JP2007112948A - Flaky or fibrous organic/inorganic porous silica particle and method for producing the same - Google Patents

Flaky or fibrous organic/inorganic porous silica particle and method for producing the same Download PDF

Info

Publication number
JP2007112948A
JP2007112948A JP2005307862A JP2005307862A JP2007112948A JP 2007112948 A JP2007112948 A JP 2007112948A JP 2005307862 A JP2005307862 A JP 2005307862A JP 2005307862 A JP2005307862 A JP 2005307862A JP 2007112948 A JP2007112948 A JP 2007112948A
Authority
JP
Japan
Prior art keywords
organic
porous silica
inorganic porous
silica particles
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005307862A
Other languages
Japanese (ja)
Other versions
JP4925086B2 (en
Inventor
Katsunori Kosuge
勝典 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005307862A priority Critical patent/JP4925086B2/en
Publication of JP2007112948A publication Critical patent/JP2007112948A/en
Application granted granted Critical
Publication of JP4925086B2 publication Critical patent/JP4925086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain porous silica particles whose pore surfaces coated with an organic compound through omitting a surfactant-removing step. <P>SOLUTION: The flaky or fibrous organic/inorganic porous silica particles are obtained by the following process: In a strongly acidic reaction system using an inexpensive alkali silicate as silica source in the presence of a nonionic surfactant, the system is put to aging at 60°C or higher for forming a high-order regular structure in particular by controlling both the kind of and the method for adding a metal element, and the solid formed by the reaction is dried. The porous silica particles thus obtained are such that the pore surfaces are coated with the surfactant or the organic groups or organic molecules derived from the surfactant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、薄板状もしくは繊維状の有機無機多孔質シリカ金属複合体粒子とその製造方法に関するものである。より詳細には、本発明は、非イオン性界面活性剤の規則的分子集合体形成能に基づいて、アルカリ珪酸塩から生成するシリカ溶存種と非イオン性界面活性剤との高次規則構造体形成能を利用して作製した、反応生成物からの界面活性剤の除去が不要な薄板状もしくは繊維状の有機無機多孔質シリカ粒子の製造方法と、ハニカム状に規則配列した幅3nm以上の1次元メソ細孔が界面活性剤由来の有機化合物で表面修飾されたことを特徴とする、0.5ミクロン未満の厚さ等の薄片状粒子形態を有する薄板状有機無機多孔質シリカ金属複合体粒子、並びにミクロンサイズの繊維状有機無機多孔質シリカ金属複合体粒子に関するものである。   The present invention relates to a thin plate-like or fibrous organic-inorganic porous silica metal composite particle and a method for producing the same. More specifically, the present invention relates to a high-order ordered structure of a silica-dissolved species generated from an alkali silicate and a nonionic surfactant based on the ability of the nonionic surfactant to form a regular molecular assembly. A method for producing a thin plate-like or fibrous organic-inorganic porous silica particle that does not require the removal of a surfactant from a reaction product, which is produced by using the forming ability, and a honeycomb-shaped regularly arranged 1 having a width of 3 nm or more Thin plate-like organic-inorganic porous silica metal composite particles having a flaky particle shape such as a thickness of less than 0.5 microns, characterized in that the dimensional mesopores are surface-modified with an organic compound derived from a surfactant , And micron-sized fibrous organic-inorganic porous silica metal composite particles.

1992年界面活性剤のミセル規則集合体形成能に基づいて合成されるメソポーラス物質の発見以来、メソ細孔の規則構造のみならず、ミクロンからミリメートルサイズのマクロ形態まで制御した高次規則構造を有する多孔質材料の研究開発が活発に行われている(非特許文献1−2)。また、現在ではシリカ系のみならず金属酸化物に関するメソポーラス材料の開発も重要な研究課題となっている。合成法においても、環境への負荷の抑制並びに経済的なコスト面から、ポリマー系の非イオン系界面活性剤、またシリカ原料としてアルカリ珪酸塩を使用する方法が注目されている(非特許文献3−6)。さらに、有機官能基が細孔表面に規則配列した有機無機ハイブリッド多孔性材料の直接合成も大きな注目を集めている(非特許文献7−9)。   Since the discovery of mesoporous materials synthesized based on the ability of micelle ordered aggregates to form surfactants in 1992, it has not only the regular structure of mesopores but also a highly ordered structure controlled from micron to millimeter size macro form Research and development of porous materials are being actively conducted (Non-Patent Document 1-2). At present, the development of mesoporous materials not only for silica but also for metal oxides is an important research subject. Also in the synthesis method, a method using a polymer-based nonionic surfactant or an alkali silicate as a silica raw material is attracting attention from the viewpoint of suppression of environmental load and economical cost (Non-patent Document 3). -6). Furthermore, direct synthesis of organic-inorganic hybrid porous materials in which organic functional groups are regularly arranged on the surface of the pores is also attracting great attention (Non-patent Documents 7-9).

これまでに報告されたメソポーラス材料は発明者の知る限り、最終的には構造形成剤として使用した界面活性剤を取り除かない限り、多孔性材料としての利用価値はなく、この除去工程として、例えば加熱処理、酸や有機溶媒等による溶媒抽出、超臨界流体処理、マイクロ波加熱等が適用される。   As far as the inventors know, the mesoporous material reported so far has no utility value as a porous material unless the surfactant used as a structure-forming agent is finally removed. Treatment, solvent extraction with acid or organic solvent, supercritical fluid treatment, microwave heating, etc. are applied.

一方、アルカリ珪酸塩とポリマー系の非イオン系界面活性剤を同時に使用し、且つマクロ形態を制御した報告例は極めて少ないのが現状である。(非特許文献10−11)。   On the other hand, there are very few reports on the use of alkali silicates and polymer-based nonionic surfactants at the same time and the macro morphology is controlled. (Nonpatent literature 10-11).

また、本発明者らによって、(3)アルカリ珪酸塩と非イオン系界面活性剤としてトリブロック共重合体を使用して球状シリカ多孔体が合成できることが報告されている(特許文献1)。さらに、(4)アルカリ珪酸塩と非イオン系界面活性剤としてトリブロック共重合体を使用してロッド状並びに繊維状メソシリカ多孔体が合成できることも明らかにされている(特許文献2)。これらの公知技術においては、珪酸ソーダとトリブロック共重合体(商品名 Pluronic P123)を塩酸酸性溶液中において反応させ、攪拌の有無によって、単分散ロッド状並びに繊維状のシリカメソ多孔体を選択的に合成している。さらに、最近、本発明者によって、繊維状及び薄板状多孔質シリカ金属複合体粒子とその製造方法に関し特許出願がなされている(特許文献3、4及び5)。しかし、上記全ての先行技術においては、多孔体として利用することを目的に、使用した界面活性剤を除去するようにしており、そのための方法としては、加熱処理を適用している。これにともなって、細孔表面はシロキサン結合とシラノール基が露出した状態である。
Ciesla, U.; Schuth, F. Microporous Mesoporous Mater. 1999, 27, 131. Stein, A. Adv. Mater. 2003, 15, 763. Sierra, L.; Guth, J-L. Microporous Mesoporous Mater. 1999, 28, 243. Kim, S.S.; Pauly, T.R.; Pinnavaia T. J. Chem. Commun. 2000, 835. Kim, J.M.; Stucky, G.D. Chem. Commun. 2000, 1159. Kim, S.S.; Pauly, T.R.; Pinnavaia T.J. Chem. Commun. 2000, 1661. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am.Chem. Soc. 1999, 121, 9611. Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem.Soc. 2000, 122, 5660. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002,416, 304. Boissiere, C.; Larbot, A.; van der Lee, A.: Kooyman, P.J.;Prouzet, E. Chem. Mater. 2000, 12, 2902. Sun, Q.; Kooyman, P.J.; Grossmann, J.G.; Bomans, P.H.H.; Frederik,P.M.; Magusin, P.C.M.M.; Beelen, T.P.M.; van Santen, R.A.; Sommerdijk,N.A.J.M. Adv. Mater. 2003, 15, 1097. 特開2004−143026 特開2003−342019 特願2004−313046 特願2004−313071
In addition, the present inventors have reported that (3) a spherical silica porous body can be synthesized using a triblock copolymer as an alkali silicate and a nonionic surfactant (Patent Document 1). Furthermore, (4) it has also been clarified that rod-like and fibrous mesosilica porous bodies can be synthesized using alkali silicate and a triblock copolymer as a nonionic surfactant (Patent Document 2). In these known techniques, sodium silicate and a triblock copolymer (trade name Pluronic P123) are reacted in a hydrochloric acid acidic solution, and monodispersed rod-like and fibrous silica mesoporous materials are selectively selected by the presence or absence of stirring. Synthesizing. Furthermore, recently, a patent application has been filed by the present inventors regarding fibrous and thin plate-like porous silica metal composite particles and a method for producing the same (Patent Documents 3, 4 and 5). However, in all the above prior arts, the used surfactant is removed for the purpose of utilizing as a porous material, and a heat treatment is applied as a method for that purpose. Accordingly, the surface of the pores is in a state where siloxane bonds and silanol groups are exposed.
Ciesla, U .; Schuth, F. Microporous Mesoporous Mater. 1999, 27, 131. Stein, A. Adv. Mater. 2003, 15, 763. Sierra, L .; Guth, JL. Microporous Mesoporous Mater. 1999, 28, 243. Kim, SS; Pauly, TR; Pinnavaia TJ Chem. Commun. 2000, 835. Kim, JM; Stucky, GD Chem. Commun. 2000, 1159. Kim, SS; Pauly, TR; Pinnavaia TJ Chem. Commun. 2000, 1661. Inagaki, S .; Guan, S .; Fukushima, Y .; Ohsuna, T .; Terasaki, OJ Am. Chem. Soc. 1999, 121, 9611. Guan, S .; Inagaki, S .; Ohsuna, T .; Terasaki, OJ Am. Chem. Soc. 2000, 122, 5660. Inagaki, S .; Guan, S .; Ohsuna, T .; Terasaki, O. Nature 2002, 416, 304. Boissiere, C .; Larbot, A .; van der Lee, A .: Kooyman, PJ; Prouzet, E. Chem. Mater. 2000, 12, 2902. Sun, Q .; Kooyman, PJ; Grossmann, JG; Bomans, PHH; Frederik, PM; Magusin, PCMM; Beelen, TPM; van Santen, RA; Sommerdijk, NAJM Adv. Mater. 2003, 15, 1097. JP2004-143026 JP2003-342019 Japanese Patent Application No. 2004-313046 Japanese Patent Application No. 2004-313071

上記の通り、従来では、メソポーラス材料の細孔を利用する場合には、最終的には界面活性剤を多量に含んだメソポーラス材料前駆体である有機無機複合体から、細孔形成剤として使用した界面活性剤を取り除くことは必須の工程である。そこで、メソポーラス材料製造に当たり、この界面活性剤の除去工程を省くことができればコスト削減の観点から極めて効率的であることになる。また、界面活性剤の除去工程を省くことになれば、メソポーラス材料前駆体それ自体を多孔性材料とする合成法自体に基づいて、細孔形成剤として使用した界面活性剤である有機化合物が細孔表面を修飾することになり、シリカ表面さらには反応性の有機官能基で覆われた細孔表面とは全く性質の異なる新規有機無機多孔質シリカ粒子が提供されることになる。   As described above, in the past, when using the pores of the mesoporous material, it was finally used as the pore-forming agent from the organic-inorganic composite that is a mesoporous material precursor containing a large amount of surfactant. Removing the surfactant is an essential step. Therefore, in the production of the mesoporous material, if this surfactant removal step can be omitted, it will be extremely efficient from the viewpoint of cost reduction. Also, if the surfactant removal step is omitted, the organic compound that is the surfactant used as the pore-forming agent is fine based on the synthesis method itself using the mesoporous material precursor itself as the porous material. The pore surface is modified, and novel organic inorganic porous silica particles having completely different properties from the silica surface and the pore surface covered with the reactive organic functional group are provided.

しかし、従来、このような粒子は実現されておらず、これを可能とする合成方法についてもこれまでのところ提案されていない。   However, heretofore, such particles have not been realized, and no synthetic method that enables this has been proposed so far.

そして、珪酸ソーダとトリブロック共重合体を使用してマクロ形態を制御した多孔質粒子の報告例は極めて少なく、まして合成したメソポーラス材料前駆体から界面活性剤を除く特別な処理をすることなく、前駆体自体を直接薄板状あるいは繊維状有機無機多孔質シリカ粒子として利用できる報告はない。   And there are very few reports of porous particles with controlled macro morphology using sodium silicate and triblock copolymer, and without any special treatment to remove the surfactant from the synthesized mesoporous material precursor, There is no report that the precursor itself can be directly used as a thin plate-like or fibrous organic-inorganic porous silica particle.

そこで、本発明者らは、安価なアルカリ珪酸塩をシリカ源とし、無毒性の非イオン性界面活性剤をテンプレートとするとの本発明者によりこれまでに開発された技術を踏まえ、細孔表面が使用した界面活性剤である有機化合物で覆われ、且つマクロ形態を薄板状並びに繊維状に制御した、新たな薄板状あるいは繊維状有機無機多孔質シリカ粒子と、その製造方法を提供することを課題としている。   Therefore, the present inventors have developed a porous surface based on the technology developed so far by the present inventors that inexpensive alkali silicate is used as a silica source and a non-toxic nonionic surfactant is used as a template. PROBLEM TO BE SOLVED: To provide new thin plate-like or fibrous organic inorganic porous silica particles covered with an organic compound which is a used surfactant and whose macro form is controlled to be thin and fiber, and a method for producing the same. It is said.

本発明者は上記の課題を解決すべく鋭意検討を進め、高温におけるシリカ・界面活性剤の高次構造形成能並びにそのマクロ形態を制御するための金属種の選択、さらには界面活性剤除去工程を省くことを可能にする反応条件を厳密に制御することで、最終的に繊維状あるいは薄板状形態を有し、細孔表面が有機化合物で覆われた新たな有機無機多孔質シリカ粒子の合成に成功した。   The present inventor has intensively studied to solve the above problems, and selects a metal species for controlling the high-order structure forming ability of the silica / surfactant at high temperature and its macro form, and further the surfactant removing step. Strictly control the reaction conditions that make it possible to eliminate the need to synthesize new organic-inorganic porous silica particles that finally have a fibrous or thin-plate morphology and whose pore surfaces are covered with organic compounds succeeded in.

すなわち、従来の低コスト、低環境負荷な材料設計に基づいて、細孔構造、マクロ形態を制御するために、無毒性で、生分解性の非イオン性界面活性剤を使用し、更にシリカ源として安価なアルカリ珪酸塩を用いた強酸性反応系において、金属元素の種類と添加方法を制御することにより、特に高次規則構造の形成を60℃以上の高温下で進行させることにより、薄板状もしくは繊維状の有機無機ナノ複合体を合成し、その合成物を単に乾燥させるだけで、細孔表面が有機化合物で覆われた薄板状乃至繊維状有機無機多孔質シリカ粒子が得られることを見出した。   That is, based on conventional low-cost, low environmental load material design, non-toxic, biodegradable nonionic surfactants are used to control the pore structure and macro morphology, and the silica source In a strongly acidic reaction system using an inexpensive alkali silicate, by controlling the kind and addition method of the metal element, the formation of a high-order ordered structure proceeds particularly at a high temperature of 60 ° C. or more, thereby forming a thin plate Alternatively, it has been found that by simply synthesizing a fibrous organic-inorganic nanocomposite and simply drying the composite, thin plate-like or fibrous organic-inorganic porous silica particles whose pore surfaces are covered with an organic compound can be obtained. It was.

本発明は以上のような全く新しい、従来では予期することのできない知見を踏まえて完成されたものである。すなわち、本発明によれば、
1.下記式
[(Si1−n)O100−p[CH]p
(式中、Mは多価金属を示し、
CHは、使用した界面活性剤由来の有機物を示し、
nはゼロを含む0.1以下の数であり、
pは30以下の数であって、重量割合を示している。)
で表される化学的組成を有する薄板状乃至繊維状有機無機多孔質シリカ粒子が提供される。
The present invention has been completed on the basis of the above-mentioned completely new knowledge that could not be expected in the past. That is, according to the present invention,
1. Formula [(Si 1-n M n ) O 2] 100-p [CH] p
(Wherein M represents a polyvalent metal,
CH represents the organic substance derived from the surfactant used,
n is a number of 0.1 or less including zero,
p is a number of 30 or less, and indicates a weight ratio. )
A thin plate-like or fibrous organic-inorganic porous silica particle having a chemical composition represented by

そして、上記のとおりの本発明の薄板状もしくは繊維状有機無機多孔質シリカ粒子においては、
2.走査型顕微鏡観察により薄板状粒子の薄板の厚さが0.5μm未満であること、
3.走査型顕微鏡観察により繊維状粒子の長軸の長さが5から2000μmの範囲にあり、アスペクト比が3から150であって、形状がファイバー状であること、
4.回折角0.5乃至5度(CuKα)に細孔の規則配列構造を示す複数のX線回折ピークを有すること、
5.BET比表面積が100m/g以上且つメソ細孔径が3〜20nmの範囲にあり、全細孔容積が0.2ml/g以上を有すること、
が好ましい。
And in the thin plate-like or fibrous organic inorganic porous silica particles of the present invention as described above,
2. The thickness of the thin plate-like particle is less than 0.5 μm by scanning microscope observation,
3. The length of the long axis of the fibrous particles is in the range of 5 to 2000 μm by scanning microscope observation, the aspect ratio is 3 to 150, and the shape is fiber-like,
4). Having a plurality of X-ray diffraction peaks showing a regular arrangement structure of pores at a diffraction angle of 0.5 to 5 degrees (CuKα),
5. The BET specific surface area is 100 m 2 / g or more and the mesopore diameter is in the range of 3 to 20 nm, and the total pore volume is 0.2 ml / g or more,
Is preferred.

また、本発明によれば、
6.酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度25℃乃至45℃で攪拌混合しながら金属塩を添加し、10秒〜20分間経過後、攪拌を停止し、60℃以上で一定時間静置し熟成させて得られた生成固体を乾燥することによる上記の薄板状の有機無機多孔質シリカ粒子の製造方法が提供される。
Moreover, according to the present invention,
6). The metal salt was added to the mixed solution of the acidic aqueous solution and the nonionic surfactant while stirring and mixing the aqueous alkali silicate solution at a reaction temperature of 25 ° C. to 45 ° C., and stirring was stopped after 10 seconds to 20 minutes. There is provided a method for producing the above-mentioned lamellar organic-inorganic porous silica particles by drying a produced solid obtained by standing at 60 ° C. or higher for a predetermined time and aging.

さらに、本発明によれば、
7.酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度30℃乃至45℃において、攪拌下で混合し、攪拌を継続しながら白色固体の生成が認められた後、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、得られた生成固体を乾燥することを特徴とする繊維状の有機無機多孔質シリカ粒子の製造方法が提供される。
8.酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度30℃乃至45℃において、攪拌下で混合し、攪拌を継続しながら白色固体の生成が認められた後、反応懸濁液に金属塩を添加してから30秒〜5分間反応させた後、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、生成固体を乾燥することを特徴とする金属元素を含有する繊維状の有機無機多孔質シリカ粒子の製造方法が提供される。
Furthermore, according to the present invention,
7). After mixing the aqueous solution of an acidic aqueous solution and a nonionic surfactant with an aqueous alkali silicate solution at a reaction temperature of 30 ° C. to 45 ° C. with stirring, the formation of a white solid was observed while continuing stirring. Fibrous organic inorganic, characterized in that stirring is stopped and ripening is allowed to stand for a certain period of time at 60 ° C. or higher, or is aged for a certain period of time at 60 ° C. or higher with stirring, and the resulting solid product is dried. A method for producing porous silica particles is provided.
8). After mixing the aqueous solution of an acidic aqueous solution and a nonionic surfactant with an aqueous alkali silicate solution at a reaction temperature of 30 ° C. to 45 ° C. with stirring, the formation of a white solid was observed while continuing stirring. After adding a metal salt to the reaction suspension and reacting for 30 seconds to 5 minutes, the stirring is stopped and the mixture is aged while standing at 60 ° C. or higher for a certain period of time, or is stirred for more than 60 ° C. for a certain time. A method for producing fibrous organic-inorganic porous silica particles containing a metal element, characterized by aging and drying the resulting solid, is provided.

そして、本発明の薄板状もしくは繊維状有機無機多孔質シリカ粒子の製造方法においては、
9.アルカリ珪酸塩中のSiO1モル当たり、非イオン性界面活性剤を0.01乃至0.02モルの量、酸を4乃至7モルの量、水を150乃至400モルの量で用いること、金属塩をSiO1モル当たり、0乃至0.40モルの量で用いること、
が好ましい。
And in the manufacturing method of the lamellar or fibrous organic inorganic porous silica particles of the present invention,
9. Using a nonionic surfactant in an amount of 0.01 to 0.02 mol, an acid in an amount of 4 to 7 mol, and water in an amount of 150 to 400 mol, per mol of SiO 2 in the alkali silicate; Using a metal salt in an amount of 0 to 0.40 moles per mole of SiO 2 ;
Is preferred.

さらに、本発明においては、上記のとおりの薄板状もしくは繊維状有機無機多孔質シリカ粒子について、これを用いた、樹脂または塗料用ナノコンポジット材料、フィルム状成型体用ナノコンポジット材料、吸着もしくは分離剤をも提供する。   Furthermore, in the present invention, the thin plate-like or fibrous organic-inorganic porous silica particles as described above are used for the resin or coating nanocomposite material, film-shaped molded nanocomposite material, adsorption or separation agent. Also provide.

本発明によれば、安価なアルカリ珪酸塩をシリカ源として用い、安全性の高い非イオン性界面活性剤をテンプレートとして使用し、更に比較的短時間で、細孔内に有機化合物を含んだ薄板状もしくは繊維状の有機無機多孔質シリカ粒子が提供される。   According to the present invention, an inexpensive alkali silicate is used as a silica source, a highly safe nonionic surfactant is used as a template, and a thin plate containing an organic compound in pores in a relatively short time. Or fibrous organic-inorganic porous silica particles are provided.

また、本発明によれば、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を攪拌混合下で形成する、高次構造を持った反応中間体を、60℃以上で一定時間熟成し得られた生成固体を単に乾燥することによる薄板状もしくは繊維状の有機無機多孔質シリカ粒子の製造方法が提供される。   In addition, according to the present invention, a reaction intermediate having a higher-order structure that forms an aqueous alkali silicate solution under stirring and mixing in a mixed solution of an acidic aqueous solution and a nonionic surfactant is constant at 60 ° C. or higher. Provided is a method for producing a thin plate-like or fibrous organic-inorganic porous silica particle by simply drying a produced solid obtained by aging.

しかも、本薄板状、あるいは繊維状の有機無機多孔質シリカ粒子は、マクロ形態に特長を有すると同時に、前者では薄板面を垂直に貫通する1次元メソチャンネル孔がハニカム状に規則配列し、後者では繊維の伸張方向に1次元メソチャンネル孔がハニカム状に規則配列していることが大きな特徴である。   Moreover, this thin plate-like or fibrous organic inorganic porous silica particle has a macro form, and at the same time, in the former, one-dimensional mesochannel holes vertically penetrating the thin plate surface are regularly arranged in a honeycomb shape, and the latter The main feature is that the one-dimensional mesochannel holes are regularly arranged in a honeycomb shape in the fiber stretching direction.

さらに、薄板状の有機無機多孔質シリカ粒子においては、上記常温付近、常圧下で薄板状多孔体の前駆体となる界面活性剤を含んだ有機無機ナノ複合体を多価金属の添加によって形成させ、より高温下で静置・熟成することによって、細孔径の大きな薄板状有機無機多孔質シリカ粒子並びにその製造方法が提供される。   Furthermore, in the thin plate-like organic inorganic porous silica particles, an organic-inorganic nanocomposite containing a surfactant that becomes a precursor of the thin plate-like porous body at about normal temperature and under normal pressure is formed by adding a polyvalent metal. By standing and aging at higher temperatures, a thin plate-like organic-inorganic porous silica particle having a large pore diameter and a method for producing the same are provided.

また、繊維状の有機無機多孔質シリカ粒子においては、上記常温付近、常圧下で繊維状多孔体の前駆体となる界面活性剤を含んだ有機無機ナノ複合体を撹拌条件下、多価金属の添加あるいは無添加それぞれの条件で形成させ、より高温下で熟成することによって、細孔径の大きな繊維状有機無機多孔質シリカ粒子並びにその製造方法が提供される。   In the case of fibrous organic-inorganic porous silica particles, an organic-inorganic nanocomposite containing a surfactant that becomes a precursor of a fibrous porous body under normal temperature and normal pressure is mixed with a polyvalent metal under stirring conditions. By forming them under the respective conditions of addition or non-addition and aging at higher temperatures, fibrous organic inorganic porous silica particles having a large pore diameter and a method for producing the same are provided.

本発明による薄板状もしくは繊維状有機無機多孔質シリカ粒子は、大きなメソ孔内に有機化合物が内包され、その特異な局所空間の持つ吸着能を利用して、環境汚染排出物質等の浄化プロセスへの応用、あるいは無機骨格の中に有機化合物が存在する新規有機修飾シリカ系多孔体として新規用途を導くことが期待される。さらに、薄板状または繊維状形態を利用することによって、樹脂添加剤、インク吸着用フィラー、増粘剤等の用途や、さらには単独乃至他の無機物質および有機化合物と混合することによりフェルト様に加工成型し、各種フィルター素材として広く利用することが可能である。特に、細孔径が広範囲に制御できることから、大きなメソ孔を利用することによって、酵素あるいは他の有機官能基を有する大きな分子の吸着・分離・吸蔵・固定剤等として利用することができる。   The thin plate-like or fibrous organic-inorganic porous silica particles according to the present invention contain organic compounds in large mesopores, and use the adsorption capacity of the unique local space to the purification process of environmental pollutants and emissions. It is expected to lead to new applications as a novel organic modified silica-based porous material in which an organic compound is present in an inorganic skeleton. Furthermore, by using a thin plate or fibrous form, it can be used as a resin additive, an ink adsorbing filler, a thickener, etc., or even mixed with other inorganic substances and organic compounds alone or in a felt-like manner. It can be processed and molded and widely used as various filter materials. In particular, since the pore diameter can be controlled over a wide range, by using large mesopores, it can be used as an adsorbing / separating / occluding / fixing agent for large molecules having enzymes or other organic functional groups.

本発明では、薄板状および繊維状のいずれかの有機無機多孔質シリカ粒子とその製造において、シリカ源としてアルカリ珪酸塩を用い、金属アルコキシド等の高価な有機シリカを使用する必要がないこと、テンプレートとして高価な4級アンモニウム塩等を使用せずに無毒性、生分解性、安価な非イオン性界面活性剤を使用できること、また短時間で目的の薄板状及び繊維状粒子を高収率で得られること、特に添加する金属種を選択することによって、薄板状に制御できること、さらには金属種の添加によってテンプレート剤である非イオン性界面活性剤の除去し易くなること等を利用して、特段の界面活性剤除去工程を経ずして、細孔径の大きな薄板状、あるいは繊維状有機無機多孔質シリカ粒子として回収できることが大きな特徴である。そして、このような特徴は全く新規なもので、従来の技術からは予期できないものである。   In the present invention, in the production of the organic inorganic porous silica particles in the form of thin plates and fibers, and the production thereof, alkali silicate is used as the silica source, and there is no need to use expensive organic silica such as metal alkoxide, template Non-toxic, biodegradable and inexpensive nonionic surfactants can be used without using expensive quaternary ammonium salts, etc., and the desired thin and fibrous particles can be obtained in high yield in a short time In particular, by selecting the metal species to be added, it can be controlled in a thin plate shape, and further, by adding the metal species, it is easy to remove the nonionic surfactant as a template agent. It is a great feature that it can be recovered as a thin plate-like or pore-like organic / inorganic porous silica particle having a large pore diameter without passing through the surfactant removal step.Such a feature is completely new and cannot be expected from the prior art.

本発明による薄板状、あるいは繊維状の有機無機多孔質シリカ粒子では、上記のように、1次元メソチャンネルがハニカム状に規則配列し、その細孔内に有機化合物が存在している。このような有機無機多孔質シリカ粒子のマクロ形態の規則性は以下のように推定される。   In the thin plate-like or fibrous organic-inorganic porous silica particles according to the present invention, as described above, one-dimensional mesochannels are regularly arranged in a honeycomb shape, and an organic compound is present in the pores. The regularity of the macro form of such organic-inorganic porous silica particles is estimated as follows.

すなわち、まず、アルカリ珪酸塩は強酸性水溶液下でシリカ溶存種がプラスに帯電し[
]、一方、強酸に溶解した非イオン性界面活性剤[N]においても、界面活性剤表面
の親水基部分がプロトン[H]に覆われることでプラスの電荷を帯び、プラスに帯電したシリカ溶存種、界面活性剤の両表面間に陰イオン[X]が介在することで、電気的に安定なメソ構造体[N][X]を形成すると推定される。この時、非イオン性界面活性剤は自己秩序形成能を有し、複数の分子によって構成された球状集合体がさらに高次の2次元六方晶のロッド状ミセルを形成し、シリカ溶存種が存在しても、両者間における協調的な秩序形成が進行し、ロッド状有機無機メソ構造体が生成することになる。このロッド状有機無機メソ構造体の伸張方向の長さを短く保ち、それぞれの粒子の凝集を抑制することで、薄板状の形態を有する粒子が得られることになる。また、繊維状粒子はロッド状有機無機メソ構造体を連結させるように成長させて得られる。
That is, first, alkali silicate is positively charged with silica-dissolved species under strong acidic aqueous solution [
I + ], on the other hand, in the nonionic surfactant [N 0 ] dissolved in strong acid, the hydrophilic group on the surface of the surfactant is covered with protons [H + ] and thus has a positive charge. Presumed to form an electrically stable mesostructure [N 0 H + ] [X I + ] by the presence of an anion [X ] between both surfaces of the charged silica dissolved species and the surfactant. Is done. At this time, the nonionic surfactant has a self-ordering ability, and a spherical aggregate composed of a plurality of molecules forms higher-order two-dimensional hexagonal rod-like micelles, and silica dissolved species exist. Even so, cooperative order formation between the two proceeds, and a rod-shaped organic-inorganic mesostructure is generated. By keeping the length of the rod-like organic / inorganic mesostructure in the extension direction short and suppressing aggregation of the respective particles, particles having a thin plate shape can be obtained. Further, the fibrous particles are obtained by growing so as to connect the rod-like organic inorganic mesostructures.

以上のようなメソ構造の規則性を有する本発明の薄板状もしくは繊維状の有機無機多孔質シリカ粒子は、その組成が上記の一般式で表わされるものであるが、この一般式における符号CHは、非イオン性界面活性剤、もしくはこれに由来する有機分子あるいは有機基である。このことは、本発明の最大の特徴である界面活性剤の除去工程を不要としていることに起因している。   The thin plate-like or fibrous organic-inorganic porous silica particles of the present invention having the regularity of the mesostructure as described above have a composition represented by the above general formula. , A nonionic surfactant, or an organic molecule or organic group derived therefrom. This is due to the fact that the step of removing the surfactant, which is the greatest feature of the present invention, is unnecessary.

本発明において、その製造方法で界面活性剤の除去工程を不要としてよい理由は以下の様に推察される。つまり、本発明では両親媒性非イオン性界面活性剤がロッド状ミセル集合体を形成することに基づいているが、最終的にメソ細孔空間を誘起するのは疎水部であり、細孔径は高温になるほど親水部が疎水性を帯び易くなるために大きくなることは公知のことである。一方、図1のTG−DTA曲線のように、たとえばZrのわずかな添加で、純粋なシリカ系(図9)と比較して、界面活性剤の除去に要する温度は高くなり、また熟成温度が高くなるほどDTA曲線はかなりブロードになることがわかる。さらに、熟成温度が高いほど重量減量率が小さいことが明白である。このことは、シリケート骨格中のSiの一部を金属元素で置換すると、シリケート骨格表面に接する界面活性剤との相互作用が大きくなり、さらに温度が高くなると疎水性が強くなり、集合ミセルの大きさの増大と共に、ミセルの規則集合構造に大きな乱れが生じるようになり、シリカ表面に強く結合して細孔表面を覆う少数の界面活性剤分子と、構造体から反応溶液中に流出する大部分の界面活性剤分子とにはっきり類別されるようになると考えられる。なお、金属塩を添加しない場合でも、熟成温度が高くなるほど、それ程大きな効果は発揮されないが、前記と同様な現象が認められるようになる。そして最終的に、テンプレートとした界面活性剤を除去することなく、強く配位した界面活性剤分子に表面が覆われた細孔を持つ薄板状もしくは繊維状有機無機多孔質シリカ粒子が得られることになる。   In the present invention, the reason for eliminating the need for the surfactant removal step in the production method is presumed as follows. That is, in the present invention, the amphiphilic nonionic surfactant is based on the formation of rod-like micelle aggregates, but it is the hydrophobic part that ultimately induces mesopore space, and the pore diameter is It is well known that the higher the temperature, the larger the hydrophilic portion becomes hydrophobic. On the other hand, as shown in the TG-DTA curve in FIG. 1, for example, with a slight addition of Zr, the temperature required for removal of the surfactant is higher than that of pure silica (FIG. 9), and the aging temperature is higher. It can be seen that the higher the DTA curve is, the higher it is. Further, it is clear that the weight loss rate is smaller as the aging temperature is higher. This means that if a part of Si in the silicate skeleton is replaced with a metal element, the interaction with the surfactant in contact with the surface of the silicate skeleton increases, and the hydrophobicity increases as the temperature rises. As the thickness increases, the disordered structure of micelles is greatly disturbed, with a small number of surfactant molecules that bind strongly to the silica surface and cover the pore surface, and most of the structure that flows into the reaction solution. It is considered that the surfactant molecules are clearly classified. Even when the metal salt is not added, the higher the aging temperature, the less effective the effect is, but the same phenomenon as described above is observed. Finally, thin or fibrous organic / inorganic porous silica particles with pores whose surfaces are covered with strongly coordinated surfactant molecules can be obtained without removing the surfactant as a template. become.

たとえばこのように、本発明の有機無機多孔質シリカ粒子においては、走査型電子顕微鏡観察により、図3に示すように、たとえば薄板状粒子は幅1ミクロン、厚さ約0.3〜0.4ミクロンの六角薄板状粒子が強く凝集しない状態で存在している。また、繊維状粒子は、図7の通り、薄板状粒子が面方向に伸張したと考えられる、たとえば約1ミクロンのロッド状粒子の連鎖体であり、さらに連鎖体が絡み合って数百ミクロンの1本の繊維状粒子となっている。ここで、本発明の有機無機多孔質シリカ粒子の化学式[(Si1−n)O100−p[(CH)]p中の係数nは0.1以下の数である。たとえば、後述の実施例として示した表1においては、金属含有量の値を100で割った値であり、0.011〜0.047となる。pは重量%で30%以下の数である。 For example, as described above, in the organic inorganic porous silica particles of the present invention, as shown in FIG. 3, for example, the thin plate-like particles have a width of 1 μm and a thickness of about 0.3 to 0.4 by scanning electron microscope observation. Micron hexagonal lamellar particles are present in a state where they are not strongly aggregated. Further, as shown in FIG. 7, the fibrous particles are a chain of rod-like particles of, for example, about 1 micron, which are considered to be obtained by extending the lamellar particles in the plane direction. It becomes a fibrous particle of a book. Here, the coefficient n of the formula of organic and inorganic porous silica particles [(Si 1-n M n ) O 2] 100-p [(CH)] in p of the present invention is a number of 0.1 or less. For example, in Table 1 shown as an example described later, it is a value obtained by dividing the value of the metal content by 100, which is 0.011 to 0.047. p is a number of 30% or less by weight%.

図5および図8は、本発明の薄板状または繊維状有機無機多孔質シリカ粒子の粉末X線回折パターン(X線源:CuKα)で、たとえば回折角2θ=0.5乃至5.0度にメソ孔の規則配列を示す複数のピークが認められる。   5 and 8 are powder X-ray diffraction patterns (X-ray source: CuKα) of the thin plate-like or fibrous organic inorganic porous silica particles of the present invention, for example, at a diffraction angle 2θ = 0.5 to 5.0 degrees. A plurality of peaks indicating a regular arrangement of mesopores are observed.

図3は、図2に示した本発明の薄板状の有機無機多孔質シリカ粒子の透過型電子顕微鏡写真である。薄板状平面に垂直に1次元メソチャンネルが貫通し且つこのチャンネル状細孔がハニカム状に規則配列していることがわかる。また、繊維状の有機無機多孔質シリカ粒子は、長さ数十から数百ミクロンの範囲で制御可能であり、たとえば図7に示した通り、約1ミクロンのロッド状粒子が連結して成長していることがわかる。両有機無機多孔質シリカ粒子の吸着等温線及びXRD回折パターンは類似しており、繊維状の有機無機多孔質シリカ粒子は、長軸方向に1次元メソチャンネルがハニカム状に積層して存在していることを示している。さらに、本発明の金属塩を添加して作製した薄板状、繊維状有機無機多孔質シリカ粒子は、600℃で処理してアンモニア昇温脱離スペクトルを測定すると酸点の存在が明らかとなり、シリケート骨格中のSiを他の金属原子で置換しているものと推定される。   FIG. 3 is a transmission electron micrograph of the thin organic inorganic porous silica particles of the present invention shown in FIG. It can be seen that the one-dimensional mesochannel penetrates perpendicularly to the thin plate-like plane and the channel-shaped pores are regularly arranged in a honeycomb shape. The fibrous organic-inorganic porous silica particles can be controlled in the range of several tens to several hundreds of microns. For example, as shown in FIG. 7, rod-shaped particles of about 1 micron are connected and grown. You can see that The adsorption isotherm and XRD diffraction pattern of both organic-inorganic porous silica particles are similar, and the fibrous organic-inorganic porous silica particles are present as a one-dimensional mesochannel laminated in a honeycomb shape in the major axis direction. It shows that. Furthermore, the thin plate-like and fibrous organic / inorganic porous silica particles prepared by adding the metal salt of the present invention were processed at 600 ° C. and measured for the temperature-programmed desorption spectrum of ammonia. It is presumed that Si in the skeleton is substituted with another metal atom.

本発明の薄板状または繊維状多孔質シリカ金属複合体粒子は、いずれもIV型の窒素吸着等温線を持ち、一次粒子内にメソ孔を持つこと、さらに図2、図6及び図10の細孔径分布曲線(BJH法)からシャープな細孔径分布を有していることが明らかである。そして、本発明によれば、薄板状並びに繊維状粒子のBET比表面積が100m2/g以上で
、かつ、メソ細孔径が3〜20nmの範囲にあり、全細孔容積が0.2ml/g以上を有する薄板状および繊維状有機無機多孔質シリカ粒子が提供される。
Each of the thin plate-like or fibrous porous silica metal composite particles of the present invention has an IV-type nitrogen adsorption isotherm, has mesopores in the primary particles, and the fine particles shown in FIGS. It is clear from the pore size distribution curve (BJH method) that it has a sharp pore size distribution. According to the present invention, the BET specific surface area of the thin plate-like and fibrous particles is 100 m 2 / g or more, the mesopore diameter is in the range of 3 to 20 nm, and the total pore volume is 0.2 ml / g. Thin plate-like and fibrous organic-inorganic porous silica particles having the above are provided.

さらに、本発明による薄板状および繊維状有機無機多孔質シリカ粒子は、大きなメソ孔内に有機化合物が内包され、細孔表面はシリカ骨格の場合と全く異なる化学的特性を有している。例えば、図11に示すように、シリカ骨格に囲まれた細孔を有する多孔質シリカ粒子では、水蒸気は化学的に吸着し、吸着等温線にはヒステリシスが認められる。しかし、本有機無機多孔質シリカ粒子の水蒸気吸着等温線にはヒステリシスは認められず、多孔質シリカ粒子として特異な局所空間を持っていること考えられる。このことは、図12の赤外線分光スペクトルに認められるCH、CH等の基準振動から明らかなように、本有機無機多孔質シリカ粒子の細孔内には使用した界面活性剤の少くとも一部が存在していることに起因している。 Furthermore, the thin plate-like and fibrous organic / inorganic porous silica particles according to the present invention have an organic compound encapsulated in large mesopores, and the pore surfaces have completely different chemical characteristics from those of the silica skeleton. For example, as shown in FIG. 11, in porous silica particles having pores surrounded by a silica skeleton, water vapor is chemically adsorbed, and hysteresis is observed in the adsorption isotherm. However, no hysteresis is observed in the water vapor adsorption isotherm of the organic-inorganic porous silica particles, and it is considered that the porous silica particles have a unique local space. As is apparent from the reference vibrations such as CH 2 and CH 3 observed in the infrared spectrum of FIG. 12, this indicates that at least one of the used surfactants is present in the pores of the organic inorganic porous silica particles. This is due to the existence of the part.

本発明における多価金属Mについては、シリケートのSi原子を置換するものとして各種であってよいが、代表的には、原子価4をとるZr、Tiや、原子価3〜5をとるCr,V,MnあるいはSn,Ge,Al等が好適なものとして例示される。   The polyvalent metal M in the present invention may be various as a substitute for the Si atom of the silicate, but typically, Zr, Ti having a valence of 4, Cr having a valence of 3-5, V, Mn, Sn, Ge, Al, etc. are exemplified as suitable ones.

本発明の薄板状の有機無機多孔質シリカ粒子の製造方法について説明すると、まず、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度25℃乃至45℃で攪拌混合しながら金属塩を添加し、10秒〜20分間経過後、攪拌を停止し、50℃以上、好ましくは60℃以上で一定時間静置し熟成させて得られた生成固体を乾燥する。   The method for producing the thin organic inorganic porous silica particles of the present invention will be described. First, an aqueous alkali silicate solution is stirred at a reaction temperature of 25 ° C. to 45 ° C. in a mixed solution of an acidic aqueous solution and a nonionic surfactant. The metal salt is added while mixing, and after 10 seconds to 20 minutes, stirring is stopped, and the product solid obtained by allowing to stand at 50 ° C. or higher, preferably 60 ° C. or higher for a predetermined time and aging is dried.

本発明では、非イオン性界面活性剤の高次構造として薄い円盤状の集合体を形成させる目的で、種々の金属塩を添加し、最終生成物のマクロ形態に及ぼす効果を検討した。その結果、数種類の金属塩で効果が認められ、しかもこれらの金属元素は酸性条件下においてシリカ骨格中のSiを置換することが明らかになった。本発明においては、上記の複合的な効果を利用することによって、シリカ骨格中のSiを金属元素で置換した、薄板状の有機無機多孔質シリカ粒子が合成できることになる。一方、純粋なシリカ系では薄板状粒子の厚さを0.5ミクロン以下に制御することは難しく、しかも比較的低温条件でしか薄板状には成長せず、さらに金属元素でSiの一部を置換しても、熟成温度が低い場合には、界面活性剤を反応過程で直接取り除くことはできない。したがって、本発明の製造法においては、低い熟成温度では目的とする薄板状の有機無機多孔質シリカ粒子を製造することは不可能である。例えば、金属塩を添加せず25℃で得られた純粋な薄板状有機無機多孔質シリカ粒子の場合、厚さ0.5ミクロン以下の薄板状に制御することは難しい。また、36℃における純粋なシリカ系の場合、わずかに熟成温度を上げるだけで薄板状からロッド状に変化してしまう。一方、Siの一部をZrで置換して作製した薄板状有機無機多孔質シリカ粒子は、熟成温度25℃でも薄板状となり、さらに100℃以上でもその形態を維持することから、金属塩の添加が薄板状粒子の生成温度範囲を広くすると同時に薄板状粒子の厚さを減少させるために極めて有効であることが明らかとなった。しかし、低温で得られた薄板状の有機無機多孔質シリカ粒子には界面活性剤が細孔中に充填されたまま残留し、多孔体としての特性を発揮させることはできない。   In the present invention, various metal salts were added for the purpose of forming a thin disk-like aggregate as a higher-order structure of a nonionic surfactant, and the effect on the macro form of the final product was examined. As a result, it was found that several kinds of metal salts were effective, and these metal elements replaced Si in the silica skeleton under acidic conditions. In the present invention, by using the above composite effect, it is possible to synthesize thin plate-like organic-inorganic porous silica particles in which Si in the silica skeleton is substituted with a metal element. On the other hand, with pure silica, it is difficult to control the thickness of the lamellar particles to 0.5 microns or less, and it grows into a lamellar shape only under relatively low temperature conditions. Even if the replacement is performed, if the aging temperature is low, the surfactant cannot be removed directly in the reaction process. Therefore, in the production method of the present invention, it is impossible to produce the desired thin plate-like organic-inorganic porous silica particles at a low aging temperature. For example, in the case of pure lamellar organic inorganic porous silica particles obtained at 25 ° C. without adding a metal salt, it is difficult to control the lamellar shape to a thickness of 0.5 μm or less. Further, in the case of a pure silica system at 36 ° C., it changes from a thin plate shape to a rod shape only by slightly raising the aging temperature. On the other hand, the thin plate-like organic / inorganic porous silica particles produced by replacing a part of Si with Zr become a thin plate shape even at an aging temperature of 25 ° C., and further maintain its form at 100 ° C. or higher. However, it has become clear that it is extremely effective for widening the temperature range for producing the lamellar particles and at the same time reducing the thickness of the lamellar particles. However, the thin plate-like organic-inorganic porous silica particles obtained at a low temperature remain with the surfactant filled in the pores and cannot exhibit the characteristics as a porous body.

金属塩の添加時間は、生成物の凝集状態に影響を及ぼすが、反応開始(2種類の反応溶液の混合時点)から、10分を超えて添加すると、薄板状粒子は凝集するものの、大きなフロックに成長することはない。金属塩の添加量も、薄板状粒子の厚さ、凝集状態に大きな影響を及ぼし、少なすぎても過剰であっても凝集し易くなると同時に薄板が厚くなる傾向が認められる。また、反応温度も薄板状粒子の厚さ、凝集状態に大きな影響を及ぼす。攪拌と熟成を同一温度で行う場合には、その温度が高すぎると凝集し易くなると同時に薄板も厚くなり易い。一方、熟成温度を攪拌時よりも高くすると、薄板状粒子が得られるようになり比較的凝集の程度が弱くなる傾向がある。   The addition time of the metal salt affects the aggregation state of the product, but if it is added over 10 minutes from the start of the reaction (at the time of mixing the two kinds of reaction solutions), the lamellar particles aggregate, but a large floc Never grow up. The addition amount of the metal salt also has a great influence on the thickness and aggregation state of the thin plate-like particles, and it tends to be easy to agglomerate if it is too little or excessive, and at the same time, the tendency of the thin plate to become thick is recognized. In addition, the reaction temperature has a great influence on the thickness and aggregation state of the thin plate-like particles. When stirring and ripening are carried out at the same temperature, if the temperature is too high, agglomeration is likely to occur, and at the same time, the thin plate tends to be thick. On the other hand, when the aging temperature is higher than that during stirring, thin plate-like particles can be obtained and the degree of aggregation tends to be relatively weak.

次に、本発明の繊維状の有機無機多孔質シリカ粒子の製造方法について説明すると、まず、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度30℃乃至45℃において、攪拌下で混合し(反応開始点)、攪拌を継続しながら白色固体の生成が認められた後、シリカ純成分の繊維状粒子の場合には、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、得られた生成固体を乾燥する。一方、金属元素を含有した繊維状粒子の場合には、上記同様反応開始点から、攪拌を継続しながら白色固体の生成が認められた後、反応懸濁液に金属塩を添加してから30秒〜5分間反応させた後、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、生成固体を乾燥する。   Next, the method for producing the fibrous organic-inorganic porous silica particles of the present invention will be described. First, an alkali silicate aqueous solution is added to a mixed solution of an acidic aqueous solution and a nonionic surfactant and a reaction temperature of 30 ° C. to 45 ° C. At ℃, mixing under stirring (reaction starting point), and after the formation of white solid was observed while continuing stirring, in the case of fibrous particles of pure silica component, stirring was stopped and constant at 60 ° C or higher The resulting solid is dried by standing for a period of time or aging at 60 ° C. or higher for a fixed time with stirring. On the other hand, in the case of fibrous particles containing a metal element, the formation of a white solid was observed while continuing stirring from the reaction start point as described above, and after adding a metal salt to the reaction suspension, 30 After reacting for 2 to 5 minutes, stirring is stopped and the mixture is aged while standing at a temperature of 60 ° C. or higher for a fixed time, or is aged for a fixed time at 60 ° C. or higher with stirring to dry the resulting solid.

熟成反応に基づく、本発明の製造法においては、熟成時間並びに熟成前の攪拌混合時間は、生成物のマクロ形態並びにメソ構造の規則性、さらにはメソ孔の大きさ等細孔特性に影響を及ぼす。さらに、これらの物理化学的特性は、2つの各段階での反応時間ばかりでなく、それぞれの反応温度によっても影響を受けることになる。熟成前の反応溶液の攪拌混合時間は、各段階での反応温度によって厳密に決定する必要があるが、10分以上であることが望ましく、短すぎると繊維状に成長することが難しい。一方、長い場合、攪拌混合操作は3時間を越えても繊維状の有機無機多孔質シリカ粒子の合成は可能である。本製造方法において、攪拌混合時間を制御することの効果として、特に、細孔特性がほぼ同じでアスペクト比の異なる繊維状の有機無機多孔質シリカ粒子が合成可能である。   In the production method of the present invention based on the aging reaction, the aging time and the stirring and mixing time before aging affect the macro form of the product, the regularity of the mesostructure, and the pore characteristics such as the size of the mesopores. Effect. Furthermore, these physicochemical properties will be affected not only by the reaction time in each of the two stages, but also by the respective reaction temperatures. The stirring and mixing time of the reaction solution before aging needs to be strictly determined depending on the reaction temperature in each stage, but is desirably 10 minutes or longer, and if it is too short, it is difficult to grow into a fiber. On the other hand, if it is long, it is possible to synthesize fibrous organic-inorganic porous silica particles even if the stirring and mixing operation exceeds 3 hours. In this production method, as an effect of controlling the stirring and mixing time, particularly, fibrous organic-inorganic porous silica particles having substantially the same pore characteristics and different aspect ratios can be synthesized.

本発明の製造法においては、金属塩の添加時間は、生成物のマクロ形態並びにメソ構造の規則性、さらにはメソ孔の大きさ等細孔特性に影響を及ぼす。反応開始点(2種類の反応溶液の混合)から、10分以内に添加すると、繊維状形態を形成することは難しくなり、15分を超えてから添加した場合には、金属元素によってシリカ骨格中のSiが置換された繊維状有機無機多孔質シリカ粒子が得られ、3時間でも同様な繊維状有機無機多孔質シリカ粒子が得られるが、あまり長時間後に添加すると反応時間が長くなり効率的でなくなる。   In the production method of the present invention, the addition time of the metal salt affects the macro form of the product, the regularity of the mesostructure, and the pore characteristics such as the size of the mesopores. If it is added within 10 minutes from the reaction start point (mixing of two kinds of reaction solutions), it becomes difficult to form a fibrous form. The fibrous organic-inorganic porous silica particles substituted with Si can be obtained, and the same fibrous organic-inorganic porous silica particles can be obtained even after 3 hours. Disappear.

さらに、攪拌時よりも高温で熟成する本製造方法では、上記の条件で金属塩の添加を行った後、数分以内で攪拌を停止するか、あるいは攪拌しながら、反応槽の温度を上昇させるか、あるいは予め一定温度に保持した反応装置内に移動し、反応容器が均一に保温されるようにする必要がある。   Furthermore, in the present production method in which aging is performed at a temperature higher than that at the time of stirring, after adding the metal salt under the above conditions, the stirring is stopped within a few minutes or the temperature of the reaction vessel is increased while stirring. Alternatively, it is necessary to move into a reaction apparatus previously maintained at a constant temperature so that the reaction vessel is kept warm.

また、本製造法において、金属塩の添加量は、過多で無い限り生成物のマクロ形態並びにメソ構造の規則性、さらにはメソ孔の大きさ等細孔特性に大きな影響を及ぼさない。   In addition, in this production method, the amount of the metal salt added does not significantly affect the pore characteristics such as the macro form of the product and the regularity of the meso structure as well as the size of the meso pores unless excessive.

さらに、熟成時間の制御によって、細孔径がコントロールできることも本製造方法の大きな特長である。攪拌混合後熟成時間を長くすると、細孔径の大きな繊維状の有機無機多孔質シリカ粒子が合成できる。しかし、熟成時間を長くしても細孔径の拡張には限界があり、熟成時間は10時間以内で充分と考えられる。   Furthermore, it is a great feature of this production method that the pore diameter can be controlled by controlling the aging time. When the aging time is increased after stirring and mixing, fibrous organic-inorganic porous silica particles having a large pore diameter can be synthesized. However, even if the aging time is lengthened, there is a limit to the expansion of the pore diameter, and the aging time is considered to be sufficient within 10 hours.

本繊維状の有機無機多孔質シリカ粒子の製造法における反応温度は、攪拌混合操作においては30℃乃至45℃の範囲が好ましい。これ以上高くなると非イオン性系面活性剤中の親水基部分の脱水和が起こりやすくなる為、撹拌によって繊維状粒子の基本構造体であるロッド状粒子の生成が阻害され、熟成によって繊維状多孔質シリカ粒子を合成することは難しい。熟成温度は、50℃以上、好ましくは60℃以上で、効率的な反応条件としては、180℃以下であることが望ましい。   The reaction temperature in the method for producing the fibrous organic-inorganic porous silica particles is preferably in the range of 30 ° C. to 45 ° C. in the stirring and mixing operation. If it is higher than this, dehydration of the hydrophilic group portion in the nonionic surfactant is likely to occur, so that stirring prevents the formation of rod-shaped particles, which are the basic structure of the fibrous particles, and the aging causes fibrous porous It is difficult to synthesize silica particles. The aging temperature is 50 ° C. or higher, preferably 60 ° C. or higher, and the efficient reaction condition is desirably 180 ° C. or lower.

本製造方法は、上記の通り、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を攪拌しながら一定時間混合後、金属塩を添加するかしないかに関わらず50℃以上、好ましくは60℃以上で一定時間熟成させて得られた生成物から、特に非イオン性界面活性剤を除去する工程を経ずに、単に乾燥するだけで直接薄板状乃至繊維状有機無機多孔質シリカ粒子が作製できる。   As described above, this production method is performed at a temperature of 50 ° C. or higher regardless of whether or not a metal salt is added to the mixed solution of the acidic aqueous solution and the nonionic surfactant while stirring the alkaline silicate aqueous solution for a certain period of time. Preferably, the product obtained by aging at a temperature of 60 ° C. or more for a certain period of time is not directly subjected to a step of removing the nonionic surfactant, and is simply dried to directly form a thin plate or fibrous organic / inorganic porous material. Silica particles can be produced.

本製造方法においては、薄板状並びに繊維状というマクロ形態にかかわらず、高温下において非イオン性界面活性剤の親水部が疎水的になることを利用して、80℃以上で熟成する8nm以上の細孔径を有し、規則性の高いメソ構造を有する多孔質シリカ粒子が作製でき、特に120℃を超える場合には10nm以上の細孔径を有する薄板状乃至繊維状有機無機多孔質シリカ粒子が作製できる。   In this production method, regardless of the macro form of thin plate and fiber, the hydrophilic part of the nonionic surfactant becomes hydrophobic at a high temperature, and is aged at 80 ° C. or higher. A porous silica particle having a pore size and a highly ordered mesostructure can be produced, and in particular when it exceeds 120 ° C., a thin or fibrous organic-inorganic porous silica particle having a pore diameter of 10 nm or more is produced. it can.

本発明において、上記原料の添加順序は極めて重要であり、薄板状乃至繊維状有機無機多孔質シリカ粒子を形成させるためには、水で希釈したアルカリ珪酸塩水溶液を、酸に溶解した非イオン性界面活性剤溶液に添加しなければならない。
[原料]
本発明で使用される、シリカ原料、非イオン性界面活性剤、酸、及び金属塩について更に説明する。
In the present invention, the order of addition of the above raw materials is extremely important. In order to form thin plate-like or fibrous organic-inorganic porous silica particles, an aqueous solution of an alkali silicate diluted with water is dissolved in an acid. Must be added to the surfactant solution.
[material]
The silica raw material, nonionic surfactant, acid, and metal salt used in the present invention will be further described.

本発明で使用されるシリカ原料としては、アルカリ珪酸塩を使用することが可能で、比較的廉価であるナトリウム珪酸塩が好ましい。ナトリウム珪酸塩としてはNaO・mSiO式中、mは1乃至4の数、特に2.5乃至3.5の数である組成を有するナトリウム珪酸塩水溶液を使用することが好ましい。 As the silica raw material used in the present invention, alkali silicate can be used, and sodium silicate which is relatively inexpensive is preferable. As the sodium silicate, it is preferable to use a sodium silicate aqueous solution having a composition in which Na is a number of 1 to 4, particularly 2.5 to 3.5, in the Na 2 O · mSiO 2 formula.

非イオン性界面活性剤としては、ポリエチレンオキシド(PEO)を含む高分子界面活性剤が使用でき、特にPEOを含むトリブロック共重合体が好ましく、さらにはポリエチレンオキシドーポリプロピレンオキシド-ポリエチレンオキシド(PEO−PPO−PE
O)の使用が最適である。
As the nonionic surfactant, a polymer surfactant containing polyethylene oxide (PEO) can be used, and a triblock copolymer containing PEO is particularly preferable. Further, polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-) is preferable. PPO-PE
The use of O) is optimal.

本発明で使用される、トリブロック共重合体の重合比、平均分子量並びに疎水基の重量割合が重要であり、その平均分子量は約4800以上で、疎水基の重量割合が、重量65%以上であることが望ましい。   The polymerization ratio, average molecular weight, and weight ratio of the hydrophobic group used in the present invention are important. The average molecular weight is about 4800 or more, and the weight ratio of the hydrophobic group is 65% or more. It is desirable to be.

本発明で使用される金属塩として、シリカ骨格中のSiを強酸性下で置換することにできるTi、Zr、V等を含む塩化物、硝酸塩、硫酸塩、オキソ酸素酸塩が利用できる。   As metal salts used in the present invention, chlorides, nitrates, sulfates and oxooxyacids containing Ti, Zr, V, etc., which can replace Si in the silica skeleton under strong acidity can be used.

酸としては、塩酸、硫酸、硝酸、酢酸等が使用できる。   As the acid, hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like can be used.

本発明の薄板状もしくは繊維状有機無機多孔質シリカ粒子の合成において、出発原料の混合モル比は、SiO:非イオン性界面活性剤:酸:金属塩:水=1:0.01〜0.02:4〜7:0.02〜0.4:150〜400であるのが好ましい。 In the synthesis of the lamellar or fibrous organic / inorganic porous silica particles of the present invention, the mixing molar ratio of the starting materials is SiO 2 : nonionic surfactant: acid: metal salt: water = 1: 0.01-0. .02: 4-7: 0.02-0.4: 150-400 is preferred.

更に、出発原料の混合方式を詳細に記述すると、薄板状の有機無機多孔質シリカ粒子の合成においては、所定の濃度の酸に溶解した非イオン性界面活性剤溶液(A)に、水に希釈したアルカリ珪酸塩水溶液(B)を攪拌下で添加する。原料溶液A及びBは予め同じ所定温度に調整して混合し、攪拌しながら10秒〜5分後に金属塩を添加し、10秒から20分経過後攪拌を停止する。ついで静置・熟成反応は、攪拌停止後反応容器をそのまま昇温するか、あるいは一定温度に保持した恒温装置に反応容器を移動し、50℃〜200℃、好ましくは60℃以上で、さらに効果的には100℃以上180℃以下で30分から10時間静置し熟成する。   Further, the mixing method of the starting materials will be described in detail. In the synthesis of the thin organic inorganic porous silica particles, the nonionic surfactant solution (A) dissolved in a predetermined concentration of acid is diluted with water. The alkaline silicate aqueous solution (B) is added under stirring. The raw material solutions A and B are adjusted to the same predetermined temperature and mixed in advance, the metal salt is added after 10 seconds to 5 minutes with stirring, and the stirring is stopped after 10 seconds to 20 minutes. Next, the standing / ripening reaction is carried out by raising the temperature of the reaction vessel as it is after stirring is stopped, or by moving the reaction vessel to a constant temperature apparatus maintained at a constant temperature, and is more effective at 50 ° C. to 200 ° C., preferably 60 ° C. or more. Specifically, the mixture is allowed to stand at 100 ° C. or higher and 180 ° C. or lower for 30 minutes to 10 hours for aging.

繊維状の有機無機多孔質シリカ粒子の合成においては、所定の濃度の酸に溶解した非イオン性界面活性剤溶液(A)に、水に希釈したアルカリ珪酸塩水溶液(B)を攪拌下で添加する。原料溶液A及びBは予め同じ所定温度に調整して混合し、攪拌しながら白色固体の生成が認められた後、純粋なシリカ成分の繊維状の有機無機多孔質シリカ粒子を作製するには、10分〜2時間後に反応容器をそのまま昇温するか、あるいは一定温度に保持した恒温装置に反応容器を移動し、静置あるいは攪拌しながら、50℃〜200℃、好ましくは60℃以上で、さらに効果的には100℃以上180℃以下で30分から10時間熟成する。また、金属塩を添加する場合には、上記(A)と(B)の混合によって、白色固体の生成が認められた後10分〜2時間後に金属塩を添加し、20秒から20分間攪拌した後、反応容器をそのまま昇温するか、あるいは一定温度に保持した恒温装置に反応容器を移動し、静置あるいは攪拌しながら、50℃〜200℃、好ましくは60℃以上で、さらに効果的には100℃以上180℃以下で30分から10時間熟成する。   In the synthesis of fibrous organic-inorganic porous silica particles, an aqueous alkali silicate solution (B) diluted in water is added to a nonionic surfactant solution (A) dissolved in a predetermined concentration of acid under stirring. To do. The raw material solutions A and B are adjusted to the same predetermined temperature in advance, mixed, and after producing white solids while stirring, to produce fibrous organic inorganic porous silica particles of a pure silica component, After 10 minutes to 2 hours, the reaction vessel is heated as it is, or the reaction vessel is moved to a constant temperature apparatus maintained at a constant temperature, and left still or stirred, and is kept at 50 ° C. to 200 ° C., preferably 60 ° C. or higher. More effectively, aging is performed at 100 ° C. or higher and 180 ° C. or lower for 30 minutes to 10 hours. In addition, when adding a metal salt, the metal salt is added 10 minutes to 2 hours after the formation of a white solid is recognized by mixing (A) and (B), and stirred for 20 seconds to 20 minutes. After that, the temperature of the reaction vessel is increased as it is, or the reaction vessel is moved to a constant temperature apparatus maintained at a constant temperature, and is further effective at 50 ° C. to 200 ° C., preferably 60 ° C. or more, while standing or stirring. Is aged at 100 to 180 ° C. for 30 minutes to 10 hours.

上記いずれの場合も、反応後懸濁液から固体生成物を分離し、室温〜80℃で充分乾燥させるだけで、特段の界面活性剤の除去処理を行うことなく、薄板状または繊維状有機無機多孔質シリカ粒子を作製することができる。
[用途]
本発明による薄板状、繊維状有機無機多孔質シリカ粒子のいずれも、大きなメソ孔内に有機化合物が内包され、その特異な局所空間の持つ吸着能を利用して、環境汚染排出物質等の浄化プロセスへの応用、あるいは無機骨格の中に有機化合物が存在する新規有機修飾シリカ系多孔体として新規用途を導くことが期待される。さらに、薄板状あるいは繊維状形態を利用することによって、樹脂添加剤、インク吸着用フィラー、増粘剤等の用途や、さらには単独乃至他の無機物質および有機化合物と混合することによりフェルト様に加工成型し、各種フィルター素材として広く利用することが可能である。特に、細孔径が広範囲に制御できることから、大きなメソ孔を利用することによって、酵素あるいは他の有機官能基を有する大きな分子の吸着・分離・吸蔵・固定剤等として利用することができる。
In any of the above cases, the solid product is separated from the suspension after the reaction, and is sufficiently dried at room temperature to 80 ° C., and without removing the special surfactant, it is a thin plate-like or fibrous organic inorganic. Porous silica particles can be produced.
[Usage]
Both the thin plate-like and fibrous organic / inorganic porous silica particles according to the present invention contain organic compounds in large mesopores, and purify environmental pollutants and the like by utilizing the adsorption ability of the unique local space. It is expected to lead to new applications as a novel organic modified silica-based porous material in which an organic compound is present in an inorganic skeleton. Furthermore, by using a thin plate or fibrous form, it can be used as a resin additive, an ink adsorbing filler, a thickening agent, etc., or even felt alone by mixing with other inorganic substances and organic compounds. It can be processed and molded and widely used as various filter materials. In particular, since the pore diameter can be controlled over a wide range, by using large mesopores, it can be used as an adsorbing / separating / occluding / fixing agent for large molecules having enzymes or other organic functional groups.

次に、本発明を実施例によって更に具体的に説明するが、本発明はこの実施例によって限定されない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example.

尚、実施例で行った各試験方法は次の方法により行った。
(測定法)
(1)走査型電子顕微鏡:日本電子株式会社製JSM5300を使用し、加速電圧10kV、WD10mmで観察した。
(2)電界放出形走査型電子顕微鏡:日立製FE-SEM S-4700を使用した。
(3)比表面積・細孔径分布:日本ベル製BELSORP28を使用し、液体窒素温度で測定した窒素吸着等温線からBET比表面積を求め、細孔容積はt−プロット法により求め、細孔径分布はBJH法により解析した。
(4)水蒸気吸着等温線:日本ベル製BELSORP18を使用し、25℃で測定した
(5)形状:走査型電子顕微鏡写真から観察した。
(6)粒子サイズ:走査型電子顕微鏡写真で測定した。
(7)X線回折:リガク製ロータフレックスRU−300を使用し、CuKα線源、加速電圧40kV、80mAで測定した。
(8)高分解能電子顕微鏡:HITACHI製HF-2000を使用し、加速電圧200
kVで観察した。
(9)化学分析:試料を1000℃、2時間強熱した後、アルカリ溶融後、誘導結合プラズマ発光分析法(ICP-AES法)にて金属元素並びにSi含有量を測定した。
(10)熱分析:リガク製TG−DTAを使用し、空気流通下昇温速度10℃/minで
室温から1000℃までTG−DTA曲線を測定した。
(11)元素分析:ヤナコ製MT−6を使用し、CHN並びに加熱焼成残留物重量を測定した。
(12)赤外分光スペクトル:日本分光製測定器を使用した。
(実施例1)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123(PE O20PPO70PEO20)(平均分子量5800)(Aldrich)溶液に攪拌しながら添加
する。両原料溶液は予め所定温度36℃に調整して混合する。両原料溶液を混合後素早く直ちにオキシ塩化ジルコニウム(ZrClO・8HO)を添加し、30秒経過した後攪拌を停止し、60、100、120、および150℃の一定温度に保持した乾燥機内に反応容器を移し、さらに6時間静置し熟成した。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:201. 5であり、ZrClO・8HOの同モル比は0.09である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させZrを含む薄板状の有機無機多孔質シリカ粒子を得る。
In addition, each test method performed in the Example was performed by the following method.
(Measurement method)
(1) Scanning electron microscope: JSM5300 manufactured by JEOL Ltd. was used and observed at an acceleration voltage of 10 kV and a WD of 10 mm.
(2) Field emission scanning electron microscope: Hitachi FE-SEM S-4700 was used.
(3) Specific surface area and pore size distribution: BELSORP28 manufactured by Nippon Bell Co., Ltd. was used to determine the BET specific surface area from the nitrogen adsorption isotherm measured at liquid nitrogen temperature, the pore volume was determined by the t-plot method, Analysis was performed by the BJH method.
(4) Water vapor adsorption isotherm: Measured at 25 ° C. using BELSORP18 manufactured by Nippon Bell Co., Ltd. (5) Shape: Observed from scanning electron micrograph.
(6) Particle size: measured by scanning electron micrograph.
(7) X-ray diffraction: Rigaku Rotorflex RU-300 was used and measured with a CuKα radiation source, an acceleration voltage of 40 kV, and 80 mA.
(8) High-resolution electron microscope: HITACHI HF-2000 is used and acceleration voltage is 200
Observed at kV.
(9) Chemical analysis: The sample was ignited at 1000 ° C. for 2 hours, and after alkali melting, the metal element and Si content were measured by inductively coupled plasma emission spectrometry (ICP-AES method).
(10) Thermal analysis: TG-DTA manufactured by Rigaku was used, and a TG-DTA curve was measured from room temperature to 1000 ° C. at a heating rate of 10 ° C./min under air flow.
(11) Elemental analysis: MT-6 manufactured by Yanaco was used, and CHN and the weight of the residue after baking were measured.
(12) Infrared spectrum: A measuring instrument manufactured by JASCO was used.
Example 1
Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water was dissolved in 2N hydrochloric acid, a triblock copolymer Pluronic P123 (PE 2 O 20 PPO). 70 PEO 20 ) (average molecular weight 5800) (Aldrich) with stirring. Both raw material solutions are previously adjusted to a predetermined temperature of 36 ° C. and mixed. Zirconium oxychloride (ZrCl 2 O.8H 2 O) is added immediately after mixing both raw material solutions, and after 30 seconds, stirring is stopped and drying is maintained at a constant temperature of 60, 100, 120, and 150 ° C. The reaction vessel was moved into the apparatus and allowed to stand for an additional 6 hours for aging. The molar ratio of the mixed solution was SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 201. 5, and the molar ratio of ZrCl 2 O · 8H 2 O is 0.09. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. to obtain thin organic organic porous silica particles containing Zr.

図1Aに本実施例のZrを含む薄板状の有機無機多孔質シリカ粒子のTG−DTA曲線を示す。熟成温度が高くなる程重量減量率は小さくなり、120℃以上で熟成した薄板状の有機無機多孔質シリカ粒子では100℃の50%以下と極めて小さいことがわかる。これに対応して、図1Bに示すDTA曲線は熟成温度が高い程ブロード化している。このことは、熟成温度が低い場合には、ミセルの規則集合体としてそのまま反応生成物中に残るが、熟成温度が高くなると、界面活性剤の疎水性が強くなると同時にミセルの規則集合体の構造が乱れ、シリカ表面に強く結合して細孔表面を覆う界面活性剤分子と、反応生成物から溶液中に流出する界面活性剤分子と類別されるようになるためと考えられる。   FIG. 1A shows a TG-DTA curve of the thin plate-like organic-inorganic porous silica particles containing Zr of this example. It can be seen that the weight loss rate becomes smaller as the aging temperature becomes higher, and that the thin plate-like organic-inorganic porous silica particles aged at 120 ° C. or higher are as small as 50% or less of 100 ° C. Correspondingly, the DTA curve shown in FIG. 1B becomes broader as the aging temperature is higher. This means that when the aging temperature is low, it remains in the reaction product as an ordered assembly of micelles. However, when the aging temperature is high, the hydrophobicity of the surfactant increases and at the same time the structure of the ordered micelle assembly. This is considered to be because the surfactant molecules are strongly bound to the silica surface and cover the pore surface, and the surfactant molecules flowing out from the reaction product into the solution.

表1に、熟成温度を変化させて得られた薄板状の有機無機多孔質シリカ粒子のBET比表面積、全細孔容積、および細孔径を示す。熟成温度による細孔パラメータの変化は顕著で、特に温度が高いほど細孔径が大きくなる。図2は本実施例の細孔径分布曲線である。また、図3及び図4は、それぞれ本実施例1−3の薄板状の有機無機多孔質シリカ粒子の走査電子顕微鏡写真と透過型電子顕微鏡写真である。薄板状の有機無機多孔質シリカ粒子は、幅1ミクロン、厚さ0.3〜0.4ミクロンの六角薄板状粒子の緩い凝集体であり(図3)、薄板状粒子面に垂直に10nm以上のメソ孔がハニカム状に存在している(図4)ことがわかる。この細孔の規則性は、図5のXRD回折パターンに認められる低角の複数のピークによって裏付けられる。
(実施例2)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123(PE
20PPO70PEO20)溶液に攪拌しながら添加した。両原料溶液は予め所定温度
36℃に調整して混合し、両原料溶液を混合してから1時間後にオキシ塩化ジルコニウム(ZrClO・8HO)を添加後30秒後に攪拌を停止した。反応容器を予め所定温度に保温した反応装置、本実施例では定温乾燥機に移し、さらに5時間静置し熟成を行った。混合溶液のモル比はSiO:Pluronicb P123:NaO:HCl:HO=1:0
.017:0.312:5.88:201.5であり、ZrClO・8HOの同モル比は0.15である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ、Zrを含む繊維状の有機無機多孔質シリカ粒子を得る。
Table 1 shows the BET specific surface area, total pore volume, and pore diameter of the thin organic inorganic porous silica particles obtained by changing the aging temperature. The change in the pore parameters with the aging temperature is remarkable, and the pore diameter increases as the temperature increases. FIG. 2 is a pore size distribution curve of this example. 3 and 4 are a scanning electron micrograph and a transmission electron micrograph of the thin plate-like organic inorganic porous silica particles of Example 1-3, respectively. The lamellar organic inorganic porous silica particles are loose aggregates of hexagonal lamellar particles having a width of 1 micron and a thickness of 0.3 to 0.4 microns (FIG. 3), and are 10 nm or more perpendicular to the lamellar particle surface. It can be seen that these mesopores are present in a honeycomb shape (FIG. 4). This regularity of the pores is supported by a plurality of low-angle peaks observed in the XRD diffraction pattern of FIG.
(Example 2)
Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water was dissolved in 2N hydrochloric acid, a triblock copolymer Pluronic P123 (PE
O 20 PPO 70 PEO 20 ) solution was added with stirring. Both raw material solutions were adjusted and mixed in advance at a predetermined temperature of 36 ° C., and stirring was stopped 30 seconds after adding zirconium oxychloride (ZrCl 2 O.8H 2 O) one hour after mixing both raw material solutions. The reaction vessel was kept at a predetermined temperature in advance, and in this example, it was transferred to a constant temperature dryer, and further left to stand for 5 hours for aging. The molar ratio of the mixed solution is SiO 2 : Pluronicb P123: Na 2 O: HCl: H 2 O = 1: 0
. 017: 0.312: 5.88: 201.5, and the same molar ratio of ZrCl 2 O.8H 2 O is 0.15. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. to obtain fibrous organic-inorganic porous silica particles containing Zr.

熟成温度とTG−DTA曲線との間には実施例1と全く同様な関係が認められた。表1に、熟成温度を変化させて得られた本実施例のZrを含む繊維状の有機無機多孔質シリカ粒子のBET比表面積、全細孔容積、および細孔径を示す。熟成温度による細孔パラメータの変化は顕著であり、図6に示すように温度が高いほど細孔径が大きくなる。本発明の繊維状の有機無機多孔質シリカ粒子は長さ数十から数百ミクロンの範囲で制御可能であり、図7に示す本実施例2−3の走査電子顕微鏡写真から、本繊維状粒子が、約1ミクロンのロッド状粒子の連鎖体であることが分かる。図8に示すXRD回折パターンは、繊維板状有機無機多孔質シリカ粒子は、長軸方向に10nm以上の1次元メソチャンネルがハニカム状に積層して存在している。なお、TEM像によってこの細孔の規則性は確認できる。
(実施例3)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123(PE
20PPO70PEO20)溶液に攪拌しながら添加した。両原料溶液は予め所定温度
36℃に調整して混合し、両原料溶液を混合してから1時間後に攪拌を停止した。反応容器を予め所定温度に保温した反応装置、本実施例では定温乾燥機に移し、さらに5時間静置し熟成を行った。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl: HO=1:0.017:0.312:5.88:201.5である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ繊維状の有機無機多孔質シリカ粒子を得る。
The same relationship as in Example 1 was observed between the aging temperature and the TG-DTA curve. Table 1 shows the BET specific surface area, total pore volume, and pore diameter of fibrous organic inorganic porous silica particles containing Zr of this example obtained by changing the aging temperature. The change in the pore parameters due to the aging temperature is remarkable, and as shown in FIG. 6, the pore diameter increases as the temperature increases. The fibrous organic-inorganic porous silica particles of the present invention can be controlled in the range of several tens to several hundreds of microns. From the scanning electron micrograph of Example 2-3 shown in FIG. Is a chain of rod-like particles of about 1 micron. In the XRD diffraction pattern shown in FIG. 8, the fiber-plate-like organic / inorganic porous silica particles have a one-dimensional mesochannel of 10 nm or more laminated in a honeycomb shape in the major axis direction. The regularity of the pores can be confirmed by a TEM image.
(Example 3)
Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water was dissolved in 2N hydrochloric acid, a triblock copolymer Pluronic P123 (PE
O 20 PPO 70 PEO 20 ) solution was added with stirring. Both raw material solutions were adjusted in advance to a predetermined temperature of 36 ° C. and mixed, and stirring was stopped one hour after mixing both raw material solutions. The reaction vessel was kept at a predetermined temperature in advance, and in this example, it was transferred to a constant temperature dryer, and further left to stand for 5 hours for aging. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 201.5. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. to obtain fibrous organic-inorganic porous silica particles.

図9に本実施例のシリカ純成分の繊維状の有機無機多孔質シリカ粒子のTG−DTA曲線を示す。Zrを含む薄板状及び繊維状有機無機多孔質シリカ粒子と比較すると、熟成温度に係わらず、200℃付近に急激な重量減少がTG曲線に認められ、これに対応して鋭いDTAピークが存在している。さらに詳細に、比較すると、本実施例のシリカ純成分の場合、減量率はそれぞれの熟成温度において相対的に小さく、熟成反応中に除去できる界面活性剤の割合は小さいことがわかる。このことは、本発明の有機無機多孔質シリカ粒子の生成過程で直接界面活性剤を除去するためには、熟成温度を高くすることに加え、金属塩の添加が極めて有効であることを示している。表1に、熟成温度を変化させて得られた本実施例の繊維状有機無機多孔質シリカ粒子のBET比表面積、全細孔容積、および細孔径を示す。本発明の繊維状有機無機多孔質シリカ粒子の形態並びに微細構造の特徴は、実施例2と全く同様である。   FIG. 9 shows a TG-DTA curve of the fibrous organic-inorganic porous silica particles of the pure silica component of this example. Compared to thin plate-like and fibrous organic inorganic porous silica particles containing Zr, a rapid weight loss is observed in the TG curve near 200 ° C. regardless of the aging temperature, and there is a sharp DTA peak corresponding to this. ing. In more detail, in the case of the pure silica component of this example, it can be seen that the weight loss rate is relatively small at each aging temperature, and the proportion of the surfactant that can be removed during the aging reaction is small. This indicates that the addition of a metal salt is extremely effective in addition to increasing the aging temperature in order to directly remove the surfactant during the production process of the organic / inorganic porous silica particles of the present invention. Yes. Table 1 shows the BET specific surface area, total pore volume, and pore diameter of the fibrous organic inorganic porous silica particles of this example obtained by changing the aging temperature. The form and fine structure characteristics of the fibrous organic inorganic porous silica particles of the present invention are exactly the same as in Example 2.

本発明のZrを含有する薄板状有機無機多孔質シリカ粒子の熱分析曲線で、(A)TG、(B)DTA曲線である。It is a thermal analysis curve of the thin plate-like organic inorganic porous silica particle containing Zr of the present invention, and (A) TG, (B) DTA curve. 本発明のZrを含有する薄板状有機無機多孔質シリカ粒子の細孔分布曲線である。It is a pore distribution curve of the thin plate-like organic inorganic porous silica particles containing Zr of the present invention. 本発明のZrを含有する薄板状有機無機多孔質シリカ粒子の電界放出形走査電子顕微鏡(FE−SEM)像である。It is a field emission scanning electron microscope (FE-SEM) image of the thin plate-like organic inorganic porous silica particles containing Zr of the present invention. 本発明のZrを含有する薄板状有機無機多孔質シリカ粒子の透過型電子顕微鏡(TEM)像である。It is a transmission electron microscope (TEM) image of the thin plate-like organic inorganic porous silica particle containing Zr of this invention. 本発明のZrを含有する薄板状有機無機多孔質シリカ粒子のX線回折パターンである。It is an X-ray diffraction pattern of the thin plate-like organic inorganic porous silica particles containing Zr of the present invention. 本発明のZrを含有する繊維状有機無機多孔質シリカ粒子の細孔分布kyokusendearu。The pore distribution kyokusendearu of fibrous organic inorganic porous silica particles containing Zr of the present invention. 本発明のZrを含有する繊維状有機無機多孔質シリカ粒子の電界放出形走査電子顕微鏡(FE−SEM)像である。It is a field emission type scanning electron microscope (FE-SEM) image of fibrous organic inorganic porous silica particles containing Zr of the present invention. 本発明のZrを含有する繊維状有機無機多孔質シリカ粒子のX線回折パターンである。It is an X-ray-diffraction pattern of the fibrous organic inorganic porous silica particle containing Zr of this invention. 本発明のシリカ純成分の繊維状有機無機多孔質シリカ粒子の熱分析曲線で、(A)TG、(B)DTA曲線である。It is a thermal analysis curve of the fibrous organic inorganic porous silica particle of the silica pure component of this invention, (A) TG, (B) DTA curve. 本発明のシリカ純成分の繊維状有機無機多孔質シリカ粒子の細孔分布曲線である。It is a pore distribution curve of the fibrous organic inorganic porous silica particle of the pure silica component of the present invention. 本発明のZrを含有する繊維状有機無機多孔質シリカ粒子と、その600℃焼成物の水蒸気吸着等温線である。It is the water vapor adsorption isotherm of the fibrous organic inorganic porous silica particle containing Zr of this invention, and its 600 degreeC baked material. 本発明の薄板状及び繊維状有機無機多孔質シリカ粒子の赤外線分光スペクトルである。It is an infrared spectroscopy spectrum of the thin plate-like and fibrous organic-inorganic porous silica particles of the present invention.

Claims (15)

下記式
[(Si1−n)O100−p[CH]p
(式中、Mは多価金属を示し、
CHは、使用した界面活性剤由来の有機物を示し、
nはゼロを含む0.1以下の数であり、
pは30以下の数であって、重量割合を示している。)
で表される化学的組成を有する薄板状もしくは繊維状の有機無機多孔質シリカ粒子。
Formula [(Si 1-n M n ) O 2] 100-p [CH] p
(Wherein M represents a polyvalent metal,
CH represents the organic substance derived from the surfactant used,
n is a number of 0.1 or less including zero,
p is a number of 30 or less, and indicates a weight ratio. )
A thin plate-like or fibrous organic-inorganic porous silica particle having a chemical composition represented by
走査型顕微鏡観察により薄板状粒子の薄板の厚さが0.4μm未満であることを特徴とする請求項1に記載の薄板状の有機無機多孔質シリカ粒子。 The thin plate-like organic-inorganic porous silica particles according to claim 1, wherein the thickness of the thin plate-like particles is less than 0.4 µm by scanning microscope observation. 走査型顕微鏡観察により繊維状粒子の長軸の長さが5から2000μmの範囲にあり、アスペクト比が3から150であって、形状がファイバー状であることを特徴とする請求項1に記載の繊維状の有機無機多孔質シリカ粒子。 The length of the long axis of the fibrous particles is in the range of 5 to 2000 µm by scanning microscope observation, the aspect ratio is 3 to 150, and the shape is fiber-like. Fibrous organic / inorganic porous silica particles. 回折角0.5乃至5度(CuKα)に細孔の規則配列構造を示す複数のX線回折ピークを有することを特徴とする請求項1から3のいずれかに記載の有機無機多孔質シリカ粒子。 The organic-inorganic porous silica particle according to any one of claims 1 to 3, which has a plurality of X-ray diffraction peaks showing a regular arrangement structure of pores at a diffraction angle of 0.5 to 5 degrees (CuKα). . BET比表面積が100m/g以上且つメソ細孔径が3〜20nmの範囲にあり、全細孔容積が0.2ml/g以上を有することを特徴とする請求項1から4のいずれかに記載の有機無機多孔質シリカ粒子。 5. The BET specific surface area is 100 m 2 / g or more, the mesopore diameter is in the range of 3 to 20 nm, and the total pore volume is 0.2 ml / g or more. Organic inorganic porous silica particles. 請求項1、2、4または5に記載の薄板状の粒子の製造方法であって、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度25℃乃至45℃で攪拌混合しながら金属塩を添加し、10秒〜20分間経過後、攪拌を停止し、60℃以上で一定時間静置し熟成させて得られた生成固体を乾燥することを特徴とする薄板状の有機無機多孔質シリカ粒子の製造方法。 6. The method for producing a thin plate-like particle according to claim 1, wherein an alkali silicate aqueous solution is added to a mixed solution of an acidic aqueous solution and a nonionic surfactant, at a reaction temperature of 25 ° C. to 45 ° C. A metal plate is added while stirring and mixing in 10 seconds to 20 minutes, and after 10 seconds to 20 minutes, stirring is stopped, and the resulting solid obtained by standing at 60 ° C. and standing for aging for drying is dried. For manufacturing organic organic inorganic porous silica particles. 請求項1、3、4または5に記載の繊維状の粒子の製造方法であって、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度30℃乃至45℃において、攪拌下で混合し、攪拌を継続しながら白色固体の生成が認められた後、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、得られた生成固体を乾燥することを特徴とする繊維状の有機無機多孔質シリカ粒子の製造方法。 6. The method for producing fibrous particles according to claim 1, 3, 4, or 5, wherein an alkaline silicate aqueous solution is added to a mixed solution of an acidic aqueous solution and a nonionic surfactant, and a reaction temperature of 30 ° C. to 45 ° C. The mixture was stirred under stirring, and the formation of a white solid was observed while continuing the stirring. Then, the stirring was stopped and the mixture was aged while standing at 60 ° C or higher for a certain period of time, or constant at 60 ° C or higher with stirring. A process for producing fibrous organic-inorganic porous silica particles, characterized by drying the resulting solid obtained by aging for a period of time. 請求項1、3、4または5に記載の繊維状の粒子の製造方法であって、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を、反応温度30℃乃至45℃において、攪拌下で混合し、攪拌を継続しながら白色固体の生成が認められた後、反応懸濁液に金属塩を添加してから30秒〜5分間反応させた後、攪拌を停止し60℃以上で一定時間静置しながら熟成するか、あるいは攪拌しながら60℃以上で一定時間熟成して、生成固体を乾燥することを特徴とする金属元素を含有する繊維状の有機無機多孔質シリカ粒子の製造方法。 6. The method for producing fibrous particles according to claim 1, 3, 4, or 5, wherein an alkaline silicate aqueous solution is added to a mixed solution of an acidic aqueous solution and a nonionic surfactant, and a reaction temperature of 30 ° C. to 45 ° C. The mixture was stirred under stirring and the formation of a white solid was observed while stirring was continued. After the metal salt was added to the reaction suspension, the mixture was reacted for 30 seconds to 5 minutes, and then the stirring was stopped. Fibrous organic-inorganic porous silica containing a metal element, characterized in that it is aged for a certain period of time at a temperature of not less than ℃, or aged for a certain period of time at a temperature of not less than 60 ℃ with stirring, and the resulting solid is dried. Particle production method. アルカリ珪酸塩中のSiO1モル当たり、非イオン性界面活性剤を0.01乃至0.02モルの量、酸を4乃至7モルの量、水を150乃至400モルの量、さらに金属塩を0乃至0.40モルの量で用いることを特徴とする請求項6から8のいずれかに記載の有機無機多孔質シリカ粒子の製造方法。 A nonionic surfactant in an amount of 0.01 to 0.02 mol, an acid in an amount of 4 to 7 mol, an amount of water in an amount of 150 to 400 mol, and a metal salt per mol of SiO 2 in the alkali silicate Is used in an amount of 0 to 0.40 mol, The method for producing organic-inorganic porous silica particles according to any one of claims 6 to 8. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とする樹脂または塗料用ナノコンポジット材料。 A resin or paint nanocomposite material comprising the organic-inorganic porous silica particles according to any one of claims 1 to 5. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とするフィルム状成型体用ナノコンポジット材料。 A nanocomposite material for a film-like molded article comprising the organic-inorganic porous silica particles according to any one of claims 1 to 5. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とする吸着・分離剤。 An adsorption / separation agent comprising the organic-inorganic porous silica particles according to any one of claims 1 to 5. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とする増粘剤。 A thickener comprising the organic inorganic porous silica particles according to any one of claims 1 to 5. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とする光触媒またはその担体。 A photocatalyst or a carrier thereof comprising the organic-inorganic porous silica particles according to claim 1. 請求項1から5のいずれかに記載の有機無機多孔質シリカ粒子からなることを特徴とする酸化触媒またはその担体。 An oxidation catalyst comprising the organic-inorganic porous silica particles according to claim 1 or a carrier thereof.
JP2005307862A 2005-10-21 2005-10-21 Thin or fibrous organic / inorganic porous silica particles and method for producing the same Expired - Fee Related JP4925086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307862A JP4925086B2 (en) 2005-10-21 2005-10-21 Thin or fibrous organic / inorganic porous silica particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307862A JP4925086B2 (en) 2005-10-21 2005-10-21 Thin or fibrous organic / inorganic porous silica particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007112948A true JP2007112948A (en) 2007-05-10
JP4925086B2 JP4925086B2 (en) 2012-04-25

Family

ID=38095433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307862A Expired - Fee Related JP4925086B2 (en) 2005-10-21 2005-10-21 Thin or fibrous organic / inorganic porous silica particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4925086B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017696A (en) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology Metal nano-particle catalyst and oxygen oxidation method
JP2010227930A (en) * 2009-03-02 2010-10-14 Shinshu Univ Adsorbent
JP2010228986A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Rod-shaped porous silica particle
JP2010235412A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Mesopore oriented material
WO2012096172A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
WO2015076317A1 (en) * 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulating film and heat-insulating film structure
WO2017138190A1 (en) * 2016-02-12 2017-08-17 フィガロ技研株式会社 Gas sensor
EP3133052A4 (en) * 2014-04-17 2018-01-03 NGK Insulators, Ltd. Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
WO2018159348A1 (en) * 2017-03-02 2018-09-07 フィガロ技研株式会社 Gas sensor and method for producing same
WO2021100400A1 (en) * 2019-11-20 2021-05-27 東ソー・シリカ株式会社 Surface-treated precipitated silica for aqueous paint
WO2023276550A1 (en) * 2021-06-29 2023-01-05 昭和電工株式会社 Filler and manufacturing method therefor, and column for size exclusion chromatography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109312A (en) * 1998-09-09 2000-04-18 Degussa Huels Ag Amorphous silicic acid and metallic silicate having narrow mesopore radius distribution produced by precipitation method, their production, method for modifying silicic acid and metallic silicate and their use
JP2001340755A (en) * 2000-03-31 2001-12-11 Toyota Central Res & Dev Lab Inc Porous material for adsorbing and separating gas and method of adsorbing and separating gas using the same
JP2003342019A (en) * 2002-03-18 2003-12-03 National Institute Of Advanced Industrial & Technology Shaped porous silica or silica/metal composite material particle and method for producing the same
JP2004143026A (en) * 2002-08-26 2004-05-20 National Institute Of Advanced Industrial & Technology Spherical silica porous particle, and production method therefor
JP2006151799A (en) * 2004-10-27 2006-06-15 National Institute Of Advanced Industrial & Technology Sheet metal-like porous silica metal composite material particle and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109312A (en) * 1998-09-09 2000-04-18 Degussa Huels Ag Amorphous silicic acid and metallic silicate having narrow mesopore radius distribution produced by precipitation method, their production, method for modifying silicic acid and metallic silicate and their use
JP2001340755A (en) * 2000-03-31 2001-12-11 Toyota Central Res & Dev Lab Inc Porous material for adsorbing and separating gas and method of adsorbing and separating gas using the same
JP2003342019A (en) * 2002-03-18 2003-12-03 National Institute Of Advanced Industrial & Technology Shaped porous silica or silica/metal composite material particle and method for producing the same
JP2004143026A (en) * 2002-08-26 2004-05-20 National Institute Of Advanced Industrial & Technology Spherical silica porous particle, and production method therefor
JP2006151799A (en) * 2004-10-27 2006-06-15 National Institute Of Advanced Industrial & Technology Sheet metal-like porous silica metal composite material particle and method for manufacturing the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017696A (en) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology Metal nano-particle catalyst and oxygen oxidation method
JP2010227930A (en) * 2009-03-02 2010-10-14 Shinshu Univ Adsorbent
JP2010228986A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Rod-shaped porous silica particle
JP2010235412A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Mesopore oriented material
US9272915B2 (en) 2011-01-11 2016-03-01 Nippon Sheet Glass Company, Limited Flaky mesoporous particles, and method for producing the same
EP3521247A1 (en) * 2011-01-11 2019-08-07 Nippon Sheet Glass Company, Limited Flake-like mesoporous particles and manufacturing method therefor
CN103298739A (en) * 2011-01-11 2013-09-11 日本板硝子株式会社 Flake-like mesoporous particles and manufacturing method therefor
CN103313939A (en) * 2011-01-11 2013-09-18 日本板硝子株式会社 Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
EP3521246A1 (en) * 2011-01-11 2019-08-07 Nippon Sheet Glass Company, Limited Flake-like mesoporous particles and manufacturing method therefor
EP2664581A4 (en) * 2011-01-11 2015-07-01 Nippon Sheet Glass Co Ltd Flake-like mesoporous particles and manufacturing method therefor
JP5870041B2 (en) * 2011-01-11 2016-02-24 日本板硝子株式会社 Flaked mesoporous granules and method for producing the same
JP5870042B2 (en) * 2011-01-11 2016-02-24 日本板硝子株式会社 Method for producing particles containing metal oxide and method for producing aggregates of metal oxide colloidal particles
WO2012096172A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
WO2012096171A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Flake-like mesoporous particles and manufacturing method therefor
US9656874B2 (en) 2011-01-11 2017-05-23 Nippon Sheet Glass Company, Limited Method for producing metal oxide-containing particles, and method for producing aggregates of metal oxide colloidal particles
JPWO2015076317A1 (en) * 2013-11-19 2017-03-16 日本碍子株式会社 Thermal insulation film and thermal insulation film structure
WO2015076317A1 (en) * 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulating film and heat-insulating film structure
EP3133052A4 (en) * 2014-04-17 2018-01-03 NGK Insulators, Ltd. Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
US10317004B2 (en) 2014-04-17 2019-06-11 Ngk Insulators, Ltd. Porous plate-shaped filler, heat insulation film, and method for producing porous plate-shaped filler
WO2017138190A1 (en) * 2016-02-12 2017-08-17 フィガロ技研株式会社 Gas sensor
JPWO2017138190A1 (en) * 2016-02-12 2018-12-06 フィガロ技研株式会社 Gas sensor
WO2018159348A1 (en) * 2017-03-02 2018-09-07 フィガロ技研株式会社 Gas sensor and method for producing same
JPWO2018159348A1 (en) * 2017-03-02 2020-01-09 フィガロ技研株式会社 Gas sensor and method of manufacturing the same
US11638895B2 (en) 2017-03-02 2023-05-02 Figaro Engineering Inc. Gas sensor and method for producing same
WO2021100400A1 (en) * 2019-11-20 2021-05-27 東ソー・シリカ株式会社 Surface-treated precipitated silica for aqueous paint
JP7406354B2 (en) 2019-11-20 2023-12-27 東ソー・シリカ株式会社 Surface treatment precipitated silica for water-based paints
WO2023276550A1 (en) * 2021-06-29 2023-01-05 昭和電工株式会社 Filler and manufacturing method therefor, and column for size exclusion chromatography

Also Published As

Publication number Publication date
JP4925086B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4925086B2 (en) Thin or fibrous organic / inorganic porous silica particles and method for producing the same
JP4478766B2 (en) Spherical silica porous particles and method for producing the same
JP3200623B2 (en) Method for producing hollow spherical silicate cluster
US6346140B2 (en) Porous solid for gas adsorption separation and gas adsorption separation process employing it
JP4831663B2 (en) Thin plate-like porous silica metal composite particles and production method thereof
Yuan et al. Synthesis of Nanofiber‐Based Silica Networks Mediated by Organized Poly (ethylene imine): Structure, Properties, and Mechanism
KR101147007B1 (en) Synthesis of BEA, MTW and MFI type zeolites possessing additional meso- and macro porosity using cyclicdiammonium organic templates
KR20150005538A (en) Beta zeolite and method for producing same
JP3128593B2 (en) Method for producing spherical silica-containing porous material and spherical silica-containing porous material
JP4221498B2 (en) Porous alumina crystalline particles and method for producing the same
JP5110553B2 (en) Fibrous porous silica metal composite particles and method for producing the same
JP2001340755A (en) Porous material for adsorbing and separating gas and method of adsorbing and separating gas using the same
JP4099811B2 (en) Shaped porous silica or silica metal composite particles and method for producing the same
JP2000281331A (en) Mesoporous body and its production
WO2003037511A1 (en) Method of preparing highly ordered mesoporous molecular sieves
KR101451902B1 (en) Zeolite with MRE structure and their analogue materials possessing mesopore, and synthesis method thereof
JP5051512B2 (en) Method for producing fibrous porous silica particles
KR100900919B1 (en) Manufacturing Method for Mesoporous Material with Zeolite Framework
JP4604212B2 (en) Large pore fibrous silica particles and method for producing the same
JP4756484B2 (en) Method for producing fibrous porous silica particles and fibrous porous silica particles
Zhu et al. Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene glycol
JP4566537B2 (en) Silica-based mesoporous material and method for producing the same
JP5273551B2 (en) Method for producing fibrous porous silica particles
JP4484193B2 (en) Spherical micropore silica porous particles and method for producing the same
JP2000017102A (en) Porous material of organic/inorganic composite polymer and production of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees