WO2017138190A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2017138190A1
WO2017138190A1 PCT/JP2016/081416 JP2016081416W WO2017138190A1 WO 2017138190 A1 WO2017138190 A1 WO 2017138190A1 JP 2016081416 W JP2016081416 W JP 2016081416W WO 2017138190 A1 WO2017138190 A1 WO 2017138190A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous silica
gas sensor
gas
filter
siloxane
Prior art date
Application number
PCT/JP2016/081416
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 雅人
裕樹 喜多
龍也 谷平
Original Assignee
フィガロ技研株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィガロ技研株式会社, 公立大学法人大阪府立大学 filed Critical フィガロ技研株式会社
Priority to JP2017566507A priority Critical patent/JP6485890B2/en
Publication of WO2017138190A1 publication Critical patent/WO2017138190A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to a gas sensor, and more particularly to its filter.
  • the gas sensor has a problem with poisoning by siloxane gas.
  • siloxane gas can be adsorbed and removed by an activated carbon filter, but in detection of isobutane, LPG, etc., activated carbon adsorbs these detection target gases.
  • the applicant has proposed a filter in which zeolite and activated alumina are mixed (Patent Document 1, JP 2013-88267).
  • mesoporous silica exhibits a high adsorption ability to siloxane gas, and that when mesoporous silica is used in a filter, the response of the gas sensor to isobutane or the like is delayed.
  • a silica-alumina-based adsorbent is placed in the previous stage (detected atmosphere side), and a layered filter with a small amount of mesoporous silica attached to a nonwoven fabric is placed in the subsequent stage (gas sensor side of the gas sensor). Proposed (Patent Document 2 JP 2013-242269). In this way, the siloxane gas can be removed while keeping the detection delay of isobutane or the like within an allowable range. *
  • the inventor studied the particle structure and components of mesoporous silica in order to shorten the detection delay of gas such as isobutane and further improve the durability to siloxane gas, and reached the present invention.
  • An object of the present invention is to further shorten the detection delay of a gas sensor to a gas such as isobutane and further improve the durability to a siloxane gas.
  • the gas sensor of the present invention has a gas detection part and a filter disposed on the detected atmosphere side of the gas detection part, and the filter contains plate-like mesoporous silica particles.
  • the plate shape means that the particle is a polygonal plate shape, and the average value of the ratio of the diagonal length of the plate to the plate thickness is 2: 1 or more. For rods, this value is much smaller than 1: 1.
  • the detection delay time by the filter can be shortened compared with the case where conventional rod-like mesoporous silica particles are used, or a larger amount of mesoporous silica can be contained in the filter. Toxicity can be improved.
  • the mesoporous silica particles contain a sulfonic group.
  • siloxane gas can be reacted and fixed in mesopores of the mesoporous silica particles. For this reason, the poisoning resistance of the gas sensor with respect to siloxane gas can be improved.
  • the ratio of the S element in the sulfone group to the Si element of mesoporous silica is, for example, 1:21 to 3:13 at the time of preparation.
  • the ratio of S element to Si element in the mesoporous silica particles is, for example, 1: 100 to 1: 4. is there.
  • the mesoporous silica particles further contain any element of Zr, Ti, Nb, and Ta, and particularly preferably contain a Zr element.
  • the mesoporous silica particles contain any one element of Zr, Ti, Nb, and Ta, particularly the Zr element, plate-like particles can be easily obtained instead of rod-like particles.
  • these metal elements are also important as sites that strongly adsorb siloxane.
  • FIG. 1 H NMR spectrum of cyclic siloxanes adsorbed to the mesoporous silica Sectional view of the gas sensor of the embodiment
  • the figure which shows the drive pattern of the gas sensor of an Example The figure which shows the behavior of the resistance value of the gas sensor in the air, hydrogen, and isobutane by the endurance test in the siloxane gas in an Example.
  • FIG. 1 shows the conditions for preparing the mesoporous silica of Examples.
  • P123 represents the surfactant Pluonic P123 Surfantant
  • TEOS represents Tetra Ethoxy Ortho Silicate
  • MpTMS represents 3-mercapto-propyl-trimethoxy-silane.
  • SBA-15 indicates the type of mesoporous silica prepared, Zr indicates that it contains a Zr element, SA indicates that it contains a sulfone group, and p in SBA-15-p indicates the particle size of SBA-15 Represents a plate shape.
  • Mesoporous silica is usually composed of rod-like particles and has mesopores parallel to the longitudinal direction of the rod.
  • preparation conditions were selected, and plate-like SBA-15 was prepared.
  • the TEOS solution was mixed with 1M hydrogen chloride solution of P123 at 30 ° C with stirring, stirred and allowed to stand, then treated in an autoclave at 100 ° C for 24 hours, suction filtered and washed with pure water. And baked at 500 ° C. for 12 hours to prepare plate-like SBA-15-p.
  • the atomic ratio in the charging stage of Zr and Si was 1:20, and ZrO 2 was added to the solution of P123 to prepare Zr-SBA-15-p.
  • Zr exists so as to substitute Si atoms in the skeleton of mesoporous silica, and when Zr element is contained, the atomic ratio of Zr / Si is, for example, 1: 100 to 1: 8.
  • Ti element, Ta element, and Nb element may be contained in the mesoporous silica, and the atomic ratio with Si in that case is the same as in the case of Zr.
  • a sulfone group was contained in mesoporous silica, an organic silicon compound containing S element was added, and the sulfone group was introduced into mesoporous silica by oxidation with hydrogen peroxide or the like.
  • the method for introducing the sulfone group is arbitrary, but it is preferably introduced as an organic compound of silicon containing S element before the growth of mesoporous silica in the autoclave.
  • the oxidation of the S element to the sulfone group may be performed at any point.
  • the atomic ratio at the charging stage of S element and Si element was set to 1:11 in the example of FIG. 1, but the experiment was performed in the range of 1:21 to 3:13. In the case of containing a Zr element, the atomic ratio of Zr to Si is 1:20 in FIG. 1, but a range of 1: 100 to 1:10 is preferable.
  • FIG. 3 shows a scanning electron micrograph of each sample of FIG.
  • the mesoporous silica particles are almost hexagonal, plate-shaped, the depth direction of the mesopores is directed to the thickness direction of the plate, the thickness of the plate is about 200 to 300 nm, the diameter of the plate (the hexagonal diagonal line) The length) is about 1 ⁇ m, and the average aspect ratio of diameter to thickness is about 3: 1 to 10: 1.
  • Zr element particles tend to be small, and it is easy to control the form in a plate shape instead of a rod shape.
  • the hexagonal shape tended to be slightly broken. The same applies when a Ti element, an Nb element or a Ta element is introduced instead of the Zr element.
  • FIG. 3 shows the adsorption isotherm of cyclic siloxane (D4) on each sample.
  • D4 cyclic siloxane
  • FIG. 4 shows the H + acid amount and the BET specific surface area of mesoporous silica and other adsorbents.
  • the amount of H + acid was measured as follows. At room temperature, 0.1 g of the adsorbent was added to 20 mL of 2M NaCl aqueous solution, and the mixture was stirred under reduced pressure to ion-exchange H + in the adsorbent with Na + . Subsequently, the mixture was filtered, and 10 mL of the filtrate was subjected to neutralization titration, and the amount of H + acid was measured.
  • the plate-shaped mesoporous silica has a large specific surface area, and the acid amount increased by introduction of the sulfone group, and the H + acid amount increased even when the Zr element was contained.
  • FIG. 5 shows the 1 H NMR spectrum of cyclic siloxane adsorbed on mesoporous silica.
  • Each sample was pretreated at 200 to 400 ° C. in a vacuum and left in an atmosphere containing D4 gas having a saturated vapor pressure at room temperature for 1 hour.
  • siloxane was extracted from 100 mg of sample into CDCl 3 , and 1 H NMR spectrum was measured.
  • the numbers such as 1.00 in the figure indicate the area ratio of each peak, and TMS is the peak of the standard substance Tetra Methyl Silane.
  • mesoporous silica containing a sulfone group and a large amount of H + acid a peak derived from D5, which is another cyclic siloxane, was detected. This suggests that the siloxane is ring-opening polymerized by the sulfone group and fixed in the mesoporous silica.
  • FIG. 6 shows the structure of the gas sensor 2.
  • the gas sensor 4 of the gas sensor 2 has a mems structure and uses SnO 2 as a gas detection material.
  • a Pt heater is formed on a thin film of 52 tantalum oxide on the cavity of the Si substrate, an interlayer insulating film is laminated, and a pair of electrodes and a thick film of SnO 2 are laminated thereon, and the gas sensing part 4 It was.
  • the gas sensing unit 4 is accommodated in the metal can 6, and the detected atmosphere is supplied to the gas sensing unit 4 side through the mesoporous silica filter 10 from the opening 8 at the top of the metal can 6.
  • 12 is a lead
  • 14 is a pin
  • 16 is a base.
  • the structure of the gas sensor is optional except that a mesoporous silica filter is used, and the gas sensing part uses a metal oxide semiconductor other than SnO 2 , a catalytic combustion type using a Pt catalyst bead, or a solid high An electrochemical type using a molecular electrolyte membrane or the like may also be used.
  • the structure of the mesoporous silica filter is arbitrary, and a filter such as JP 2013-88267 may be disposed in front of another filter such as zeolite, silica, or amberlist. Further, mesoporous silica may be used by mixing with other filter materials such as zeolite, silica, and amberlist.
  • the amber list is an adsorbent shown in FIG. 4 and is a strong acid ion exchange resin.
  • FIG. 7 shows the driving conditions of the gas sensor.
  • the gas sensor 2 is driven at a period P, the heater is turned on for the time T, and the signal of the gas sensor 2 is sampled in synchronization with the heater being turned off.
  • the period P is 30 seconds and the time T is 1 second under standard driving conditions.
  • the period P was 1 second and the time T was 0.1 second.
  • the SnO 2 temperature during signal sampling was about 350 ° C. for detection of isobutane (FIGS. 8, 9, and 13) and about 450 ° C. for detection of methane (FIGS. 10 to 12).
  • the gas sensor 2 was driven for 12 days in an atmosphere containing 10 ppm of siloxane gas M3, D4, D5, and the resistance value of the gas sensor 2 was measured by switching to an atmosphere containing a predetermined concentration of gas in clean air during measurement.
  • FIG. 8 shows the results in the example (the filter used 45 mg of 10SA-Zr-SBA-15-p).
  • FIG. 9 shows the results of a conventional filter in which zeolite and activated alumina are mixed (composition is silica: alumina in a mass ratio of 1: 1 and the amount used is 60 mg) (Japanese Patent Laid-Open No. 2013-88267).
  • the poisoning was within the allowable range, but in the conventional example, it was beyond the allowable range. *
  • FIG. 10, FIG. 11, and FIG. 12 show the difference depending on the presence and shape of the sulfone group in mesoporous silica. Hydrogen and methane are detected as gases, the temperature of the gas sensing unit when the heater is turned on is 450 ° C., and the poisoning conditions are the same as in FIGS.
  • FIG. 10 shows the result of mesoporous silica composed of plate-like particles and containing sulfone groups (45 mg of 10SA-Zr-SBA-15-p used), and FIG. 11 shows mesoporous composed of plate-like particles and containing no sulfone groups.
  • FIG. 12 shows the results for silica (using 60 mg of SBA-15-p), and FIG. 12 shows the results for mesoporous silica composed of rod-shaped particles (using 75 mg of SBA-15).
  • the ratio of S element to Si element in the mesoporous silica particles is, for example, 1: 100 to 1: 4, preferably 1: 20 to 1: 4.
  • the order of poisoning resistance corresponds to the fact that a sulfone group contains ring-opening polymerization of siloxane (FIG. 5), and the introduction of Zr element increases the amount of H + acid in mesoporous silica (FIG. 4).
  • the plate-like mesoporous silica improves the poisoning resistance of the gas sensor compared to the rod-like mesoporous silica.
  • FIG. 13 shows the relationship between the amount of mesoporous silica filled in the filter and the detection delay time until an output equivalent to 1800 ppm of isobutane is obtained after 4500 ppm of isobutane is injected.
  • shows the results with rod-shaped SBA-15
  • shows the results with SBA-15-p
  • the detection delay could be shortened by using a plate. This is because the mesoporous silica plate has a short mesopore depth, so that the adsorbed isobutane is held in the mesopore for a short time. This suggests that the adsorbed isobutane is retained in the mesopores for a long time.
  • the detection delay is shortened by using a plate shape, and the detection delay is increased by using a rod shape, as is the case with other mesoporous silicas containing a sulfone group or a Zr element.
  • siloxane is polymerized by ring-opening polymerization or the like in the mesopores of mesoporous silica
  • a metal element other than Zr, Nb, Ta, Ti such as a noble metal element may be contained in the mesopores.
  • the inventor has developed a filter that has a high ability to remove siloxane gas and that does not increase the detection delay time of the gas sensor. By using this filter, it is possible to detect gases such as isobutane and LPG while preventing poisoning and keeping the detection delay time within an allowable range.

Abstract

A gas sensor filter contains a sulfone group and also contains plate-like mesoporous silica particles. Siloxane gas can be removed, and the detection delay time of the gas sensor to isobutane is short.

Description

ガスセンサGas sensor
 この発明はガスセンサに関し、特にそのフィルタに関する。 The present invention relates to a gas sensor, and more particularly to its filter.
 ガスセンサにはシロキサンガスによる被毒との問題が有る。メタンあるいはCOの検出では活性炭フィルタによりシロキサンガスを吸着除去できるが、イソブタン、LPG等の検出では活性炭がこれらの検出対象ガスを吸着する。これに対して、出願人はゼオライトと活性アルミナとを混合したフィルタを提案した(特許文献1 特開2013-88267)。 The gas sensor has a problem with poisoning by siloxane gas. In detection of methane or CO, siloxane gas can be adsorbed and removed by an activated carbon filter, but in detection of isobutane, LPG, etc., activated carbon adsorbs these detection target gases. On the other hand, the applicant has proposed a filter in which zeolite and activated alumina are mixed (Patent Document 1, JP 2013-88267).
 出願人はさらに、メソポーラスシリカがシロキサンガスへの高い吸着能を示すことと、メソポーラスシリカをフィルタに用いるとイソブタン等へのガスセンサの応答が遅くなることを見出した。そしてシリカ・アルミナ系の吸着剤を前段(被検出雰囲気側)に配置し、その後段(ガスセンサのガス検知部側)に、不織布等に少量のメソポーラスシリカを付着させた層状フィルタを配置することを提案した(特許文献2 特開2013-242269)。このようにすると、イソブタン等への検知遅れを許容範囲内に保ちながら、シロキサンガスを除去することができる。  The Applicant has further found that mesoporous silica exhibits a high adsorption ability to siloxane gas, and that when mesoporous silica is used in a filter, the response of the gas sensor to isobutane or the like is delayed. A silica-alumina-based adsorbent is placed in the previous stage (detected atmosphere side), and a layered filter with a small amount of mesoporous silica attached to a nonwoven fabric is placed in the subsequent stage (gas sensor side of the gas sensor). Proposed (Patent Document 2 JP 2013-242269). In this way, the siloxane gas can be removed while keeping the detection delay of isobutane or the like within an allowable range. *
 発明者は、イソブタン等のガスへの検知遅れをより短くし、かつシロキサンガスへの耐久性をさらに向上させるために、メソポーラスシリカの粒子構造と成分とを検討し、この発明に至った。 The inventor studied the particle structure and components of mesoporous silica in order to shorten the detection delay of gas such as isobutane and further improve the durability to siloxane gas, and reached the present invention.
特開2013-88267JP2013-88267 特開2013-242269JP2013-242269
 この発明の課題は、ガスセンサのイソブタン等のガスへの検知遅れをより短くし、かつシロキサンガスへの耐久性をさらに向上させることにある。 An object of the present invention is to further shorten the detection delay of a gas sensor to a gas such as isobutane and further improve the durability to a siloxane gas.
 この発明のガスセンサは、ガス検知部と、ガス検知部よりも被検出雰囲気側に配置されているフィルタとを有し、フィルタが、プレート状のメソポーラスシリカ粒子を含有することを特徴とする。ここにプレート状とは、粒子が多角形の板状で、板の対角線の長さと板厚との比の平均値が2:1以上であることを意味する。ロッド状ではこの値は1:1よりも充分に小さい。 The gas sensor of the present invention has a gas detection part and a filter disposed on the detected atmosphere side of the gas detection part, and the filter contains plate-like mesoporous silica particles. Here, the plate shape means that the particle is a polygonal plate shape, and the average value of the ratio of the diagonal length of the plate to the plate thickness is 2: 1 or more. For rods, this value is much smaller than 1: 1.
プレート状のメソポーラスシリカ粒子をフィルタに用いると、従来のロッド状のメソポーラスシリカ粒子を用いる場合に比べ、フィルタによる検知遅れ時間を短くでき、あるいはより多量のメソポーラスシリカをフィルタに含有させることにより、耐被毒性を向上させることができる。 When plate-like mesoporous silica particles are used in the filter, the detection delay time by the filter can be shortened compared with the case where conventional rod-like mesoporous silica particles are used, or a larger amount of mesoporous silica can be contained in the filter. Toxicity can be improved.
 好ましくは、メソポーラスシリカ粒子はスルホン基を含有する。スルホン基を含有するメソポーラスシリカ粒子をフィルタに用いると、シロキサンガスをメソポーラスシリカ粒子のメソ孔中で反応させて固定できる。このため、シロキサンガスに対するガスセンサの耐被毒性を向上できる。スルホン基中のS元素と、メソポーラスシリカのSi元素との比は、仕込み時に例えば1:21~3:13で有る。S元素の一部が、調整時に、生成物のメソポーラスシリカから脱離する可能性を加味すると、メソポーラスシリカ粒子中でのS元素とSi元素との比は、例えば1:100~1:4である。 Preferably, the mesoporous silica particles contain a sulfonic group. When mesoporous silica particles containing a sulfone group are used in a filter, siloxane gas can be reacted and fixed in mesopores of the mesoporous silica particles. For this reason, the poisoning resistance of the gas sensor with respect to siloxane gas can be improved. The ratio of the S element in the sulfone group to the Si element of mesoporous silica is, for example, 1:21 to 3:13 at the time of preparation. Considering the possibility that a part of S element is detached from the product mesoporous silica during the adjustment, the ratio of S element to Si element in the mesoporous silica particles is, for example, 1: 100 to 1: 4. is there.
 好ましくは、メソポーラスシリカ粒子がさらに、Zr,Ti,Nb,及びTaのいずれかの元素を含有し、特に好ましくはZr元素を含有する。メソポーラスシリカ粒子がZr,Ti,Nb,及びTaのいずれかの元素、特にZr元素を含有すると、ロッド状ではなくプレート状の粒子を容易に得ることができる。さらにこれらの金属元素は、シロキサンを強く吸着するサイトとしても、重要である。 Preferably, the mesoporous silica particles further contain any element of Zr, Ti, Nb, and Ta, and particularly preferably contain a Zr element. When the mesoporous silica particles contain any one element of Zr, Ti, Nb, and Ta, particularly the Zr element, plate-like particles can be easily obtained instead of rod-like particles. Furthermore, these metal elements are also important as sites that strongly adsorb siloxane.
実施例での、メソポーラスシリカの調製条件を示す図The figure which shows the preparation conditions of mesoporous silica in an Example 実施例のメソポーラスシリカの電子顕微鏡写真Electron micrograph of mesoporous silica of Example 実施例での、メソポーラスシリカへの環状シロキサンの吸着等温線を示す図The figure which shows the adsorption isotherm of cyclic siloxane to mesoporous silica in an Example 実施例での、メソポーラスシリカのH酸量と比表面積とを示す図The figure which shows the H + acid amount of a mesoporous silica, and a specific surface area in an Example. 実施例で、メソポーラスシリカに吸着した環状シロキサンのH NMRスペクトルを示す図In embodiments, it shows the 1 H NMR spectrum of cyclic siloxanes adsorbed to the mesoporous silica 実施例のガスセンサの断面図Sectional view of the gas sensor of the embodiment 実施例のガスセンサの駆動パターンを示す図The figure which shows the drive pattern of the gas sensor of an Example 実施例での、シロキサンガス中での耐久試験による、空気中、水素中、及びイソブタン中でのガスセンサの抵抗値の挙動を示す図The figure which shows the behavior of the resistance value of the gas sensor in the air, hydrogen, and isobutane by the endurance test in the siloxane gas in an Example. 従来例での、シロキサンガス中での耐久試験による、空気中、水素中、及びイソブタン中でのガスセンサの抵抗値の挙動を示す図The figure which shows the behavior of the resistance value of the gas sensor in the air, in hydrogen, and in isobutane by the durability test in the siloxane gas in the conventional example プレート状の粒子から成りスルホン基を含有するメソポーラスシリカをフィルタとする実施例での、シロキサンガス中での耐久試験による、空気中、水素中、及びメタン中でのガスセンサの抵抗値の挙動を示す図Example of resistance of a gas sensor in air, in hydrogen, and in methane by endurance test in siloxane gas in an example using a mesoporous silica containing a sulfonic group and made of plate-like particles as a filter. Figure プレート状の粒子から成るメソポーラスシリカをフィルタとする実施例での、シロキサンガス中での耐久試験による、空気中、水素中、及びメタン中でのガスセンサの抵抗値の挙動を示す図The figure which shows the behavior of the resistance value of the gas sensor in the air, hydrogen, and methane by the endurance test in siloxane gas in the Example which uses the mesoporous silica which consists of plate-shaped particle | grains as a filter. ロッド状の粒子から成るメソポーラスシリカをフィルタとする比較例での、シロキサンガス中での耐久試験による、空気中、水素中、及びメタン中でのガスセンサの抵抗値の挙動を示す図The figure which shows the behavior of the resistance value of the gas sensor in the air, hydrogen, and methane by the durability test in the siloxane gas in the comparative example which uses the mesoporous silica which consists of rod-shaped particle | grains as a filter. 実施例のガスセンサのフィルタ材の充填量とイソブタンへの検知遅れ時間とを示す図The figure which shows the filling amount of the filter material of the gas sensor of an Example, and the detection delay time to isobutane
 以下に本発明を実施するための最適実施例を示す。 The following is an optimum embodiment for carrying out the present invention.
 プレート状粒子から成るメソポーラスシリカの調製
 図1は、実施例のメソポーラスシリカの調製条件を示す。図中、P123は界面活性剤のPluonic P123 Surfantantを、TEOSはTetra Ethoxy Ortho Silicateを、MpTMSは3-メルカプト-プロピル-トリメトキシ-シランを表す。SBA-15は調製したメソポーラスシリカの種類を、ZrはZr元素を含有することを、SAはスルホン基を含有することを表し、SBA-15-pのpは、SBA-15の粒子径状がプレート状であることを表す。
Preparation of Mesoporous Silica Consisting of Plate-like Particles FIG. 1 shows the conditions for preparing the mesoporous silica of Examples. In the figure, P123 represents the surfactant Pluonic P123 Surfantant, TEOS represents Tetra Ethoxy Ortho Silicate, and MpTMS represents 3-mercapto-propyl-trimethoxy-silane. SBA-15 indicates the type of mesoporous silica prepared, Zr indicates that it contains a Zr element, SA indicates that it contains a sulfone group, and p in SBA-15-p indicates the particle size of SBA-15 Represents a plate shape.
 メソポーラスシリカは通常はロッド状の粒子から成り、ロッドの長手方向に平行なメソ孔が存在する。実施例では調製条件を選び、プレート状のSBA-15を調製した。P123の1Mの塩化水素溶液に、30℃で撹拌下にTEOS溶液を混合し、撹拌と静置を行った後に、オートクレーブ中100℃で24時間処理し、吸引ろ過と純水による洗浄とを施し、500℃で12時間焼成して、プレート状のSBA-15-pを調製した。 Mesoporous silica is usually composed of rod-like particles and has mesopores parallel to the longitudinal direction of the rod. In the examples, preparation conditions were selected, and plate-like SBA-15 was prepared. The TEOS solution was mixed with 1M hydrogen chloride solution of P123 at 30 ° C with stirring, stirred and allowed to stand, then treated in an autoclave at 100 ° C for 24 hours, suction filtered and washed with pure water. And baked at 500 ° C. for 12 hours to prepare plate-like SBA-15-p.
 Zr元素を含有させる場合、例えばZrとSiとの仕込み段階での原子比を1:20とし、ZrOをP123の溶液に加えて、Zr-SBA-15-pを調製した。Zrはメソポーラスシリカの骨格中にSi原子を置換するように存在し、Zr元素を含有させる場合、Zr/Siの原子比は例えば1:100~1:8とする。Zr元素に代えて、Ti元素、Ta元素、Nb元素をメソポーラスシリカ中に含有させても良く、その場合のSiとの原子比はZrの場合と同様である。 When the Zr element was contained, for example, the atomic ratio in the charging stage of Zr and Si was 1:20, and ZrO 2 was added to the solution of P123 to prepare Zr-SBA-15-p. Zr exists so as to substitute Si atoms in the skeleton of mesoporous silica, and when Zr element is contained, the atomic ratio of Zr / Si is, for example, 1: 100 to 1: 8. Instead of the Zr element, Ti element, Ta element, and Nb element may be contained in the mesoporous silica, and the atomic ratio with Si in that case is the same as in the case of Zr.
 SA-SBA-15-pではスルホン基をメソポーラスシリカ中に含有させ、S元素を含有する有機珪素化合物を加え、過酸化水素等により酸化することにより、スルホン基をメソポーラスシリカに導入した。スルホン基の導入方法は任意であるが、オートクレーブ中でのメソポーラスシリカの成長よりも前に、S元素を含有する珪素の有機化合物として導入することが好ましい。S元素のスルホン基への酸化はどの時点で行っても良い。またS元素とSi元素との仕込み段階での原子比は図1の例では1:11としたが、1:21~3:13の範囲で実験した。Zr元素を含有する場合、ZrとSiとの原子比は図1では1:20であるが、1:100~1:10の範囲が好ましい。 In SA-SBA-15-p, a sulfone group was contained in mesoporous silica, an organic silicon compound containing S element was added, and the sulfone group was introduced into mesoporous silica by oxidation with hydrogen peroxide or the like. The method for introducing the sulfone group is arbitrary, but it is preferably introduced as an organic compound of silicon containing S element before the growth of mesoporous silica in the autoclave. The oxidation of the S element to the sulfone group may be performed at any point. Also, the atomic ratio at the charging stage of S element and Si element was set to 1:11 in the example of FIG. 1, but the experiment was performed in the range of 1:21 to 3:13. In the case of containing a Zr element, the atomic ratio of Zr to Si is 1:20 in FIG. 1, but a range of 1: 100 to 1:10 is preferable.
 調製した各試料に対し、X線回折スペクトルとNの吸脱着等温線とを測定し、規則的なメソ孔を有することを確認した。図3に、図1の各試料の走査型電子顕微鏡写真を示す。メソポーラスシリカの粒子はいずれも、略6角形の、プレート状で、メソ孔の奥行き方向はプレートの厚さ方向を向き、プレートの厚さは200~300nm程度、プレートの直径(6角形の対角線の長さ)は1μm程度で、直径と厚さとの縦横比の平均は3:1~10:1程度である。Zr元素を含有させると、粒子が小さくなる傾向があり、またロッド状ではなく、プレート状に形態を制御することが容易になった。さらにスルホン基を含有させると、六角形の形状がやや崩れる傾向があった。Zr元素に代えて、Ti元素、Nb元素あるいはTa元素を導入しても同様である。 The X-ray diffraction spectrum and N 2 adsorption / desorption isotherm were measured for each prepared sample, and it was confirmed that the sample had regular mesopores. FIG. 3 shows a scanning electron micrograph of each sample of FIG. The mesoporous silica particles are almost hexagonal, plate-shaped, the depth direction of the mesopores is directed to the thickness direction of the plate, the thickness of the plate is about 200 to 300 nm, the diameter of the plate (the hexagonal diagonal line) The length) is about 1 μm, and the average aspect ratio of diameter to thickness is about 3: 1 to 10: 1. When Zr element is contained, particles tend to be small, and it is easy to control the form in a plate shape instead of a rod shape. Furthermore, when a sulfone group was contained, the hexagonal shape tended to be slightly broken. The same applies when a Ti element, an Nb element or a Ta element is introduced instead of the Zr element.
 図3は、各試料への環状シロキサン(D4)の吸着等温線を示す。低濃度のシロキサンガスの吸着量を増すには、メソポーラスシリカに、Zrを含有させることと、スルホン基を含有させることが有効であることを確認できた。 FIG. 3 shows the adsorption isotherm of cyclic siloxane (D4) on each sample. In order to increase the amount of adsorption of the low-concentration siloxane gas, it was confirmed that inclusion of Zr and a sulfone group in mesoporous silica was effective.
 図4は、メソポーラスシリカと他の吸着剤との、H酸量とBET比表面積とを示す。なおH酸量は以下のように測定した。室温で、2MのNaCl水溶液20mL中に吸着剤0.1gを加えて、減圧下に撹拌して吸着剤中のHをNaとイオン交換した。次いでろ過し、濾液10mLを中和滴定し、H酸量を測定した。プレート状のメソポーラスシリカは比表面積が大きく、スルホン基の導入により酸量が増加し、Zr元素を含有させてもH酸量が増加した。 FIG. 4 shows the H + acid amount and the BET specific surface area of mesoporous silica and other adsorbents. The amount of H + acid was measured as follows. At room temperature, 0.1 g of the adsorbent was added to 20 mL of 2M NaCl aqueous solution, and the mixture was stirred under reduced pressure to ion-exchange H + in the adsorbent with Na + . Subsequently, the mixture was filtered, and 10 mL of the filtrate was subjected to neutralization titration, and the amount of H + acid was measured. The plate-shaped mesoporous silica has a large specific surface area, and the acid amount increased by introduction of the sulfone group, and the H + acid amount increased even when the Zr element was contained.
 図5は、メソポーラスシリカに吸着した環状シロキサンのH NMRスペクトルを示す。各試料を真空中で200~400℃で前処理し、室温で飽和蒸気圧のD4ガスを含む雰囲気に1時間放置した。次いで試料100mgからCDCl3にシロキサンを抽出し、H NMRスペクトルを測定した。図中の1.00等の数字は各ピークの面積比を示し、TMSは標準物質のTetra Methyl Silaneのピークである。スルホン基を含みH酸量の多いメソポーラスシリカでは、他の環状シロキサンであるD5由来のピークが検出された。このことはスルホン基によりシロキサンが開環重合して、メソポーラスシリカ中に固定されることを示唆している。 FIG. 5 shows the 1 H NMR spectrum of cyclic siloxane adsorbed on mesoporous silica. Each sample was pretreated at 200 to 400 ° C. in a vacuum and left in an atmosphere containing D4 gas having a saturated vapor pressure at room temperature for 1 hour. Next, siloxane was extracted from 100 mg of sample into CDCl 3 , and 1 H NMR spectrum was measured. The numbers such as 1.00 in the figure indicate the area ratio of each peak, and TMS is the peak of the standard substance Tetra Methyl Silane. In mesoporous silica containing a sulfone group and a large amount of H + acid, a peak derived from D5, which is another cyclic siloxane, was detected. This suggests that the siloxane is ring-opening polymerized by the sulfone group and fixed in the mesoporous silica.
 ガスセンサ
 図6に、ガスセンサ2の構造を示す。ガスセンサ2のガス感知部4は、mems構造でSnOをガス検出材料とする。Si基板の空洞部上の52酸化タンタルの薄膜上に、Ptヒータを形成し、層間絶縁膜を積層し、その上部に1対の電極とSnO2の厚膜とを積層し、ガス感知部4とした。ガス感知部4をメタル缶6に収容し、メタル缶6の頂部の開口8から、メソポーラスシリカフィルタ10を介して、被検出雰囲気をガス感知部4側へ供給する。12はリード、14はピン、16はベースである。なおガスセンサの構造材料はメソポーラスシリカフィルタを用いることを除き任意で、ガス感知部はSnO2以外の金属酸化物半導体を用いるものでも、Pt触媒のビードを用いる接触燃焼式のものでも、あるいは固体高分子電解質膜等を用いる電気化学式のものでも良い。メソポーラスシリカフィルタの構造は任意で、ゼオライト、シリカ、アンバーリスト等の他のフィルタを前段に特開2013-88267等のフィルタを配置しても良い。またメソポーラスシリカを、ゼオライト、シリカ、アンバーリスト等の他のフィルタ材料と混合して用いても良い。なおアンバーリストは図4に示した吸着剤で、強酸型のイオン交換樹脂である。 
Gas Sensor FIG. 6 shows the structure of the gas sensor 2. The gas sensor 4 of the gas sensor 2 has a mems structure and uses SnO 2 as a gas detection material. A Pt heater is formed on a thin film of 52 tantalum oxide on the cavity of the Si substrate, an interlayer insulating film is laminated, and a pair of electrodes and a thick film of SnO 2 are laminated thereon, and the gas sensing part 4 It was. The gas sensing unit 4 is accommodated in the metal can 6, and the detected atmosphere is supplied to the gas sensing unit 4 side through the mesoporous silica filter 10 from the opening 8 at the top of the metal can 6. 12 is a lead, 14 is a pin, and 16 is a base. The structure of the gas sensor is optional except that a mesoporous silica filter is used, and the gas sensing part uses a metal oxide semiconductor other than SnO 2 , a catalytic combustion type using a Pt catalyst bead, or a solid high An electrochemical type using a molecular electrolyte membrane or the like may also be used. The structure of the mesoporous silica filter is arbitrary, and a filter such as JP 2013-88267 may be disposed in front of another filter such as zeolite, silica, or amberlist. Further, mesoporous silica may be used by mixing with other filter materials such as zeolite, silica, and amberlist. The amber list is an adsorbent shown in FIG. 4 and is a strong acid ion exchange resin.
 図7は、ガスセンサの駆動条件を示す。周期Pでガスセンサ2を駆動し、その内時間Tだけヒータをオンし、ヒータをオフするのと同期してガスセンサ2の信号をサンプリングする。ヒータ電力を小さくするため、標準の駆動条件では周期Pを30秒、時間Tを1秒とする。ガスへの検知遅れの試験では、周期Pを1秒、時間Tを0.1秒とした。信号のサンプリング時のSnO2の温度は、イソブタン(図8,図9,図13)の検出では350℃程度、メタンの検出(図10~図12)では450℃程度であった。 FIG. 7 shows the driving conditions of the gas sensor. The gas sensor 2 is driven at a period P, the heater is turned on for the time T, and the signal of the gas sensor 2 is sampled in synchronization with the heater being turned off. In order to reduce the heater power, the period P is 30 seconds and the time T is 1 second under standard driving conditions. In the gas detection delay test, the period P was 1 second and the time T was 0.1 second. The SnO 2 temperature during signal sampling was about 350 ° C. for detection of isobutane (FIGS. 8, 9, and 13) and about 450 ° C. for detection of methane (FIGS. 10 to 12).
 シロキサンガスM3,D4,D5を各10ppm含有する雰囲気でガスセンサ2を12日間駆動し、測定時に清浄空気中に所定濃度のガスを含む雰囲気に切り替えて、ガスセンサ2の抵抗値を測定した。実施例(フィルタは、10SA-Zr-SBA-15-pを45mg使用)での結果を図8に示す。ゼオライトと活性アルミナとを混合した従来例のフィルタ(組成はシリカ:アルミナが質量比で1:1、使用量は60mg)(特開2013-88267)での結果を、図9に示す。実施例では被毒は許容範囲内であるが、従来例では許容範囲を超えていた。  The gas sensor 2 was driven for 12 days in an atmosphere containing 10 ppm of siloxane gas M3, D4, D5, and the resistance value of the gas sensor 2 was measured by switching to an atmosphere containing a predetermined concentration of gas in clean air during measurement. FIG. 8 shows the results in the example (the filter used 45 mg of 10SA-Zr-SBA-15-p). FIG. 9 shows the results of a conventional filter in which zeolite and activated alumina are mixed (composition is silica: alumina in a mass ratio of 1: 1 and the amount used is 60 mg) (Japanese Patent Laid-Open No. 2013-88267). In the examples, the poisoning was within the allowable range, but in the conventional example, it was beyond the allowable range. *
 図10、図11、図12は、メソポーラスシリカでのスルホン基の有無と形状とによる差を示す。ガスとして水素とメタンとを検出し、ヒータオン時のガス感知部の温度は450℃で、被毒の条件は図8,図9と同様である。図10はプレート状の粒子から成りスルホン基を含有するメソポーラスシリカ(10SA-Zr-SBA-15-pを45mg使用)での結果を、図11はプレート状の粒子から成りスルホン基を含有しないメソポーラスシリカ(SBA-15-pを60mg使用)での結果を、図12はロッド状の粒子から成るメソポーラスシリカ(SBA-15を75mg使用)での結果を示す。 FIG. 10, FIG. 11, and FIG. 12 show the difference depending on the presence and shape of the sulfone group in mesoporous silica. Hydrogen and methane are detected as gases, the temperature of the gas sensing unit when the heater is turned on is 450 ° C., and the poisoning conditions are the same as in FIGS. FIG. 10 shows the result of mesoporous silica composed of plate-like particles and containing sulfone groups (45 mg of 10SA-Zr-SBA-15-p used), and FIG. 11 shows mesoporous composed of plate-like particles and containing no sulfone groups. FIG. 12 shows the results for silica (using 60 mg of SBA-15-p), and FIG. 12 shows the results for mesoporous silica composed of rod-shaped particles (using 75 mg of SBA-15).
 プレート状でスルホン基を含有する10SA-Zr-SBA-15-pを用いると、20日間ガスセンサの特性は安定で、SBA-15-pでは5日間ガスセンサの特性は安定であった。これに対して、ロッド状のSBA-15では1日で被毒が生じた。実施例での耐被毒性の順は、
 10SA-Zr-SBA-15-p> 10SA-SBA-15-p> Zr-SBA-15-p> SBA-15-p> SBA-15
となった。そして、S元素含有量と共にメソポーラスシリカのH+酸量が増し(図4)、メソポーラスシリカ粒子中でのS元素とSi元素との比は例えば1:100~1:4とし、好ましくは1:20~1:4とする。耐被毒性の順序は、スルホン基を含有するとシロキサンの開環重合等が生じること(図5)と対応し、Zr元素を導入するとメソポーラスシリカのH酸量が増加すること(図4)と対応する。さらにプレート状のメソポーラスシリカは、ロッド状のメソポーラスシリカよりもガスセンサの耐被毒性能を向上させる。
When 10SA-Zr-SBA-15-p containing a sulfone group in a plate shape was used, the characteristics of the gas sensor were stable for 20 days, and for SBA-15-p, the characteristics of the gas sensor were stable for 5 days. In contrast, rod-shaped SBA-15 was poisoned in one day. The order of anti-toxicity in the examples is
10SA-Zr-SBA-15-p>10SA-SBA-15-p>Zr-SBA-15-p>SBA-15-p> SBA-15
It became. Then, the H + acid amount of mesoporous silica increases with the S element content (FIG. 4), and the ratio of S element to Si element in the mesoporous silica particles is, for example, 1: 100 to 1: 4, preferably 1: 20 to 1: 4. The order of poisoning resistance corresponds to the fact that a sulfone group contains ring-opening polymerization of siloxane (FIG. 5), and the introduction of Zr element increases the amount of H + acid in mesoporous silica (FIG. 4). Correspond. Further, the plate-like mesoporous silica improves the poisoning resistance of the gas sensor compared to the rod-like mesoporous silica.
 図13は、フィルタへのメソポーラスシリカの充填量と、イソブタン4500ppmを注入した後、イソブタン1800ppm相当の出力が得られるまでの検知遅れ時間との関係を示す。◆はロッド状のSBA-15での結果を、■はSBA-15-pでの結果を示し、プレート状にすることにより、検知遅れを短縮できた。このことは、プレート状のメソポーラスシリカではメソ孔の奥行きが短いため、吸着したイソブタンがメソ孔に保持される時間が短いが、ロッド状のプレート状のメソポーラスシリカではメソ孔の奥行きが長いため、吸着したイソブタンが長時間メソ孔に保持されることを示唆している。プレート状にすることにより検知遅れが短くなり、ロッド状にすることにより検知遅れが長くなることは、スルホン基やZr元素を含有する他のメソポーラスシリカでも同様であった。 FIG. 13 shows the relationship between the amount of mesoporous silica filled in the filter and the detection delay time until an output equivalent to 1800 ppm of isobutane is obtained after 4500 ppm of isobutane is injected. ◆ shows the results with rod-shaped SBA-15, ■ shows the results with SBA-15-p, and the detection delay could be shortened by using a plate. This is because the mesoporous silica plate has a short mesopore depth, so that the adsorbed isobutane is held in the mesopore for a short time. This suggests that the adsorbed isobutane is retained in the mesopores for a long time. The detection delay is shortened by using a plate shape, and the detection delay is increased by using a rod shape, as is the case with other mesoporous silicas containing a sulfone group or a Zr element.
 なおメソポーラスシリカのメソ孔中でシロキサンを開環重合等により重合させるため、メソ孔中に貴金属元素等の、Zr,Nb,Ta,Ti以外の金属元素を含有させても良い。 In addition, since siloxane is polymerized by ring-opening polymerization or the like in the mesopores of mesoporous silica, a metal element other than Zr, Nb, Ta, Ti such as a noble metal element may be contained in the mesopores.
 発明者は、シロキサンガスの除去能力が高く、かつガスセンサの検知遅れ時間が長くならないフィルタを開発した。このフィルタを用いることにより、被毒を防止し、かつ検知遅れ時間を許容範囲内に留めながら、イソブタン、LPG等のガスを検出できる。 The inventor has developed a filter that has a high ability to remove siloxane gas and that does not increase the detection delay time of the gas sensor. By using this filter, it is possible to detect gases such as isobutane and LPG while preventing poisoning and keeping the detection delay time within an allowable range.
2   ガスセンサ
4   ガス感知部
10   メソポーラスシリカフィルタ
2 Gas sensor
4 Gas detector
10 Mesoporous silica filter

Claims (4)

  1.  ガス検知部と、ガス検知部よりも被検出雰囲気側に配置されているフィルタとを有するガスセンサにおいて、
     前記フィルタがプレート状のメソポーラスシリカ粒子を含有することを特徴とする、ガスセンサ。
    In a gas sensor having a gas detection unit and a filter disposed on the detected atmosphere side of the gas detection unit,
    The gas sensor according to claim 1, wherein the filter contains plate-like mesoporous silica particles.
  2.  前記メソポーラスシリカ粒子がスルホン基を含有することを特徴とする、請求項1のガスセンサ。 The gas sensor according to claim 1, wherein the mesoporous silica particles contain a sulfone group.
  3.  前記メソポーラスシリカ粒子が、Zr,Ti,Nb,及びTaのいずれかの元素を含有することを特徴とする、請求項1のガスセンサ。 The gas sensor according to claim 1, wherein the mesoporous silica particles contain any one element of Zr, Ti, Nb, and Ta.
  4.  前記メソポーラスシリカ粒子が、Zr,Ti,Nb,及びTaのいずれかの元素を含有することを特徴とする、請求項2のガスセンサ。 The gas sensor according to claim 2, wherein the mesoporous silica particles contain any one element of Zr, Ti, Nb, and Ta.
PCT/JP2016/081416 2016-02-12 2016-10-24 Gas sensor WO2017138190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566507A JP6485890B2 (en) 2016-02-12 2016-10-24 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016024410 2016-02-12
JP2016-024410 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138190A1 true WO2017138190A1 (en) 2017-08-17

Family

ID=59563863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081416 WO2017138190A1 (en) 2016-02-12 2016-10-24 Gas sensor

Country Status (2)

Country Link
JP (1) JP6485890B2 (en)
WO (1) WO2017138190A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159348A1 (en) * 2017-03-02 2018-09-07 フィガロ技研株式会社 Gas sensor and method for producing same
CN108508065A (en) * 2018-04-03 2018-09-07 宁夏大学 A kind of order mesoporous nickel ferrite based magnetic loaded toluene gas sensitive of ultra-fine skeleton and preparation method thereof
JPWO2017221574A1 (en) * 2016-06-23 2018-11-08 フィガロ技研株式会社 Gas sensor
WO2020031724A1 (en) 2018-08-10 2020-02-13 フィガロ技研株式会社 Gas detector
WO2020031723A1 (en) 2018-08-10 2020-02-13 フィガロ技研株式会社 Gas detector
US20210310906A1 (en) * 2019-05-17 2021-10-07 Figaro Engineering Inc. Gas detection device and gas detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112948A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Flaky or fibrous organic/inorganic porous silica particle and method for producing the same
WO2012096171A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Flake-like mesoporous particles and manufacturing method therefor
JP2013242269A (en) * 2012-05-22 2013-12-05 Figaro Eng Inc Gas sensor
JP2015044175A (en) * 2013-08-29 2015-03-12 東洋紡株式会社 Siloxane removing agent, and filter for removing siloxane by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112948A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Flaky or fibrous organic/inorganic porous silica particle and method for producing the same
WO2012096171A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Flake-like mesoporous particles and manufacturing method therefor
JP2013242269A (en) * 2012-05-22 2013-12-05 Figaro Eng Inc Gas sensor
JP2015044175A (en) * 2013-08-29 2015-03-12 東洋紡株式会社 Siloxane removing agent, and filter for removing siloxane by using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017221574A1 (en) * 2016-06-23 2018-11-08 フィガロ技研株式会社 Gas sensor
WO2018159348A1 (en) * 2017-03-02 2018-09-07 フィガロ技研株式会社 Gas sensor and method for producing same
US11638895B2 (en) 2017-03-02 2023-05-02 Figaro Engineering Inc. Gas sensor and method for producing same
CN108508065A (en) * 2018-04-03 2018-09-07 宁夏大学 A kind of order mesoporous nickel ferrite based magnetic loaded toluene gas sensitive of ultra-fine skeleton and preparation method thereof
WO2020031724A1 (en) 2018-08-10 2020-02-13 フィガロ技研株式会社 Gas detector
WO2020031723A1 (en) 2018-08-10 2020-02-13 フィガロ技研株式会社 Gas detector
KR20210039472A (en) 2018-08-10 2021-04-09 피가로 기켄 가부시키가이샤 Gas detector
KR20210039471A (en) 2018-08-10 2021-04-09 피가로 기켄 가부시키가이샤 Gas detector
JPWO2020031723A1 (en) * 2018-08-10 2021-08-26 フィガロ技研株式会社 Gas detector
JP7021756B2 (en) 2018-08-10 2022-02-17 フィガロ技研株式会社 Gas detector
US11940432B2 (en) 2018-08-10 2024-03-26 Figaro Engineering Inc. Gas detector
US20210310906A1 (en) * 2019-05-17 2021-10-07 Figaro Engineering Inc. Gas detection device and gas detection method

Also Published As

Publication number Publication date
JP6485890B2 (en) 2019-03-20
JPWO2017138190A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017138190A1 (en) Gas sensor
Bhagiyalakshmi et al. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO 2 chemisorption
Zhao et al. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents
Gregis et al. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis
Wan et al. Versatile drug releaser derived from the Ti-substituted mesoporous silica SBA-15
JP6935886B2 (en) Gas sensor and its manufacturing method
de Ávila et al. Incorporation of monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA) in mesoporous silica: An alternative to CO2 capture
de Clippel et al. Graphitic nanocrystals inside the pores of mesoporous silica: Synthesis, characterization and an adsorption study
JP5881205B2 (en) Gas sensor
US9327989B2 (en) Compositions, systems and methods for separating ethanol from water and methods of making compositions for separating ethanol from water
JP5035819B2 (en) Method for forming porous silica film and coating solution for forming porous silica used therefor
Zukal et al. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption
US20190137426A1 (en) Gas Sensor
Kimura et al. Trace-level gravimetric detection promoted by surface interactions of mesoporous materials with chemical vapors
Hu et al. Activated carbon based selective purification of medical grade NO starting from arc discharge method
JP4887493B2 (en) Method for producing hydrophobic zeolite
Abutartour et al. A new hierarchical porous zirconium phosphate membrane and its adsorption properties
JP2011056494A (en) Water-soluble volatile organic compound adsorbent
El-Sayed et al. Synthesis and characterization of porous WO3–SnO2 nanomaterials: An infrared study of adsorbed pyridine and dimethyl methylphosphonate
WO2020235335A1 (en) Gas detection device and gas detection method
CN105929003A (en) Preparation method of catalytic filter membrane used for improving selectivity of gas-sensitive element
Oliva et al. Detection of volatile organic compounds adsorbed onto zeolite layers
Kosmulski et al. Uptake of vapors of Cd at 480–600° C and of Zn at 750–880° C by SBA-15
Bekyarova et al. Adsorption of supercritical N2 and O2 on pore-controlled carbon aerogels
Pavlova et al. Adsorption of the main components of air N2 and O2 on cation-exchange forms of LSX zeolite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889891

Country of ref document: EP

Kind code of ref document: A1