JP5118328B2 - Hollow silica particles - Google Patents

Hollow silica particles Download PDF

Info

Publication number
JP5118328B2
JP5118328B2 JP2006295958A JP2006295958A JP5118328B2 JP 5118328 B2 JP5118328 B2 JP 5118328B2 JP 2006295958 A JP2006295958 A JP 2006295958A JP 2006295958 A JP2006295958 A JP 2006295958A JP 5118328 B2 JP5118328 B2 JP 5118328B2
Authority
JP
Japan
Prior art keywords
group
silica
carbon atoms
siy
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006295958A
Other languages
Japanese (ja)
Other versions
JP2008110905A (en
Inventor
聡宏 矢野
拓也 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006295958A priority Critical patent/JP5118328B2/en
Priority to US12/447,473 priority patent/US8048394B2/en
Priority to EP07829819.7A priority patent/EP2078696A4/en
Priority to PCT/JP2007/070085 priority patent/WO2008053695A1/en
Priority to CN2007800405311A priority patent/CN101528603B/en
Publication of JP2008110905A publication Critical patent/JP2008110905A/en
Priority to US13/241,707 priority patent/US8449856B2/en
Application granted granted Critical
Publication of JP5118328B2 publication Critical patent/JP5118328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、メソ細孔構造を有する中空シリカ粒子、及びその製造方法に関する。   The present invention relates to hollow silica particles having a mesoporous structure and a method for producing the same.

多孔質構造をもつ物質は高い表面積を有するため、触媒担体、酵素や機能性有機化合物等の固定化担体として広く使用されている。特に、多孔質構造を形成する細孔の細孔径の分布がシャープである場合、分子篩としての作用が発現し、構造選択性を有する触媒担体の利用や物質分離剤への応用が可能となる。かかる応用のために、均一で微細な細孔を有する多孔体が求められている。
均一で微細な細孔を有する多孔体として、メソ領域の細孔を有するメソポーラスシリカが開発され、前記用途の他に、ナノワイヤー、半導体材料、光エレクトロニクスへの応用等の分野での利用が注目されている。
Since a substance having a porous structure has a high surface area, it is widely used as a catalyst carrier, an immobilization carrier for enzymes, functional organic compounds, and the like. In particular, when the pore size distribution of the pores forming the porous structure is sharp, the action as a molecular sieve is manifested, and the use of a catalyst carrier having structure selectivity and application to a substance separating agent becomes possible. For such applications, porous bodies having uniform and fine pores are required.
Mesoporous silica with pores in the meso region has been developed as a porous body with uniform and fine pores, and in addition to the above uses, it is attracting attention for use in fields such as nanowires, semiconductor materials, and optoelectronics. Has been.

特許文献1には、メソ細孔壁を有する中空シリカマイクロカプセルの製造方法が開示されており、有機溶媒の乳化滴を用いてメソ細孔のない中空シリカ粒子を形成した後、界面活性剤の存在下で高熱処理することにより、メソ細孔を形成させると記載されている。しかしながら、実際に追試を行うと、中空構造を有するメソポーラスシリカは形成せず、メソ細孔が存在しない中空シリカ粒子及び中実シリカ粒子と、中空構造を有しないメソポーラスシリカ不定形粒子の混合体しか得られなかった。
特許文献2には、有機基を含有するメソポーラスシリカ粒子であって、最大ピークを示す細孔直径の±40%の範囲に全細孔容積の60%以上が含まれる細孔を有する複合多孔材料が開示されている。その製造方法として、例えば、テトラメトキシシランとビストリメトキシシリルメタンを併用することが記載されているが、それらのシラン原料はいずれも加水分解速度が速く、両者の加水分解速度はそれほど変わらないため、中空粒子は生成しない。
Patent Document 1 discloses a method for producing hollow silica microcapsules having mesoporous walls. After forming hollow silica particles without mesopores using emulsified droplets of an organic solvent, a surfactant is used. It is described that mesopores are formed by high heat treatment in the presence. However, when an additional test was actually conducted, a mesoporous silica having a hollow structure was not formed, and only a mixture of hollow silica particles and solid silica particles having no mesopores and mesoporous silica amorphous particles having no hollow structure was used. It was not obtained.
Patent Document 2 discloses a composite porous material having mesoporous silica particles containing an organic group, the pores having 60% or more of the total pore volume in the range of ± 40% of the pore diameter showing the maximum peak. Is disclosed. As its production method, for example, it is described that tetramethoxysilane and bistrimethoxysilylmethane are used in combination, but both of these silane raw materials have high hydrolysis rates, and the hydrolysis rates of both do not change so much. Hollow particles are not produced.

非特許文献1及び2にはトリメチルベンゼンの乳化滴を利用した中空メソポーラスシリカ粒子が開示されている。しかしながら、メソ細孔構造規定剤として中性のポリマーを用いているため、細孔構造の規則性が低く、BET比表面積も430m2/gと低い。
非特許文献3及び4の中空メソポーラスシリカ粒子は、反応初期に酸で中和することで粒子形成反応を止めて合成されている。このため、BET比表面積は850〜950m2/gと比較的高いが、粒子径の分布がブロードである。
非特許文献5の中空メソポーラスシリカ粒子は、反応溶液に超音波を照射することで形成されている。このため、BET比表面積は940m2/gと比較的高いが、粒子径の分布が非常にブロードであり、粒子形状も不定形である。
また、ケイ素原料として、非特許文献1及び2では水ガラスを使用し、非特許文献3〜5ではテトラエトキシシランを使用しているため、粒子外殻に有機基は存在しない。
Non-Patent Documents 1 and 2 disclose hollow mesoporous silica particles using trimethylbenzene emulsified droplets. However, since a neutral polymer is used as the mesopore structure-directing agent, the regularity of the pore structure is low, and the BET specific surface area is also as low as 430 m 2 / g.
The hollow mesoporous silica particles of Non-Patent Documents 3 and 4 are synthesized by stopping the particle formation reaction by neutralizing with an acid at the beginning of the reaction. For this reason, the BET specific surface area is relatively high at 850 to 950 m 2 / g, but the particle size distribution is broad.
The hollow mesoporous silica particles of Non-Patent Document 5 are formed by irradiating the reaction solution with ultrasonic waves. For this reason, the BET specific surface area is relatively high at 940 m 2 / g, but the particle size distribution is very broad and the particle shape is also indefinite.
In addition, since non-patent documents 1 and 2 use water glass as a silicon raw material and non-patent documents 3 to 5 use tetraethoxysilane, there is no organic group in the outer shell of the particles.

特開2006−102592号公報JP 2006-102592 A 特開2000−219770号公報JP 2000-219770 A Qianyano Sun他、Adv.Mater.、第15巻、第1097頁(2003年)Qianyan Sun et al., Adv. Mater. 15: 1097 (2003) Nicole E.Botterhuis他,Chem.Eur.J.,第12巻、第1448頁(2006年)Nicole E.M. Botterhuis et al., Chem. Eur. J. et al. , Volume 12, p. 1448 (2006) Puyam S.Singh他,Chem.Lett.,第101頁(1998年)Puyam S.M. Singh et al., Chem. Lett. , Page 101 (1998) Christabel E.Fowler他,Chem.Commun.,第2028頁(2001年)Christebel E.I. Fowler et al., Chem. Commun. 2028 (2001) Rohit K.Rana他,Adv.Mater.,第14巻、第1414頁(2002年)Rohit K. Rana et al., Adv. Mater. , Volume 14, Page 1414 (2002)

外殻部がメソ細孔構造を有する中空シリカ粒子は、内部が中空であるため、例えば物質の保持量を高めることができ、またメソ細孔壁を有することで、内部に取り込んだ物質の外部への放出をコントロールすることができるため、触媒、吸着剤等として有用である。しかしながら、シリカは元来親水性であるため、親油性化合物を含浸させたり保持することが難しい。
本発明は、外殻部がメソ細孔構造を有し、かつ有機基を有するケイ素化合物により構成され、親油性が付与された中空シリカ粒子、及びその製造方法を提供することを課題とする。
The hollow silica particles whose outer shell portion has a mesopore structure is hollow inside, so that, for example, the retention amount of the substance can be increased, and the mesopore wall is provided, so that the outside of the substance taken into the inside can be obtained. It can be used as a catalyst, an adsorbent, etc. However, since silica is inherently hydrophilic, it is difficult to impregnate or retain a lipophilic compound.
An object of the present invention is to provide hollow silica particles having an outer shell portion having a mesoporous structure and having a lipophilicity, which is composed of a silicon compound having an organic group, and a method for producing the same.

本発明者らは、有機基で置換されたシラン化合物をシリカ源の一部として用いることにより、外殻部に有機基を有する中空シリカ粒子が得られることを見出した。
すなわち、本発明は、次の(1)及び(2)を提供する。
(1)外殻部がメソ細孔構造を有する中空シリカ粒子であって、該外殻部が有機基を有するケイ素化合物により構成され、かつ該メソ細孔の平均細孔径が1〜10nmである中空シリカ粒子。
(2)下記工程(I)、(II)及び(III)を含む、外殻部がメソ細孔構造を有する中空シリカ粒子の製造方法。
工程(I):下記一般式(1)及び(2)で表される第四級アンモニウム塩から選ばれる1種以上(a)を0.1〜100ミリモル/Lの濃度で含有し、加水分解によりシラノール化合物を生成し、かつ加水分解速度の異なる2種以上のシリカ源であって、少なくとも1種以上が有機基を有するシリカ源(b)を0.1〜100ミリモル/Lの濃度で含有する水溶液を調製する工程、
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価の陰イオンを示す。)
工程(II):工程(I)の水溶液を10〜100℃の温度で撹拌して、第四級アンモニウム塩とシリカとの複合体を析出させる工程
工程(III):得られた第四級アンモニウム塩とシリカとの複合体を、焼成又は抽出処理し、該複合体から第四級アンモニウム塩を除去する工程
The present inventors have found that by using a silane compound substituted with an organic group as a part of the silica source, hollow silica particles having an organic group in the outer shell can be obtained.
That is, the present invention provides the following (1) and (2).
(1) The outer shell is a hollow silica particle having a mesopore structure, the outer shell is composed of a silicon compound having an organic group, and the average pore diameter of the mesopore is 1 to 10 nm. Hollow silica particles.
(2) A method for producing hollow silica particles in which the outer shell part has a mesoporous structure, including the following steps (I), (II) and (III).
Step (I): containing at least one (a) selected from quaternary ammonium salts represented by the following general formulas (1) and (2) at a concentration of 0.1 to 100 mmol / L, and hydrolysis 2 or more types of silica sources having different hydrolysis rates, wherein at least one type contains a silica source (b) having an organic group at a concentration of 0.1 to 100 mmol / L. Preparing an aqueous solution to be
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)
Step (II): A step of stirring the aqueous solution of Step (I) at a temperature of 10 to 100 ° C. to precipitate a complex of a quaternary ammonium salt and silica Step (III): The obtained quaternary ammonium A step of removing a quaternary ammonium salt from the composite by baking or extracting the composite of the salt and silica

本発明によれば、外殻部がメソ細孔構造を有し、かつ有機基を有するケイ素化合物により構成され、親油性が付与された中空シリカ粒子、及びその効率的な製造方法を提供することができる。   According to the present invention, there are provided hollow silica particles whose outer shell portion has a mesoporous structure and is composed of a silicon compound having an organic group, to which lipophilicity is imparted, and an efficient production method thereof. Can do.

本発明の中空シリカ粒子は、外殻部がメソ細孔構造を有する中空シリカ粒子であって、該外殻部が有機基を有するケイ素化合物により構成され、かつ該メソ細孔の平均細孔径が1〜10nmであることを特徴とする。
ここで、ケイ素化合物とは、シラノール(HnSi(OH)4-n)が重合して構成される化合物であって、ケイ素酸化物及びケイ素水酸化物を意味する。有機基を有するケイ素化合物とは、シラノールのケイ素に直接結合する有機基を持つ化合物が重合して構成される化合物を意味する。また、本発明におけるケイ素化合物は、有機基の他に、後述する他元素を担持したものも包含する。
The hollow silica particles of the present invention are hollow silica particles whose outer shell part has a mesopore structure, wherein the outer shell part is composed of a silicon compound having an organic group, and the average pore diameter of the mesopores is It is 1 to 10 nm.
Here, the silicon compound, silanol (H n Si (OH) 4 -n) is a compound constituted by polymerizing means silicon oxide and silicon hydroxides. The silicon compound having an organic group means a compound formed by polymerizing a compound having an organic group directly bonded to silicon of silanol. Further, the silicon compound in the present invention includes those carrying other elements described later in addition to the organic group.

<中空シリカ粒子の外殻部>
本発明の中空シリカ粒子は、粒子外殻部が有機基を有するケイ素化合物により構成されている。この構造は、有機基を有するシリカ源(後述)を用いて合成することにより形成することができる。
ケイ素化合物のケイ素に直接結合する有機基は、炭化水素の水素原子の一部がフッ素原子に置換されていてもよい炭素数1〜22の炭化水素基が好ましい。炭化水素基としては、好ましくは炭素数1〜8、更に好ましくは炭素数1〜4のアルキル基、フェニル基、ベンジル基、炭素数1〜22、好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のアルカンジイル基及びフェニレン基から選ばれる1種以上が好ましい。
炭素数1〜22のアルキル基としては、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、各種エイコシル基等が挙げられる。
炭素数1〜22、特に炭素数1〜6のアルカンジイル基としては、メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基、テトラメチレン基、ペンタメチレン基等が挙げられる。
<Outer shell of hollow silica particles>
The hollow silica particles of the present invention are composed of a silicon compound whose particle outer shell has an organic group. This structure can be formed by synthesis using a silica source having an organic group (described later).
The organic group directly bonded to silicon of the silicon compound is preferably a hydrocarbon group having 1 to 22 carbon atoms in which a part of hydrocarbon hydrogen atoms may be substituted with fluorine atoms. The hydrocarbon group is preferably an alkyl group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, a phenyl group, a benzyl group, 1 to 22 carbon atoms, preferably 1 to 12 carbon atoms, more preferably carbon. 1 or more types chosen from a 1-6 alkanediyl group and a phenylene group are preferable.
Examples of the alkyl group having 1 to 22 carbon atoms include methyl group, ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, and various types. Examples include dodecyl group, various tetradecyl groups, various hexadecyl groups, various octadecyl groups, and various eicosyl groups.
Examples of the alkanediyl group having 1 to 22 carbon atoms, particularly 1 to 6 carbon atoms include a methylene group, an ethylene group, a trimethylene group, a propane-1,2-diyl group, a tetramethylene group, and a pentamethylene group.

本発明の中空シリカ粒子の外殻部は、主成分はシリカで構成されており、その構造中にケイ素に直接結合する有機基を有するものであるが、Al、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、B、Mn、Fe等の他元素を担持した形態、又はシリカの一部が他元素で置換された形態であってもよい。これら元素を導入する場合はそれらの金属を含有するアルコキシ塩やハロゲン化塩等の金属原料を製造時又は製造後に添加すればよい。
ケイ素化合物中の有機基は核磁気共鳴測定を用いた炭素原子の測定(13C−NMR)や元素分析により確認することができる。
外殻の一部を構成する有機基の炭素元素数はケイ素元素数あたり10〜70%であることが好ましい。中空シリカ粒子に含まれる有機基の炭素元素数は、製造時のシリカ源の種類や配合率等から求めることができるし、また、元素分析や熱重量分析によっても確認することができる。
The outer shell part of the hollow silica particles of the present invention is composed mainly of silica and has an organic group directly bonded to silicon in the structure, but Al, Ti, V, Cr, Co, A form in which other elements such as Ni, Cu, Zn, Zr, B, Mn, and Fe are supported, or a form in which a part of silica is substituted with other elements may be used. When these elements are introduced, a metal raw material such as an alkoxy salt or a halogenated salt containing these metals may be added during or after production.
The organic group in the silicon compound can be confirmed by measurement of carbon atoms using nuclear magnetic resonance measurement ( 13 C-NMR) or elemental analysis.
The number of carbon elements in the organic group constituting a part of the outer shell is preferably 10 to 70% per number of silicon elements. The number of carbon elements in the organic group contained in the hollow silica particles can be determined from the type and blending ratio of the silica source at the time of production, and can also be confirmed by elemental analysis or thermogravimetric analysis.

<中空シリカ粒子の外殻部のメソ細孔>
本発明の中空シリカ粒子のメソ細孔の平均細孔径は1〜10nmである。メソ細孔構造を有する外殻部と粒子内部の中空部分の構造は、透過型電子顕微鏡(TEM)により確認することができる。また、平均細孔径は窒素吸着等温線からBJH法を用いて求めることができる。
中空シリカ粒子の平均粒子径は好ましくは0.05〜10μmであるが、平均粒子径が0.05〜0.1μmのときの平均細孔径は好ましくは1〜5nmであり、平均粒子径が0.1〜1μmのときの平均細孔径は好ましくは1〜8nmであり、平均粒子径が1〜10μmのときの平均細孔径は好ましくは1〜10nmである。
本発明の中空シリカ粒子は、平均粒子径の±30%以内の粒子径を持つ粒子が、好ましくは粒子全体の80質量%以上、より好ましく粒子全体の85質量%以上、特に好ましく粒子全体の90質量%以上であり、粒子サイズが均一であることが特徴の1つである。従来の製造方法では、本発明のような粒子サイズのそろったものは得られていない。
<Mesopores in the outer shell of hollow silica particles>
The average pore diameter of the mesopores of the hollow silica particles of the present invention is 1 to 10 nm. The structure of the outer shell portion having a mesopore structure and the hollow portion inside the particle can be confirmed by a transmission electron microscope (TEM). The average pore diameter can be determined from the nitrogen adsorption isotherm using the BJH method.
The average particle diameter of the hollow silica particles is preferably 0.05 to 10 μm, but the average pore diameter when the average particle diameter is 0.05 to 0.1 μm is preferably 1 to 5 nm and the average particle diameter is 0. The average pore diameter when the average particle diameter is 1 to 1 μm is preferably 1 to 8 nm, and the average pore diameter when the average particle diameter is 1 to 10 μm is preferably 1 to 10 nm.
In the hollow silica particles of the present invention, particles having a particle size within ± 30% of the average particle size are preferably 80% by mass or more of the whole particle, more preferably 85% by mass or more of the whole particle, particularly preferably 90% of the whole particle. One of the characteristics is that the particle size is equal to or greater than mass% and the particle size is uniform. In the conventional manufacturing method, products having the same particle size as in the present invention are not obtained.

本発明の中空シリカ粒子のBET比表面積は、吸着特性の観点から、好ましくは700m2/g以上、より好ましくは800〜1400m2/g、特に好ましくは800〜1300m2/gである。
本発明の中空シリカ粒子は、透過型電子顕微鏡(TEM)による観察において粒子全体の好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上が中空粒子であることを確認することができる。透過型電子顕微鏡(TEM)による観察は、倍率5万倍で、視野内に見出される粒子の個数を数えることで決定する。これを画面を変えて5回行った平均とする。
本発明の中空シリカ粒子においては、透過型電子顕微鏡(TEM)により観察されたメソ細孔の平均細孔間隔距離がX線回折により得られた構造周期と±30%の範囲で一致する。具体的には、観察された細孔の中心間距離に√3/2を乗じた値とX線回折により得られた最も低角のピークに対応する面間隔が±30%の範囲で一致する。
BET specific surface area of the hollow silica particles of the present invention, from the viewpoint of adsorption properties, preferably 700 meters 2 / g or more, more preferably 800~1400m 2 / g, particularly preferably 800~1300m 2 / g.
The hollow silica particles of the present invention are preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more of the whole particles as observed by transmission electron microscope (TEM). Can be confirmed. Observation with a transmission electron microscope (TEM) is determined by counting the number of particles found in the field of view at a magnification of 50,000 times. This is the average of five times with different screens.
In the hollow silica particles of the present invention, the average pore spacing distance of mesopores observed with a transmission electron microscope (TEM) coincides with the structural period obtained by X-ray diffraction in a range of ± 30%. Specifically, the value obtained by multiplying the observed distance between the centers of the pores by √3 / 2 and the plane spacing corresponding to the lowest angle peak obtained by X-ray diffraction are in the range of ± 30%. .

本発明の中空シリカ粒子における〔外殻部の厚み/平均粒子径〕の比は、0.2/100〜50/100であることが好ましく、0.5/100〜40/100であることがより好ましく、1/100〜30/100であることがより好ましい。この比は透過型電子顕微鏡(TEM)により測定することができる。透過型電子顕微鏡による測定は、倍率5万倍で、視野内に見出される粒子の外殻部位を測定することで決定する。これを画面を変えて5回行った平均とする。
本発明の中空シリカ粒子は、粉末X線回折(XRD)のパターンにおいて、d=2〜12nmの範囲に相当する回折角度に1本以上のピークを有する。
The ratio of [the thickness of the outer shell portion / average particle diameter] in the hollow silica particles of the present invention is preferably 0.2 / 100 to 50/100, and more preferably 0.5 / 100 to 40/100. More preferably, it is 1/100 to 30/100. This ratio can be measured with a transmission electron microscope (TEM). The measurement with a transmission electron microscope is determined by measuring the outer shell part of the particles found in the field of view at a magnification of 50,000 times. This is the average of five times with different screens.
The hollow silica particles of the present invention have one or more peaks at a diffraction angle corresponding to a range of d = 2 to 12 nm in a powder X-ray diffraction (XRD) pattern.

<中空シリカ粒子の製造方法>
本発明の外殻部がメソ細孔構造を有する中空シリカ粒子の製造方法は、下記工程(I)、(II)及び(III)を含むことを特徴とする。
工程(I):下記一般式(1)及び(2)で表される第四級アンモニウム塩から選ばれる1種以上(a)を0.1〜100ミリモル/Lの濃度で含有し、加水分解によりシラノール化合物を生成し、かつ加水分解速度の異なる2種以上のシリカ源であって、少なくとも1種以上が有機基を有するシリカ源(b)を0.1〜100ミリモル/Lの濃度で含有する水溶液を調製する工程、
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価の陰イオンを示す。)
工程(II):工程(I)の水溶液を10〜100℃の温度で撹拌して、第四級アンモニウム塩とシリカとの複合体を析出させる工程
工程(III):得られた第四級アンモニウム塩とシリカとの複合体を、焼成又は抽出処理し、該複合体から第四級アンモニウム塩を除去する工程
工程(I)において、(a)成分と(b)成分を混合し、水溶液を調製する。(a)成分は、メソ細孔形成のために配合され、(b)成分は中空シリカ粒子のシリカ源となる。
<Method for producing hollow silica particles>
The method for producing hollow silica particles in which the outer shell portion of the present invention has a mesopore structure includes the following steps (I), (II) and (III).
Step (I): containing at least one (a) selected from quaternary ammonium salts represented by the following general formulas (1) and (2) at a concentration of 0.1 to 100 mmol / L, and hydrolysis 2 or more types of silica sources having different hydrolysis rates, wherein at least one type contains a silica source (b) having an organic group at a concentration of 0.1 to 100 mmol / L. Preparing an aqueous solution to be
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)
Step (II): A step of stirring the aqueous solution of Step (I) at a temperature of 10 to 100 ° C. to precipitate a complex of a quaternary ammonium salt and silica Step (III): The obtained quaternary ammonium A step of baking or extracting a complex of salt and silica and removing a quaternary ammonium salt from the complex. In step (I), the components (a) and (b) are mixed to prepare an aqueous solution. To do. (A) component is mix | blended for mesopore formation, (b) component becomes a silica source of a hollow silica particle.

<一般式(1)又は(2)で表される第四級アンモニウム塩>
前記一般式(1)におけるR1、一般式(2)におけるR1及びR2で表される炭素数4〜22、好ましくは炭素数6〜18、更に好ましくは炭素数8〜18の、直鎖状又は分岐状アルキル基としては、前記と同様なものが挙げられる。
前記一般式(1)及び(2)におけるXは、高い結晶性を得るという観点から、好ましくはハロゲン化物イオン、水酸化物イオン、硝酸化物イオン、硫酸化物イオン等のアニオンから選ばれる1種以上である。Xは、より好ましくはハロゲンイオンであり、更に好ましくは塩化物イオン又は臭化物イオンである。
<Quaternary ammonium salt represented by general formula (1) or (2)>
R 1 in the general formula ( 1 ), R 1 and R 2 in the general formula (2) 4 to 22 carbon atoms, preferably 6 to 18 carbon atoms, more preferably 8 to 18 carbon atoms. Examples of the chain or branched alkyl group include the same ones as described above.
X in the general formulas (1) and (2) is preferably one or more selected from anions such as halide ions, hydroxide ions, nitrate ions, and sulfate ions from the viewpoint of obtaining high crystallinity. It is. X is more preferably a halogen ion, still more preferably a chloride ion or a bromide ion.

一般式(1)で表されるアルキルトリメチルアンモニウム塩としては、例えばブチルトリメチルアンモニウムクロリド、ヘキシルトリメチルアンモニウムクロリド、オクチルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムクロリド、ブチルトリメチルアンモニウムブロミド、ヘキシルトリメチルアンモニウムブロミド、オクチルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムブロミド等が挙げられる。
一般式(2)で表されるジアルキルジメチルアンモニウム塩としては、例えばジブチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムクロリド、ジオクチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムブロミド、ジオクチルジメチルアンモニウムブロミド、ジドデシルジメチルアンモニウムブロミド、ジテトラデシルジメチルアンモニウムブロミド等が挙げられる。
これらの第四級アンモニウム塩の中では、規則的なメソ細孔を形成させる観点から、特に一般式(1)で表されるアルキルトリメチルアンモニウム塩が好ましく、アルキルトリメチルアンモニウムブロミドがより好ましく、アルキル基の炭素数が12〜18のアルキルトリメチルアンモニウムブロミドが特に好ましい。
Examples of the alkyltrimethylammonium salt represented by the general formula (1) include butyltrimethylammonium chloride, hexyltrimethylammonium chloride, octyltrimethylammonium chloride, decyltrimethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, hexadecyl. Trimethylammonium chloride, stearyltrimethylammonium chloride, butyltrimethylammonium bromide, hexyltrimethylammonium bromide, octyltrimethylammonium bromide, decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium Muburomido, stearyl trimethyl ammonium bromide, and the like.
Examples of the dialkyldimethylammonium salt represented by the general formula (2) include dibutyldimethylammonium chloride, dihexyldimethylammonium chloride, dioctyldimethylammonium chloride, dihexyldimethylammonium bromide, dioctyldimethylammonium bromide, didodecyldimethylammonium bromide, ditetra Examples include decyldimethylammonium bromide.
Among these quaternary ammonium salts, from the viewpoint of forming regular mesopores, an alkyltrimethylammonium salt represented by the general formula (1) is particularly preferable, an alkyltrimethylammonium bromide is more preferable, and an alkyl group Alkyltrimethylammonium bromide having 12 to 18 carbon atoms is particularly preferable.

<シリカ源(b)>
シリカ源(b)は、加水分解によりシラノール化合物を生成し、それが重合することでシリカ構造体を構成する。
シリカ源(b)は、加水分解速度の異なる2種以上のシリカ源であって、少なくとも1種以上の有機基を有するシリカ源(b)を用いる。
<Silica source (b)>
A silica source (b) produces | generates a silanol compound by hydrolysis, and comprises a silica structure by polymerizing.
The silica source (b) is two or more types of silica sources having different hydrolysis rates, and a silica source (b) having at least one type of organic group is used.

<加水分解速度の異なる2種以上のシリカ源(b)>
加水分解速度の異なる2種以上のシリカ源(b)は、下記一般式(3)〜(7)から選ばれる。但し、一般式(3)又は(6)のみの組み合わせを除く。
SiY4 (3)
3SiY3 (4)
3 2SiY2 (5)
3 3SiY (6)
3Si−R4−SiY3 (7)
(式中、R3はそれぞれ独立して、ケイ素原子に直接炭素原子が結合している有機基を示し、R4は炭素原子を1〜4個有する炭化水素基又はフェニレン基を示し、Yは加水分解によりヒドロキシ基になる1価の加水分解性基を示す。)
より好ましくは、一般式(3)〜(7)において、R3がそれぞれ独立して、水素原子の一部がフッ素原子に置換していてもよい炭素数1〜22の炭化水素基であり、具体的には炭素数1〜22、好ましくは炭素数4〜18、より好ましくは炭素数6〜18、特に好ましくは炭素数8〜16のアルキル基、フェニル基、又はベンジル基であり、R4が炭素数1〜4のアルカンジイル基(メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基、テトラメチレン基等)又はフェニレン基であり、Yが炭素数1〜22、より好ましくは炭素数1〜8、特に好ましくは炭素数1〜4のアルコキシ基、またはフッ素を除くハロゲン基である。
<Two or more types of silica sources (b) having different hydrolysis rates>
The two or more types of silica sources (b) having different hydrolysis rates are selected from the following general formulas (3) to (7). However, the combination of only general formula (3) or (6) is excluded.
SiY 4 (3)
R 3 SiY 3 (4)
R 3 2 SiY 2 (5)
R 3 3 SiY (6)
Y 3 Si—R 4 —SiY 3 (7)
(In the formula, each R 3 independently represents an organic group in which a carbon atom is directly bonded to a silicon atom, R 4 represents a hydrocarbon group or a phenylene group having 1 to 4 carbon atoms, and Y represents A monovalent hydrolyzable group that becomes a hydroxy group by hydrolysis.)
More preferably, in the general formulas (3) to (7), each R 3 is independently a hydrocarbon group having 1 to 22 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms, Specifically, it is an alkyl group, a phenyl group, or a benzyl group having 1 to 22 carbon atoms, preferably 4 to 18 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 8 to 16 carbon atoms, and R 4 Is an alkanediyl group having 1 to 4 carbon atoms (methylene group, ethylene group, trimethylene group, propane-1,2-diyl group, tetramethylene group, etc.) or phenylene group, and Y is more preferably 1 to 22 carbon atoms. Is a C1-C8, particularly preferably C1-C4 alkoxy group or a halogen group excluding fluorine.

加水分解速度は、R3、R4、加水分解性基Yの種類やR3の数より変動する。R3やR4として、電子供与性基を用いると加水分解速度が遅くなり、電子吸引性基を用いると加水分解速度は速くなる。例えば、R3が炭素数1〜22のアルキル基の場合、ケイ素原子に電子を与えるため、加水分解性基Yの加水分解速度は遅くなる。また、R3がフェニル基や、水素原子の一部がフッ素原子で置換された炭化水素基の場合、電子吸引性が高まり、加水分解速度が速くなる。R4も似た傾向を示す。
また、加水分解性基Yがメトキシ基の場合よりも、エトキシ基の場合の方が、加水分解速度が遅くなり、アルコキシ基の炭素数が多くなるほど加水分解速度が遅くなる。
なお、シリカ源が一般式(3)のみの場合、加水分解性基Yは加水分解してしまうため、外殻部が有機基を含まない。また、シリカ源が一般式(6)のみの場合、重合してシリカ構造体を形成することが難しいため、加水分解速度の異なる2種以上のシリカ源から除かれる。
The hydrolysis rate varies depending on R 3 , R 4 , the type of hydrolyzable group Y, and the number of R 3 . When an electron donating group is used as R 3 or R 4 , the hydrolysis rate is slow, and when an electron withdrawing group is used, the hydrolysis rate is fast. For example, when R 3 is an alkyl group having 1 to 22 carbon atoms, the hydrolysis rate of the hydrolyzable group Y is slow because electrons are given to the silicon atom. Further, when R 3 is a phenyl group or a hydrocarbon group in which a part of hydrogen atoms is substituted with a fluorine atom, the electron withdrawing property is increased and the hydrolysis rate is increased. R 4 shows a similar tendency.
In addition, when the hydrolyzable group Y is an ethoxy group, the hydrolysis rate is slower, and as the number of carbon atoms of the alkoxy group increases, the hydrolysis rate is slower.
In addition, when a silica source is only General formula (3), since the hydrolysable group Y will hydrolyze, an outer shell part does not contain an organic group. Further, when the silica source is only the general formula (6), it is difficult to form a silica structure by polymerization, and therefore, it is excluded from two or more types of silica sources having different hydrolysis rates.

本発明に用いる加水分解速度の異なる2種以上のシリカ源は、加水分解速度の違いから、「加水分解速度の速いシリカ源」と「加水分解速度の遅いシリカ源」に大別することができる。
「加水分解速度の速いシリカ源」とは、下記方法により得られる中空シリカ粒子生成までの時間が150秒以下、好ましくは120秒以下、特に好ましくは100秒以下であるシリカ源(b1)を意味し、「加水分解速度の遅いシリカ源」とは、下記方法により得られる中空シリカ粒子生成までの時間が200秒以上、好ましくは250秒以上、特に好ましくは300秒以上であるシリカ源(b2)を意味する。
すなわち、本発明において、加水分解速度の異なる2種以上のシリカ源は、下記の方法により得られる加水分解速度の時間が50秒以上異なる2種以上のシリカ源であることが好ましい。
加水分解速度の測定は、シリカ源を単独で用いてシリカ粒子を製造する場合に、シリカ源を加えてからシリカ粒子が生成し、反応溶液が白濁するまでの時間を計測することにより行う。より具体的には、100mlのビーカーに水60g、メタノール20g、1M水酸化ナトリウム水溶液0.46g、ドデシルトリメチルアンモニウムブロミド(東京化成工業製)0.35gを入れ、20℃でマグネティックスターラー(回転子:22mmのオクタゴン型)を用い500rpmの速さでドデシルトリメチルアンモニウムブロミドが完全に溶解するまで撹拌し、この撹拌状態下で、シリカ源0.5gを一度に加え、溶液が白濁するまでの時間を測定する。
Two or more types of silica sources having different hydrolysis rates used in the present invention can be broadly classified into “a silica source having a high hydrolysis rate” and “a silica source having a low hydrolysis rate” based on the difference in hydrolysis rate. .
The term “silica source having a high hydrolysis rate” means a silica source (b1) having a time until formation of hollow silica particles obtained by the following method of 150 seconds or shorter, preferably 120 seconds or shorter, particularly preferably 100 seconds or shorter. The “silica source having a low hydrolysis rate” means a silica source (b2) having a time until formation of hollow silica particles obtained by the following method of 200 seconds or longer, preferably 250 seconds or longer, particularly preferably 300 seconds or longer. Means.
That is, in the present invention, the two or more types of silica sources having different hydrolysis rates are preferably two or more types of silica sources having different hydrolysis rate times obtained by the following method of 50 seconds or more.
The measurement of the hydrolysis rate is carried out by measuring the time from when the silica source is added to when the silica particles are produced and when the reaction solution becomes cloudy when silica particles are produced using the silica source alone. More specifically, 60 g of water, 20 g of methanol, 0.46 g of 1M aqueous sodium hydroxide, and 0.35 g of dodecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry) are placed in a 100 ml beaker, and a magnetic stirrer (rotor: (22 mm octagon type) and stirred at a speed of 500 rpm until dodecyltrimethylammonium bromide is completely dissolved. Under this stirring condition, 0.5 g of silica source is added at once, and the time until the solution becomes cloudy is measured. To do.

加水分解速度の速いシリカ源(b1)としては、次の化合物等が挙げられる。
・一般式(3)において、Yが炭素数1〜3のアルコキシ基であるか、またはフッ素を除くハロゲン基であるシラン化合物。
・一般式(4)又は(5)において、R3がフェニル基、ベンジル基、又は水素原子の一部がフッ素原子に置換されている炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜5の炭化水素基であるトリアルコキシシラン又はジアルコキシシラン。
・一般式(7)において、Yがメトキシ基であって、R4がメチレン基、エチレン基又はフェニレン基である化合物。
加水分解速度の遅いシリカ源(b2)としては、次の化合物等が挙げられる。
・一般式(4)〜(6)において、R3が炭素数1〜22、好ましくは炭素数1〜10のアルキル基である化合物。
・一般式(7)において、Yがエトキシ基であって、R4がメチレン基又はエチレン基である化合物。
Examples of the silica source (b1) having a high hydrolysis rate include the following compounds.
-The silane compound in which Y is a C1-C3 alkoxy group or a halogen group except a fluorine in General formula (3).
In general formula (4) or (5), R 3 is a phenyl group, a benzyl group, or a hydrogen atom in which part of the hydrogen atom is substituted with a fluorine atom, preferably 1 to 10 carbon atoms, Trialkoxysilane or dialkoxysilane which is preferably a hydrocarbon group having 1 to 5 carbon atoms.
A compound in which Y is a methoxy group and R 4 is a methylene group, an ethylene group or a phenylene group in the general formula (7).
Examples of the silica source (b2) having a low hydrolysis rate include the following compounds.
-The compound whose R < 3 > is a C1-C22, preferably C1-C10 alkyl group in General formula (4)-(6).
A compound in which Y is an ethoxy group and R 4 is a methylene group or an ethylene group in the general formula (7).

好ましい加水分解速度の速いシリカ源(b1)としては、アルコキシ基の炭素数が1〜3であるテトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、フェニルトリエトキシシラン、1,1,1−トリフルオロプロピルトリエトキシシラン等から選ばれる1種以上が挙げられる。
また、好ましい加水分解速度の遅いシリカ源(b2)としては、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ビストリエトキシシリルメタン、ビストリエトキシシリルエタン等から選ばれる1種以上が挙げられる。
これらの中でも、均一な粒子径を有する中空シリカ粒子を得る観点から、特に好適な組合せは、加水分解速度の速いシリカ源(b1)であるテトラメトキシシランと、加水分解速度の遅いシリカ源(b2)であるビストリエトキシシリルメタン、ビストリエトキシシリルエタン、又はジメチルジメトキシシランとの組合せである。
加水分解速度の速いシリカ源(b1)と加水分解速度の遅いシリカ源(b2)との混合比率は、〔(b1)/(b2)〕のシリカ元素比で、好ましくは90/10〜10/90、特に好ましくは70/30〜30/90である。
Preferred examples of the silica source (b1) having a high hydrolysis rate include tetraalkoxysilanes (tetramethoxysilane, tetraethoxysilane, etc.) having 1 to 3 carbon atoms in the alkoxy group, phenyltriethoxysilane, 1,1,1- 1 or more types chosen from trifluoropropyl triethoxysilane etc. are mentioned.
Preferred examples of the silica source (b2) having a low hydrolysis rate include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, bistriethoxysilylmethane, and bistriethoxysilylethane. One or more selected may be mentioned.
Among these, from the viewpoint of obtaining hollow silica particles having a uniform particle diameter, a particularly preferred combination is tetramethoxysilane, which is a silica source (b1) having a high hydrolysis rate, and a silica source (b2) having a low hydrolysis rate. ) Bistriethoxysilylmethane, bistriethoxysilylethane, or dimethyldimethoxysilane.
The mixing ratio of the silica source (b1) having a high hydrolysis rate and the silica source (b2) having a low hydrolysis rate is a silica element ratio of [(b1) / (b2)], preferably 90/10 to 10 / 90, particularly preferably 70/30 to 30/90.

加水分解速度の異なる2種以上のシリカ源を用いることにより、本発明の効果が有効に発現するが、そのメカニズムは次のように考えられる。
加水分解速度が異なるシリカ源を併用すると、加水分解速度が遅いシリカ源は、疎水性の性質を示すため、水溶液中で油滴を形成する。一方、加水分解速度の速いシリカ源は、加水分解により迅速にシラノール化合物になって水溶液中に分散し、(a)成分と共に、加水分解速度の遅いシリカ源の油滴と水との界面に膜を生じると考えられる。
加水分解速度の遅いシリカ源は油滴になるためその内部まで水が入っていかず、加水分解反応が妨げられるためシラノール化合物が生成しにくい。一方、加水分解速度の遅いシリカ源の油滴表面のシラノール化合物は、(a)成分を取り込んだ状態で重合反応が進行する。その後、加水分解の遅いシリカ源も徐々に加水分解し、脱水縮合を起こし、メソ細孔壁を構築する。最終的には粒子内部に、加水分解で生じたアルコールや脱水縮合反応より排出された水が充填される。充填されたアルコールや水は乾燥や焼成工程において揮散するため、シリカ粒子は中空構造となる。
The effect of the present invention is effectively expressed by using two or more types of silica sources having different hydrolysis rates. The mechanism is considered as follows.
When silica sources having different hydrolysis rates are used in combination, the silica source having a low hydrolysis rate exhibits hydrophobic properties and thus forms oil droplets in an aqueous solution. On the other hand, a silica source having a high hydrolysis rate rapidly becomes a silanol compound by hydrolysis and is dispersed in an aqueous solution. Along with the component (a), a film is formed on the interface between oil droplets and water of the silica source having a low hydrolysis rate. It is thought to produce.
Since the silica source having a low hydrolysis rate becomes oil droplets, water does not enter the inside thereof, and the hydrolysis reaction is hindered, so that a silanol compound is hardly generated. On the other hand, the polymerization reaction of the silanol compound on the oil droplet surface of the silica source having a slow hydrolysis rate proceeds with the component (a) incorporated. Thereafter, the slowly hydrolyzed silica source is also gradually hydrolyzed to cause dehydration condensation and to build mesopore walls. Eventually, the alcohol and the water discharged from the dehydration condensation reaction are filled inside the particles. Since the filled alcohol or water is volatilized in the drying or firing process, the silica particles have a hollow structure.

(a)成分は、工程(I)における水溶液中に好ましくは0.1〜100ミリモル/L、より好ましくは1〜100ミリモル/L、特に好ましくは5〜80ミリモル/Lで含有され、(b)成分は、(b1)成分及び(b2)成分の合計で、工程(I)における水溶液中に好ましくは0.1〜500ミリモル/L、より好ましくは1〜300ミリモル/L、特に好ましくは10〜300ミリモル/Lで含有される。
(a)成分と(b)成分を含有させる順序は特に制限はない。例えば、(i)水溶液を撹拌しながら(a)成分、(b)成分の順に投入する、(ii)水溶液を撹拌しながら(a)、(b)成分を同時に投入する、(iii)(a)、(b)成分の投入後に撹拌する、等の方法を採用することができるが、これらの中では(i)の方法が好ましい。
(a)成分及び(b)成分を含有する水溶液には、本発明の中空シリカ粒子の中空構造とメソ細孔構造の形成を阻害しない限り、その他の成分として、溶剤等の有機化合物や、無機化合物等の他の成分を添加してもよく、前記のように、シリカや有機基以外の他の元素、例えばAl、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、B、Mn、Fe等の他の元素を担持したい場合は、それらの金属を含有するアルコキシ塩やハロゲン化塩等の金属原料を製造時又は製造後に添加することもできる。
The component (a) is preferably contained in the aqueous solution in the step (I) at 0.1 to 100 mmol / L, more preferably 1 to 100 mmol / L, particularly preferably 5 to 80 mmol / L, (b ) Component is the sum of component (b1) and component (b2), preferably 0.1 to 500 mmol / L, more preferably 1 to 300 mmol / L, and particularly preferably 10 in the aqueous solution in step (I). Contained at ˜300 mmol / L.
There is no restriction | limiting in particular in the order which contains (a) component and (b) component. For example, (i) the components (a) and (b) are added in this order while stirring the aqueous solution, (ii) the components (a) and (b) are added simultaneously while stirring the aqueous solution, (iii) (a ) And (b) a method such as stirring after the introduction of the component can be employed, and among these, the method (i) is preferable.
As long as the aqueous solution containing the component (a) and the component (b) does not inhibit the formation of the hollow structure and mesopore structure of the hollow silica particles of the present invention, other components include organic compounds such as solvents, inorganic Other components such as compounds may be added, and as described above, other elements other than silica and organic groups, such as Al, Ti, V, Cr, Co, Ni, Cu, Zn, Zr, B, Mn When it is desired to carry other elements such as Fe, metal raw materials such as alkoxy salts and halogenated salts containing these metals can be added during or after production.

工程(II)では、工程(I)で得られる水溶液を10〜100℃、好ましくは10〜800℃の温度で所定時間撹拌した後、静置することで、第四級アンモニウム塩とシリカとの複合体を析出させる。加熱撹拌処理の時間は温度によって異なるが、通常10〜100℃で0.1〜24時間で第四級アンモニウム塩とシリカとの複合体が形成される。
工程(III)では、まず工程(II)で得られた複合体を、ろ過又は遠心分離等の操作で取り出した後、水洗し、乾燥する。次いで、得られた第四級アンモニウム塩とシリカとの複合体を、焼成又は抽出処理し、該複合体から第四級アンモニウム塩を除去する。焼成温度が低すぎるとメソ細孔形成剤である(a)成分が残存する可能性があり、また焼成温度が高すぎるとケイ素化合物中の有機基が消失するおそれがあるため、焼成は電気炉等で好ましくは350〜650℃、より好ましくは450〜550℃、特に好ましくは480〜520℃で、1〜10時間行うことが望ましい。また、抽出処理を行う場合は、pH1〜4、温度が室温〜80℃の水溶液に、第四級アンモニウム塩とシリカとの複合体を長時間撹拌することによって、第四級アンモニウム塩を抽出する。なお抽出処理後のシリカを焼成してもよい。
In the step (II), the aqueous solution obtained in the step (I) is stirred at a temperature of 10 to 100 ° C., preferably 10 to 800 ° C. for a predetermined time, and then allowed to stand, whereby the quaternary ammonium salt and the silica are mixed. The composite is precipitated. Although the time of the heating and stirring treatment varies depending on the temperature, a complex of a quaternary ammonium salt and silica is usually formed at 10 to 100 ° C. for 0.1 to 24 hours.
In step (III), first, the complex obtained in step (II) is taken out by an operation such as filtration or centrifugation, then washed with water and dried. Next, the obtained complex of quaternary ammonium salt and silica is baked or extracted to remove the quaternary ammonium salt from the complex. If the firing temperature is too low, component (a) that is a mesopore forming agent may remain, and if the firing temperature is too high, organic groups in the silicon compound may be lost. Etc., preferably 350 to 650 ° C., more preferably 450 to 550 ° C., particularly preferably 480 to 520 ° C. for 1 to 10 hours. Moreover, when performing an extraction process, a quaternary ammonium salt is extracted by stirring the complex of a quaternary ammonium salt and a silica for a long time to the aqueous solution of pH 1-4, and temperature is room temperature-80 degreeC. . In addition, you may bake the silica after an extraction process.

以下、好ましい製造例とそれによって得られる中空シリカ粒子について説明する。
まず工程(I)において、(a)成分として、一般式(1)又は(2)で示される化合物のうち、R1及びR2が炭素数4〜22のアルキル基であって、Xが臭素イオン又は塩素イオンである第四級アンモニウム化合物を、塩基性水溶液に溶解した後、加水分解速度の速いシリカ源(b1)としてアルコキシ基の炭素数が1〜3のテトラアルコキシシラン、好ましくはテトラメトキシシラン又はテトラエトキシシランと、加水分解速度の遅いシリカ源(b2)として、ビストリエトキシシリルエタン、ビストリエトキシシリルメタン、ジメチルジメトキシシランから選ばれる化合物のうち1種、好ましくはビストリエトキシシリルエタンとを均一に混合する。
工程(II)に移り、温度10〜100℃、好ましくは10〜80℃で0.1〜24時間、マグネティックスターラーを用いて撹拌した後、1〜24時間熟成させると、中空シリカ粒子が析出し溶液が白濁した状態になる。
その後工程(III)に移り、メンブランフィルターを用いて粒子をろ別し、水洗した後、60〜100℃で5〜20時間乾燥する。得られた粒子を450〜550℃、好ましくは480〜520℃で、1〜20時間焼成し、中空シリカ粒子を得ることができる。
Hereinafter, preferable production examples and hollow silica particles obtained thereby will be described.
First, in step (I), as the component (a), among the compounds represented by the general formula (1) or (2), R 1 and R 2 are alkyl groups having 4 to 22 carbon atoms, and X is bromine. After a quaternary ammonium compound that is an ion or a chlorine ion is dissolved in a basic aqueous solution, a tetraalkoxysilane having 1 to 3 carbon atoms of an alkoxy group as a silica source (b1) having a high hydrolysis rate, preferably tetramethoxy a silane or tetraethoxysilane, as a hydrolysis slower silica source (b2), Bisutori ethoxy Shiriruetan, Bisutori ethoxy silylmethane, one kind of compound selected from dimethyldimethoxysilane, preferably mixed uniformly and Bisutori ethoxy Shiriruetan .
After moving to step (II) and stirring at a temperature of 10 to 100 ° C., preferably 10 to 80 ° C. for 0.1 to 24 hours using a magnetic stirrer, and aging for 1 to 24 hours, hollow silica particles are precipitated. The solution becomes cloudy.
Thereafter, the process proceeds to step (III), the particles are filtered off using a membrane filter, washed with water, and then dried at 60 to 100 ° C. for 5 to 20 hours. The obtained particles can be calcined at 450 to 550 ° C., preferably 480 to 520 ° C. for 1 to 20 hours to obtain hollow silica particles.

かくして得られた中空シリカ粒子は、外殻部がメソ細孔構造を有する中空シリカ粒子であり、次の性状を有している。
平均粒子径:好ましくは0.05〜10μm、より好ましくは0.1〜5μm、特に好ましくは0.2〜2μm
平均粒子径の±30%以内の粒子:好ましくは粒子全体の80質量%以上、より好ましく粒子全体の85質量%以上、特に好ましく粒子全体の90質量%以上
BET比表面積:好ましくは700m2/g以上、より好ましくは800〜1400m2/g、特に好ましくは800〜1300m2/g
外殻部の厚み:好ましくは5〜3000nm、より好ましくは10〜1000nm、特に好ましくは50〜800nm
〔外殻部の厚み/平均粒子径〕の比:好ましくは0.2/100〜50/100、より好ましくは0.5/100〜40/100、特に好ましくは1/100〜30/100
外殻部の平均細孔径:好ましくは1〜10nm、より好ましくは1〜8nm、特に好ましくは1〜5nm
透過型電子顕微鏡(TEM)観察による中空粒子含有率:好ましくは粒子全体の80質量%以上、より好ましくは粒子全体の85質量%以上、特に好ましくは粒子全体の90質量%以上
The hollow silica particles thus obtained are hollow silica particles whose outer shell part has a mesoporous structure, and have the following properties.
Average particle diameter: preferably 0.05 to 10 μm, more preferably 0.1 to 5 μm, particularly preferably 0.2 to 2 μm
Particles within ± 30% of the average particle diameter: preferably 80% by weight or more of the whole particle, more preferably 85% by weight or more of the whole particle, particularly preferably 90% by weight or more of the whole particle BET specific surface area: preferably 700 m 2 / g or more, more preferably 800~1400m 2 / g, particularly preferably 800~1300m 2 / g
Outer shell thickness: preferably 5 to 3000 nm, more preferably 10 to 1000 nm, particularly preferably 50 to 800 nm
[Shell thickness / average particle size] ratio: preferably 0.2 / 100 to 50/100, more preferably 0.5 / 100 to 40/100, particularly preferably 1/100 to 30/100
Average pore diameter of outer shell: preferably 1 to 10 nm, more preferably 1 to 8 nm, particularly preferably 1 to 5 nm
Hollow particle content by observation with a transmission electron microscope (TEM): preferably 80% by mass or more of the whole particle, more preferably 85% by mass or more of the whole particle, particularly preferably 90% by mass or more of the whole particle

実施例及び比較例で得られたシリカ粒子の各種測定は、以下の方法により行った。
(1)平均粒子径の測定
日本電子株式会社製の透過型電子顕微鏡(TEM)JEM−2100を用いて加速電圧160kVで測定を行い、視野中の全粒子の直径を写真上で実測して、平均粒子径を求めた。観察に用いた試料は高分解能用カーボン支持膜付きCuメッシュ(200−Aメッシュ、応研商事株式会社製)に付着させ、余分な試料をブローで除去して作成した。
(2)BET比表面積、平均細孔径の測定
株式会社島津製作所製、比表面積・細孔分布測定装置、商品名「ASAP2020」を使用し、液体窒素を用いて多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出した。前記のBJH法を採用し、ピークトップを平均細孔径とした。前処理は250℃で5時間行った。
(3)中空シリカ粒子の有機基の確認
中空メソポーラスシリカ粒子が有機基を有していることを確認するために、固体13C−NMR測定を行った。VARIAN社製UNITY INOVA300を用い、固体サンプルの測定を行った。外部標準試料としてヘキサメチルベンゼンを用い、そのメチル基の炭素を17.4ppmとして補正を行った。
(4)粉末X線回折(XRD)パターンの測定
理学電機工業株式会社製、粉末X線回折装置、商品名「RINT2500VPC」を用いて、X線源:Cu-kα、管電圧:40mA、管電流:40kV、サンプリング幅:0.02°、発散スリット:1/2°、発散スリット縦:1.2mm、散乱スリット:1/2°、受光スリット:0.15mmの条件で粉末X線回折測定を行った。走査範囲は回折角(2θ)1〜20°、走査速度は4.0°/分で連続スキャン法を用いた。なお、試料は、粉砕した後、アルミニウム板に詰めて測定した。
Various measurements of the silica particles obtained in Examples and Comparative Examples were performed by the following methods.
(1) Measurement of average particle diameter Measured at an acceleration voltage of 160 kV using a transmission electron microscope (TEM) JEM-2100 manufactured by JEOL Ltd., and measured the diameter of all particles in the field of view on a photograph, The average particle size was determined. The sample used for the observation was prepared by adhering to a Cu mesh with a high resolution carbon support film (200-A mesh, manufactured by Oken Shoji Co., Ltd.) and removing the excess sample by blowing.
(2) Measurement of BET specific surface area and average pore diameter Using a specific surface area / pore distribution measuring device manufactured by Shimadzu Corporation, trade name “ASAP2020”, the BET specific surface area is measured by a multipoint method using liquid nitrogen. Then, values were derived within a range in which the parameter C becomes positive. The BJH method described above was employed, and the peak top was defined as the average pore diameter. The pretreatment was performed at 250 ° C. for 5 hours.
(3) Confirmation of organic group of hollow silica particle In order to confirm that the hollow mesoporous silica particle has an organic group, solid 13 C-NMR measurement was performed. A solid sample was measured using UNITY INOVA300 manufactured by VARIAN. Hexamethylbenzene was used as an external standard sample, and the carbon of the methyl group was corrected to 17.4 ppm.
(4) Measurement of powder X-ray diffraction (XRD) pattern Using a powder X-ray diffractometer manufactured by Rigaku Denki Kogyo Co., Ltd., trade name “RINT 2500 VPC”, X-ray source: Cu-kα, tube voltage: 40 mA, tube current : 40 kV, sampling width: 0.02 °, divergence slit: 1/2 °, divergence slit length: 1.2 mm, scattering slit: 1/2 °, light receiving slit: 0.15 mm went. The scanning range was a diffraction angle (2θ) of 1 to 20 °, the scanning speed was 4.0 ° / min, and the continuous scanning method was used. The sample was crushed and then packed in an aluminum plate for measurement.

実施例1
100mlフラスコに水60g、メタノール20g、1規定水酸化ナトリウム水溶液0.46g、ドデシルトリメチルアンモニウムブロミド0.35gを入れ攪拌した。その水溶液にテトラメトキシシラン0.17gとビストリエトキシシリルエタン0.15gを混合してからゆっくりと加え、5時間攪拌後、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥の後、1℃/分の速度で500℃まで焼成した。
得られた外殻部がメソ細孔構造を有する中空シリカ粒子の性状を表1に示す。なお、この中空シリカ粒子は、粉末X線回折(XRD)のパターンにおいて、d=2〜12nmの範囲に相当する回折角度に1本のピークを有していた。
Example 1
A 100 ml flask was charged with 60 g of water, 20 g of methanol, 0.46 g of a 1N aqueous sodium hydroxide solution and 0.35 g of dodecyltrimethylammonium bromide. To this aqueous solution, 0.17 g of tetramethoxysilane and 0.15 g of bistriethoxysilylethane were mixed and slowly added, followed by stirring for 5 hours and aging for 12 hours. The obtained white precipitate was filtered off, washed with water and dried, and then fired to 500 ° C. at a rate of 1 ° C./min.
Table 1 shows the properties of the hollow silica particles in which the obtained outer shell part has a mesoporous structure. The hollow silica particles had one peak at a diffraction angle corresponding to a range of d = 2 to 12 nm in a powder X-ray diffraction (XRD) pattern.

比較例1
100mlフラスコに水60g、メタノール20g、1M水酸化ナトリウム水溶液0.46g、ドデシルトリメチルアンモニウムブロミド0.35gを入れ攪拌した。その水溶液にテトラメトキシシラン0.35gをゆっくりと加え、5時間攪拌後、12時間熟成させた。得られた白色沈殿物を実施例1と同様にして焼成した。結果を表1に示す。
Comparative Example 1
In a 100 ml flask, 60 g of water, 20 g of methanol, 0.46 g of 1M aqueous sodium hydroxide solution and 0.35 g of dodecyltrimethylammonium bromide were added and stirred. To the aqueous solution, 0.35 g of tetramethoxysilane was slowly added, stirred for 5 hours and then aged for 12 hours. The obtained white precipitate was fired in the same manner as in Example 1. The results are shown in Table 1.

比較例2
100mlフラスコに水60g、メタノール20g、1M水酸化ナトリウム水溶液0.46g、ドデシルトリメチルアンモニウムブロミド0.35gを入れ攪拌した。その水溶液にビストリエトキシシリルエタン0.4gをゆっくりと加え、5時間攪拌後、12時間熟成させた。得られた白色沈殿物を実施例1と同様にして焼成した。結果を表1に示す。
Comparative Example 2
In a 100 ml flask, 60 g of water, 20 g of methanol, 0.46 g of 1M aqueous sodium hydroxide solution and 0.35 g of dodecyltrimethylammonium bromide were added and stirred. To this aqueous solution, 0.4 g of bistriethoxysilylethane was slowly added, stirred for 5 hours, and aged for 12 hours. The obtained white precipitate was fired in the same manner as in Example 1. The results are shown in Table 1.

Figure 0005118328
Figure 0005118328

実施例2
実施例1のビストリエトキシシリルエタンの代わりに、ビストリエトキシシリルメタンを0.15gを用いた以外は、実施例1と同様にして中空シリカ粒子を得た。得られたシリカ粒子は、含有する有機基がメチレンであった以外は実施例1と同様の中空メソポーラスシリカ粒子であった。測定結果を表2に示す。
実施例3
実施例1のビストリエトキシシリルエタンの代わりに、ジメチルジメトキシシランを0.13gを用いた以外は、実施例1と同様にして中空シリカ粒子を得た。得られたシリカ粒子は、中空粒子含有率は10質量%以下であったが、外殻がメソポーラスである中空メソポーラスシリカ粒子が得られた。測定結果を表2に示す。
Example 2
Hollow silica particles were obtained in the same manner as in Example 1 except that 0.15 g of bistriethoxysilylmethane was used instead of bistriethoxysilylethane in Example 1. The obtained silica particles were the same hollow mesoporous silica particles as in Example 1 except that the organic group contained was methylene. The measurement results are shown in Table 2.
Example 3
Hollow silica particles were obtained in the same manner as in Example 1 except that 0.13 g of dimethyldimethoxysilane was used instead of bistriethoxysilylethane in Example 1. The obtained silica particles had a hollow particle content of 10% by mass or less, but hollow mesoporous silica particles whose outer shell was mesoporous were obtained. The measurement results are shown in Table 2.

Figure 0005118328
Figure 0005118328

実施例1〜3で得られた中空シリカ粒子は、外殻部がメソ細孔構造を有する中空シリカ粒子であって、外殻部が有機基を有するケイ素化合物により構成され、かつメソ細孔の平均細孔径が1〜10nmである中空シリカ粒子である。   The hollow silica particles obtained in Examples 1 to 3 are hollow silica particles whose outer shell part has a mesoporous structure, the outer shell part is composed of a silicon compound having an organic group, and the mesopores are Hollow silica particles having an average pore diameter of 1 to 10 nm.

本発明の中空シリカ粒子は、外殻部がメソ細孔構造を有し、かつ有機基を有するケイ素化合物により構成され、親油性が付与されている。このため、例えば構造選択性を有する触媒担体、吸着剤、物質分離剤、酵素や機能性有機化合物の固定化担体等としての利用が可能である。   The hollow silica particles of the present invention are composed of a silicon compound having an outer shell portion having a mesoporous structure and having an organic group, and imparted lipophilicity. For this reason, for example, it can be used as a catalyst carrier having structure selectivity, an adsorbent, a substance separating agent, an immobilized carrier for enzymes and functional organic compounds, and the like.

Claims (5)

外殻部がメソ細孔構造を有する中空シリカ粒子であって、該外殻部が有機基を有するケイ素化合物により構成され、かつ該メソ細孔の平均細孔径が1〜10nmである中空シリカ粒子。   Hollow silica particles having an outer shell part having a mesopore structure, wherein the outer shell part is composed of a silicon compound having an organic group, and the average pore diameter of the mesopores is 1 to 10 nm . 有機基が、水素原子の一部がフッ素原子で置換されていてもよい、炭素数1〜22のアルキル基、フェニル基、ベンジル基、炭素数1〜22のアルカンジイル基及びフェニレン基から選ばれる1種以上である、請求項1に記載の中空シリカ粒子。   The organic group is selected from an alkyl group having 1 to 22 carbon atoms, a phenyl group, a benzyl group, an alkanediyl group having 1 to 22 carbon atoms, and a phenylene group, in which a part of hydrogen atoms may be substituted with fluorine atoms. The hollow silica particle according to claim 1, which is one or more kinds. 粉末X線回折パターンにおいて、d=2〜12nmの範囲に相当する回折角度に1本以上のピークを有する、請求項1又は2に記載の中空シリカ粒子。   The hollow silica particle according to claim 1 or 2, wherein the powder X-ray diffraction pattern has one or more peaks at a diffraction angle corresponding to a range of d = 2 to 12 nm. 下記工程(I)、(II)及び(III)を含む、外殻部がメソ細孔構造を有する中空シリカ粒子の製造方法。
工程(I):下記一般式(1)及び(2)で表される第四級アンモニウム塩から選ばれる1種以上(a)を0.1〜100ミリモル/Lの濃度で含有し、加水分解によりシラノール化合物を生成し、かつ加水分解速度の異なる2種以上のシリカ源(b)であって、シリカ源(b)が、加水分解速度の速いシリカ源(b1)と加水分解速度の遅いシリカ源(b2)からなり、シリカ源(b1)が下記一般式(3)、(4)、(5)及び(7)から選ばれる1種以上であり、シリカ源(b2)が下記一般式(4')〜(7')から選ばれる1種以上であり、シリカ源(b)を(b1)成分及び(b2)成分の合計で0.1〜00ミリモル/Lの濃度で含有する水溶液を調製する工程
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式(1)及び(2)中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価の陰イオンを示す。)
SiY 4 (3)
(式(3)中、Yは炭素数1〜3のアルコキシ基、又はフッ素を除くハロゲン基である。)
3 SiY 3 (4)
3 2 SiY 2 (5)
(式(4)及び(5)中、R 3 はフェニル基、ベンジル基、又は水素原子の一部がフッ素原子に置換されている炭素数1〜10の炭化水素基であり、Yは炭素数1〜4のアルコキシ基、又はフッ素を除くハロゲン基である。)
3 Si−R 4 −SiY 3 (7)
(式(7)中、Yはメトキシ基であり、R 4 はメチレン基、エチレン基又はフェニレン基である。)
3 SiY 3 (4')
3 2 SiY 2 (5')
3 3 SiY (6')
(式(4')〜(6')中、R 3 は炭素数1〜10のアルキル基であり、Yは炭素数1〜4のアルコキシ基、又はフッ素を除くハロゲン基である。)
3 Si−R 4 −SiY 3 (7')
(式(7')中、Yはエトキシ基であり、R 4 はメチレン基又はエチレン基である。)
工程(II):工程(I)の水溶液を10〜100℃の温度で撹拌して、第四級アンモニウム塩とシリカとの複合体を析出させる工程
工程(III):得られた第四級アンモニウム塩とシリカとの複合体を、焼成又は抽出処理し、該複合体から第四級アンモニウム塩を除去する工程
The manufacturing method of the hollow silica particle in which an outer shell part has a mesopore structure including following process (I), (II), and (III).
Step (I): containing at least one (a) selected from quaternary ammonium salts represented by the following general formulas (1) and (2) at a concentration of 0.1 to 100 mmol / L, and hydrolysis Can produce two or more types of silica sources (b) having different hydrolysis rates, wherein the silica source (b) is a silica source (b1) having a high hydrolysis rate and a silica having a low hydrolysis rate. The source (b2), the silica source (b1) is at least one selected from the following general formulas (3), (4), (5) and (7), and the silica source (b2) is the following general formula ( 4 is one or more selected from ') to (7'), a silica source (b) (b1) component and (b2) an aqueous solution containing a concentration of 0.1 to 5 00 mmol / L in total of the components [R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formulas (1) and (2) , R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)
SiY 4 (3)
(In formula (3), Y is an alkoxy group having 1 to 3 carbon atoms or a halogen group excluding fluorine.)
R 3 SiY 3 (4)
R 3 2 SiY 2 (5)
(In the formulas (4) and (5), R 3 is a phenyl group, a benzyl group, or a hydrocarbon group having 1 to 10 carbon atoms in which a part of hydrogen atoms is substituted with fluorine atoms, and Y is the number of carbon atoms. 1 to 4 alkoxy groups or halogen groups excluding fluorine.)
Y 3 Si—R 4 —SiY 3 (7)
(In formula (7), Y is a methoxy group, and R 4 is a methylene group, an ethylene group or a phenylene group.)
R 3 SiY 3 (4 ')
R 3 2 SiY 2 (5 ')
R 3 3 SiY (6 ')
(In the formulas (4 ′) to (6 ′), R 3 is an alkyl group having 1 to 10 carbon atoms, and Y is an alkoxy group having 1 to 4 carbon atoms or a halogen group excluding fluorine.)
Y 3 Si—R 4 —SiY 3 (7 ′)
(In formula (7 ′), Y is an ethoxy group, and R 4 is a methylene group or an ethylene group.)
Step (II): A step of stirring the aqueous solution of Step (I) at a temperature of 10 to 100 ° C. to precipitate a complex of a quaternary ammonium salt and silica Step (III): The obtained quaternary ammonium A step of removing a quaternary ammonium salt from the composite by baking or extracting the composite of the salt and silica
加水分解速度の速いシリカ源(b1)と加水分解速度の遅いシリカ源(b2)との混合比率が、〔(b1)/(b2)〕のシリカ元素比で70/30〜30/90である、請求項4に記載の中空シリカ粒子の製造方法。 The mixing ratio of the silica source (b1) having a high hydrolysis rate and the silica source (b2) having a low hydrolysis rate is 70/30 to 30/90 in terms of the silica element ratio of [(b1) / (b2)]. The method for producing hollow silica particles according to claim 4 .
JP2006295958A 2006-10-31 2006-10-31 Hollow silica particles Expired - Fee Related JP5118328B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006295958A JP5118328B2 (en) 2006-10-31 2006-10-31 Hollow silica particles
US12/447,473 US8048394B2 (en) 2006-10-31 2007-10-15 Mesoporous silica particles
EP07829819.7A EP2078696A4 (en) 2006-10-31 2007-10-15 Mesoporous silica particles
PCT/JP2007/070085 WO2008053695A1 (en) 2006-10-31 2007-10-15 Mesoporous silica particles
CN2007800405311A CN101528603B (en) 2006-10-31 2007-10-15 Mesoporous silica particles
US13/241,707 US8449856B2 (en) 2006-10-31 2011-09-23 Mesoporous silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295958A JP5118328B2 (en) 2006-10-31 2006-10-31 Hollow silica particles

Publications (2)

Publication Number Publication Date
JP2008110905A JP2008110905A (en) 2008-05-15
JP5118328B2 true JP5118328B2 (en) 2013-01-16

Family

ID=39443645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295958A Expired - Fee Related JP5118328B2 (en) 2006-10-31 2006-10-31 Hollow silica particles

Country Status (2)

Country Link
JP (1) JP5118328B2 (en)
CN (1) CN101528603B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291980B2 (en) * 2008-04-25 2013-09-18 花王株式会社 Core-shell mesoporous silica particles
JP5243881B2 (en) * 2008-08-05 2013-07-24 花王株式会社 Method for producing hollow silica particles
JP5512984B2 (en) * 2009-02-19 2014-06-04 花王株式会社 Method for producing mesoporous silica particles
JP5334884B2 (en) * 2010-02-02 2013-11-06 花王株式会社 Paint composition
EP2514718A4 (en) * 2009-12-18 2013-09-04 Kao Corp Method for producing mesoporous silica particles
JP5334826B2 (en) * 2009-12-18 2013-11-06 花王株式会社 Method for producing hollow mesoporous silica particles
JP5603063B2 (en) * 2009-12-21 2014-10-08 花王株式会社 Method for producing composite silica particles
TWI574916B (en) * 2011-09-19 2017-03-21 盟智科技股份有限公司 Silica having metal ions absorbed thereon and fabricating method thereof
AU2012344690A1 (en) * 2011-12-01 2014-07-24 Les Innovations Materium Silica microcapsules, process of making the same and uses thereof
CN102976341B (en) * 2012-11-21 2014-12-10 蚌埠鑫源石英材料有限公司 Preparation method of hollow silicon dioxide spherical powdery material
CN104288174B (en) * 2014-10-17 2017-03-15 复旦大学附属中山医院 A kind of sustained release hydrogen sulfide donor and preparation method thereof, application
CN104528741B (en) * 2014-12-17 2016-08-24 北京科技大学 A kind of organic modified nano hole aerosil and preparation method thereof
WO2017022175A1 (en) 2015-08-05 2017-02-09 パナソニックIpマネジメント株式会社 Composition for optical films, base having optical film, molded body and method for producing molded body
JP6255053B2 (en) * 2016-04-20 2017-12-27 花王株式会社 Hollow silica particles and method for producing the same
EP4249434A3 (en) * 2017-12-26 2024-03-13 Agc Inc. Method for producing hollow silica particles
CN113816388B (en) * 2020-06-18 2023-07-18 苏州锦艺新材料科技股份有限公司 Preparation method of low-dielectric hollow silicon dioxide microspheres

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747669B1 (en) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF HOLLOW SILICA PARTICLES
US6174512B1 (en) * 1997-10-13 2001-01-16 Director-General Of Agency Of Industrial Science And Technology Silica mesoporous body and process for preparing same
JP3005678B2 (en) * 1997-10-13 2000-01-31 工業技術院長 Method for producing mesoporous silica material
JP3899733B2 (en) * 1998-07-03 2007-03-28 株式会社豊田中央研究所 Porous material and method for producing porous material
JP5322042B2 (en) * 2004-10-01 2013-10-23 独立行政法人産業技術総合研究所 Hollow silica microcapsules having mesoporous walls and method for producing the same

Also Published As

Publication number Publication date
CN101528603B (en) 2012-02-08
JP2008110905A (en) 2008-05-15
CN101528603A (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5118328B2 (en) Hollow silica particles
US11772978B2 (en) Method for synthesising microparticles
JP5364277B2 (en) Hollow silica particles
JP5958461B2 (en) Aluminum silicate, metal ion adsorbent and method for producing them
JP5364276B2 (en) Hollow silica particles and method for producing the same
JP5243881B2 (en) Method for producing hollow silica particles
JP5021395B2 (en) Composite silica particles
JP2009249249A (en) Production method of mesoporous silica particle
JP2009067614A (en) Composite hollow mesoporous silica particle
CN111514848A (en) Preparation and application of amino-modified aluminum magadiite selective adsorption material
JP5486164B2 (en) Method for producing mesoporous silica particles
JP7141980B2 (en) Connected mesoporous silica particles and method for producing the same
JP5291980B2 (en) Core-shell mesoporous silica particles
JP5507099B2 (en) Method for producing mesoporous silica particles
JP2011225401A (en) Phosphorous-containing mesoporous silica and preparation method therefor
JP5687832B2 (en) Composite silica particles
KR101443718B1 (en) Manufacturing method of composite for the adsorption of mercury and method for removing mercury in water
JP4989902B2 (en) Mesoporous silica
CN111871363A (en) AMP/SiO2Composite adsorbent and preparation method thereof
JP5057021B2 (en) Spherical silica-based mesoporous material, production method thereof, and basic dye adsorbent using the same
JP6519943B2 (en) Spherical silica-based mesoporous material and method for producing the same
JP2016098119A (en) Method of producing porous silica
JP6314516B2 (en) Method for producing organosilica mesoporous material
JP5512984B2 (en) Method for producing mesoporous silica particles
JP4422418B2 (en) Method for producing mesoporous silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R151 Written notification of patent or utility model registration

Ref document number: 5118328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees