JP3005678B2 - Method for producing mesoporous silica material - Google Patents

Method for producing mesoporous silica material

Info

Publication number
JP3005678B2
JP3005678B2 JP10291015A JP29101598A JP3005678B2 JP 3005678 B2 JP3005678 B2 JP 3005678B2 JP 10291015 A JP10291015 A JP 10291015A JP 29101598 A JP29101598 A JP 29101598A JP 3005678 B2 JP3005678 B2 JP 3005678B2
Authority
JP
Japan
Prior art keywords
mesoporous silica
teos
silica material
room temperature
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10291015A
Other languages
Japanese (ja)
Other versions
JPH11278825A (en
Inventor
勝典 小菅
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP10291015A priority Critical patent/JP3005678B2/en
Publication of JPH11278825A publication Critical patent/JPH11278825A/en
Application granted granted Critical
Publication of JP3005678B2 publication Critical patent/JP3005678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸性水溶液中にお
いて、シリコンアルコキシドから生成するシリカ溶存種
を内包するエマルジョン形成能と、アルキルアミンの秩
序形成能に基づいて、前者からはマクロ形態の規則性
を、後者からはミクロ構造の規則性が得られることを利
用して、規則的に配列した均一径細孔を持つと同時にミ
クロンメートルの規則的形態を持つシリカメソ多孔体の
製造法に関し、さらに詳しくは、形状選択性触媒、有用
ガス、イオンの吸着・分離・貯蔵剤、有害ガス、イオン
の分離・吸着剤、また分解用触媒として工業及び環境保
全に有用な材料などに適したシリカメソ多孔体の製造法
に関する。
BACKGROUND OF THE INVENTION The present invention is based on the fact that the former is based on the macro-form regularity based on the ability to form an emulsion containing silica-dissolved species formed from silicon alkoxide and the order to form alkylamine in an acidic aqueous solution. By utilizing the fact that microstructure regularity is obtained from the latter, silica mesoporous materials having regularly arranged pores of uniform diameter and having a regular morphology of microns are used.
Regarding the production method , more specifically, for shape-selective catalysts, useful gases, ion adsorption / separation / storage agents, harmful gases, ion separation / adsorbents, and materials useful for industrial and environmental conservation as decomposition catalysts, etc. A method for producing a suitable mesoporous silica material .

【0002】[0002]

【従来の技術】1992年モービル社によってMCM-
41が発見されて以来多くのメソ孔多孔体に関する研究
が報告されている。最近では、その合成法を基本として
規則的に配列したメソ孔を持つと同時にミクロンさらに
はミリメートル周期の構造制御も可能であることが報告
されている。例えば、(1)界面活性剤と水との混合割
合と高アルカリ条件下でのシリカの縮合速度をコントロ
ールすることによって、直径3μm、長さ20μmの中
空繊維状でしかも殻部分には円筒状のメソ孔が蜂の巣状
に整列したシリカメソ多孔体を作製している。(2)塩
酸を添加したCTAB(セチルトリメチルアンモニウム
ブロミド)水溶液に、メシチレンを含んだテトラエチル
オルトシリケート(TEOS)を滴下する際、攪拌速度
によって繊維状、シート状また中空状球形多孔性シリカ
粒子がミクロンオーダーの巨視的形態をもって作製され
ている。(3)CTABに水とNaOH等を添加した溶
液に、テトラブチルオルトシリケート(TBOS)を添
加して攪拌すると、粒径0.1〜2mmの球形シリカ多
孔体が作製されている。しかし、前記のシリカメソ多孔
体においては、例えば、(1)ではメソ孔を持つ膜状物
質が円筒状に変化するため、細孔構造には欠陥が存在
し、さらに小粒子の結晶化が抑制できない。(2)では
シリカメソ多孔体の巨視的形態が攪拌速度に敏感で単分
散球形粒子を効率的に得ることは難しく、メシチレン等
の添加を必要とする。また、(3)はシリコンアルコキ
シドとしてテトラメチルオルトシリケート(TMOS)
やTEOSではなくより高価なTBOSの使用が不可欠
である等の問題点がある。
2. Description of the Related Art In 1992, MCM-
Since the discovery of 41, many studies on mesoporous materials have been reported. Recently, it has been reported that based on the synthesis method, it is possible to have mesopores arranged regularly and to control the structure at a micron or millimeter period. For example, (1) by controlling the mixing ratio of a surfactant and water and the condensation rate of silica under highly alkaline conditions, a hollow fiber having a diameter of 3 μm and a length of 20 μm and a cylindrical shell portion is formed. A mesoporous silica material in which the mesopores are arranged in a honeycomb shape is produced. (2) When tetraethylorthosilicate (TEOS) containing mesitylene is added dropwise to an aqueous solution of CTAB (cetyltrimethylammonium bromide) to which hydrochloric acid has been added, fibrous, sheet-like or hollow spherical porous silica particles are dispersed at a rate of stirring depending on the stirring speed. Manufactured with a macroscopic form of order. (3) Tetrabutyl orthosilicate (TBOS) is added to a solution obtained by adding water, NaOH, and the like to CTAB, and the mixture is stirred to produce a spherical porous silica having a particle size of 0.1 to 2 mm. However, in the above-mentioned mesoporous silica material, for example, in (1), since the film-like substance having mesopores changes into a cylindrical shape, defects exist in the pore structure, and crystallization of small particles cannot be suppressed. . In (2), the macroscopic morphology of the mesoporous silica material is sensitive to the stirring speed, and it is difficult to efficiently obtain monodispersed spherical particles, and it is necessary to add mesitylene or the like. (3) is tetramethyl orthosilicate (TMOS) as a silicon alkoxide.
And the use of a more expensive TBOS instead of TEOS is indispensable.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ミクロンオ
ーダーの球形あるいはプレート状等の巨視的形態を呈す
る同時に規則配列した細孔を有するシリカメソ多孔体を
常温、常圧、短時間で製造し得る方法を提供することを
その課題とする。
SUMMARY OF THE INVENTION The present invention relates to a mesoporous silica material having macroscopic morphology such as spherical or plate-like micron order and simultaneously having regularly arranged pores.
It is an object of the present invention to provide a method which can be manufactured at normal temperature, normal pressure and in a short time .

【0004】[0004]

【課題を解決するための手段】本発明者は前記課題を解
決すべく鋭意研究を重ねた結果、以下に開示する、規則
的に配列した均一径の細孔を持つと同時にミクロンメー
トルの規則的形態を持つシリカメソ多孔体の製造法を
明するに至った。即ち、本発明によれば、テトラアルキ
ルオルトシリケート、無機酸及び水を混合してエマルジ
ョンを形成し、次いで該エマルジョンに直鎖アルキルア
ミンを反応させ、得られた固体生成物を乾燥、熱処理す
ることからなり、該テトラアルキルオルトシリケート1
モル当り、該無機酸を0.05〜0.6モル、該アルキ
ルアミンを0.2〜1.0モル、及び水を10〜100
モル用いるシリカメソ多孔体の製造方法が提供される。
Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, has a regularly arranged pores having a uniform diameter as well as a regular micron meter as disclosed below. A method for producing a mesoporous silica material having a morphology has been discovered. That is, according to the present invention, tetraalkyl
Luosilicate, inorganic acid and water
Solution and then add a linear alkyl
The resulting solid product is dried and heat-treated.
The tetraalkyl orthosilicate 1
Per mole of the inorganic acid is 0.05 to 0.6 mol,
0.2 to 1.0 mol of luamine and 10 to 100 of water
There is provided a method for producing a mesoporous silica material in molar.

【0005】[0005]

【発明の実施の形態】本発明のシリカメソ多孔体(以
下、単に多孔体とも言う)は、酸性水溶液中において、
シリコンアルコキシド(テトラアルキルオルトシリケー
ト)から生成するシリカ溶存種を内包するエマルジョン
形成能と、アルキルアミンの秩序形成能に基づいて、前
者からはマクロ形態の規則性を、後者からはミクロ構造
の規則性が得られることを利用して合成される。合成手
順を図1及び図2に従って説明する。図1(a)に示す様
に、アルコキシドから生成したシリカ溶存種Aとアルキ
ルアミン(B)とは酸性水溶液相(C)を境界相として
ミクロンオーダーの大きさのエマルジョンを形成する。
ここで、エマルジョンが安定で、シリカ溶存種Aが酸性
水溶液相(C)である境界相において静電気力に基づい
てアルキルアミンと相互作用する場合には、図1(b)、
(c)、(d)のように、境界相に沿って規則配列したメソ
集合体が形成される。すなわち、遠心分離後固体生成物
を乾燥してからアルキルアミンを除去すると、メソ孔が
存在する球殻を有する直径数ミクロンの球形シリカメソ
多孔体(b)、(c)、(d)が生成する。この形態を
持つシリカメソ多孔体の生成にはアルキルアミンとして
はオクチルアミンが有効である。また、酸溶液の種類、
濃度、及び容量を変化させることによって、球殻の厚さ
部分や中空部分への薄板状シリカメソ多孔体の導入が可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION A mesoporous silica material (hereinafter, also simply referred to as a porous material) of the present invention is prepared in an acidic aqueous solution.
Based on the ability to form an emulsion containing silica-dissolved species generated from silicon alkoxide (tetraalkyl orthosilicate) and the ability to form an order of alkylamine, the former has macroscopic regularity and the latter has microstructural regularity. Are synthesized using the fact that The synthesis procedure will be described with reference to FIGS. As shown in FIG. 1 (a), the silica-dissolved species A generated from the alkoxide and the alkylamine (B) form an emulsion having a size on the order of microns on the basis of the acidic aqueous solution phase (C) as a boundary phase.
Here, when the emulsion is stable and the silica-dissolved species A interacts with the alkylamine based on the electrostatic force in the boundary phase that is the acidic aqueous solution phase (C), FIG.
As shown in (c) and (d), a meso aggregate regularly arranged along the boundary phase is formed. That is, when the solid product is dried after centrifugation and the alkylamine is removed, spherical silica mesoporous bodies (b), (c) and (d) having a diameter of several microns and having a spherical shell with mesopores are formed. . Octylamine is effective as an alkylamine for producing a mesoporous silica material having this form. Also, the type of acid solution,
By changing the concentration and the volume, it is possible to introduce the thin plate-shaped mesoporous silica into the thick part or hollow part of the spherical shell.

【0006】一方、図2(a)は、境界相である酸性水
溶液相中においてアルキルアミン(B)とシリカ溶存種
(A)とが急速に相互作用するため、エマルジョンが安
定に形成されない場合であり、メソ孔を有する薄板状結
晶片が集合して1つの粒子を形成し、巨視的にはそれら
の粒子が集合して平板状の粒子として観察されることに
なる。すなわち、遠心分離後固体生成物を乾燥しアルキ
ルアミンを除去すると、図2(b)に示すようなメソ孔
が規則的に配列した数ミクロンの大きさを有する薄板状
結晶片が集合した平板状シリカメソ多孔体(メソ孔を有
する薄板状結晶片が集合した平板状シリカ多孔体と呼
ぶ)が生成する。この種のシリカメソ多孔体の生成に
は、アルキルアミンとしてデシルアミンやドデシルアミ
ンが好ましく使用される。また、酸溶液の種類、濃度、
容量及びアルキルアミンの種類によって、メソ孔の大き
さの制御が可能である。
On the other hand, FIG. 2 (a) shows a case where an alkylamine (B) and a silica-dissolved species (A) rapidly interact with each other in an acidic aqueous solution phase as a boundary phase, so that an emulsion is not formed stably. Yes, thin plate-like crystal pieces having mesopores aggregate to form one particle, and macroscopically, these particles aggregate and are observed as flat particles. That is, after centrifugation, the solid product is dried to remove the alkylamine, and as shown in FIG. 2 (b), a plate-like crystal piece having a size of several microns in which mesopores are regularly arranged as shown in FIG. A mesoporous silica body (referred to as a flat porous silica body in which lamellar crystal pieces having mesopores are aggregated) is produced. For the production of this kind of mesoporous silica, decylamine or dodecylamine is preferably used as the alkylamine. Also, the type, concentration,
The size of the mesopores can be controlled by the capacity and the type of alkylamine.

【0007】前記方法で作製したシリカメソ多孔体は、
周期的に配列する細孔を有し、しかもその大きさが容易
にコントロール可能なことはもとより、数ミクロンの球
形あるいは平板状等のマクロ形態を有することから、こ
れまでにない新規シリカメソ多孔体として分類できる。
また、本多孔体は室温、常圧しかも短期間で合成でき、
熱的に安定なことが大きな特徴である。
The mesoporous silica produced by the above method is
As a new mesoporous silica material, it has pores that are periodically arranged and its size is easily controllable. Can be classified.
In addition, this porous body can be synthesized at room temperature, normal pressure and in a short period of time,
A major feature is that it is thermally stable.

【0008】図3は前記製造方法によって得られた球形
状シリカメソ多孔体の走査電子顕微鏡写真(a)及び透
過電子顕微鏡写真(b)を示す。図4は前記方法によっ
て得られた平板状シリカメソ多孔体の走査電子顕微鏡写
真(a)及び透過電子顕微鏡写真(b)を示す。図5
(A)及び(B)は、それぞれ図3と図4に示したメソ
多孔体に対応するX線回折図であり、底面反射の存在は
細孔の配列が不規則的ではないことを示している。ま
た、図6は窒素吸着等温線であり、その(A)及び
(B)はそれぞれ図3及び図4に示したシリカメソ多孔
体に対応する。その形状はIV型であり、(B)では相対
圧0.4付近に顕著なステップが認められる。また、そ
のt曲線はいずれもメソポアの存在に特有な形状であっ
た。さらにHorvath−Kawazoe法によって
求めた細孔径分布曲線から、細孔の平均有効径は図3の
多孔体では2.2nm、一方、図4の多孔体では4.0
nmで比較的シャープな分布をしていることが分かっ
た。また、その多孔体は、周期的に配列する細孔を有す
る。即ち、0.8〜4.5nm、好ましくは2〜4nm
の細孔が六角網目状の規則性をもって列したミクロ構造
を有する。なお、前記周期的に配列する細孔とは、XR
D回折線として(001)反射を与える程度の規則的な
SiO4四面体をユニットとする六角網目状の壁構造を
もつことを意味する。
FIG. 3 shows a scanning electron micrograph (a) and a transmission electron micrograph (b) of the spherical mesoporous silica obtained by the production method. FIG. 4 shows a scanning electron micrograph (a) and a transmission electron micrograph (b) of the plate-shaped mesoporous silica obtained by the above method. FIG.
(A) and (B) are X-ray diffraction diagrams corresponding to the mesoporous material shown in FIGS. 3 and 4, respectively, and the presence of bottom reflection indicates that the arrangement of the pores is not irregular. I have. FIG. 6 is a nitrogen adsorption isotherm, and (A) and (B) correspond to the mesoporous silica material shown in FIGS. 3 and 4, respectively. The shape is an IV type, and in (B), a remarkable step is observed near a relative pressure of 0.4. Each of the t curves had a shape unique to the presence of mesopores. Further, from the pore diameter distribution curve obtained by the Horvath-Kawazoe method, the average effective diameter of the pores is 2.2 nm in the porous body of FIG. 3, while it is 4.0 in the porous body of FIG.
It was found that the distribution was relatively sharp in nm. The porous body has pores that are periodically arranged. That is, 0.8 to 4.5 nm, preferably 2 to 4 nm.
Have a microstructure in which hexagonal pores are regularly arranged. The periodically arranged pores are XR
It means having a hexagonal mesh-like wall structure with a regular SiO 4 tetrahedron as a unit that gives (001) reflection as D diffraction lines.

【0009】本明細書で言う平均細孔径、表面積及び細
孔容積は、温度−196℃で窒素吸着法により測定され
たもので、その測定装置としては、日本ベル(株)社
製、「BELSORP28A」が用いられた。その底面
間隔d001は、常温で粉末X線回折法により測定された
もので、その測定装置としては、(株)リガク社製、
「ロータフレックスRU−300」が用いられた。
The average pore diameter, surface area and pore volume referred to in this specification are measured by a nitrogen adsorption method at a temperature of -196 ° C., and the measuring apparatus is “BELSORP28A” manufactured by Bell Japan Co., Ltd. Was used. The bottom distance d 001 was measured at room temperature by a powder X-ray diffraction method, and the measuring device was manufactured by Rigaku Corporation.
"Rotaflex RU-300" was used.

【0010】シリカメソ多孔体の合成は以下の手順で行
われる。この場合、出発原料であるSi−アルコキシド
としては、テトラメチルオルトシリケート、テトラエチ
ルオルトシリケート、テトライソプロピルオルトシリケ
ート、テトラ−n−ブチルオルトシリケート等の炭素数
1〜4の低級アルコキシ基を有するものを用いることが
可能で、好ましくはテトラエチルオルトシリケート(以
下TEOSと略す)を使用する。直鎖アルキルアミンと
しては、カーボン数が8〜12のものを使用する無機酸
としては、塩酸、硫酸あるいは硝酸等を使用することが
できる。
The synthesis of a mesoporous silica material is performed according to the following procedure. In this case, as the starting material, a Si-alkoxide having a lower alkoxy group having 1 to 4 carbon atoms such as tetramethyl orthosilicate, tetraethyl orthosilicate, tetraisopropyl orthosilicate, tetra-n-butylorthosilicate, etc. is used. Preferably, tetraethyl orthosilicate (hereinafter abbreviated as TEOS) is used. As the linear alkylamine, one having 8 to 12 carbon atoms is used. As the inorganic acid, hydrochloric acid, sulfuric acid, nitric acid or the like can be used.

【0011】シリカメソ多孔体の好ましい合成方法を原
料としてTEOS及びHClを用いた例にとって具体的
に説明すると、先ず、TEOSに塩酸水溶液を加え1〜
10分間600〜1000rpm攪拌してエマルジョン
を形成し、さらにアルキルアミンを添加後600〜10
00rpmで攪拌しながら、室温で15分以上、好まし
くは15〜120分反応させる。出発原料の混合モル比
は、TEOS:HCl:アルキルアミン:水=1:0.
2〜0.6:0.4〜1.0:5〜80である。また、
(a)メソ孔を有する中空状球形シリカメソ多孔体の場
合、アルキルアミンには特に好ましくはオクチルアミン
を用いて、特に好ましくは、TEOS:HCl:アルキ
ルアミン:水=1:0.25〜0.5:0.6〜0.
7:20〜50である。また、(b)メソ孔を有する薄
板状結晶片が集合した平板状シリカメソ多孔体の場合に
は、アミンとしてデシルアミンあるいはドデシルアミン
が特に有効であり、特に好ましくは出発原料の混合モル
比は、TEOS:HCl:アルキルアミン:水=1:
0.2〜0.4:0.45〜0.55:20〜30であ
る。次に、反応後懸濁液を遠心分離し、固体生成物を室
温〜100℃、好ましくは50℃で12時間以上乾燥さ
せる。最後に有機化合物を除去して多孔体を作製するた
めに、400℃以上で1時間以上、好ましくは450℃
〜800℃で2時間加熱処理する。
The preferred method of synthesizing a mesoporous silica material will be specifically described using an example in which TEOS and HCl are used as raw materials.
An emulsion was formed by stirring at 600 to 1000 rpm for 10 minutes, and after adding an alkylamine, 600 to 1000 rpm.
The reaction is carried out at room temperature for 15 minutes or more, preferably 15 to 120 minutes, while stirring at 00 rpm. The mixing molar ratio of the starting materials was TEOS: HCl: alkylamine: water = 1: 0.
2 to 0.6: 0.4 to 1.0: 5 to 80. Also,
(A) In the case of a hollow spherical silica mesoporous material having mesopores, octylamine is particularly preferably used as an alkylamine, and TEOS: HCl: alkylamine: water = 1: 0.25-0. 5: 0.6-0.
7: 20 to 50. In the case of (b) a plate-like mesoporous silica material in which thin plate-like crystal pieces having mesopores are aggregated, decylamine or dodecylamine is particularly effective as an amine, and the mixing molar ratio of the starting materials is preferably TEOS. : HCl: alkylamine: water = 1:
0.2 to 0.4: 0.45 to 0.55: 20 to 30. Next, the suspension after the reaction is centrifuged, and the solid product is dried at room temperature to 100 ° C, preferably at 50 ° C for 12 hours or more. Finally, in order to remove the organic compound and produce a porous body, at least 400 ° C. for 1 hour or more, preferably 450 ° C.
Heat treatment at ~ 800 ° C for 2 hours.

【0012】[0012]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はこの実施例によって限定されな
い。以下に示す混合比はモル比である。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The mixing ratios shown below are molar ratios.

【0013】実施例1 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでヘキシルアミ
ンを添加し常温で60分反応させた。TEOS:HC
l:ヘキシルアミン:水のモル比は1:0.223:
0.842:24.802であった。反応後懸濁液を遠
心分離し、生成固体を室温で1日さらに50℃で1日間
乾燥させた後、最後に500℃で2時間加熱し有機化合
物を除去してシリカ多孔体を作製する。生成多孔体は球
形粒子で、比表面積等の細孔特性を表1に示す。
Example 1 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, hexylamine was added to the mixture, and the mixture was reacted at room temperature for 60 minutes. TEOS: HC
1: molar ratio of hexylamine: water is 1: 0.223:
0.842: 24.802. After the reaction, the suspension is centrifuged, and the resulting solid is dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove an organic compound, thereby producing a porous silica material. The resulting porous body is a spherical particle, and the pore characteristics such as the specific surface area are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例2 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.223:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表2に示す。
Example 2 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.223: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】実施例3 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.281:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表3に示す。
Example 3 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.281: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 3.

【0018】[0018]

【表3】 [Table 3]

【0019】実施例4 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.335:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表4に示す。
Example 4 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.335: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 4.

【0020】[0020]

【表4】 [Table 4]

【0021】実施例5 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.393:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表5に示す。
Example 5 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.393: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 5.

【0022】[0022]

【表5】 [Table 5]

【0023】実施例6 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.447:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表6に示す。
Example 6 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.447: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 6.

【0024】[0024]

【表6】 [Table 6]

【0025】実施例7 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.279:0.67
4:31.002)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表7に示す。
Example 7 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.279: 0.67
4: 31.002). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 7.

【0026】[0026]

【表7】 [Table 7]

【0027】実施例8 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.335:0.67
4:37.202)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表8に示す。
Example 8 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.335: 0.67
4: 37.202). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 8.

【0028】[0028]

【表8】 [Table 8]

【0029】実施例9 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.391:0.67
4:43.403)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表9に示す。
Example 9 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.391: 0.67
4: 43.403). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 9.

【0030】[0030]

【表9】 [Table 9]

【0031】実施例10 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.446:0.67
4:49.603)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は図3(a)お
よび図3(b)に示す走査電子顕微鏡写真及び透過電子
顕微鏡写真に見られるように中空状球形粒子で、比表面
積等の細孔特性を表10に示す。
Example 10 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.446: 0.67
4: 49.603). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle as shown in the scanning electron micrograph and the transmission electron micrograph shown in FIGS. 3A and 3B, and the pore characteristics such as specific surface area are shown in Table 10.

【0032】[0032]

【表10】 [Table 10]

【0033】実施例11 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.056:0.67
4:6.200)。反応後懸濁液を遠心分離し、生成固
体を室温で1日さらに50℃で1日間乾燥させた後、最
後に500℃で2時間加熱し有機化合物を除去してシリ
カメソ多孔体を作製した。生成多孔体は中空状球形粒子
で、比表面積等の細孔特性を表11に示す。
Example 11 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.056: 0.67
4: 6.200). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 11.

【0034】[0034]

【表11】 [Table 11]

【0035】実施例12 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:オクチルアミン:水=1:0.558:0.67
4:62.004)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は中空状球形粒
子で、比表面積等の細孔特性を表12に示す。
Example 12 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: HC).
l: octylamine: water = 1: 0.558: 0.67
4: 62.004). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a hollow spherical particle, and the pore characteristics such as the specific surface area are shown in Table 12.

【0036】[0036]

【表12】 [Table 12]

【0037】実施例13 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.045:0.563:2
4.802)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製した。生成多孔体は薄板状結晶片が集合
した平板状粒子で、比表面積等の細孔特性を表13に示
す。
Example 13 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.045: 0.563: 2
4.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a flat particle formed by assembling thin plate-shaped crystal pieces. Table 13 shows pore characteristics such as specific surface area.

【0038】[0038]

【表13】 [Table 13]

【0039】実施例14 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.179:0.563:2
4.802)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製した。生成多孔体は薄板状結晶片が集合
した平板状粒子で、比表面積等の細孔特性を表14に示
す。
Example 14 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.179: 0.563: 2
4.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a tabular particle in which thin plate-like crystal pieces are aggregated, and the pore characteristics such as the specific surface area are shown in Table 14.

【0040】[0040]

【表14】 [Table 14]

【0041】実施例15 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.223:0.563:2
4.802)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製した。生成多孔体は薄板状結晶片集合体
球形粒子で、比表面積等の細孔特性を表15に示す。
Example 15 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.223: 0.563: 2
4.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a thin plate-like crystal fragment aggregate spherical particle, and the pore characteristics such as the specific surface area are shown in Table 15.

【0042】[0042]

【表15】 [Table 15]

【0043】実施例16 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.268:0.563:2
4.802)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製した。生成多孔体は薄板状結晶片が集合
した平板状粒子で、比表面積等の細孔特性を表16に示
す。
Example 16 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.268: 0.563: 2
4.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a flat particle formed by assembling thin plate-shaped crystal pieces. Table 16 shows pore characteristics such as specific surface area.

【0044】[0044]

【表16】 [Table 16]

【0045】実施例17 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.446:0.563:2
4.802)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製する。生成多孔体は薄板状結晶片が集合
した平板状粒子で、比表面積等の細孔特性を表17に示
す。
Example 17 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.446: 0.563: 2
4.802). After the reaction, the suspension is centrifuged, and the resulting solid is dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove an organic compound, thereby producing a mesoporous silica material. The resulting porous body is a tabular particle in which thin plate-shaped crystal pieces are aggregated, and the pore characteristics such as the specific surface area are shown in Table 17.

【0046】[0046]

【表17】 [Table 17]

【0047】実施例18 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでデシルアミン
を添加し常温で60分反応させた(TEOS:HCl:
デシルアミン:水=1:0.446:0.563:4
9.603)。反応後懸濁液を遠心分離し、生成固体を
室温で1日さらに50℃で1日間乾燥させた後、最後に
500℃で2時間加熱し有機化合物を除去してシリカメ
ソ多孔体を作製した。生成多孔体は薄板状結晶片が集合
した平板状粒子で、比表面積等の細孔特性を表18に示
す。
Example 18 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, decylamine was added thereto and reacted at room temperature for 60 minutes (TEOS: HCl:
Decylamine: water = 1: 0.446: 0.563: 4
9.603). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. The resulting porous body is a tabular particle in which thin plate-like crystal pieces are aggregated, and the pore characteristics such as the specific surface area are shown in Table 18.

【0048】[0048]

【表18】 [Table 18]

【0049】実施例19 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでドデシルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:ドデシルアミン:水=1:0.045:0.48
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は薄板状結晶片
が集合した平板状粒子で、比表面積等の細孔特性を表1
9に示す。
Example 19 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, while stirring, dodecylamine was then added and reacted at room temperature for 60 minutes (TEOS: HC
l: dodecylamine: water = 1: 0.045: 0.48
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous material is a tabular particle in which thin plate-shaped crystal fragments are aggregated, and has a pore characteristic such as a specific surface area.
It is shown in FIG.

【0050】[0050]

【表19】 [Table 19]

【0051】実施例20 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでドデシルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:ドデシルアミン:水=1:0.179:0.48
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製する。生成多孔体は薄板状結晶片
が集合した平板状粒子で、比表面積等の細孔特性を表2
0に示す。
Example 20 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, while stirring, dodecylamine was then added and reacted at room temperature for 60 minutes (TEOS: HC
l: dodecylamine: water = 1: 0.179: 0.48
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound is removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous material is a flat particle formed by assembling thin plate-shaped crystal fragments, and the pore characteristics such as specific surface area are shown in Table 2.
0 is shown.

【0052】[0052]

【表20】 [Table 20]

【0053】実施例21 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでドデシルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:ドデシルアミン:水=1:0.223:0.48
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製する。生成多孔体は薄板状結晶片
が集合した平板状粒子で、比表面積等の細孔特性を表2
1に示す。
Example 21 A mixed solution of TEOS and an aqueous hydrochloric acid solution was prepared at 600 rpm for 5 minutes.
Then, while stirring, dodecylamine was then added and reacted at room temperature for 60 minutes (TEOS: HC
l: dodecylamine: water = 1: 0.223: 0.48
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound is removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous material is a flat particle formed by assembling thin plate-shaped crystal fragments, and the pore characteristics such as specific surface area are shown in Table 2.
It is shown in FIG.

【0054】[0054]

【表21】 [Table 21]

【0055】実施例22 TEOSと塩酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでドデシルアミ
ンを添加し常温で60分反応させた(TEOS:HC
l:ドデシルアミン:水=1:0.268:0.48
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は薄板状結晶片
が集合した平板状粒子で、比表面積等の細孔特性を表2
2に示す。
Example 22 A mixed solution of TEOS and an aqueous hydrochloric acid solution was mixed at 600 rpm for 5 minutes.
Then, while stirring, dodecylamine was then added and reacted at room temperature for 60 minutes (TEOS: HC
l: dodecylamine: water = 1: 0.268: 0.48
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous material is a flat particle formed by assembling thin plate-shaped crystal fragments, and the pore characteristics such as specific surface area are shown in Table 2.
It is shown in FIG.

【0056】[0056]

【表22】 [Table 22]

【0057】実施例23 実施例1の乾燥生成固体を800℃で1時間加熱し有機
化合物を除去してシリカメソ多孔体を作製する。生成多
孔体の比表面積等の細孔特性を表23に示す。
Example 23 The solid produced by drying in Example 1 was heated at 800 ° C. for 1 hour to remove organic compounds, thereby producing a mesoporous silica material. Table 23 shows the pore characteristics such as the specific surface area of the produced porous body.

【0058】[0058]

【表23】 [Table 23]

【0059】実施例24 実施例6の乾燥生成固体を800℃で1時間加熱し有機
化合物を除去してシリカメソ多孔体を作製する。生成多
孔体の比表面積等の細孔特性を表24に示す。
Example 24 The solid produced by drying in Example 6 was heated at 800 ° C. for 1 hour to remove organic compounds, thereby producing a mesoporous silica material. Table 24 shows the pore characteristics such as the specific surface area of the resulting porous body.

【0060】[0060]

【表24】 [Table 24]

【0061】実施例25 実施例8の乾燥生成固体を800℃で1時間加熱し有機
化合物を除去してシリカメソ多孔体を作製する。生成多
孔体の比表面積等の細孔特性を表25に示す。
Example 25 The solid produced by drying in Example 8 was heated at 800 ° C. for 1 hour to remove organic compounds, thereby producing a mesoporous silica material. Table 25 shows the pore characteristics such as the specific surface area of the resulting porous body.

【0062】[0062]

【表25】 [Table 25]

【0063】実施例26 実施例10の乾燥生成固体を800℃で1時間加熱し有
機化合物を除去してシリカメソ多孔体を作製する。生成
多孔体の比表面積等の細孔特性を表26に示す。
Example 26 The dried product solid of Example 10 was heated at 800 ° C. for 1 hour to remove organic compounds, thereby producing a mesoporous silica material. Table 26 shows the pore characteristics such as the specific surface area of the produced porous body.

【0064】[0064]

【表26】 [Table 26]

【0065】実施例27 実施例15の乾燥生成固体を800℃で1時間加熱し有
機化合物を除去してシリカメソ多孔体を作製する。生成
多孔体の比表面積等の細孔特性を表27に示す。
Example 27 The dried product solid of Example 15 was heated at 800 ° C. for 1 hour to remove the organic compound, thereby producing a mesoporous silica material. Table 27 shows the pore characteristics such as the specific surface area of the resulting porous body.

【0066】[0066]

【表27】 [Table 27]

【0067】実施例28 実施例21の乾燥生成固体を800℃で1時間加熱し有
機化合物を除去してシリカメソ多孔体を作製する。生成
多孔体の比表面積等の細孔特性を表28に示す。
Example 28 The solid produced by drying in Example 21 was heated at 800 ° C. for 1 hour to remove organic compounds, thereby producing a mesoporous silica material. Table 28 shows the pore characteristics such as the specific surface area of the produced porous body.

【0068】[0068]

【表28】 [Table 28]

【0069】実施例29 TEOSと硝酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:HNO
3:オクチルアミン:水=1:0.447:0.67
4:24.802)。反応後懸濁液を遠心分離し、生成
固体を室温で1日さらに50℃で1日間乾燥させた後、
最後に500℃で2時間加熱し有機化合物を除去してシ
リカメソ多孔体を作製した。生成多孔体は球形粒子で、
比表面積等の細孔特性を表29に示す。
Example 29 A mixed solution of TEOS and an aqueous nitric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added and the mixture was reacted at room temperature for 60 minutes (TEOS: HNO
3 : octylamine: water = 1: 0.447: 0.67
4: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day.
Finally, the organic compound was removed by heating at 500 ° C. for 2 hours to produce a mesoporous silica material. The resulting porous body is a spherical particle,
Table 29 shows the pore characteristics such as the specific surface area.

【0070】[0070]

【表29】 [Table 29]

【0071】実施例30 TEOSと硫酸水溶液との混合溶液を600rpmで5
分間攪拌し、そのまま攪拌しながら次いでオクチルアミ
ンを添加し常温で60分反応させた(TEOS:H2
4:オクチルアミン:水=1:0.2235:0.6
74:24.802)。反応後懸濁液を遠心分離し、生
成固体を室温で1日さらに50℃で1日間乾燥させた
後、最後に500℃で2時間加熱し有機化合物を除去し
てシリカメソ多孔体を作製した。生成多孔体には一部球
形粒子が認められ、比表面積等の細孔特性は表30の通
りである。
Example 30 A mixed solution of TEOS and an aqueous sulfuric acid solution was mixed at 600 rpm for 5 minutes.
Then, octylamine was added, and the mixture was reacted at room temperature for 60 minutes (TEOS: H 2 S).
O 4 : octylamine: water = 1: 0.2235: 0.6
74: 24.802). After the reaction, the suspension was centrifuged, and the resulting solid was dried at room temperature for 1 day and further at 50 ° C. for 1 day, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a mesoporous silica material. Partially spherical particles were observed in the resulting porous body, and the pore characteristics such as the specific surface area are as shown in Table 30.

【0072】[0072]

【表30】 [Table 30]

【0073】[0073]

【発明の効果】本発明のシリカメソ多孔体は、平均細孔
径が0.8〜4.5nmの六角網目状の細孔が規則性を
もって配列したミクロ構造を有するとともに粒径0.2
〜5μmのマクロ形態をもつ、耐熱性に優れた高比表面
積多孔体である。800℃で1時間大気中で熱処理した
場合でも比表面積は訳500m2/g以上である。さら
に適当な径の細孔を多数有していることから形状選択能
を発揮して効率的に種々の有用あるいは有害な分子、イ
オンをトラップすることができることから、工業及び環
境保全の両面で有用な分子篩いあるいは触媒担体として
利用できる。また、本発明のシリカメソ多孔体は、数ミ
クロンオーダーのエマルジョン界面におけるアルキルア
ミンの秩序形成能を利用して形成され、ミクロ構造ばか
りでなくマクロ形態の規則性も常温常圧下で制御可能な
ことから、多孔性シリカメソ薄膜や繊維の製造にも応用
可能である。
The mesoporous silica material of the present invention has a microstructure in which hexagonal mesh-like pores having an average pore diameter of 0.8 to 4.5 nm are regularly arranged, and has a particle diameter of 0.2.
It is a high specific surface area porous material having a macro form of up to 5 μm and excellent in heat resistance. Even when heat treatment is performed at 800 ° C. for 1 hour in the air, the specific surface area is at least 500 m 2 / g. Furthermore, since it has a large number of pores of an appropriate diameter, it can exhibit various shapes and efficiently trap various useful or harmful molecules and ions, and is useful in both industrial and environmental conservation. It can be used as a molecular sieve or a catalyst carrier. In addition, the mesoporous silica of the present invention is formed by utilizing the ability to form an alkylamine at the emulsion interface on the order of several microns, so that not only the microstructure but also the regularity of the macro form can be controlled under normal temperature and normal pressure. It can also be applied to the production of porous silica meso thin films and fibers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の球形状シリカメソ多孔体の生成過程を
示す模式図である。
FIG. 1 is a schematic view showing a process of producing a mesoporous spherical silica material of the present invention.

【図2】本発明の平板形状シリカメソ多孔体の生成過程
を示す模式図である。
FIG. 2 is a schematic view showing a process of producing a flat-plate-shaped mesoporous silica material of the present invention.

【図3】実施例10で示したシリカメソ多孔体の走査型
電子顕微鏡写真(a)及び透過型電子顕微鏡写真(b)
を示す。
FIG. 3 is a scanning electron micrograph (a) and a transmission electron micrograph (b) of the mesoporous silica shown in Example 10.
Is shown.

【図4】実施例21で示したシリカメソ多孔体の走査型
電子顕微鏡写真(a)及び透過型電子顕微鏡写真(b)
を示す。
FIG. 4 is a scanning electron micrograph (a) and a transmission electron micrograph (b) of the mesoporous silica shown in Example 21.
Is shown.

【図5】実施例10及び実施例21で示したシリカメソ
多孔体の粉末X線回折図である。A:実施例10、B:
実施例21
FIG. 5 is a powder X-ray diffraction chart of the mesoporous silica material shown in Examples 10 and 21. A: Example 10, B:
Example 21

【図6】実施例10及び実施例21で示したシリカメソ
多孔体の窒素吸着等温線である。A:実施例10、B:
実施例21
FIG. 6 is a nitrogen adsorption isotherm of the mesoporous silica material shown in Examples 10 and 21. A: Example 10, B:
Example 21

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 テトラアルキルオルトシリケート、無機1. Tetraalkyl orthosilicate, inorganic
酸及び水を混合してエマルジョンを形成し、次いで該エThe acid and water are mixed to form an emulsion and then the
マルジョンに直鎖アルキルアミンを反応させ、得られたReaction of linear alkylamine with marjon
固体生成物を乾燥、熱処理することからなり、該テトラDrying and heat treating the solid product;
アルキルオルトシリケート1モル当り、該無機酸を0.The inorganic acid is added in an amount of 0.1 mol per mol of alkyl orthosilicate.
05〜0.6モル、該アルキルアミンを0.2〜1.00.5 to 0.6 mol, the alkylamine is 0.2 to 1.0 mol.
モル、及び水を10〜100モル用いるシリカメソ多孔Mole and silica mesoporous using 10 to 100 moles of water
体の製造方法。How to make the body.
【請求項2】シリカメソ多孔体が球形状である請求項12. A mesoporous silica material having a spherical shape.
のシリカメソ多孔体の製造方法。A method for producing a mesoporous silica material.
【請求項3】シリカメソ多孔体が平板形状である請求項3. The mesoporous silica material has a flat plate shape.
1のシリカメソ多孔体の製造方法。1. A method for producing a mesoporous silica material.
JP10291015A 1997-10-13 1998-10-13 Method for producing mesoporous silica material Expired - Lifetime JP3005678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291015A JP3005678B2 (en) 1997-10-13 1998-10-13 Method for producing mesoporous silica material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27833097 1997-10-13
JP9-278330 1997-10-13
JP10291015A JP3005678B2 (en) 1997-10-13 1998-10-13 Method for producing mesoporous silica material

Publications (2)

Publication Number Publication Date
JPH11278825A JPH11278825A (en) 1999-10-12
JP3005678B2 true JP3005678B2 (en) 2000-01-31

Family

ID=26552814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291015A Expired - Lifetime JP3005678B2 (en) 1997-10-13 1998-10-13 Method for producing mesoporous silica material

Country Status (1)

Country Link
JP (1) JP3005678B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614196B2 (en) * 2000-12-14 2011-01-19 独立行政法人産業技術総合研究所 Method for producing spherical porous silica or silica metal composite particles
JP2002274835A (en) * 2001-03-21 2002-09-25 Keio Gijuku Porous silica foam and method for producing the same
JP2002339151A (en) * 2001-05-21 2002-11-27 Toray Ind Inc Synthetic fiber having excellent hygroscopicity and method for producing the same
JP5322042B2 (en) * 2004-10-01 2013-10-23 独立行政法人産業技術総合研究所 Hollow silica microcapsules having mesoporous walls and method for producing the same
JP5418934B2 (en) * 2005-08-09 2014-02-19 日産自動車株式会社 Method for producing porous hollow particles
JP5284580B2 (en) * 2006-12-14 2013-09-11 花王株式会社 Mesoporous silica particles
JP5480461B2 (en) * 2007-01-22 2014-04-23 花王株式会社 Mesoporous silica particles
EP2078696A4 (en) 2006-10-31 2015-09-02 Kao Corp Mesoporous silica particles
JP5118328B2 (en) * 2006-10-31 2013-01-16 花王株式会社 Hollow silica particles
JP5274809B2 (en) * 2007-10-05 2013-08-28 花王株式会社 Manufacturing method of low dielectric constant film
JP5364276B2 (en) * 2008-02-28 2013-12-11 花王株式会社 Hollow silica particles and method for producing the same
JP5364277B2 (en) * 2008-02-28 2013-12-11 花王株式会社 Hollow silica particles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem.Mater.,10(1998)p.1623−1626
Nature,386(1997)p.692−695

Also Published As

Publication number Publication date
JPH11278825A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP3005678B2 (en) Method for producing mesoporous silica material
CN102123967B (en) Synthesis of ordered mesoporous carbon-silicon nanocomposites
JP4968431B2 (en) Spherical silica-based mesoporous material, method for producing the same, and base catalyst using the same
JP4296307B2 (en) Method for producing spherical silica-based mesoporous material
US6174512B1 (en) Silica mesoporous body and process for preparing same
JP4936208B2 (en) Core-shell type spherical silica mesoporous material and method for producing core-shell type spherical silica mesoporous material
JP4975050B2 (en) Method for producing silica structure
Yang et al. Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite
Zawrah et al. Facile and economic synthesis of silica nanoparticles
JP2006008510A (en) Material containing silicon and having hierarchical porosities
JP3128593B2 (en) Method for producing spherical silica-containing porous material and spherical silica-containing porous material
CA2486481A1 (en) Nanoporous inorganic material with high three-dimensional regularity having fine pores, and its production method and evaluation method
JP2007112948A (en) Flaky or fibrous organic/inorganic porous silica particle and method for producing the same
JP4873142B2 (en) Method for producing spherical silica-based mesoporous material
Lin et al. Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture
Xiang-Yun et al. Pore-size control in the sol–gel synthesis of mesoporous silicon carbide
Okamoto et al. Self-organization of crystal-like aromatic–silica hybrid materials
JP4221498B2 (en) Porous alumina crystalline particles and method for producing the same
CN107285332B (en) Synthesis method of ZSM-22 molecular sieve and ZSM-22 molecular sieve synthesized by same
Chu et al. Preparation of mesoporous silica fiber matrix for VOC removal
Liu et al. High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane-tetramethoxysilane gels
JP2004035368A (en) Mesoporous silicate and its manufacturing method
Shah et al. Green approach towards the synthesis of MCM-41 from siliceous sugar industry waste
JP4488191B2 (en) Method for producing spherical silica-based mesoporous material
JP5141948B2 (en) Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term