倍の透過型電子顕微鏡写真を図3に示す。倍率50000倍の透過型電子顕微鏡写真については、複合樹脂発泡粒子1の隣り合う気泡3同士が近接しておらず樹脂溜まりが存在している領域(図1における点線で囲った領域A)の写真を図4に示し、隣り合う気泡3同士が近接して気泡膜(セル膜)を形成している領域(図1における点線で囲った領域B)の写真を図5に示す。
"Morphology"
A transmission electron micrograph of the cross section was taken in the same manner as the foamable composite resin particles described above, and the morphology of the linear low density polyethylene resin phase and the polystyrene resin phase in the composite resin foam particles was taken from the cross section photograph. Was visually observed. With respect to the composite resin foam particles of this example, transmission electron micrographs were taken at magnifications of 10,000 and 50,000 times. A transmission electron micrograph at a magnification of 10,000 times is shown in FIG. Regarding the transmission electron micrograph at a magnification of 50000 times, a photograph of a region where the adjacent bubbles 3 of the composite resin foamed particles 1 are not close to each other and a resin reservoir exists (region A surrounded by a dotted line in FIG. 1). 4 shows a photograph of a region (region B surrounded by a dotted line in FIG. 1) in which the adjacent bubbles 3 are close to each other to form a bubble film (cell film).

「平均粒子径」
上述の発泡性複合粒子と同様の方法により、複合樹脂発泡粒子の平均粒子径を測定した。
"Average particle size"
The average particle diameter of the composite resin foam particles was measured by the same method as that for the expandable composite particles described above.

「独立気泡率」
複合樹脂発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置した。次に、10日間放置した嵩体積約20cm3の複合樹脂発泡粒子を測定用サンプルとし正確に見かけの体積Vaを測定した。次いで、測定用サンプルを十分に乾燥させた後、ASTM−D2856−70に記載されている手順Cに準じ、東芝・ベックマン株式会社製空気比較式比重計930により、測定用サンプルの真の体積の値Vxを測定した。そして、これらの体積値Va及びVxを基に、下記の式(3)により独立気泡率を計算し、N=5の平均値で求めた。
独立気泡率(%)=(Vx−W/ρ)×100/(Va−W/ρ)・・・(3)
(ただし、Vx:上記方法で測定される複合樹脂発泡粒子の真の体積、即ち、複合樹脂発泡粒子を構成する樹脂の容積と、複合樹脂発泡粒子内の独立気泡部分の気泡全容積との和(cm3)、Va:発泡粒子を、水の入ったメスシリンダーに沈めて、水位上昇分から測定される複合樹脂発泡粒子の見かけの体積(cm3)、W:複合樹脂発泡粒子の重量(g)、ρ:複合樹脂発泡粒子を構成する樹脂の密度(g/cm3))
このようにして、圧縮前、25%圧縮時、50%圧縮時における複合樹脂発泡粒子の独立気泡率を求めた。
"Closed cell ratio"
The composite resin foamed particles were allowed to stand for 10 days in a constant temperature room under conditions of atmospheric pressure, relative humidity 50%, and 23 ° C. Next, the composite resin foamed particles having a bulk volume of about 20 cm 3 was allowed to stand for 10 days was used as a sample for measurement was measured volume V a of the apparent accurate. Next, after the measurement sample is sufficiently dried, the true volume of the measurement sample is measured by an air comparison type hydrometer 930 manufactured by Toshiba Beckman Co., Ltd. according to Procedure C described in ASTM-D2856-70. to measure the value V x. Then, based on these volume values V a and V x , the closed cell ratio was calculated by the following formula (3), and the average value of N = 5 was obtained.
Closed cell ratio (%) = (V x −W / ρ) × 100 / (V a −W / ρ) (3)
(Where V x : the true volume of the composite resin foamed particles measured by the above method, that is, the volume of the resin constituting the composite resin foamed particles and the total cell volume of the closed cell portion in the composite resin foamed particles) Sum (cm 3 ), V a : Submerged foam particles in a graduated cylinder containing water, apparent volume (cm 3 ) of composite resin foam particles measured from the rise in water level, W: Weight of composite resin foam particles (G), ρ: Density of resin constituting the composite resin foamed particles (g / cm 3 ))
In this way, the closed cell ratio of the composite resin foamed particles before compression, at 25% compression, and at 50% compression was determined.

「圧縮応力」
まず、直径78mmの蓋付きの円筒形容器に予めメスシリンダーで計量した複合樹脂発泡粒子330mlを投入し、蓋をした。次いで、蓋の部分から圧縮速度100mm/minで複合樹脂発泡粒子に荷重をかけ、所定の荷重到達後、瞬時に荷重を開放した。この操作を100回繰り返した。荷重は、容器内の複合樹脂発泡粒子の元の体積に対して、25%、及び50%圧縮される以下の条件で行った。
(25%圧縮)
下式(4)及び(5)に基づき、円筒容器中の複合樹脂発泡粒子の体積が247.5mlとなるまで荷重をかけた。
元の体積(330ml)×0.25=82.5ml・・・(4)
元の体積(330ml)−82.5ml=247.5ml・・・(5)
(50%圧縮)
下式(6)及び(7)に基づき、円筒容器中の複合樹脂発泡粒子の体積が165mlとなるまで荷重をかけた。
元の体積(330ml)×0.5=165ml・・・(6)
元の体積(330ml)−165ml=165ml・・・(7)
上記測定における圧縮応力は、1回目の圧縮応力値で示した。
"Compressive stress"
First, 330 ml of composite resin foam particles weighed in advance with a graduated cylinder were put into a cylindrical container with a lid having a diameter of 78 mm, and the lid was capped. Next, a load was applied to the composite resin foam particles from the lid portion at a compression rate of 100 mm / min, and the load was released immediately after reaching a predetermined load. This operation was repeated 100 times. The load was performed under the following conditions of being compressed by 25% and 50% with respect to the original volume of the composite resin foam particles in the container.
(25% compression)
Based on the following formulas (4) and (5), a load was applied until the volume of the composite resin foamed particles in the cylindrical container reached 247.5 ml.
Original volume (330 ml) × 0.25 = 82.5 ml (4)
Original volume (330 ml) −82.5 ml = 247.5 ml (5)
(50% compression)
Based on the following formulas (6) and (7), a load was applied until the volume of the composite resin foamed particles in the cylindrical container reached 165 ml.
Original volume (330 ml) × 0.5 = 165 ml (6)
Original volume (330 ml) -165 ml = 165 ml (7)
The compressive stress in the above measurement is indicated by the first compressive stress value.

「繰り返し圧縮歪」
上記圧縮応力測定において、100回の繰り返し荷重をかけた後、荷重を開放した状態で24時間放置し体積を測定した。この体積の値から、以下の式(8)を用いて繰り返し圧縮歪を算出した。圧縮歪は値が小さいほど、復元性に優れることを意味する。
圧縮歪(%)=(元の体積(330ml)−圧縮試験後の体積)/元の体積(330ml)×100・・・(8)
"Repetitive compression distortion"
In the above compressive stress measurement, a load was applied 100 times and then left for 24 hours with the load released to measure the volume. From this volume value, the compression strain was repeatedly calculated using the following equation (8). It means that the smaller the value of the compressive strain, the better the restoring property.
Compression strain (%) = (original volume (330 ml) −volume after compression test) / original volume (330 ml) × 100 (8)

(実施例2)
本例は、核粒子を構成するポリエチレン系樹脂を実施例1と変更すると共に、実施例1とはスチレン系モノマーの重合条件などを変更して発泡性複合樹脂粒子を作製し、該発泡性複合樹脂粒子を用いて複合樹脂発泡粒子を作製する例である。
具体的には、まず、直鎖状低密度ポリエチレン樹脂としてメタロセン系触媒により重合された直鎖状低密度ポリエチレンである日本ポリエチレン社製「カーネルKF270」を用いた点を除いては、実施例1と同様にして核粒子を作製した。ここで用いた配合の樹脂混合物を樹脂bとし、樹脂bのMFR(190℃、2.16kgf)を後述の表1に示す。
(Example 2)
In this example, the polyethylene resin constituting the core particle is changed from that of Example 1, and in Example 1, the foaming composite resin particles are prepared by changing the polymerization conditions of the styrene monomer and the like. This is an example of producing composite resin foamed particles using resin particles.
Specifically, Example 1 was used except that “Kernel KF270” manufactured by Nippon Polyethylene Co., Ltd., which is a linear low density polyethylene polymerized with a metallocene catalyst, was used as the linear low density polyethylene resin. Nuclear particles were prepared in the same manner as described above. The resin mixture having the composition used here is resin b, and the MFR (190 ° C., 2.16 kgf) of resin b is shown in Table 1 described later.

次いで、実施例1と同様にして作製した懸濁剤に、界面活性剤としてのラウリルスルホン酸ナトリウム(10質量%水溶液)1.5g、水溶性重合禁止剤としての亜硝酸ナトリウム0.15g、及び核粒子150gを投入した。   Next, to the suspension prepared in the same manner as in Example 1, 1.5 g of sodium lauryl sulfonate (10% by mass aqueous solution) as a surfactant, 0.15 g of sodium nitrite as a water-soluble polymerization inhibitor, and 150 g of core particles were charged.

次いで、重合開始剤としての過酸化ベンゾイル1.72g(日本油脂(株)製「ナイパーBW」、水希釈粉体品)とt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート1.29g(日本油脂社製「パーブチルE」)、及び架橋剤としてのジクミルパーオキサイド(日本油脂社製「パークミルD」)0.43gを、モノマーとしてのスチレン335g及びアクリル酸ブチル15gに溶解させ、溶解物を撹拌速度500rpmで撹拌しながらオートクレーブ内の懸濁剤中に投入した。
次いで、オートクレーブ内を窒素置換した後、昇温を開始し、1時間30分かけて温度87℃まで昇温させた。昇温後、この温度87℃で30分間保持した後、撹拌速度を450rpmに下げた。この重合温度87℃で6時間保持した。
Next, 1.72 g of benzoyl peroxide as a polymerization initiator (“NIPPER BW” manufactured by NOF Corporation, water-diluted powder product) and 1.29 g of t-butylperoxy-2-ethylhexyl monocarbonate (NOF Corporation) “Perbutyl E”) and 0.43 g of dicumyl peroxide (“Park Mill D” manufactured by NOF Corporation) as a cross-linking agent are dissolved in 335 g of styrene and 15 g of butyl acrylate as monomers, and the solution is stirred. While stirring at 500 rpm, it was put into the suspension in the autoclave.
Next, after the inside of the autoclave was purged with nitrogen, the temperature increase was started and the temperature was increased to 87 ° C. over 1 hour 30 minutes. After the temperature increase, this temperature was maintained at 87 ° C. for 30 minutes, and then the stirring speed was lowered to 450 rpm. This polymerization temperature was maintained at 87 ° C. for 6 hours.

次いで、温度125℃まで4時間かけて昇温させ、そのまま温度125℃で2時間30分保持した。
その後、温度90℃まで1時間かけて冷却し、撹拌速度を400rpmに下げ、そのまま温度90℃で3時間保持した。そして、温度90℃到達時に、発泡剤としてシクロヘキサン20gとブタン(ノルマルブタン約20体積%、イソブタン約80体積%の混合物)65gを約1時間かけオートクレーブ内に添加した。さらに、温度105℃まで2時間かけて昇温し、そのまま温度105℃で5時間保持した後、温度30℃まで約6時間かけて冷却した。
Next, the temperature was raised to 125 ° C. over 4 hours, and the temperature was maintained at 125 ° C. for 2 hours and 30 minutes.
Thereafter, the mixture was cooled to a temperature of 90 ° C. over 1 hour, the stirring speed was lowered to 400 rpm, and the temperature was kept at 90 ° C. for 3 hours. When the temperature reached 90 ° C., 20 g of cyclohexane and 65 g of butane (a mixture of normal butane of about 20% by volume and isobutane of about 80% by volume) were added to the autoclave over about 1 hour as a blowing agent. Further, the temperature was raised to 105 ° C. over 2 hours, kept at 105 ° C. for 5 hours, and then cooled to 30 ° C. over about 6 hours.

冷却後、内容物を取り出し、硝酸を添加して樹脂粒子の表面に付着したピロリン酸マグネシウムを溶解させた。その後、遠心分離機で脱水・洗浄し、気流乾燥装置で表面に付着した水分を除去し、平均粒径(d63)が約1.3mmの発泡性複合樹脂粒子を得た。
次いで、実施例1と同様に、得られた発泡性複合樹脂粒子を篩いにかけ、N,N―ビス(2−ヒドロキシエチル)アルキルアミン、ステアリン酸亜鉛、及びグリセリンモノステアレート、グリセリンジステアレートを発泡粒子の表面に被覆させた。このようにして、本例の発泡性複合樹脂粒子を得た。
After cooling, the contents were taken out, and nitric acid was added to dissolve the magnesium pyrophosphate adhering to the surface of the resin particles. Thereafter, dehydration and washing were performed with a centrifugal separator, and water adhering to the surface was removed with an airflow drying device, whereby expandable composite resin particles having an average particle diameter (d 63 ) of about 1.3 mm were obtained.
Next, as in Example 1, the obtained foamable composite resin particles were sieved, and N, N-bis (2-hydroxyethyl) alkylamine, zinc stearate, glycerol monostearate, and glycerol distearate were added. The surface of the expanded particles was coated. Thus, the expandable composite resin particle of this example was obtained.

次に、本例の発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を作製した。
本例においては、発泡性複合樹脂粒子を嵩密度24.6kg/m3まで発泡させて一次発泡粒子を作製し、この一次発泡粒子をさらに嵩密度11.3kg/m3までさらに発泡させた点を除いては、実施例1と同様にして複合樹脂発泡粒子(二次発泡粒子)を作製した。
Next, the foamable composite resin particles of this example were foamed to produce composite resin foam particles.
In this example, the expandable composite resin particles were expanded to a bulk density of 24.6 kg / m 3 to produce primary expanded particles, and the primary expanded particles were further expanded to a bulk density of 11.3 kg / m 3. Except for, composite resin expanded particles (secondary expanded particles) were produced in the same manner as in Example 1.

(実施例3)
本例は、分散径拡大剤の種類やスチレン系モノマーの重合条件等を実施例1とは変えて発泡性複合樹脂粒子を作製し、この発泡性複合樹脂粒子を用いて複合樹脂発泡粒子を作製する例である。
具体的には、本例においては、分散径拡大剤としてメチルメタクリレート−スチレン共重合体(MS)である新日鐵化学(株)製の「MS200」1kgを用いた点を除いては、実施例1と同様にして核粒子を作製した。ここで用いた配合の樹脂混合物を樹脂cとし、樹脂cのMFR(190℃、2.16kgf)を後述の表1に示す。
次いで、この核粒子を用いた点を除いては、実施例2と同様にして、発泡性複合樹脂粒子(平均粒子径:1.4mm)を作製した。
Example 3
In this example, expandable composite resin particles were prepared by changing the type of dispersion diameter expanding agent and the polymerization conditions of the styrene monomer, etc. from Example 1, and using these expandable composite resin particles, composite resin expanded particles were prepared. This is an example.
Specifically, in this example, except that 1 kg of “MS200” manufactured by Nippon Steel Chemical Co., Ltd., which is a methyl methacrylate-styrene copolymer (MS), was used as a dispersion diameter expanding agent. Core particles were prepared in the same manner as in Example 1. The resin mixture of the blend used here is Resin c, and the MFR (190 ° C., 2.16 kgf) of Resin c is shown in Table 1 described later.
Next, expandable composite resin particles (average particle diameter: 1.4 mm) were produced in the same manner as in Example 2 except that the core particles were used.

次に、本例の発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を作製した。
本例においては、発泡性複合樹脂粒子を嵩密度24.1kg/m3まで発泡させて一次発泡粒子を作製し、この一次発泡粒子をさらに嵩密度11.6kg/m3までさらに発泡させた点を除いては、実施例1と同様にして複合樹脂発泡粒子(二次発泡粒子)を作製した。
Next, the foamable composite resin particles of this example were foamed to produce composite resin foam particles.
In this example, the foamable composite resin particles were foamed to a bulk density of 24.1 kg / m 3 to produce primary foamed particles, and the primary foamed particles were further foamed to a bulk density of 11.6 kg / m 3. Except for, composite resin expanded particles (secondary expanded particles) were produced in the same manner as in Example 1.

(実施例4及び5)
本例は、発泡性複合樹脂粒子を三段階で発泡させて複合樹脂発泡粒子を作製する例である。
具体的には、まず、実施例1と同様にして核粒子を作製した。次いで、この核粒子を用いた点を除いては、実施例2と同様にして発泡性複合樹脂粒子(平均粒子径:1.4mm)を作製した。
(Examples 4 and 5)
In this example, foamable composite resin particles are foamed in three stages to produce composite resin foam particles.
Specifically, first, nuclear particles were produced in the same manner as in Example 1. Next, expandable composite resin particles (average particle diameter: 1.4 mm) were produced in the same manner as in Example 2 except that the core particles were used.

次に、この発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を作製した。
具体的には、本例において作製した発泡性複合樹脂粒子を、実施例1と同様に嵩密度25.1kg/m3まで発泡させて一次発泡粒子を作製し、この一次発泡粒子をさらに嵩密度11.0kg/m3までさらに発泡させて二次発泡粒子を作製した。次いで、得られた二次発泡粒子を室温で1日熟成した後、30L常圧バッチ発泡機内に入れ、この発泡機内にスチームを供給することにより、二次発泡粒子をさらに発泡させた。
実施例4においては、二次発泡粒子を嵩密度8.3kg/m3までさらに発泡させることにより、発泡倍率120倍の三次発泡粒子を得た。この三次発泡粒子を実施例4の複合樹脂発泡粒子とした。
また、実施例5においては、上記二次発泡粒子を嵩密度6.1kg/m3までさらに発泡させることにより、発泡倍率164倍の三次発泡粒子を得た。これを実施例5の複合樹脂発泡粒子とした。
Next, the foamable composite resin particles were foamed to produce composite resin foam particles.
Specifically, the foamable composite resin particles produced in this example were foamed to a bulk density of 25.1 kg / m 3 in the same manner as in Example 1 to produce primary foamed particles. The primary foamed particles were further increased in bulk density. Secondary expanded particles were produced by further foaming to 11.0 kg / m 3 . Next, the obtained secondary foamed particles were aged at room temperature for 1 day, and then placed in a 30 L normal pressure batch foaming machine, and steam was supplied into the foaming machine to further foam the secondary foamed particles.
In Example 4, secondary expanded particles were further expanded to a bulk density of 8.3 kg / m 3 to obtain tertiary expanded particles having an expansion ratio of 120 times. The tertiary expanded particles were used as the composite resin expanded particles of Example 4.
In Example 5, the secondary expanded particles were further expanded to a bulk density of 6.1 kg / m 3 to obtain tertiary expanded particles having an expansion ratio of 164 times. This was designated as composite resin foamed particles of Example 5.

(比較例1)
本例は、上述の実施例とは核粒子を変更して複合樹脂発泡粒子を作製した例である。
具体的には、まず、エチレン系樹脂として、エチレン−酢酸ビニル共重合体である東ソー社製「ウルトラセン626」5kgと、直鎖状低密度ポリエチレンである東ソー社製「ニポロンZ 9P51A」15kgを用い、分散径拡大剤としてアクリロニトリル−スチレン共重合体であるテクノポリマー社製「SANH」を用いた点を除いては、実施例1と同様にして核粒子を作製した。ここで用いた配合の樹脂混合物を樹脂dとし、樹脂dのMFR(190℃、2.16kgf)を後述の表1に示す。
(Comparative Example 1)
This example is an example in which composite resin foamed particles are produced by changing the core particles from the above-described example.
Specifically, first, as an ethylene-based resin, 5 kg of “Ultrasen 626” manufactured by Tosoh Corporation, which is an ethylene-vinyl acetate copolymer, and 15 kg of “Nipolon Z 9P51A” manufactured by Tosoh Corporation, which is a linear low density polyethylene, are used. The core particles were prepared in the same manner as in Example 1 except that “SANH” manufactured by Techno Polymer Co., Ltd., which is an acrylonitrile-styrene copolymer, was used as the dispersion diameter expanding agent. The resin mixture having the composition used here is Resin d, and MFR (190 ° C., 2.16 kgf) of Resin d is shown in Table 1 described later.

次いで、この核粒子を用いた点を除いては、実施例2と同様にして、発泡性複合樹脂粒子(平均粒子径:1.6mm)を作製した。
次に、本例の発泡性複合樹脂粒子を発泡させて複合樹脂発泡粒子を作製した。本例においては、発泡性複合樹脂粒子を嵩密度27.1kg/m3まで発泡させて一次発泡粒子を作製した。次いで、この一次発泡粒子を嵩密度21.1kg/m3までさらに発泡させて二次発泡粒子を作製した。
Next, expandable composite resin particles (average particle diameter: 1.6 mm) were produced in the same manner as in Example 2 except that the core particles were used.
Next, the foamable composite resin particles of this example were foamed to produce composite resin foam particles. In this example, expandable composite resin particles were expanded to a bulk density of 27.1 kg / m 3 to produce primary expanded particles. Next, the primary expanded particles were further expanded to a bulk density of 21.1 kg / m 3 to produce secondary expanded particles.

(比較例2)
本例においては、平均粒子径を変更した点除いては比較例1と同様にして発泡性複合樹脂粒子を作製し、該発泡性複合樹脂粒子を比較例1とは異なる発泡倍率で発泡させて複合樹脂発泡粒子を作製した。
本例においては、発泡性複合樹脂粒子を嵩密度21.1kg/m3まで発泡させて一次発泡粒子を作製した。次いで、この一次発泡粒子を嵩密度14.1kg/m3までさらに発泡させて二次発泡粒子を作製した。
(Comparative Example 2)
In this example, expandable composite resin particles were produced in the same manner as in Comparative Example 1 except that the average particle diameter was changed, and the expandable composite resin particles were expanded at a different expansion ratio from Comparative Example 1. Composite resin foam particles were prepared.
In this example, expandable composite resin particles were expanded to a bulk density of 21.1 kg / m 3 to produce primary expanded particles. Next, the primary expanded particles were further expanded to a bulk density of 14.1 kg / m 3 to produce secondary expanded particles.

(比較例3及び4)
本例は、上述の実施例の複合樹脂発泡粒子の比較用として、発泡ポリスチレン粒子(発泡PS粒子)を作製する例である。
撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水760g、懸濁剤として第三リン酸カルシウム(太平化学産業社製)0.6g、界面活性剤としてテトラデセンスルホン酸ナトリウム(ライオン社製 リポランLB440)の1%水溶液2.7gとドデシルジフェニルエーテルスルホン酸二ナトリウム(花王社製 ペレックスSSH)の1%水溶液0.9g、懸濁助剤として過硫酸カリウムの0.01%水溶液を3.8g、電解質として酢酸ナトリウム1.2gを投入した。
(Comparative Examples 3 and 4)
This example is an example of producing expanded polystyrene particles (expanded PS particles) for comparison with the composite resin expanded particles of the above-described Examples.
In an autoclave with an internal volume of 3 L with a stirrer, 760 g of deionized water, 0.6 g of tribasic calcium phosphate (manufactured by Taihei Chemical Sangyo Co., Ltd.) as a suspending agent, sodium tetradecene sulfonate (Lipolan, manufactured by Lion) LB440) 1% aqueous solution 2.7 g, disodium dodecyl diphenyl ether sulfonate (Perox SSH manufactured by Kao Corporation) 0.9% aqueous solution, 3.8 g potassium persulfate 0.01% aqueous solution as a suspension aid, As the electrolyte, 1.2 g of sodium acetate was added.

次いで、重合開始剤として過酸化ベンゾイル2.4g(日本油脂社製 ナイパーBW、水希釈粉体品)、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート0.8g(日本油脂社製 パーブチルE)、及びジクミルパーオキサイド(日本油脂社製 パークミルD)0.8g、連鎖移動剤としてアルファ-メチルスチレンダイマー0.12g、可塑剤として流動パラフィン6gを、モノマーとしてスチレン760gに溶解させ、400rpmで撹拌しながらオートクレーブに投入した。オートクレーブ内を窒素置換した後、昇温を開始し、1時間半かけて90℃まで昇温した。   Next, 2.4 g of benzoyl peroxide (NIPPER BW manufactured by NOF Corporation, water-diluted powder product), 0.8 g of t-butylperoxy-2-ethylhexyl monocarbonate (Perbutyl E manufactured by NOF Corporation) as polymerization initiators, And 0.8 g of dicumyl peroxide (Nippon Yushi Co., Ltd., Park Mill D), 0.12 g of alpha-methylstyrene dimer as a chain transfer agent, 6 g of liquid paraffin as a plasticizer, and 760 g of styrene as a monomer were stirred at 400 rpm. However, it was put into the autoclave. After the atmosphere in the autoclave was replaced with nitrogen, the temperature was raised and the temperature was raised to 90 ° C. over 1 hour and a half.

90℃到達後、100℃まで5時間かけて昇温し、さらに112℃まで1時間30分かけて昇温し、そのまま112℃で3時間保持した後、30℃まで約6時間かけて冷却した。90℃到達4時間目に発泡剤としてペンタン25g、ブタン(ノルマルブタン約20体積%、イソブタン約80体積%の混合物)45gを約30分かけてオートクレーブ内に添加した。発泡剤を添加後、撹拌速度を350rpmに下げた。   After reaching 90 ° C., the temperature was raised to 100 ° C. over 5 hours, further raised to 112 ° C. over 1 hour 30 minutes, held at 112 ° C. for 3 hours, and then cooled to 30 ° C. over about 6 hours. . 4 hours after reaching 90 ° C., 25 g of pentane and 45 g of butane (a mixture of about 20% by volume of normal butane and about 80% by volume of isobutane) were added to the autoclave over about 30 minutes. After adding the blowing agent, the stirring speed was lowered to 350 rpm.

冷却後、内容物を取り出し、硝酸を添加し発泡性スチレン系樹脂粒子の表面に付着した第3リン酸カルシウムを溶解させた後、遠心分離機で脱水・洗浄し、気流乾燥装置で表面に付着した水分を除去し、平均粒径が約1.2mmの発泡性スチレン系樹脂粒子を得た。
得られた発泡性スチレン系樹脂粒子を篩いにかけて直径が0.8〜1.6mmの粒子を取り出し、発泡性複合樹脂粒子100質量部に対して、帯電防止剤であるN,N―ビス(2−ヒドロキシエチル)アルキルアミン0.008質量部を添加し、さらにステアリン酸亜鉛0.12質量部、グリセリンモノステアレート0.04質量部、グリセリンジステアレート0.04質量部の混合物で被覆した。
After cooling, the contents are taken out, nitric acid is added to dissolve the tertiary calcium phosphate adhering to the surface of the expandable styrene resin particles, then dewatering and washing with a centrifuge, and moisture adhering to the surface with an airflow dryer Was removed to obtain expandable styrene resin particles having an average particle diameter of about 1.2 mm.
The obtained expandable styrenic resin particles are sieved to extract particles having a diameter of 0.8 to 1.6 mm, and N, N-bis (2) which is an antistatic agent is added to 100 parts by mass of the expandable composite resin particles. -Hydroxyethyl) alkylamine 0.008 parts by mass was added, and further coated with a mixture of zinc stearate 0.12 parts by mass, glycerol monostearate 0.04 parts by mass, and glycerol distearate 0.04 parts by mass.

次に、上記のようにして得られた発泡性PS粒子を30L常圧バッチ発泡機内に入れ、この発泡機内にスチームを供給した。これにより、発泡性PS粒子を発泡させて発泡ポリスチレン粒子(一次発泡粒子)を作製した。比較例3は、発泡性PS粒子を嵩密度20.3kg/m3まで発泡させて得られた発泡PS粒子であり、比較例4は、発泡性PS粒子を嵩密度10.5kg/m3まで発泡させて得られた発泡PS粒子である。 Next, the expandable PS particles obtained as described above were placed in a 30 L normal pressure batch foaming machine, and steam was supplied into the foaming machine. Thereby, expandable PS particles were expanded to produce expanded polystyrene particles (primary expanded particles). Comparative Example 3 is foamed PS particles obtained by foaming expandable PS particles to a bulk density of 20.3 kg / m 3. Comparative Example 4 is foamed PS particles up to a bulk density of 10.5 kg / m 3. Foamed PS particles obtained by foaming.

上述の実施例2〜5、比較例1及び2についても、核粒子の作製に用いた樹脂(樹脂a〜g)のMFRを実施例1と同様に表1に示す。また、実施例2〜5、比較例1及び2における発泡性複合樹脂粒子について、実施例1と同様にして、物理発泡剤の含有量、物理発泡剤の保持率、発泡性、モルフォロジー、PEとPSとの界面割合、ゲル量、スチレン系樹脂のガラス転移温度(Tg)、スチレン系樹脂の重量平均分子量(Mw)、オレフィン系樹脂の融点(Tm)、オレフィン系樹脂の結晶化度、及び平均粒子径を調べ、その結果を表2〜表3に示す。なお、表2〜3における「質量部」は、PEとPSとの合計質量100質量部に対する値である。
さらに、実施例2〜5、比較例1及び2における複合樹脂発泡粒子、比較例3及び4における発泡ポリスチレン粒子について、実施例1と同様にして、モルフォロジー、嵩密度、平均粒子径、独立気泡率、圧縮応力、及び繰り返し圧縮歪を調べ、その結果を表2〜表4に示す。
For Examples 2 to 5 and Comparative Examples 1 and 2 described above, the MFR of the resins (resins a to g) used for the production of the core particles is shown in Table 1 as in Example 1. Further, for the expandable composite resin particles in Examples 2 to 5 and Comparative Examples 1 and 2, as in Example 1, the content of the physical foaming agent, the retention rate of the physical foaming agent, the foamability, the morphology, PE and Interfacial ratio with PS, gel amount, glass transition temperature (Tg) of styrene resin, weight average molecular weight (Mw) of styrene resin, melting point (Tm) of olefin resin, crystallinity of olefin resin, and average The particle diameter was examined, and the results are shown in Tables 2 to 3. In addition, "mass part" in Tables 2-3 is a value with respect to 100 mass parts of total mass of PE and PS.
In addition, the composite resin foamed particles in Examples 2 to 5, Comparative Examples 1 and 2, and the expanded polystyrene particles in Comparative Examples 3 and 4, as in Example 1, morphology, bulk density, average particle diameter, closed cell ratio , Compression stress, and repeated compression strain were examined, and the results are shown in Tables 2 to 4.

(実施例及び比較例の結果)
表2〜3より知られるごとく、実施例1〜5のように、直鎖状低密度ポリエチレン樹脂(A)と、スチレン系モノマーの重合体又はスチレン系モノマーを含む混合モノマーの重合体であるポリスチレン系樹脂(B)とを含む複合樹脂のモルフォロジー等が調整された、高発泡倍率、高独立気泡率の複合樹脂発泡粒子は、剛性及び復元性に優れていた。
(Results of Examples and Comparative Examples)
As is known from Tables 2-3, as in Examples 1-5, polystyrene, which is a linear low density polyethylene resin (A) and a polymer of a styrene monomer or a mixed monomer containing a styrene monomer. The composite resin foam particles having a high expansion ratio and a high closed cell ratio, in which the morphology of the composite resin including the resin (B) is adjusted, were excellent in rigidity and restorability.

これに対し、表3より知られるごとく、比較例1及び2の複合樹脂発泡粒子は、実施例1〜5に比べると、復元性に劣っていた。
また、表4より知られるごとく、発泡性ポリスチレン粒子(比較例3及び4)は発泡性に優れるものの、得られる発泡ポリスチレン粒子は、実施例1〜5に比べて、復元性が劣っていた(表2及び表4参照)。
On the other hand, as known from Table 3, the composite resin foamed particles of Comparative Examples 1 and 2 were inferior in resilience compared to Examples 1-5.
Moreover, although foamable polystyrene particle | grains (Comparative Examples 3 and 4) are excellent in foamability as known from Table 4, the expandable polystyrene particle obtained was inferior in resilience compared with Examples 1-5 ( Table 2 and Table 4).

1 複合樹脂発泡粒子
2 複合樹脂
3 気泡
1 Composite resin foamed particles 2 Composite resin 3 Bubbles

Claims (6)

直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との複合樹脂を基材樹脂とする複合樹脂発泡粒子であって、
上記複合樹脂は、上記樹脂(A)20〜50質量%及び上記樹脂(B)50〜80重量%を含有し(ただし、上記樹脂(A)及び上記樹脂(B)の合計が100質量%)、かつ上記樹脂(A)が分散相を形成し、上記樹脂(B)が連続相を形成するモルフォロジーを示し、
嵩密度が5〜15kg/m3、独立気泡率が90%以上であることを特徴とする複合樹脂発泡粒子。
A composite resin foamed particle using a composite resin of a linear low density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer. ,
The composite resin contains 20-50% by mass of the resin (A) and 50-80% by weight of the resin (B) (however, the total of the resin (A) and the resin (B) is 100% by mass). And the resin (A) forms a dispersed phase and the resin (B) forms a continuous phase,
A composite resin foamed particle having a bulk density of 5 to 15 kg / m 3 and a closed cell ratio of 90% or more.
上記複合樹脂中のキシレン不溶分が30質量%以下であることを特徴とする請求項1に記載の複合樹脂発泡粒子。   2. The composite resin foamed particles according to claim 1, wherein the xylene-insoluble matter in the composite resin is 30% by mass or less. 上記複合樹脂発泡粒子の平均粒子径が4〜8mmであることを特徴とする請求項1又は2に記載の複合樹脂発泡粒子。   The composite resin foamed particles according to claim 1 or 2, wherein the composite resin foamed particles have an average particle diameter of 4 to 8 mm. 上記複合樹脂発泡粒子は、嵩密度20〜50kg/m3の発泡粒子をさらに1回以上発泡してなることを特徴とする請求項1〜3のいずれか1項に記載の複合樹脂発泡粒子。 The composite resin foamed particles, the composite resin foamed particles according to any one of claims 1 to 3, characterized by being foamed further one or more times expanded beads having a bulk density of 20 to 50 kg / m 3. 上記複合樹脂発泡粒子は、該複合樹脂発泡粒子を袋体に充填してクッション又はマットレスとして用いられることを特徴とする請求項1〜4のいずれか1項に記載の複合樹脂発泡粒子。   The composite resin foam particles according to any one of claims 1 to 4, wherein the composite resin foam particles are used as a cushion or a mattress by filling the composite resin foam particles into a bag. 請求項1〜4のいずれか1項に記載の複合樹脂発泡粒子を型内成形してなる見掛け密度5〜15kg/mの複合樹脂発泡粒子成形体。 Composite resin foamed bead molded article of the apparent density 5~15kg / m 3 obtained by in-mold molding of the composite resin foamed particles according to any one of claims 1 to 4.
JP2013120397A 2013-06-07 2013-06-07 Composite resin foam particles Active JP6136601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120397A JP6136601B2 (en) 2013-06-07 2013-06-07 Composite resin foam particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120397A JP6136601B2 (en) 2013-06-07 2013-06-07 Composite resin foam particles

Publications (2)

Publication Number Publication Date
JP2014237747A true JP2014237747A (en) 2014-12-18
JP6136601B2 JP6136601B2 (en) 2017-05-31

Family

ID=52135168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120397A Active JP6136601B2 (en) 2013-06-07 2013-06-07 Composite resin foam particles

Country Status (1)

Country Link
JP (1) JP6136601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009359A (en) * 2015-03-25 2016-10-12 株式会社Jsp Panel packaging container
KR20170107522A (en) 2015-02-27 2017-09-25 세키스이가세이힝코교가부시키가이샤 Composite resin particles, foamed particles thereof, expanded particles and foamed molded articles
JP2018162376A (en) * 2017-03-24 2018-10-18 積水化成品工業株式会社 Composite resin foam molding and method for producing the same
JP7485952B2 (en) 2020-10-12 2024-05-17 株式会社ジェイエスピー Hollow particles and cushioning bodies

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085527A1 (en) * 2003-03-25 2004-10-07 Sekisui Plastics Co. Ltd. Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for the production thereof, pre-expanded beads, and foams
JP2004283511A (en) * 2003-03-25 2004-10-14 Ebisu Kasei Co Ltd Cushion body
JP2006083221A (en) * 2004-09-14 2006-03-30 Sekisui Plastics Co Ltd Styrene-modified polyethylene-based resin particle, styrene-modified polyethylene-based foamable resin particle, method for producing the particles, preliminarily foamed particle and foamed molded article
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
JP2006298956A (en) * 2005-04-15 2006-11-02 Kaneka Corp Pre-expanded particle of modified polyethylene-based resin and method for producing the same
JP2008508111A (en) * 2004-09-22 2008-03-21 積水化成品工業株式会社 Foam molded body having voids
JP2008133424A (en) * 2006-10-23 2008-06-12 Jsp Corp Method for producing styrenic resin foam
JP2010111827A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing pre-expanded particle of styrene-modified polyethylene-based resin
JP2013203863A (en) * 2012-03-28 2013-10-07 Sekisui Plastics Co Ltd Modified resin particle and foamable modified resin particle thereof, preliminary foaming particle and foam molded article
JP5528429B2 (en) * 2009-03-26 2014-06-25 積水化成品工業株式会社 Method for reducing volatile organic compounds in composite resin particles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085527A1 (en) * 2003-03-25 2004-10-07 Sekisui Plastics Co. Ltd. Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for the production thereof, pre-expanded beads, and foams
JP2004283511A (en) * 2003-03-25 2004-10-14 Ebisu Kasei Co Ltd Cushion body
JP2006083221A (en) * 2004-09-14 2006-03-30 Sekisui Plastics Co Ltd Styrene-modified polyethylene-based resin particle, styrene-modified polyethylene-based foamable resin particle, method for producing the particles, preliminarily foamed particle and foamed molded article
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
JP2008508111A (en) * 2004-09-22 2008-03-21 積水化成品工業株式会社 Foam molded body having voids
JP2006298956A (en) * 2005-04-15 2006-11-02 Kaneka Corp Pre-expanded particle of modified polyethylene-based resin and method for producing the same
JP2008133424A (en) * 2006-10-23 2008-06-12 Jsp Corp Method for producing styrenic resin foam
JP2010111827A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing pre-expanded particle of styrene-modified polyethylene-based resin
JP5528429B2 (en) * 2009-03-26 2014-06-25 積水化成品工業株式会社 Method for reducing volatile organic compounds in composite resin particles
JP2013203863A (en) * 2012-03-28 2013-10-07 Sekisui Plastics Co Ltd Modified resin particle and foamable modified resin particle thereof, preliminary foaming particle and foam molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170107522A (en) 2015-02-27 2017-09-25 세키스이가세이힝코교가부시키가이샤 Composite resin particles, foamed particles thereof, expanded particles and foamed molded articles
CN107250184A (en) * 2015-02-27 2017-10-13 积水化成品工业株式会社 Composite resin particle and its foaminess particle, expanded beads and foam molding
CN107250184B (en) * 2015-02-27 2020-05-19 积水化成品工业株式会社 Composite resin particles, expandable particles thereof, expanded particles, and expanded molded article
CN106009359A (en) * 2015-03-25 2016-10-12 株式会社Jsp Panel packaging container
JP2016180073A (en) * 2015-03-25 2016-10-13 株式会社ジェイエスピー Foaming particle molding and panel packing container
TWI680999B (en) * 2015-03-25 2020-01-01 日商Jsp股份有限公司 Expanded particle molded body and panel packaging container
JP2018162376A (en) * 2017-03-24 2018-10-18 積水化成品工業株式会社 Composite resin foam molding and method for producing the same
JP7485952B2 (en) 2020-10-12 2024-05-17 株式会社ジェイエスピー Hollow particles and cushioning bodies

Also Published As

Publication number Publication date
JP6136601B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5831175B2 (en) Expandable composite resin particle and composite resin foam particle molded body
JP5532742B2 (en) Expandable modified resin particles, modified resin expanded particles, and modified resin expanded particle molded body
JP6281232B2 (en) Expandable composite resin particles
JP5565118B2 (en) Expandable modified resin particles and modified resin expanded particles
JP5831548B2 (en) Composite resin foam particles and molded body thereof
JP6136601B2 (en) Composite resin foam particles
JP2010270209A (en) Foamed particle of modified resin and molded article of the same
JP6323251B2 (en) Expandable composite resin particles
JP2015101702A (en) Method for producing expandable polystyrene-based resin particle
JP2023021144A (en) Foaming polystyrene-based resin particle and utilization thereof
JP6409642B2 (en) Expandable composite resin particles
JP2007321021A (en) Foamable polyethylene resin particle and its manufacturing method
JP5895786B2 (en) Expandable composite resin particle and composite resin foam particle molded body
WO2019026966A1 (en) Foamable polystyrene resin particles, polystyrene prefoamed particles, foam-molded article, and methods for producing these
JP2017002236A (en) Expandable composite resin particle
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP5883703B2 (en) Cushioning material
JP7148790B2 (en) Expandable composite resin particles
JP6389659B2 (en) Compressed composite resin foam molding
JP2017105881A (en) Composite resin particle
JP2017149840A (en) Composite resin foam particles, method for producing the same, and composite resin foam particle molded body
WO2022185844A1 (en) Method for producing modified polystyrene resin particles, method for producing expandable modified polystyrene resin particles, and use thereof
JP2022134655A (en) Method for producing expandable modified polystyrene-based resin particle, expandable modified polystyrene-based resin particle, and use thereof
JP2022062825A (en) Foamable composite resin particle, and foamed particle
JP2020007417A (en) Expandable composite resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250