JP5513364B2 - Hollow silica particles - Google Patents

Hollow silica particles Download PDF

Info

Publication number
JP5513364B2
JP5513364B2 JP2010288441A JP2010288441A JP5513364B2 JP 5513364 B2 JP5513364 B2 JP 5513364B2 JP 2010288441 A JP2010288441 A JP 2010288441A JP 2010288441 A JP2010288441 A JP 2010288441A JP 5513364 B2 JP5513364 B2 JP 5513364B2
Authority
JP
Japan
Prior art keywords
silica particles
hollow silica
less
hollow
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010288441A
Other languages
Japanese (ja)
Other versions
JP2012136363A (en
Inventor
聡宏 矢野
正樹 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010288441A priority Critical patent/JP5513364B2/en
Publication of JP2012136363A publication Critical patent/JP2012136363A/en
Application granted granted Critical
Publication of JP5513364B2 publication Critical patent/JP5513364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空シリカ粒子及びその製造方法に関する。   The present invention relates to hollow silica particles and a method for producing the same.

微小中空シリカ粒子は、非中空シリカ粒子に比べて比重が小さく、中空粒子という形態に起因して低誘電率化効果を有することから、多層プリント基板や電線被覆材、半導体封止材等の低誘電率化ニーズがある分野での利用が期待されている。
微小中空シリカ粒子については、種々の提案が行われている。例えば、特許文献1には、平均粒径が8μm以下、平均球形度が0.85以上、50%破壊圧力が10MPa以上、平均中空率が20〜70体積%である微細化された球状シリカ中空粉体が開示されている。
しかしながら、特許文献1の中空シリカ粒子の平均粒径は、具体的態様において0.5〜8μmであり、実施例では1.2〜7.8μmである。
Fine hollow silica particles have a lower specific gravity than non-hollow silica particles and have a low dielectric constant effect due to the form of hollow particles. Therefore, they are low in multilayer printed circuit boards, wire coating materials, semiconductor sealing materials, etc. It is expected to be used in fields with dielectric constant needs.
Various proposals have been made for fine hollow silica particles. For example, Patent Document 1 discloses a refined spherical silica hollow having an average particle size of 8 μm or less, an average sphericity of 0.85 or more, a 50% breaking pressure of 10 MPa or more, and an average hollowness of 20 to 70% by volume. A powder is disclosed.
However, the average particle diameter of the hollow silica particles of Patent Document 1 is 0.5 to 8 μm in a specific embodiment, and 1.2 to 7.8 μm in the examples.

特開2005−206436号公報JP 2005-206436 A

近年、多層プリント基板等の低誘電率化ニーズがある分野では、回路の微細化等に伴い、絶縁膜の平滑性、さらに薄膜化が望まれている。したがってその構成材料として用いられる粒子にも更なる微細化が望まれている。
本発明は、極めて微細な中空シリカ粒子、及びその製造方法を提供することを課題とする。
In recent years, in a field where there is a need for a low dielectric constant such as a multilayer printed circuit board, smoothness of an insulating film and further thinning have been desired along with miniaturization of circuits. Therefore, further miniaturization is desired for the particles used as the constituent material.
An object of the present invention is to provide extremely fine hollow silica particles and a method for producing the same.

すなわち、本発明は、次の〔1〕及び〔2〕を提供する。
〔1〕レーザ回折/散乱法によって測定される体積平均粒子径が0.05〜0.45μmで、最大粒子径が体積平均粒子径の5倍以内であり、空孔率が20〜70体積%、BET比表面積が30m2/g未満、98質量%以上がSiO2である中空シリカ粒子
〔2〕下記工程(I)〜(III)を有する前記〔1〕の中空シリカ粒子の製造方法。
工程(I):疎水性有機化合物(a)と、第四級アンモニウム塩(b)、及び加水分解によりシラノール化合物を生成するシリカ源(c)を含有する水溶液を調製する工程
工程(II):工程(I)で得られた水溶液を10〜100℃の温度で撹拌して、シリカから構成される外殻を有し、かつ核に疎水性有機化合物(a)を有するコアシェル型シリカ粒子の水分散液を調製する工程
工程(III):工程(II)で得られた水分散液からコアシェル型シリカ粒子を分離し、950℃以上の温度で焼成して、中空シリカ粒子を得る工程
That is, the present invention provides the following [1] and [2].
[1] The volume average particle diameter measured by the laser diffraction / scattering method is 0.05 to 0.45 μm, the maximum particle diameter is within 5 times the volume average particle diameter, and the porosity is 20 to 70% by volume. Hollow silica particles having a BET specific surface area of less than 30 m 2 / g and 98 mass% or more of SiO 2 [2] The method for producing hollow silica particles according to [1], comprising the following steps (I) to (III):
Step (I): Step of preparing an aqueous solution containing a hydrophobic organic compound (a), a quaternary ammonium salt (b), and a silica source (c) that produces a silanol compound by hydrolysis Step (II): The aqueous solution obtained in step (I) is stirred at a temperature of 10 to 100 ° C., and water of core-shell type silica particles having an outer shell composed of silica and having a hydrophobic organic compound (a) in the nucleus. Step of preparing dispersion Step (III): Step of separating the core-shell type silica particles from the aqueous dispersion obtained in Step (II) and calcining at a temperature of 950 ° C. or higher to obtain hollow silica particles.

本発明によれば、レーザ回折/散乱法によって測定される体積平均粒子径が0.45μm以下で、十分に低い誘電率、誘電正接を有する中空シリカ粒子、及びその効率的な製造方法を提供することができる。   According to the present invention, there are provided hollow silica particles having a volume average particle diameter of 0.45 μm or less measured by a laser diffraction / scattering method and having a sufficiently low dielectric constant and dielectric loss tangent, and an efficient production method thereof. be able to.

[中空シリカ粒子]
本発明の中空シリカ粒子は、レーザ回折/散乱法によって測定される体積平均粒子径が0.05〜0.45μmで、最大粒子径が体積平均粒子径の5倍以内であり、空孔率が20〜70体積%、BET比表面積が30m2/g未満、98質量%以上がSiO2であることを特徴とする。
本発明の中空シリカ粒子は、その98質量%以上、好ましくは99質量%以上がSiO2である。シリカ以外の成分としては、アルミナ、ジルコニア、チタニア、マグネシア、カルシア等が挙げられるが、強度、低熱膨張性、電気絶縁性の観点から、中空シリカ粒子の純度は98質量%以上であることが必要である。シリカ純度は、例えばプラズマ発光分光分析装置(ICP)、蛍光X線分析装置(XRF)、エネルギー分散型蛍光X線分析装置(EDX)、原子吸光光度計(AAS)等を用いて測定することができる。
なお、中空シリカ粒子の物性は、実施例記載の方法により測定される。
[Hollow silica particles]
The hollow silica particles of the present invention have a volume average particle size of 0.05 to 0.45 μm measured by a laser diffraction / scattering method, a maximum particle size within 5 times the volume average particle size, and a porosity of 20 to 70% by volume, BET specific surface area is less than 30 m 2 / g, and 98% by mass or more is SiO 2 .
In the hollow silica particles of the present invention, 98% by mass or more, preferably 99% by mass or more is SiO 2 . Examples of components other than silica include alumina, zirconia, titania, magnesia, calcia, etc. From the viewpoint of strength, low thermal expansion, and electrical insulation, the purity of the hollow silica particles needs to be 98% by mass or more. It is. The silica purity can be measured using, for example, a plasma emission spectrometer (ICP), an X-ray fluorescence analyzer (XRF), an energy dispersive X-ray fluorescence analyzer (EDX), an atomic absorption photometer (AAS), or the like. it can.
The physical properties of the hollow silica particles are measured by the method described in the examples.

中空シリカ粒子の体積平均粒子径は0.05〜0.45μmであるが、低誘電特性等の観点から、好ましくは0.08〜0.42μm、より好ましくは0.10〜0.40μm、更に好ましくは0.15〜0.40μmである。
また、中空シリカ粒子の最大粒子径は、体積平均粒子径の5倍以内であり、好ましくは4.5倍以内、より好ましくは4倍以内、更に好ましくは3.5倍以内である。
体積平均粒子径の測定には、株式会社堀場製作所製のレーザ回折/散乱式粒度分布測定装置「LA−920」、ベックマンコールター社製のレーザー回折散乱法粒度分布測定装置「LS 13 320」等が使用できる。
中空シリカ粒子としては、充填率を向上させるために体積平均粒子径の異なる複数種の中空粒子を混合して、粒子径分布を広くして使用することもできるし、強度等の観点から粒子径分布の狭いものを複数組み合わせて使用することもできる。
The volume average particle diameter of the hollow silica particles is 0.05 to 0.45 μm, but preferably 0.08 to 0.42 μm, more preferably 0.10 to 0.40 μm from the viewpoint of low dielectric properties and the like. Preferably it is 0.15-0.40 micrometer.
Further, the maximum particle size of the hollow silica particles is within 5 times the volume average particle size, preferably within 4.5 times, more preferably within 4 times, and even more preferably within 3.5 times.
For the measurement of the volume average particle size, a laser diffraction / scattering particle size distribution measuring device “LA-920” manufactured by Horiba, Ltd., a laser diffraction scattering method particle size distribution measuring device “LS 13 320” manufactured by Beckman Coulter, Inc., etc. Can be used.
As the hollow silica particles, a plurality of types of hollow particles having different volume average particle diameters can be mixed in order to improve the filling rate, and the particle diameter distribution can be widened. A plurality of narrow distributions can be used in combination.

中空シリカ粒子の空孔率は20〜70体積%である。空孔率が20体積%未満では、中空シリカ粒子の特徴である軽量性、断熱性、低誘電特性等の効果を十分に発現せず、70体積%を超えると、粒子の殻厚が薄くなり強度が低下して、粉体のハンドリング中や樹脂との混練中に粒子が破壊するおそれがある。該空孔率は、用途等を考慮して適宜調整しうるが、誘電特性向上等の観点から、好ましくは15〜65体積%、より好ましくは20〜60体積%、更に好ましくは、25〜55体積%である。
空孔率を同じにした場合、体積平均粒子径が大きい方が高い強度が期待できる。
粒子強度を重視する場合、中空シリカ粒子の全体の80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上が体積平均粒子径±30%以内の粒子径を有しており、非常に揃った粒子径の粒子群から構成されていることが望ましい。さらに強度を重視する場合、中空シリカ粒子以外のフィラーを添加してもよい。
The porosity of the hollow silica particles is 20 to 70% by volume. If the porosity is less than 20% by volume, the effects such as lightness, heat insulation, and low dielectric properties that are the characteristics of the hollow silica particles are not sufficiently exhibited. If the porosity exceeds 70% by volume, the shell thickness of the particles becomes thin. The strength is lowered, and there is a possibility that the particles are broken during the handling of the powder or the kneading with the resin. The air Anaritsu is capable of appropriately adjusted in consideration of the use and the like, from the viewpoint of dielectric characteristics improvement, preferably 15 to 65 vol%, more preferably 20 to 60 vol%, more preferably, 25 to 55 % By volume .
When the porosity is the same, higher strength can be expected when the volume average particle size is larger.
When importance is attached to particle strength, 80% by mass or more of the entire hollow silica particles, more preferably 85% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95 % by mass or more is within a volume average particle diameter of ± 30%. It is desirable that it is composed of a group of particles having a very uniform particle size. Furthermore, when importance is attached to strength, fillers other than hollow silica particles may be added.

中空シリカ粒子の外殻部の平均厚みは、中空シリカ粒子が担体としての強度を維持できる範囲で薄い方が好ましく、中空部の平均直径(平均容積)は、空孔率を高くする観点から大きい方が好ましい。これらの観点から、外殻部の平均厚みは、通常0.5〜150nm、好ましくは2〜120nm、より好ましくは3〜100nmである。
〔外殻部の平均厚み/中空シリカ粒子の平均粒子半径〕の比は、通常0.13〜0.47、好ましくは0.16〜0.42、より好ましくは0.18〜0.37である。
中空シリカ粒子の体積平均粒子径、外殻部の平均厚みは、後述するプロトコアシェル型シリカ粒子の製造条件、中空部位形成材料の粒子径、焼成条件等により適宜調整することができる。
The average thickness of the outer shell part of the hollow silica particles is preferably thin as long as the hollow silica particles can maintain the strength as a carrier, and the average diameter (average volume) of the hollow part is large from the viewpoint of increasing the porosity. Is preferred. From these viewpoints, the average thickness of the outer shell is usually 0.5 to 150 nm, preferably 2 to 120 nm, more preferably 3 to 100 nm.
The ratio of [average thickness of outer shell / average particle radius of hollow silica particles] is usually 0.13 to 0.47, preferably 0.16 to 0.42, more preferably 0.18 to 0.37. is there.
The volume average particle diameter of the hollow silica particles and the average thickness of the outer shell can be appropriately adjusted depending on the production conditions of the protocore-shell type silica particles described later, the particle diameter of the hollow part forming material, the firing conditions, and the like.

中空シリカ粒子のBET比表面積は30m2/g未満であり、低誘電特性等の観点から、好ましくは25m2/g以下、より好ましくは20m2/g以下、更に好ましくは18m2/g以下である。
中空シリカ粒子の50%破壊圧力は100MPa以上であることが好ましい。50%破壊圧力が100MPa未満では、種々の用途において使用するために、例えば樹脂と混合して使用する場合等に破壊する粒子が多くなるため好ましくない。ここで、50%破壊圧力とは、例えば、日機装株式会社製の冷間等方圧プレス装置や、株式会社神戸製鋼所製の冷間等方加圧装置により粉体を加圧し、平均空孔率が半減した圧力として定義される。より具体的には、実施例記載の方法により測定される。
中空シリカ粒子は、粉末X線回折(XRD)測定において、低誘電特性等の観点から、結晶格子面間隔(d)が1nm未満の範囲に相当する回折角(2θ)にピークを示さないものであることが好ましい。
また、中空シリカ粒子は、細孔径分布において、実質的に1nm以上に細孔分布を示さないことが好ましい。
The BET specific surface area of the hollow silica particles is less than 30 m 2 / g, and is preferably 25 m 2 / g or less, more preferably 20 m 2 / g or less, still more preferably 18 m 2 / g or less from the viewpoint of low dielectric properties and the like. is there.
The 50% breaking pressure of the hollow silica particles is preferably 100 MPa or more. A 50% breaking pressure of less than 100 MPa is not preferable because the number of particles to be broken increases when used in various applications, for example, when mixed with a resin. Here, the 50% fracture pressure, for example, Nikkiso and made of cold isostatic pressing apparatus Co., the powder was pressurized by Kobe Steel, Ltd. made of cold isostatic pressing device, an average pore It is defined as the pressure at which the rate is halved. More specifically, it is measured by the method described in the examples.
In the powder X-ray diffraction (XRD) measurement, the hollow silica particles do not show a peak at the diffraction angle (2θ) corresponding to the range where the crystal lattice spacing (d) is less than 1 nm from the viewpoint of low dielectric properties and the like. Preferably there is.
Further, it is preferable that the hollow silica particles do not substantially exhibit a pore distribution of 1 nm or more in the pore diameter distribution.

本発明の中空シリカ粒子は、固体29Si−NMRスペクトルによるQ2+Q3+Q4のシグナル面積に対する(Q2×2+Q3)のシグナル面積の比[(Q2×2+Q3)/(Q2+Q3+Q4)]が0.15以下であることが好ましい。
2、Q3、及びQ4のシグナル面積は、固体29Si−NMR測定を行い、その結果に基づいて算出する。固体29Si−NMR測定データの解析(ピーク位置の決定)は、例えば、ガウス関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行うことができる。より具体的には、実施例記載の方法により行うことができる。
上記のようにピーク分割して求めた化学シフトを以下のように帰属させる。
2:−88〜−94ppmに発現するピークのシグナル面積
3:−94〜−103ppmに発現するピークのシグナル面積
4:−103〜−115ppmに発現するピークのシグナル面積
ここで、Q2に帰属するピークは、ケイ素原子に4個の酸素原子が結合しており、2個の酸素原子がシロキサン結合、2個の酸素原子がシラノール基であることに由来する。
3に帰属するピークは、ケイ素原子に4個の酸素原子が結合しており、3個の酸素原子がシロキサン結合、1個の酸素原子がシラノール基であることに由来する。
4に帰属するピークは、ケイ素原子に4個の酸素原子が結合しており、4個の酸素原子がシロキサン結合であることに由来する。つまり[(Q2×2+Q3)/(Q2+Q3+Q4 ]はOH/Siを意味すると考えられる。
上記により得られたQ2、Q3、及びQ4の各シグナルの面積を用い、その比[(Q2×2+Q3)/(Q2+Q3+Q4 ]を算出する。
[(Q2×2+Q3)/(Q2+Q3+Q4)]の比は、低誘電特性等の観点から出来る限り小さいことが望ましく、好ましくは0.15以下、より好ましくは0〜0.14、更に好ましくは0〜0.13である。
The hollow silica particles of the present invention have a signal area ratio of (Q 2 × 2 + Q 3 ) to a signal area of Q 2 + Q 3 + Q 4 according to solid 29 Si-NMR spectrum [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 )] is preferably 0.15 or less.
The signal areas of Q 2 , Q 3 , and Q 4 are calculated based on the results of solid 29 Si-NMR measurement. Analysis of solid 29 Si-NMR measurement data (determination of peak position) can be performed by a method of dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function. More specifically, it can be carried out by the method described in the examples.
The chemical shift obtained by peak splitting as described above is assigned as follows.
Q 2 : Signal area of a peak expressed at −88 to −94 ppm Q 3 : Signal area of a peak expressed at −94 to −103 ppm Q 4 : Signal area of a peak expressed at −103 to −115 ppm Here, Q 2 The peak attributed to is derived from the fact that four oxygen atoms are bonded to a silicon atom, two oxygen atoms are siloxane bonds, and two oxygen atoms are silanol groups.
The peak attributed to Q 3 is derived from the fact that four oxygen atoms are bonded to a silicon atom, three oxygen atoms are siloxane bonds, and one oxygen atom is a silanol group.
The peak attributed to Q 4 is derived from the fact that four oxygen atoms are bonded to a silicon atom and the four oxygen atoms are siloxane bonds. That is, [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 ) ] is considered to mean OH / Si.
The ratio [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 ) ] is calculated using the areas of the signals Q 2 , Q 3 , and Q 4 obtained as described above.
The ratio of [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 )] is desirably as small as possible from the viewpoint of low dielectric properties and the like, preferably 0.15 or less, more preferably 0 to 0. 14, more preferably 0 to 0.13.

本発明の中空シリカ粒子は、前記特定の構造を有することにより、その誘電率、誘電正接の低下が図られる。
中空シリカの誘電率は、例えば、5.8GHzの周波数では、2.8以下が好ましく、2.5以下がより好ましく、2.3以下が更に好ましく、1.2〜2.0が特に好ましい。なお、誘電率の測定は、空洞共振器摂動法等を用いて、常法により行うことができる。
また、中空シリカの誘電正接は、例えば、実施例に記載の測定条件において、0.01以下が好ましく、0.009以下がより好ましく、0.008以下が更に好ましい。
Since the hollow silica particles of the present invention have the specific structure, the dielectric constant and dielectric loss tangent are reduced.
For example, the dielectric constant of the hollow silica is preferably 2.8 or less, more preferably 2.5 or less, still more preferably 2.3 or less, and particularly preferably 1.2 to 2.0 at a frequency of 5.8 GHz. The dielectric constant can be measured by a conventional method using a cavity resonator perturbation method or the like.
The dielectric loss tangent of the hollow silica is, for example, preferably 0.01 or less, more preferably 0.009 or less, and still more preferably 0.008 or less, under the measurement conditions described in the examples.

[中空シリカ粒子の製造方法]
本発明の中空シリカ粒子の製造方法に特に制限はないが、下記の工程(I)〜(III)を有する方法によれば、効率的に製造することができる。
工程(I):疎水性有機化合物(a)と、第四級アンモニウム塩(b)、及び加水分解によりシラノール化合物を生成するシリカ源(c)を含有する水溶液を調製する工程
工程(II):工程(I)で得られた水溶液を10〜100℃の温度で撹拌して、シリカから構成される外殻を有し、かつ核に疎水性有機化合物(a)を有するコアシェル型シリカ粒子の水分散液を調製する工程
工程(III):工程(II)で得られた水分散液からコアシェル型シリカ粒子を分離し、950℃以上の温度で焼成して、中空シリカ粒子を得る工程
以下、工程(I)〜(III)の詳細とそこで用いる各成分等について説明する。
[Method for producing hollow silica particles]
Although there is no restriction | limiting in particular in the manufacturing method of the hollow silica particle of this invention, According to the method which has the following process (I)-(III), it can manufacture efficiently.
Step (I): Step of preparing an aqueous solution containing a hydrophobic organic compound (a), a quaternary ammonium salt (b), and a silica source (c) that produces a silanol compound by hydrolysis Step (II): The aqueous solution obtained in step (I) is stirred at a temperature of 10 to 100 ° C., and water of core-shell type silica particles having an outer shell composed of silica and having a hydrophobic organic compound (a) in the nucleus. Step of preparing dispersion Step (III): Step of separating core-shell type silica particles from the aqueous dispersion obtained in Step (II) and calcining at a temperature of 950 ° C. or higher to obtain hollow silica particles. Details of (I) to (III) and components used therein will be described.

<工程(I)>
工程(I)は、疎水性有機化合物(a)と、第四級アンモニウム塩(b)、及び加水分解によりシラノール化合物を生成するシリカ源(c)を含有する水溶液を調製する工程である。
工程(I)は、疎水性有機化合物(a)を0.1〜100ミリモル/Lと、下記一般式(1)及び(2)で表される第四級アンモニウム塩から選ばれる1種以上(b)を0.1〜100ミリモル/L、及び加水分解によりシラノール化合物を生成するシリカ源(c)を0.1〜100ミリモル/L含有する水溶液を調製する工程とすることが好ましい。
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価陰イオンを示す。)
<Process (I)>
Step (I) is a step of preparing an aqueous solution containing a hydrophobic organic compound (a), a quaternary ammonium salt (b), and a silica source (c) that produces a silanol compound by hydrolysis.
In the step (I), the hydrophobic organic compound (a) is 0.1 to 100 mmol / L and one or more selected from quaternary ammonium salts represented by the following general formulas (1) and (2) ( Preferably, b) is a step of preparing an aqueous solution containing 0.1 to 100 mmol / L and a silica source (c) that generates a silanol compound by hydrolysis.
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represents a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)

(疎水性有機化合物(a))
本発明において、疎水性有機化合物(a)とは、水に対する溶解性が低く、水と分相を形成する化合物を意味する。好ましくは、前記の第四級アンモニウム塩の存在下で分散可能な化合物である。このような疎水性有機化合物としては、LogP値が1以上、好ましくは2〜25の化合物が挙げられる。
疎水性有機化合物(a)としては、例えば、炭素数7〜22の炭化水素化合物、エステル化合物、炭素数7〜22の脂肪酸、炭素数7〜22のアルコール及びシリコーンオイル等の油剤や、香料、農薬、医薬等の各種基材等を挙げることができる。
炭素数7〜22の炭化水素化合物としては、ヘプタン、オクタン、ノナン、デカン、ドデカン、テトラデカン、ヘキサデカン、オクタデカン、イコサン、ドコサン等の直鎖又は分岐の飽和脂肪族炭化水素、又はそれらと基本骨格が同じ不飽和脂肪族炭化水素、又はシクロヘキサン、シクロオクタン等の環状炭化水素、ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらの中では、炭素数7〜16の直鎖又は分岐の飽和脂肪族炭化水素が好ましく、炭素数8〜14の直鎖又は分岐の飽和脂肪族炭化水素がより好ましい。
中空シリカ粒子の体積平均粒子径や中空部分の大きさは、疎水性有機化合物(a)の液滴の大きさに影響されるので、該疎水性有機化合物(a)の融点、反応温度、攪拌速度、使用する界面活性剤等により適宜調整することができる。
(Hydrophobic organic compound (a))
In the present invention, the hydrophobic organic compound (a) means a compound that has low solubility in water and forms a phase separation with water. Preferably, the compound is dispersible in the presence of the quaternary ammonium salt. Examples of such hydrophobic organic compounds include compounds having a LogP value of 1 or more, preferably 2 to 25.
Examples of the hydrophobic organic compound (a) include oil agents such as hydrocarbon compounds having 7 to 22 carbon atoms, ester compounds, fatty acids having 7 to 22 carbon atoms, alcohols having 7 to 22 carbon atoms, and silicone oils, fragrances, Examples include various base materials such as agricultural chemicals and pharmaceuticals.
Examples of the hydrocarbon compound having 7 to 22 carbon atoms include linear or branched saturated aliphatic hydrocarbons such as heptane, octane, nonane, decane, dodecane, tetradecane, hexadecane, octadecane, icosane, docosan, and the basic skeleton thereof. Examples thereof include the same unsaturated aliphatic hydrocarbons, cyclic hydrocarbons such as cyclohexane and cyclooctane, and aromatic hydrocarbons such as benzene and toluene. Among these, a linear or branched saturated aliphatic hydrocarbon having 7 to 16 carbon atoms is preferable, and a linear or branched saturated aliphatic hydrocarbon having 8 to 14 carbon atoms is more preferable.
Since the volume average particle diameter of the hollow silica particles and the size of the hollow part are affected by the size of the droplets of the hydrophobic organic compound (a), the melting point, reaction temperature, and stirring of the hydrophobic organic compound (a) The speed can be adjusted as appropriate depending on the surfactant used.

(第四級アンモニウム塩(b))
第四級アンモニウム塩(b)は、メソ細孔の形成と疎水性有機化合物(a)の分散のために用いられる。
前記一般式(1)及び(2)におけるR1及びR2は、炭素数4〜22、好ましくは炭素数6〜18、更に好ましくは炭素数8〜16の直鎖状又は分岐状のアルキル基である。炭素数4〜22のアルキル基としては、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各
種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、各種エイコシル基、各種ドコシル基等が挙げられる。
一般式(1)及び(2)におけるXは、高い結晶性を得るという観点から、好ましくはハロゲンイオン、水酸化物イオン、硝酸イオン等の1価陰イオンから選ばれる1種以上である。Xとしては、より好ましくはハロゲンイオンであり、更に好ましくは塩素イオン又は臭素イオンである。
(Quaternary ammonium salt (b))
The quaternary ammonium salt (b) is used for forming mesopores and dispersing the hydrophobic organic compound (a).
R 1 and R 2 in the general formulas (1) and (2) are linear or branched alkyl groups having 4 to 22 carbon atoms, preferably 6 to 18 carbon atoms, and more preferably 8 to 16 carbon atoms. It is. Examples of the alkyl group having 4 to 22 carbon atoms include various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, and various hexadecyl groups. , Various octadecyl groups, various eicosyl groups, various docosyl groups, and the like.
X in the general formulas (1) and (2) is preferably at least one selected from monovalent anions such as halogen ions, hydroxide ions, and nitrate ions from the viewpoint of obtaining high crystallinity. X is more preferably a halogen ion, still more preferably a chlorine ion or a bromine ion.

一般式(1)で表されるアルキルトリメチルアンモニウム塩としては、ブチルトリメチルアンモニウムクロリド、ヘキシルトリメチルアンモニウムクロリド、オクチルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムクロリド、ブチルトリメチルアンモニウムブロミド、ヘキシルトリメチルアンモニウムブロミド、オクチルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムブロミド等が挙げられる。
一般式(2)で表されるジアルキルジメチルアンモニウム塩としては、ジブチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムクロリド、ジオクチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムブロミド、ジオクチルジメチルアンモニウムブロミド、ジドデシルジメチルアンモニウムブロミド、ジテトラデシルジメチルアンモニウムブロミド等が挙げられる。
これらの第四級アンモニウム塩(b)の中では、規則的なメソ細孔を形成させる観点から、特に一般式(1)で表されるアルキルトリメチルアンモニウム塩が好ましく、アルキルトリメチルアンモニウムブロミド又はアルキルトリメチルアンモニウムクロリドがより好ましく、ドデシルトリメチルアンモニウムブロミド又はドデシルトリメチルアンモニウムクロリドが特に好ましい。
Examples of the alkyltrimethylammonium salt represented by the general formula (1) include butyltrimethylammonium chloride, hexyltrimethylammonium chloride, octyltrimethylammonium chloride, decyltrimethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, hexadecyltrimethyl Ammonium chloride, stearyltrimethylammonium chloride, butyltrimethylammonium bromide, hexyltrimethylammonium bromide, octyltrimethylammonium bromide, decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide Bromide, stearyl trimethyl ammonium bromide, and the like.
Examples of the dialkyldimethylammonium salt represented by the general formula (2) include dibutyldimethylammonium chloride, dihexyldimethylammonium chloride, dioctyldimethylammonium chloride, dihexyldimethylammonium bromide, dioctyldimethylammonium bromide, didodecyldimethylammonium bromide, ditetradecyl. Examples thereof include dimethylammonium bromide.
Among these quaternary ammonium salts (b), from the viewpoint of forming regular mesopores, alkyltrimethylammonium salts represented by the general formula (1) are particularly preferred, and alkyltrimethylammonium bromide or alkyltrimethyl Ammonium chloride is more preferred, and dodecyltrimethylammonium bromide or dodecyltrimethylammonium chloride is particularly preferred.

(シリカ源(c))
シリカ源(c)は、アルコキシシラン等の加水分解によりシラノール化合物を生成するものであり、下記一般式(3)〜(7)で示される化合物を挙げることができる。
SiY4 (3)
3SiY3 (4)
3 2SiY2 (5)
3 3SiY (6)
3Si−R4−SiY3 (7)
(式中、R3はそれぞれ独立して、ケイ素原子に直接炭素原子が結合している有機基を示し、R4は炭素原子を1〜4個有する炭化水素基又はフェニレン基を示し、Yは加水分解によりヒドロキシ基になる1価の加水分解性基を示す。)
より好ましくは、一般式(3)〜(7)において、R3がそれぞれ独立して、水素原子の一部がフッ素原子に置換していてもよい炭素数1〜22の炭化水素基であり、具体的には炭素数1〜22、好ましくは炭素数4〜18、より好ましくは炭素数6〜18、特に好ましくは炭素数8〜16のアルキル基、フェニル基、又はベンジル基であり、R4が炭素数1〜4のアルカンジイル基(メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基、テトラメチレン基等)又はフェニレン基であり、Yが炭素数1〜22、より好ましくは炭素数1〜8、特に好ましくは炭素数1〜4のアルコキシ基、又はフッ素を除くハロゲン基である。
(Silica source (c))
A silica source (c) produces | generates a silanol compound by hydrolysis of alkoxysilane etc., and can mention the compound shown by following General formula (3)-(7).
SiY 4 (3)
R 3 SiY 3 (4)
R 3 2 SiY 2 (5)
R 3 3 SiY (6)
Y 3 Si—R 4 —SiY 3 (7)
(In the formula, each R 3 independently represents an organic group in which a carbon atom is directly bonded to a silicon atom, R 4 represents a hydrocarbon group or a phenylene group having 1 to 4 carbon atoms, and Y represents A monovalent hydrolyzable group that becomes a hydroxy group by hydrolysis.)
More preferably, in the general formulas (3) to (7), each R 3 is independently a hydrocarbon group having 1 to 22 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms, Specifically, it is an alkyl group, a phenyl group, or a benzyl group having 1 to 22 carbon atoms, preferably 4 to 18 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 8 to 16 carbon atoms, and R 4 Is an alkanediyl group having 1 to 4 carbon atoms (methylene group, ethylene group, trimethylene group, propane-1,2-diyl group, tetramethylene group, etc.) or phenylene group, and Y is more preferably 1 to 22 carbon atoms. Is a C1-C8, particularly preferably C1-C4 alkoxy group or a halogen group excluding fluorine.

シリカ源(c)の好適例としては、次の化合物が挙げられる。
・一般式(3)において、Yが炭素数1〜3のアルコキシ基であるか、又はフッ素を除くハロゲン基であるシラン化合物。
・一般式(4)又は(5)において、Yが炭素数1〜3のアルコキシ基であるか、又はフッ素を除くハロゲン基であり、R3がフェニル基、ベンジル基、又は水素原子の一部がフッ素原子に置換されている炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜5の炭化水素基であるトリアルコキシシラン又はジアルコキシシラン。
一般式(6)において、Yが炭素数1〜3のアルコキシ基であるか、又はフッ素を除くハロゲン基であり、R3がフェニル基、ベンジル基、又は水素原子の一部がフッ素原子に置換されている炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜5の炭化水素基であるモノアルコキシシラン。
・一般式(7)において、Yがメトキシ基であって、R4がメチレン基、エチレン基又はフェニレン基である化合物。
これらの中では、テトラメトキシシラン、テトラエトキシシラン、フェニルトリエトキシシラン、1,1,1−トリフルオロプロピルトリエトキシシランが特に好ましい。
Preferable examples of the silica source (c) include the following compounds.
-The silane compound in which Y is a C1-C3 alkoxy group or a halogen group except a fluorine in General formula (3).
In general formula (4) or (5), Y is an alkoxy group having 1 to 3 carbon atoms or a halogen group excluding fluorine, and R 3 is a phenyl group, a benzyl group, or a part of a hydrogen atom Is a trialkoxysilane or dialkoxysilane, which is a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, substituted with a fluorine atom.
In General Formula (6), Y is an alkoxy group having 1 to 3 carbon atoms or a halogen group excluding fluorine, and R 3 is a phenyl group, a benzyl group, or a hydrogen atom partially substituted with a fluorine atom. Monoalkoxysilane which is a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
A compound in which Y is a methoxy group and R 4 is a methylene group, an ethylene group or a phenylene group in the general formula (7).
Among these, tetramethoxysilane, tetraethoxysilane, phenyltriethoxysilane, and 1,1,1-trifluoropropyltriethoxysilane are particularly preferable.

工程(I)における水溶液中の疎水性有機化合物(a)(以下、「(a)成分」ともいう)、第四級アンモニウム塩(b)(以下、「(b)成分」ともいう)、及びシリカ源(c)(以下、「(c)成分」ともいう)の含有量は次のとおりである。
(a)成分の含有量は、0.1〜100ミリモル/L、より好ましくは1〜100ミリモル/L、特に好ましくは5〜80ミリモル/Lである。
(b)成分の含有量は、好ましくは0.1〜100ミリモル/L、より好ましくは1〜100ミリモル/L、特に好ましくは5〜80ミリモル/Lであり、(c)成分の含有量は、好ましくは0.1〜100ミリモル/L、より好ましくは1〜100ミリモル/L、特に好ましくは5〜80ミリモル/Lである。
(a)〜(c)成分を含有させる順序に特に制限はないが、水溶液を撹拌しながら(a)成分の懸濁液、(b)成分、(c)成分の順に投入する方法が好ましい。
(a)〜(c)成分を含有する水溶液には、プロトコア−シェル粒子の形成を阻害しない限り、その他の成分として、メタノール等の有機化合物や、無機化合物等の他の成分を添加してもよく、前記のように、シリカや有機基以外の他の元素を担持したい場合は、それらの金属を含有するアルコキシ塩やハロゲン化塩等の金属原料を製造時又は製造後に添加することもできる。
The hydrophobic organic compound (a) in the aqueous solution in the step (I) (hereinafter also referred to as “component (a)”), a quaternary ammonium salt (b) (hereinafter also referred to as “component (b)”), and The content of the silica source (c) (hereinafter also referred to as “component (c)”) is as follows.
The content of component (a) is 0.1 to 100 mmol / L, more preferably 1 to 100 mmol / L, and particularly preferably 5 to 80 mmol / L.
The content of component (b) is preferably 0.1 to 100 mmol / L, more preferably 1 to 100 mmol / L, particularly preferably 5 to 80 mmol / L, and the content of component (c) is And preferably 0.1 to 100 mmol / L, more preferably 1 to 100 mmol / L, and particularly preferably 5 to 80 mmol / L.
Although there is no restriction | limiting in particular in the order which contains (a)-(c) component, The method of throwing in order of the suspension of (a) component, (b) component, and (c) component is preferable, stirring aqueous solution.
The aqueous solution containing the components (a) to (c) may contain other components such as an organic compound such as methanol and an inorganic compound as long as the formation of protocore-shell particles is not inhibited. As described above, when it is desired to carry other elements other than silica and organic groups, metal raw materials such as alkoxy salts and halide salts containing these metals can be added during or after production.

なお、本発明方法においては、疎水性有機化合物(a)の代わりにポリマー粒子を0.1〜50グラム/Lを用いて、工程(I)における水溶液を調製し、工程(II)でポリマー粒子を有するコアシェル型シリカ粒子の水分散液を調製し、工程(III)で焼成して、中空シリカ粒子を得ることもできる。ここで用いられるポリマー粒子としては、実質的に水不溶性のカチオン性ポリマーが好ましい。ポリマー粒子の平均粒子径は、目的とする中空シリカ粒子の中空部の径に合わせて適宜選択することができる。   In the method of the present invention, an aqueous solution in the step (I) is prepared using 0.1 to 50 g / L of polymer particles instead of the hydrophobic organic compound (a), and the polymer particles are prepared in the step (II). A hollow silica particle can also be obtained by preparing an aqueous dispersion of core-shell type silica particles having sinter and firing in step (III). The polymer particles used here are preferably water-insoluble cationic polymers. The average particle diameter of the polymer particles can be appropriately selected according to the diameter of the hollow part of the target hollow silica particles.

<工程(II)>
工程(II)は、工程(I)で得られた水溶液を10〜100℃の温度で撹拌して、シリカから構成される外殻を有し、かつ核に疎水性有機化合物(a)を有するコアシェル型シリカ粒子の水分散液を調製する工程である。
工程(I)で得られる水溶液を10〜100℃、好ましくは10〜80℃の温度で所定時間撹拌した後、静置することで、疎水性有機化合物(a)の表面に、第四級アンモニウム塩(b)とシリカ源(c)によりメソ細孔が形成され、内部に疎水性有機化合物(a)を包含したプロトコアシェル型シリカ粒子が析出した水分散液を得ることができる。撹拌処理時間は温度によって異なるが、通常10〜80℃で0.1〜24時間である。
工程(I)及び/又は(II)において、陽イオン界面活性剤等を用いた場合は、プロトコアシェル型シリカ粒子のメソ細孔には該界面活性剤が詰った状態になるが、酸性溶液と1回又は複数回接触させることにより該界面活性剤等が除去され、メソ細孔構造を表面に有し、疎水性有機化合物(a)を包含するプロトコアシェル型シリカ粒子を得ることができる。
<Process (II)>
In step (II), the aqueous solution obtained in step (I) is stirred at a temperature of 10 to 100 ° C., has an outer shell composed of silica, and has a hydrophobic organic compound (a) in the nucleus. This is a step of preparing an aqueous dispersion of core-shell type silica particles.
The aqueous solution obtained in the step (I) is stirred for a predetermined time at a temperature of 10 to 100 ° C., preferably 10 to 80 ° C., and then left to stand on the surface of the hydrophobic organic compound (a). An aqueous dispersion in which mesopores are formed by the salt (b) and the silica source (c) and protocore-shell type silica particles containing the hydrophobic organic compound (a) are precipitated can be obtained. The stirring treatment time varies depending on the temperature, but is usually 0.1 to 24 hours at 10 to 80 ° C.
In the step (I) and / or (II), when a cationic surfactant or the like is used, the mesopores of the protocore-shell type silica particles are clogged with the surfactant. The surface-active agent and the like are removed by contact once or a plurality of times, and protocore-shell type silica particles having a mesopore structure on the surface and including the hydrophobic organic compound (a) can be obtained.

<工程(III)>
工程(III)は、工程(II)で得られた水分散液からコアシェル型シリカ粒子を分離し、必要に応じて、酸性水溶液と接触、水洗、乾燥した後、950℃以上の温度で焼成して、中空シリカ粒子を得る工程である。
焼成温度は、細孔を適度に焼き締め、体積平均粒子径を0.05〜0.45μm、空孔率を20〜70体積%、BET比表面積を30m2/g未満にする観点から、好ましくは960〜1500℃であり、より好ましくは970〜1300℃であり、更に好ましくは980〜1200℃である。焼成時間は、焼成温度等により異なるが、通常0.5〜100時間、好ましくは1〜80時間である。得られる中空シリカ粒子は、その外殻部の基本構成は変わらないが、内部の疎水性有機化合物(a)は焼成により除去されている。
本発明方法においては、疎水性有機化合物(a)を包含するコアシェル型シリカ粒子を焼成するため、内包される疎水性有機化合物(a)の形態を所望の状態に予め制御しておくことにより、所望の形態を有する中空シリカ粒子を容易に製造することができる。
本発明においては、一旦中空シリカ粒子を製造した後、更に焼成してBET比表面積のより小さくした中空シリカ粒子を得ることもできる。
本発明の中空シリカ粒子は、低誘電膜や低誘電膜用コーティング剤等の原料として、各種のマトリクス樹脂に分散させることができる。
<Process (III)>
In step (III), the core-shell type silica particles are separated from the aqueous dispersion obtained in step (II), and if necessary, contacted with an acidic aqueous solution, washed with water and dried, and then calcined at a temperature of 950 ° C. or higher. In this step, hollow silica particles are obtained.
The firing temperature is preferably from the viewpoint of appropriately compacting the pores, making the volume average particle size 0.05 to 0.45 μm, the porosity 20 to 70% by volume, and the BET specific surface area less than 30 m 2 / g. Is 960 to 1500 ° C, more preferably 970 to 1300 ° C, still more preferably 980 to 1200 ° C. The firing time varies depending on the firing temperature and the like, but is usually 0.5 to 100 hours, preferably 1 to 80 hours. The hollow silica particles obtained have the same basic structure of the outer shell, but the hydrophobic organic compound (a) inside is removed by calcination.
In the method of the present invention, since the core-shell type silica particles containing the hydrophobic organic compound (a) are baked, by controlling the form of the encapsulated hydrophobic organic compound (a) in a desired state in advance, Hollow silica particles having a desired form can be easily produced.
In the present invention, hollow silica particles having a smaller BET specific surface area can be obtained by once producing hollow silica particles and then further firing.
The hollow silica particles of the present invention can be dispersed in various matrix resins as a raw material for a low dielectric film or a coating agent for a low dielectric film.

実施例、比較例で得られた中空シリカ粒子の各種測定は、以下の方法により行った。
(1)中空シリカ粒子の体積平均粒子径、最大粒子径
中空シリカ粒子のエタノール分散液を測定試料とし、株式会社堀場製作所製のレーザ回折/散乱式粒度分布測定装置「LA−920」を用いて湿式法で測定した。解析には装置に付属のHORIBA LA-920 WET(LA-920) Version 3.02を用い、0.020μmから2000μmの範囲を測定した。分散媒としてエタノールを用い、透過率を70から95%となるようにサンプル導入し、相対屈折率をシリカ/エタノールに相当する1.08と設定し、粒子径基準を体積とし解析した。体積平均粒子径は累計50体積%に相当するメジアン径とし、最大粒子径は累計100体積%となる粒子径とした。
(2)中空シリカ粒子の空孔率
空孔率(体積%)はQUANTACHROME社製のULTRAPYCNOMETER1000を用いて、窒素を測定ガスとして用いた密度とシリカの真密度2.2g/cm3から、下記式により算出した。
空孔率(体積%)=[1−(窒素ガスによる測定密度/2.2)]×100
(3)中空シリカ粒子のBET比表面積
株式会社島津製作所製の比表面積・細孔分布測定装置「ASAP2020」を用いて、液体窒素を用いた多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出した。
(4)シリカ純度
中空シリカ粒子をフッ化水素により酸分解した液体を測定試料とし、アジレント社製のプラズマ発光分光分析装置(7700x ICP-MS)を用いて測定した。
Various measurements of the hollow silica particles obtained in Examples and Comparative Examples were performed by the following methods.
(1) Volume average particle diameter and maximum particle diameter of hollow silica particles Using an ethanol dispersion of hollow silica particles as a measurement sample, a laser diffraction / scattering particle size distribution measuring apparatus “LA-920” manufactured by Horiba, Ltd. is used. It was measured by a wet method. For the analysis, HORIBA LA-920 WET (LA-920) Version 3.02 attached to the apparatus was used, and a range of 0.020 μm to 2000 μm was measured. Using ethanol as a dispersion medium, a sample was introduced so that the transmittance was 70 to 95%, the relative refractive index was set to 1.08 corresponding to silica / ethanol, and the particle diameter standard was set as volume. The volume average particle diameter was a median diameter corresponding to 50% by volume , and the maximum particle diameter was 100% by volume .
(2) Porosity of hollow silica particles The porosity (% by volume ) is calculated using the following formula from the density using nitrogen as the measurement gas and the true density of silica 2.2 g / cm 3 using ULTRAPYCNOMETER1000 manufactured by QUANTACHROME. Calculated by
Porosity ( volume %) = [1− (measured density with nitrogen gas / 2.2)] × 100
(3) BET specific surface area of hollow silica particles Using a specific surface area / pore distribution measuring device “ASAP2020” manufactured by Shimadzu Corporation, the BET specific surface area is measured by a multipoint method using liquid nitrogen, and the parameter C is Values were derived in the positive range.
(4) Silica purity A liquid obtained by acid-decomposing hollow silica particles with hydrogen fluoride was used as a measurement sample, and measurement was performed using a plasma emission spectrometer (7700x ICP-MS) manufactured by Agilent.

(5)中空シリカ粒子の粉末X線回折(XRD)測定
理学電機工業株式会社製の粉末X線回折装置「RINT2500VPC」を用いて、X線源:Cu-α、管電流:40mA、管電圧:40kV、サンプリング幅:0.02°、発散スリット:1/2°、発散スリット縦:1.2mm、散乱スリット:1/2°、及び受光スリット:0.15mmの条件で粉末X線回折測定を行った。走査範囲を回折角(2θ)1〜20°、走査速度を4.0°/分とした連続スキャン法を用いた。なお、測定は、粉砕した試料をアルミニウム板に詰めて行った。
(5) Powder X-ray diffraction of the hollow silica particles (XRD) measurement Rigaku powder X-ray diffraction apparatus Industry Co., Ltd. using "RINT2500VPC", X-rays source: Cu- K alpha, tube current: 40 mA, tube voltage : 40 kV, sampling width: 0.02 °, divergence slit: 1/2 °, divergence slit length: 1.2 mm, scattering slit: 1/2 °, and light receiving slit: 0.15 mm Went. A continuous scanning method with a scanning range of diffraction angle (2θ) of 1 to 20 ° and a scanning speed of 4.0 ° / min was used. The measurement was performed by packing the pulverized sample in an aluminum plate.

(6)中空シリカ粒子の破壊圧力
中空シリカ粒子5gをイオン交換水300gに分散させた分散液をアズワン株式会社製の2Lテドラーバッグに充填し、開口部をヒートシールし密閉した。この容器を日機装株式会社製の冷間等方圧プレス「CL10−55−40」に挿入し、10分間所定の水圧を印加した。減圧後容器を取り出し、分散液をろ過し粉末を得た。100℃にて12時間乾燥した後、前記(2)の空孔率測定を行い、水圧印加前後の空孔率の変化を確認し、空孔率が半減した圧力を破壊圧力とした。
本発明で得られた中空シリカは、装置の上限圧力である400MPaを印加した後でも空孔率の低下は5%以内であった。
(6) Breaking pressure of hollow silica particles A dispersion obtained by dispersing 5 g of hollow silica particles in 300 g of ion-exchanged water was filled in a 2 L Tedlar bag manufactured by AS ONE Co., Ltd., and the opening was heat sealed and sealed. This container was inserted into a cold isostatic press “CL10-55-40” manufactured by Nikkiso Co., Ltd., and a predetermined water pressure was applied for 10 minutes. After decompression, the container was taken out and the dispersion was filtered to obtain a powder. After drying at 100 ° C. for 12 hours, the porosity measurement of (2) above was performed to confirm the change in porosity before and after the application of water pressure, and the pressure at which the porosity was reduced by half was taken as the breaking pressure.
The hollow silica obtained in the present invention had a porosity decrease of 5% or less even after applying 400 MPa, which is the upper limit pressure of the apparatus.

(7)中空シリカ粒子の[(Q2×2+Q3)/(Q2+Q3+Q4 ]比率
Bruker社製、固体29Si−NMR装置「NMR AVANCE300」を用いて、29Si核(59.6MHz)の測定を行った。測定試料約100mgは、ジルコニア製7.5mmφローターへ密に詰めた。NMR測定法にはDDMAS法(3kHz)を用い、積算回数は640回、待ち時間は120秒とし、基準物質にはヘキサメチルシクロトリシロキサン(−9.66ppm)を用いた。
得られたスペクトルについて波形解析を行い、各シグナルの化学シフト及び積分値を求めた。この化学シフトからQ2、Q3、及びQ4の帰属を行い、各成分の積分値から面積百分率を算出した。この値を用い、[(Q2×2+Q3)/(Q2+Q3+Q4)]比率を算出した。
(7) [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 ) ] Ratio of Hollow Silica Particles Using a solid 29 Si-NMR apparatus “NMR AVANCE300” manufactured by Bruker, 29 Si nuclei (59. 6 MHz) was measured. About 100 mg of the measurement sample was closely packed in a zirconia 7.5 mmφ rotor. The NMR measurement method was DDMAS (3 kHz), the number of integrations was 640, the waiting time was 120 seconds, and hexamethylcyclotrisiloxane (-9.66 ppm) was used as the reference substance.
Waveform analysis was performed on the obtained spectrum, and the chemical shift and integrated value of each signal were obtained. Q 2 , Q 3 , and Q 4 were assigned from this chemical shift, and the area percentage was calculated from the integrated value of each component. Using this value, the [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 )] ratio was calculated.

(8)誘電率、誘電正接
(i)中空シリカ粒子の誘電率及び誘電正接は、粒子とエポキシ樹脂からなるコンポジットの誘電率、誘電正接を測定し、以下のMaxwell−Garnet式に基づき粒子そのものの物性値を算出した。
(8) Dielectric constant, dielectric loss tangent (i) The dielectric constant and dielectric loss tangent of the hollow silica particles are measured by measuring the dielectric constant and dielectric loss tangent of the composite composed of the particles and the epoxy resin, and based on the Maxwell-Garnet equation below, Physical property values were calculated.

Figure 0005513364
Figure 0005513364

式中のεpは中空シリカ粒子の複素誘電率、εmは樹脂の複素誘電率、εavはコンポジットの複素誘電率、fは粒子の体積分率を意味している。粒子の体積分率は、コンポジットの組成、樹脂の密度、中空シリカの密度より算出できる。また誘電率は複素誘電率の実数部(εr)とし、誘電正接tan dは、複素誘電率の虚数部(εi)と複素誘電率の実数部(εr)の比として下記式により算出できる。 In the equation, ε p represents the complex dielectric constant of the hollow silica particles, ε m represents the complex dielectric constant of the resin, ε av represents the complex dielectric constant of the composite, and f represents the volume fraction of the particles. The volume fraction of particles can be calculated from the composite composition, resin density, and hollow silica density. The dielectric constant is the real part (ε r ) of the complex dielectric constant, and the dielectric loss tangent tand is calculated as the ratio of the imaginary part (ε i ) of the complex dielectric constant and the real part (ε r ) of the complex dielectric constant using the following formula: it can.

Figure 0005513364
Figure 0005513364

(ii)コンポジットの誘電率、誘電正接の測定は以下の手順で行った。
中空シリカ粒子0.6gをビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、液状タイプ、グレード:828(2〜3量体)、粘度:12〜15Pa・s(25℃)、エポキシ当量:184〜194)、エポキシ樹脂硬化剤(ジャパンエポキシレジン株式会社製、酸無水物グレード:YH306)、硬化促進剤(ジャパンエポキシレジン株式会社製、2−エチル−4(5)−メチルイミダゾール、グレード:EMI24)を5:6:0.05の質量比で混合したマトリックス樹脂1.4gと混練し、樹脂組成物を製造した。この組成物をテフロン(登録商標)樹脂に幅2mm、深さ1.5mm、長さ120mmの溝を掘った鋳型に流し込み、加熱硬化させ、冷却後、鋳型から取り出し測定サンプルを得た。なお樹脂組成物の硬化は、電気乾燥機中で80℃、3時間加熱、さらに120℃で6時間加熱し行った。
誘電特性評価は、アジレント社製のPNAマイクロ波ネットワーク・アナライザ「E8361A」(10MHz〜67GHz)に、株式会社関東電子応用開発製の誘電率測定装置(共振器、5.8GHz)を接続した装置を使用して、空洞共振器摂動法を用いて、5.8GHzにて測定した。
(Ii) The dielectric constant and dielectric loss tangent of the composite were measured according to the following procedure.
0.6 g of hollow silica particles were added to a bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., liquid type, grade: 828 (2 to trimer), viscosity: 12 to 15 Pa · s (25 ° C.), epoxy equivalent: 184 To 194), epoxy resin curing agent (Japan Epoxy Resin Co., Ltd., acid anhydride grade: YH306), curing accelerator (Japan Epoxy Resin Co., Ltd., 2-ethyl-4 (5) -methylimidazole, grade: EMI24) ) Was mixed with 1.4 g of a matrix resin mixed at a mass ratio of 5: 6: 0.05 to produce a resin composition. This composition was poured into a mold in which a groove having a width of 2 mm, a depth of 1.5 mm and a length of 120 mm was dug in Teflon (registered trademark) resin, cured by heating, cooled, and then taken out from the mold to obtain a measurement sample. The resin composition was cured by heating in an electric dryer at 80 ° C. for 3 hours and further at 120 ° C. for 6 hours.
Dielectric property evaluation is a device in which a dielectric constant measuring device (resonator, 5.8 GHz) manufactured by Kanto Electronics Co., Ltd. is connected to an Agilent PNA microwave network analyzer “E8361A” (10 MHz to 67 GHz). Used and measured at 5.8 GHz using the cavity resonator perturbation method.

(9)薄膜表面の平滑性
中空シリカ粒子0.6gをビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、液状タイプ、グレード:828(2〜3量体)、粘度:12〜15Pa・s(25℃)、エポキシ当量:184〜194)、エポキシ樹脂硬化剤(ジャパンエポキシレジン株式会社製、酸無水物グレード:YH306)、硬化促進剤(ジャパンエポキシレジン株式会社製、2−エチル−4(5)−メチルイミダゾール、グレード:EMI24)を5:6:0.05の質量比で混合したマトリックス樹脂1.4gと混練し、樹脂組成物を製造した。この樹脂組成物を、固形分濃度が2質量%となるように2−ブタノン(和光純薬工業株式会社製)で希釈し薄膜作成用組成物を得た。
上記組成物を、アセトン洗浄したスライドガラス基板(商品名:S−1111、屈折率1.52、松浪硝子工業株式会社製)にスピンコーター(株式会社エイブル製)を用いてスピンコート(1000rpm、30秒)した後、120℃で360分乾燥させることにより、エポキシ樹脂に中空粒子が分散した薄膜を作製した。
この薄膜を電解放射型高分解能走査型電子顕微鏡(株式会社日立製作所社製、商品名:FE−SEM S−4000)を用いて表面の観察を行い、平滑性を確認した。
(評価基準)
○:平滑 △:少し凹凸あり ×:凹凸あり
(9) Smoothness on the surface of the thin film 0.6 g of hollow silica particles is bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., liquid type, grade: 828 (2 to trimer), viscosity: 12 to 15 Pa · s ( 25 ° C.), epoxy equivalent: 184-194), epoxy resin curing agent (Japan Epoxy Resin Co., Ltd., acid anhydride grade: YH306), curing accelerator (Japan Epoxy Resin Co., Ltd., 2-ethyl-4 (5 ) -Methylimidazole, grade: EMI24) was kneaded with 1.4 g of a matrix resin mixed in a mass ratio of 5: 6: 0.05 to produce a resin composition. This resin composition was diluted with 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) so that the solid content concentration was 2% by mass to obtain a composition for forming a thin film.
Spin coating (1000 rpm, 30) using a spin coater (manufactured by Able Co., Ltd.) on a slide glass substrate (trade name: S-1111, refractive index 1.52, manufactured by Matsunami Glass Industrial Co., Ltd.) washed with acetone. Second) and then dried at 120 ° C. for 360 minutes to produce a thin film in which hollow particles are dispersed in an epoxy resin.
The surface of this thin film was observed using an electrolytic emission type high resolution scanning electron microscope (manufactured by Hitachi, Ltd., trade name: FE-SEM S-4000), and smoothness was confirmed.
(Evaluation criteria)
○: Smooth △: Slightly uneven ×: Uneven

実施例1
500mLフラスコにメタノール(和光純薬工業株式会社製、特級)100g、ドデシルトリメチルアンモニウムクロリド(東京化成工業株式会社製)1.7g、ドデカン(疎水性有機化合物、和光純薬工業株式会社製)1gを入れて撹拌し、A液を調製した。また、500mLフラスコに水300g、25質量%テトラメチルアンモニウムヒドロキシド水溶液(和光純薬工業株式会社製)0.825gを入れて撹拌し、B液を調製した。
得られたA液を25℃で撹拌しながらB液を添加し、次いでテトラメトキシシラン(東京化成工業株式会社製)1.7g(C液)を加え、25℃で5時間撹拌した。得られた白濁水溶液を5Cのろ紙でろ別し、水洗後、100℃で乾燥機(アドバンテック製、DRM420DA)にて乾燥することにより白色粉末を得た。
得られた白色粉末を、高速昇温電気炉(株式会社モトヤマ製、商品名:SK−2535E)を用いて、エアーフロー(3L/min)しながら1℃/分の速度で600℃まで昇温し、600℃で2時間焼成することにより有機成分を除去し、中空シリカ粒子を得た。このシリカ粒子をアルミナ製るつぼに移し、前記電気炉を用いて、空気下1000℃で72時間焼成した。結果を表1に示す。
Example 1
In a 500 mL flask, 100 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd., special grade), 1.7 g of dodecyltrimethylammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), 1 g of dodecane (hydrophobic organic compound, manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was stirred and liquid A was prepared. Further, 300 g of water and 0.825 g of 25 mass % tetramethylammonium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 500 mL flask and stirred to prepare a B liquid.
While stirring the obtained liquid A at 25 ° C., liquid B was added, and then 1.7 g (liquid C) of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 25 ° C. for 5 hours. The obtained cloudy aqueous solution was filtered off with 5C filter paper, washed with water, and dried at 100 ° C. with a dryer (manufactured by Advantech, DRM420DA) to obtain a white powder.
The obtained white powder was heated to 600 ° C. at a rate of 1 ° C./min with air flow (3 L / min) using a high-speed heating furnace (trade name: SK-2535E, manufactured by Motoyama Co., Ltd.). And the organic component was removed by baking at 600 degreeC for 2 hours, and the hollow silica particle was obtained. The silica particles were transferred to an alumina crucible and calcined at 1000 ° C. for 72 hours in air using the electric furnace. The results are shown in Table 1.

実施例2
実施例1のドデカン(疎水性有機化合物)をオクタン(和光純薬工業株式会社製)に変えた以外は、実施例1と同様にして中空シリカ粒子を得た。結果を表1に示す。
比較例1
実施例1のドデカン(疎水性有機化合物)をヘキサン(和光純薬工業株式会社製)に変えた以外は、実施例1と同様にして中空シリカ粒子を得た。結果を表1に示す。
比較例2
実施例1において、600℃で2時間焼成しただけで、1000℃での焼成を行わなかった以外は、実施例1と同様にして中空シリカ粒子を得た。
ただし、比較例2では1000℃での焼成を行わなかったため、外殻部が多孔質となっており、密度測定による空孔率は測定不可能であった。したがって空孔率は透過型電子顕微鏡により中空部径、及び外殻厚みを計測し中空部の空孔率を、窒素吸着測定より外殻の多孔質部の空孔率をそれぞれ求め、その合計とした。得られた空孔率は70体積%であった。
また50%破壊圧力についても分散媒である水が外殻部を通して出入りするため粒子に圧力がかからず、測定が不可能であった。結果を表1に示す。
Example 2
Hollow silica particles were obtained in the same manner as in Example 1 except that dodecane (hydrophobic organic compound) in Example 1 was changed to octane (manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in Table 1.
Comparative Example 1
Hollow silica particles were obtained in the same manner as in Example 1 except that the dodecane (hydrophobic organic compound) in Example 1 was changed to hexane (Wako Pure Chemical Industries, Ltd.). The results are shown in Table 1.
Comparative Example 2
In Example 1, hollow silica particles were obtained in the same manner as in Example 1 except that the firing was performed at 600 ° C. for 2 hours and the firing was not performed at 1000 ° C.
However, in Comparative Example 2, since baking was not performed at 1000 ° C., the outer shell portion was porous, and the porosity by density measurement could not be measured. Therefore, the porosity is determined by measuring the hollow part diameter and outer shell thickness with a transmission electron microscope to determine the porosity of the hollow part, and the porosity of the porous part of the outer shell from the nitrogen adsorption measurement. did. The obtained porosity was 70% by volume .
In addition, even when the breaking pressure was 50%, water as a dispersion medium entered and exited through the outer shell portion, so that no pressure was applied to the particles, and measurement was impossible. The results are shown in Table 1.

Figure 0005513364
Figure 0005513364

表1から、本発明の中空シリカ粒子を含有する実施例1及び2のエポキシ樹脂をマトリクス樹脂として含む低誘電樹脂組成物は、誘電率および誘電正接が十分低く、さらに比較例1及び2より平滑性の高い薄膜を形成可能であることが分かる。   From Table 1, the low dielectric resin composition containing the epoxy resin of Examples 1 and 2 containing the hollow silica particles of the present invention as a matrix resin has a sufficiently low dielectric constant and dielectric loss tangent, and is smoother than Comparative Examples 1 and 2. It can be seen that a thin film with high properties can be formed.

Claims (4)

レーザ回折/散乱法によって測定される体積平均粒子径が0.05〜0.45μmで、最大粒子径が体積平均粒子径の5倍以内であり、空孔率が20〜70体積%、BET比表面積が30m2/g未満、98質量%以上がSiO2であり、50%破壊圧力が100MPa以上であり、かつ、固体 29 Si−NMRスペクトルによるQ 2 +Q 3 +Q 4 のシグナル面積に対する(Q 2 ×2+Q 3 )のシグナル面積の比[(Q 2 ×2+Q 3 )/(Q 2 +Q 3 +Q 4 )]が0.15以下である、中空シリカ粒子。 Volume average particle diameter measured by laser diffraction / scattering method is 0.05 to 0.45 μm, maximum particle diameter is within 5 times of volume average particle diameter, porosity is 20 to 70% by volume, BET ratio surface area less than 30 m 2 / g, Ri least 98 mass% SiO 2 der, is 50% breakdown pressure is 100MPa or more, and, according to the solid 29 Si-NMR spectrum for the signal area of Q 2 + Q 3 + Q 4 (Q 2 × 2 + Q 3 ) hollow silica particles having a signal area ratio [(Q 2 × 2 + Q 3 ) / (Q 2 + Q 3 + Q 4 )] of 0.15 or less . 粉末X線回折測定において、結晶格子面間隔(d)が1nm未満の範囲に相当する回折角(2θ)にピークを示さない、請求項1に記載の中空シリカ粒子。   The hollow silica particles according to claim 1, wherein, in powder X-ray diffraction measurement, the silica lattice spacing (d) does not show a peak at a diffraction angle (2θ) corresponding to a range of less than 1 nm. 誘電率が1.2〜2.0、誘電正接が0.01以下である、請求項1又は2に記載の中空シリカ粒子。 The hollow silica particles according to claim 1 or 2 , having a dielectric constant of 1.2 to 2.0 and a dielectric loss tangent of 0.01 or less. 下記工程(I)〜(III)を有する請求項1〜のいずれかに記載の中空シリカ粒子の製造方法。
工程(I):炭素数7以上の炭化水素からなる疎水性有機化合物(a)と、第四級アンモニウム塩(b)、及び加水分解によりシラノール化合物を生成するシリカ源(c)を含有する水溶液を調製する工程
工程(II):工程(I)で得られた水溶液を10〜100℃の温度で撹拌して、シリカから構成される外殻を有し、かつ核に疎水性有機化合物(a)を有するコアシェル型シリカ粒子の水分散液を調製する工程
工程(III):工程(II)で得られた水分散液からコアシェル型シリカ粒子を分離し、950℃以上の温度で焼成して、中空シリカ粒子を得る工程
The manufacturing method of the hollow silica particle in any one of Claims 1-3 which has following process (I)-(III).
Step (I): An aqueous solution containing a hydrophobic organic compound (a) comprising a hydrocarbon having 7 or more carbon atoms, a quaternary ammonium salt (b), and a silica source (c) that produces a silanol compound by hydrolysis. Step (II): The aqueous solution obtained in Step (I) is stirred at a temperature of 10 to 100 ° C., has an outer shell composed of silica, and has a hydrophobic organic compound (a Step of preparing an aqueous dispersion of core-shell type silica particles having a step) (III): The core-shell type silica particles are separated from the aqueous dispersion obtained in step (II), and calcined at a temperature of 950 ° C. or higher. Process for obtaining hollow silica particles
JP2010288441A 2010-12-24 2010-12-24 Hollow silica particles Active JP5513364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288441A JP5513364B2 (en) 2010-12-24 2010-12-24 Hollow silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288441A JP5513364B2 (en) 2010-12-24 2010-12-24 Hollow silica particles

Publications (2)

Publication Number Publication Date
JP2012136363A JP2012136363A (en) 2012-07-19
JP5513364B2 true JP5513364B2 (en) 2014-06-04

Family

ID=46674129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288441A Active JP5513364B2 (en) 2010-12-24 2010-12-24 Hollow silica particles

Country Status (1)

Country Link
JP (1) JP5513364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827322B1 (en) * 2015-11-11 2018-02-09 씨큐브 주식회사 Pearlescent pigment having hollow structure and method of manufacturing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600718B2 (en) * 2012-10-12 2014-10-01 Dic株式会社 Method for producing hollow silica nanoparticles
JP5617891B2 (en) * 2012-10-10 2014-11-05 Dic株式会社 Core-shell type silica nanoparticles and method for producing the same
WO2014057976A1 (en) * 2012-10-10 2014-04-17 Dic株式会社 Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
EP2914647B1 (en) * 2012-10-31 2016-12-07 Solvay SA Process for manufacturing fluoropolymer hybrid composites
JP6095238B2 (en) * 2014-03-31 2017-03-15 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
JP6501636B2 (en) * 2015-06-10 2019-04-17 Toyo Tire株式会社 Method of measuring amount of silanol group of silica, and method of evaluating reaction of silane coupling agent
JP7360294B2 (en) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP2021070592A (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Silica particle, resin composition, resin film, and metal-clad laminate
JP7433022B2 (en) * 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
JPWO2021172293A1 (en) * 2020-02-27 2021-09-02
JP2022019357A (en) * 2020-07-17 2022-01-27 宇部エクシモ株式会社 Hollow inorganic particles and method for producing the same
JP2022172938A (en) * 2021-05-07 2022-11-17 協和化学工業株式会社 Hollow particle, method for producing hollow particle, resin composition, and resin molded body and laminated body using resin composition
WO2023100676A1 (en) * 2021-11-30 2023-06-08 Agc株式会社 Hollow silica particles and method for producing same
WO2023140378A1 (en) 2022-01-21 2023-07-27 花王株式会社 Method for producing hollow silica particles
KR102652800B1 (en) * 2022-01-28 2024-04-01 닛산 가가쿠 가부시키가이샤 Manufacturing method of low dielectric loss silica sol and low dielectric loss silica sol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244323B2 (en) * 2004-01-26 2009-03-25 電気化学工業株式会社 Spherical inorganic hollow powder, method for producing the same, and resin composition
JP4112540B2 (en) * 2004-08-26 2008-07-02 電気化学工業株式会社 Manufacturing method of spherical inorganic hollow powder.
JP5364276B2 (en) * 2008-02-28 2013-12-11 花王株式会社 Hollow silica particles and method for producing the same
JP5350847B2 (en) * 2009-03-19 2013-11-27 花王株式会社 Method for producing plate-like silica particles
JP5358273B2 (en) * 2009-05-01 2013-12-04 電気化学工業株式会社 Inorganic hollow powder, its production method and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827322B1 (en) * 2015-11-11 2018-02-09 씨큐브 주식회사 Pearlescent pigment having hollow structure and method of manufacturing the same
US10836912B2 (en) 2015-11-11 2020-11-17 Cqv Co., Ltd Glossy pigment having hollow structure and method for producing same

Also Published As

Publication number Publication date
JP2012136363A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5513364B2 (en) Hollow silica particles
JP5118328B2 (en) Hollow silica particles
EP2455428B1 (en) Low-permittivity resin composition
CN115190867B (en) Hollow silica particles and method for producing same
JP6564517B1 (en) Filler for electronic material and method for producing the same, method for producing resin composition for electronic material, high-frequency substrate, and slurry for electronic material
Enríquez et al. Highly conductive coatings of carbon black/silica composites obtained by a sol–gel process
JP5364277B2 (en) Hollow silica particles
Yoon et al. Fabrication of a silica/titania hollow nanorod and its electroresponsive activity
JP5274809B2 (en) Manufacturing method of low dielectric constant film
JP5438407B2 (en) Low dielectric resin composition
US20050123739A1 (en) Mesoporous silica/fluorinated polymer composite material
JP2009107863A (en) Surface-modified mesoporous silica, slurry composition for addition to resin using the same, filler for resin, resin composition, electronic component for high frequency and substrate for high frequency circuit
JP2011225756A (en) Low dielectric resin composition
JP2008280193A (en) Method for producing mesoporous silica fine particle, coating liquid for forming silica-based coating film, and silica-based coating film
JP6741605B2 (en) Insulating magnetic powder, method for producing the same, and powder treatment liquid
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
KR20220152150A (en) Hollow particle, method of producing the hollow particle, resin composition, and resin molded product and laminate each using the resin composition
JP7320692B1 (en) Method for producing hollow silica particles
JPWO2004100180A1 (en) Composite dielectric and manufacturing method thereof
JP2014055082A (en) Method for producing hollow silica particle
Chantarak et al. One-pot synthesis of ultrahydrophobic mesoporous silica nanoparticles
WO2023100676A1 (en) Hollow silica particles and method for producing same
JP2023107038A (en) Hollow silica particle
WO2023175994A1 (en) Hollow inorganic particle material, method for producing same, inorganic filler, slurry composition and resin composition
KR20240018801A (en) Hydrophobic mesoporous silica particles by silazane modifying agent and their application to anti-contamination and high hydrophobic coating on biodegradable film thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R151 Written notification of patent or utility model registration

Ref document number: 5513364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250