JP2009249249A - Production method of mesoporous silica particle - Google Patents

Production method of mesoporous silica particle Download PDF

Info

Publication number
JP2009249249A
JP2009249249A JP2008100666A JP2008100666A JP2009249249A JP 2009249249 A JP2009249249 A JP 2009249249A JP 2008100666 A JP2008100666 A JP 2008100666A JP 2008100666 A JP2008100666 A JP 2008100666A JP 2009249249 A JP2009249249 A JP 2009249249A
Authority
JP
Japan
Prior art keywords
silica particles
water
core
mesoporous silica
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008100666A
Other languages
Japanese (ja)
Other versions
JP5291971B2 (en
Inventor
Risako Yamashita
理紗子 山下
Akihiro Yano
聡宏 矢野
Koji Hosokawa
浩司 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008100666A priority Critical patent/JP5291971B2/en
Publication of JP2009249249A publication Critical patent/JP2009249249A/en
Application granted granted Critical
Publication of JP5291971B2 publication Critical patent/JP5291971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient production method of mesoporous silica particles having a homogeneous mesoporous structure and having a hollow structure or a core-shell structure with a uniform particle diameter. <P>SOLUTION: The production method of mesoporous silica particles having a hollow structure or a core-shell structure and having a mesoporous structure in an outer shell portion includes a step of adding with time a surfactant (b) selected from cationic surfactants and nonionic surfactants, and a silica source (c) to a dispersion liquid (A) containing a water-soluble substance (a) and water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メソポーラスシリカ粒子を効率よく製造する方法に関する。   The present invention relates to a method for efficiently producing mesoporous silica particles.

多孔質構造をもつ物質は高い表面積を有するため、触媒担体、酵素や機能性有機化合物等の固定化担体として広く使用されている。特に、多孔質構造を形成する細孔の細孔径の分布がシャープである場合、分子篩としての作用が発現し、構造選択性を有する触媒担体としての利用や、物質分離剤、徐放性担体への応用が可能となる。かかる応用のために、均一で微細な細孔を有する多孔体が求められている。
均一で微細な細孔を有する多孔体として、メソ領域の細孔を有するメソポーラスシリカが開発され、前記用途の他に、ナノワイヤー、半導体材料、光エレクトロニクスへの応用等の分野での利用が注目されている。
Since a substance having a porous structure has a high surface area, it is widely used as a catalyst carrier, an immobilization carrier for enzymes, functional organic compounds, and the like. In particular, when the pore size distribution of the pores forming the porous structure is sharp, it acts as a molecular sieve and can be used as a catalyst carrier having structure selectivity, as a substance separation agent, or a sustained release carrier. Can be applied. For such applications, porous bodies having uniform and fine pores are required.
Mesoporous silica with pores in the meso region has been developed as a porous body with uniform and fine pores, and in addition to the above uses, it is attracting attention for use in fields such as nanowires, semiconductor materials, and optoelectronics. Has been.

メソ細孔構造を有するシリカとして、外殻がメソ細孔構造を有し内部が中空のシリカ粒子が知られている。
例えば、特許文献1には、非イオン界面活性剤としてのソルビタンモノステアレート又はアルキルトリメチルアンモニウムを含む水とトルエンのO/W型エマルション中で、トリクロロシラン等の有機金属ハロゲン化合物を加水分解し製造する、複数の細孔を有する殻を有する多孔質中空粒子が記載されている。
また、非特許文献1には、界面活性剤を含む水溶液にシリカ源を滴下後、加熱処理することにより、メソ細孔を有する中空メソポーラスシリカをシリカの最終濃度2%で合成できると記載されている。しかし、非特許文献1で得られた中空メソポーラスシリカのBET比表面積は690〜1830m2/gと高いが、粒子径の分布がブロードである。
As silica having a mesopore structure, silica particles having a mesopore structure in the outer shell and a hollow inside are known.
For example, in Patent Document 1, it is produced by hydrolyzing an organometallic halogen compound such as trichlorosilane in an O / W emulsion of water and toluene containing sorbitan monostearate or alkyltrimethylammonium as a nonionic surfactant. Porous hollow particles having a shell with a plurality of pores are described.
Non-Patent Document 1 describes that hollow mesoporous silica having mesopores can be synthesized at a final silica concentration of 2% by dropping a silica source into an aqueous solution containing a surfactant, followed by heat treatment. Yes. However, although the BET specific surface area of the hollow mesoporous silica obtained in Non-Patent Document 1 is as high as 690 to 1830 m 2 / g, the particle size distribution is broad.

特開2007−44610号公報JP 2007-44610 A Guangshan Zhu他、J.Am.Chem.Soc.、第123巻、第7723頁(2001年)Gangshan Zhu et al. Am. Chem. Soc. 123, 7723 (2001)

本発明は、均質なメソ細孔構造を有し、粒子径が均一な中空構造又はコアシェル構造を有するメソポーラスシリカ粒子の効率的な製造方法を提供することを課題とする。   It is an object of the present invention to provide an efficient method for producing mesoporous silica particles having a homogeneous mesoporous structure and a hollow structure or a core-shell structure with a uniform particle diameter.

本発明者らは、コアとなる不溶性物質を分散させた溶液に、界面活性剤とシリカ源を経時的に添加することにより、均質なメソ細孔構造を有し、粒子径が均一な中空構造又はコアシェル構造を有するメソポーラスシリカ粒子を効率よく製造できることを見出した。
すなわち本発明は、中空構造又はコアシェル構造を有し、外殻部がメソ細孔構造を有するメソポーラスシリカ粒子の製造方法であって、水不溶性物質(a)及び水を含有する分散液(A)に、陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(b)とシリカ源(c)とを経時的に添加して反応を行う工程を含む、メソポーラスシリカ粒子の製造方法を提供する。
The inventors have added a surfactant and a silica source over time to a solution in which an insoluble substance serving as a core is dispersed, thereby having a homogeneous mesopore structure and a hollow structure with a uniform particle size. Alternatively, it has been found that mesoporous silica particles having a core-shell structure can be efficiently produced.
That is, the present invention relates to a method for producing mesoporous silica particles having a hollow structure or a core-shell structure and having an outer shell portion having a mesoporous structure, which is a dispersion (A) containing a water-insoluble substance (a) and water. A mesoporous silica particle comprising a step of reacting with one or more surfactants (b) selected from a cationic surfactant and a nonionic surfactant and a silica source (c) over time A manufacturing method is provided.

本発明の製造方法によれば、均質なメソ細孔構造を有し、粒子径が均一な中空構造又はコアシェル構造を有するメソポーラスシリカ粒子を効率よく製造することができる。   According to the production method of the present invention, mesoporous silica particles having a homogeneous mesopore structure and a hollow structure or a core-shell structure with a uniform particle diameter can be efficiently produced.

(メソポーラスシリカ粒子の製造方法)
本発明のメソポーラスシリカ粒子の製造方法は、中空構造又はコアシェル構造を有し、外殻部がメソ細孔構造を有するメソポーラスシリカ粒子の製造方法であって、水不溶性物質(a)及び水を含有する分散液(A)に、陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(b)とシリカ源(c)とを経時的に添加して反応を行う工程を含むことを特徴とする。
界面活性剤(b)及びシリカ源(c)の添加は経時的に行えばよく、その他に特に制限はない。界面活性剤(b)及びシリカ源(c)を分散液(A)に対して別々に添加してもよいが、界面活性剤(b)及びシリカ源(c)を含有する溶液(B)として、添加することがより好ましい。
なお、シリカ源(c)を経時的に添加する前の分散液(A)中の界面活性剤(b)の濃度は、臨界ミセル濃度以下であることが好ましい。ここで、分散液(A)中の界面活性剤(b)の濃度とは、25℃における、溶液全体に対する界面活性剤(b)のモル数をいう。
以上のことから、本発明の製造方法は、以下の工程を含むことがより好ましい。
工程(I):水不溶性物質(a)及び水を含有する分散液(A)を調製する工程。
工程(II):陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(b)とシリカ源(c)とを含有する溶液(B)を調製する工程。
工程(III):撹拌下で、分散液(A)に溶液(B)を経時的に添加して反応を行い、水不溶性物質(a)を内包するコアシェル構造のメソポーラスシリカ粒子の水分散液を調整する工程。
以下、各工程及びそこで用いる各成分について説明する。
(Method for producing mesoporous silica particles)
The method for producing mesoporous silica particles of the present invention is a method for producing mesoporous silica particles having a hollow structure or a core-shell structure, and an outer shell portion having a mesoporous structure, which contains a water-insoluble substance (a) and water. To the dispersion (A) to be reacted with one or more surfactants (b) selected from a cationic surfactant and a nonionic surfactant and a silica source (c) over time It is characterized by including.
The addition of the surfactant (b) and the silica source (c) may be performed with time, and there is no particular limitation. Surfactant (b) and silica source (c) may be added separately to dispersion (A), but as solution (B) containing surfactant (b) and silica source (c) More preferably, it is added.
In addition, it is preferable that the density | concentration of surfactant (b) in the dispersion liquid (A) before adding a silica source (c) with time is below a critical micelle density | concentration. Here, the concentration of the surfactant (b) in the dispersion (A) refers to the number of moles of the surfactant (b) with respect to the whole solution at 25 ° C.
From the above, the production method of the present invention more preferably includes the following steps.
Step (I): A step of preparing a dispersion (A) containing a water-insoluble substance (a) and water.
Step (II): A step of preparing a solution (B) containing at least one surfactant (b) selected from a cationic surfactant and a nonionic surfactant and a silica source (c).
Step (III): Under stirring, the solution (B) is added to the dispersion (A) over time to react, and an aqueous dispersion of mesoporous silica particles having a core-shell structure enclosing the water-insoluble substance (a) is obtained. Adjusting process.
Hereinafter, each process and each component used there are demonstrated.

工程(I)
工程(I)は、水不溶性物質(a)及び水を含有する分散液(A)を調製する工程である。
ここで用いられる水不溶性物質(a)としては、疎水性有機溶剤、陽イオン性高分子化合物、非イオン性高分子化合物等の有機高分子化合物及び無機化合物から選ばれる1種以上が好ましい。水不溶性物質(a)には水への溶解性の低い水難溶性の物質も含まれる。具体的には、有機高分子化合物や無機化合物等の固体物質については、20℃の水への溶解度が1%以下のものを意味する。
水不溶性物質(a)としての疎水性有機溶剤は、水に対する溶解性が低く、水と分相を形成するものを意味する。好ましくは、後述する第四級アンモニウム塩の存在下で分散可能な溶剤である。このような疎水性有機溶剤としては、LogPOWが1以上、好ましくは2〜25の化合物が挙げられる。ここで、LogPとは、化学物質の1−オクタノール/水分配係数であり、logKOW法により計算で求められた値をいう。具体的には、化合物の化学構造を、その構成要素に分解し、各フラグメントの有する疎水性フラグメント定数を積算して求められる(Meylan, W.M. and P.H. Howard. 1995. Atom/fragment contribution method for estimating octanol-water partition coefficients. J. Pharm. Sci. 84: 83-92参照)。かかる疎水性有機溶剤としては、例えば、炭化水素化合物、エステル化合物、炭素数6〜22の脂肪酸、炭素数6〜22のアルコール及びシリコーンオイルなどの油剤や、香料成分、農薬用基材、医薬用基材等の機能性材料を挙げることができる。
Process (I)
Step (I) is a step of preparing a dispersion (A) containing a water-insoluble substance (a) and water.
The water-insoluble substance (a) used here is preferably at least one selected from organic polymer compounds such as hydrophobic organic solvents, cationic polymer compounds and nonionic polymer compounds, and inorganic compounds. The water-insoluble substance (a) includes a poorly water-soluble substance having low solubility in water. Specifically, solid substances such as organic polymer compounds and inorganic compounds mean those having a solubility in water at 20 ° C. of 1% or less.
The hydrophobic organic solvent as the water-insoluble substance (a) means one that has low solubility in water and forms a phase separation with water. Preferably, the solvent is dispersible in the presence of a quaternary ammonium salt described later. Examples of such a hydrophobic organic solvent include compounds having a LogP OW of 1 or more, preferably 2 to 25. Here, the LogP, is 1-octanol / water partition coefficient of a chemical substance is a value obtained by calculation by log K OW method. Specifically, the chemical structure of a compound is decomposed into its constituents, and the hydrophobic fragment constants of each fragment are integrated (Meylan, WM and PH Howard. 1995. Atom / fragment contribution method for a reference octanol -water partition coefficients. See J. Pharm. Sci. 84: 83-92). Examples of the hydrophobic organic solvent include oils such as hydrocarbon compounds, ester compounds, fatty acids having 6 to 22 carbon atoms, alcohols having 6 to 22 carbon atoms and silicone oils, perfume ingredients, agricultural chemical bases, and pharmaceuticals. A functional material such as a base material can be given.

有機高分子化合物としては、カチオン性ポリマー、ノニオン性ポリマー及び両性ポリマーから選ばれる1種以上のポリマーであり、エチレン性不飽和モノマーを乳化重合してなるポリマー粒子が好ましい。また実質的に水不溶性のポリマーが用いられる。
ポリマーの中では、カチオン性ポリマー及びノニオン性ポリマーが好ましく、シリカ粒子の形成し易さの観点から、カチオン性ポリマーがより好ましい。
カチオン性ポリマーとしては、陽イオン界面活性剤の存在下で、カチオン性基を有するエチレン性不飽和モノマー(混合物を含む)を乳化重合して得られるものが好ましい。
カチオン性モノマーとしては、ジアルキルアミノ基又はトリアルキルアンモニウム基を有する(メタ)アクリル酸エステルが好ましく、ジアルキルアミノ基又はトリアルキルアンモニウム基を有する(メタ)アクリル酸エステルが特に好ましい。
カチオン性ポリマーは、前記カチオン性モノマー由来の構成単位を有するが、カチオン性モノマー由来の構成単位以外に、アルキル(メタ)アクリレート、スチレン等の疎水性モノマーに由来する構成単位を含有することができる。
The organic polymer compound is at least one polymer selected from a cationic polymer, a nonionic polymer, and an amphoteric polymer, and polymer particles obtained by emulsion polymerization of an ethylenically unsaturated monomer are preferable. A substantially water-insoluble polymer is used.
Among the polymers, a cationic polymer and a nonionic polymer are preferable, and a cationic polymer is more preferable from the viewpoint of easy formation of silica particles.
The cationic polymer is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer (including a mixture) having a cationic group in the presence of a cationic surfactant.
As the cationic monomer, a (meth) acrylic acid ester having a dialkylamino group or a trialkylammonium group is preferable, and a (meth) acrylic acid ester having a dialkylamino group or a trialkylammonium group is particularly preferable.
The cationic polymer has a structural unit derived from the cationic monomer, but can contain a structural unit derived from a hydrophobic monomer such as alkyl (meth) acrylate and styrene in addition to the structural unit derived from the cationic monomer. .

無機化合物としては、例えば、シリカ、金属、金属化合物等が挙げられる。
シリカとしては粒子状シリカが好ましく、中空構造のメソポーラスシリカ粒子又はコアシェル構造のメソポーラスシリカ粒子でもよい。すなわち別途調製した、中空メソポーラスシリカ粒子や、コアシェルタイプのメソポーラスシリカ粒子をコアとして利用することができる。分散液(A)中で予め外殻の薄いコアシェル構造のメソポーラスシリカ粒子を合成し、それを核として用いてもよい。これは、少量の界面活性剤(b)とシリカ源(c)ならば、予め溶液(B)を調整することなく、別々に添加しても殻厚の薄いコアシェルタイプのメソポーラスシリカを形成することができるため、それを水不溶性物質(a)としてもよいということを意味する。
As an inorganic compound, a silica, a metal, a metal compound etc. are mentioned, for example.
The silica is preferably particulate silica, and may be hollow mesoporous silica particles or core-shell mesoporous silica particles. That is, separately prepared hollow mesoporous silica particles and core-shell type mesoporous silica particles can be used as the core. In the dispersion (A), mesoporous silica particles having a thin core-shell structure may be synthesized in advance and used as a nucleus. This means that if a small amount of the surfactant (b) and the silica source (c) are used, the core-shell type mesoporous silica having a thin shell thickness can be formed without adding the solution (B) in advance. This means that it may be a water-insoluble substance (a).

金属又は金属化合物を形成する金属としては、特に制限はなく、周期律表第3族〜第15族の金属元素から選ばれる1種以上が含まれる。
金属の具体的としては、スカンジウム、イットリウム、ランタノイド、アクチノイドの第3族金属、ランタノイドとしてはランタン、セリウム、ネオジム、サマリウム、ユーロピウム、ガドリニウムが挙げられる。チタン、ジルコニウム、ハフニウム等の第4族金属、バナジウム、ニオブ、タンタル等の第5族金属、クロム、モリブデン、タングステン等の第6族金属、マンガン、レニウム等の第7族金属、鉄、ルテニウム、オスミニウム等の第8族金属、コバルト、ロジウム、イリジウム等の第9族金属、ニッケル、パラジウム、白金等の第10族金属、銅、銀、金等の第11族金属、亜鉛、カドミウム、水銀等の第12族金属、アルミニウム、ガリウム、インジウム等の第13族金属、錫、鉛等の第14族金属、アンチモン、ビスマス等の第15属金属等が挙げられる。
これらの中では、触媒作用、製造上等の観点から、周期律表第3〜12族、特に第4〜11族の遷移金属が好ましく、具体的にはチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましく、チタン、鉄、ニッケル、銅がより好ましい。
金属化合物としては、上記金属の酸化物、水酸化物、塩化物の他、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩等の塩が挙げられる。これらの中では、汎用性、製造上等の観点から、金属酸化物が好ましく、特に酸化チタン、酸化鉄、酸化ニッケル、酸化銅が好ましい。
上記の金属化合物は、単独で又は2種以上を組み合わせて使用することができる。
There is no restriction | limiting in particular as a metal which forms a metal or a metal compound, 1 or more types chosen from the metal element of the periodic table group 3-15 group are contained.
Specific examples of the metal include scandium, yttrium, lanthanoid and actinoid Group 3 metals, and examples of the lanthanoid include lanthanum, cerium, neodymium, samarium, europium and gadolinium. Group 4 metals such as titanium, zirconium and hafnium, Group 5 metals such as vanadium, niobium and tantalum, Group 6 metals such as chromium, molybdenum and tungsten, Group 7 metals such as manganese and rhenium, Iron, Ruthenium, Group 8 metals such as osmium, Group 9 metals such as cobalt, rhodium and iridium, Group 10 metals such as nickel, palladium and platinum, Group 11 metals such as copper, silver and gold, Zinc, cadmium and mercury Group 12 metals such as aluminum, gallium and indium, group 14 metals such as tin and lead, and group 15 metals such as antimony and bismuth.
Among these, from the viewpoint of catalytic action, production and the like, transition metals of Group 3 to 12 of the periodic table, particularly Group 4 to 11 are preferred, specifically titanium, vanadium, chromium, manganese, iron, Cobalt, nickel, copper and the like are preferable, and titanium, iron, nickel and copper are more preferable.
Examples of the metal compound include salts such as ammonium salts, nitrates, carbonates and sulfates in addition to the metal oxides, hydroxides and chlorides. Among these, metal oxides are preferable from the viewpoints of versatility and production, and titanium oxide, iron oxide, nickel oxide, and copper oxide are particularly preferable.
Said metal compound can be used individually or in combination of 2 or more types.

水不溶性物質(a)は、コアシェル構造のメソポーラスシリカ粒子のコア部を形成することになるが、その大きさは、コアシェル構造のメソポーラスシリカ粒子の使用目的に応じて適宜決定することができる。コア部の大きさの調整は、水不溶性物質として固体物質を用いる場合は、基本的にはその大きさで調整することができるが、固体物質の凝集や疎水性有機溶剤を用いる場合は、混合時の撹拌力、溶液の温度等の物理的因子の他に、その物質の種類、場合により界面活性剤、水溶性有機溶剤の添加等によって適宜調整することができる。水不溶性物質として粒状体を用いる場合は、レーザー回折・散乱法粒子径分布測定装置によって測定した体積換算平均粒子径が、0.01〜10μmのものが好ましく、0.05〜5μmのものがより好ましく、粒度分布がシャープなものを用いることによって粒子径の揃った、複合メソポーラスシリカ粒子または中空メソポーラスシリカ粒子を得ることができる。   The water-insoluble substance (a) forms the core part of the core-shell structured mesoporous silica particles, and the size thereof can be appropriately determined according to the intended use of the core-shell structured mesoporous silica particles. The size of the core can be adjusted basically when the solid material is used as a water-insoluble material, but when the solid material is agglomerated or a hydrophobic organic solvent is used, mixing is possible. In addition to physical factors such as stirring power and temperature of the solution, it can be appropriately adjusted depending on the type of the substance, and in some cases, addition of a surfactant and a water-soluble organic solvent. When a granular material is used as the water-insoluble substance, the volume-converted average particle size measured by a laser diffraction / scattering particle size distribution measuring device is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm. Preferably, composite mesoporous silica particles or hollow mesoporous silica particles having a uniform particle diameter can be obtained by using particles having a sharp particle size distribution.

工程(I)において水不溶性物質(a)は撹拌により液滴又は固体粒子として分散された状態になるので、その液滴径や固体粒子径を調整することにより、最終的に得られる中空構造ないしコアシェル構造のメソポーラスシリカ粒子(複合メソポーラスシリカ粒子)の大きさを調整することができる。
分散液(A)の分散媒は、大半が水であるが、界面活性剤(b)の一部や、水不溶性物質(a)の分散を妨げない水溶性の有機溶剤、たとえばメタノール、エタノール、アセトン、プロパノール、イソプロパノール等を含有することできる。
分散液(A)中の水不溶性物質(a)の割合は、反応系の大きさ等により異なるが、例えば、水不溶性物質(a)が好ましくは0.01〜50質量%、より好ましくは0.05〜30質量%、更に好ましくは0.1〜10質量%である。
In the step (I), the water-insoluble substance (a) is dispersed as droplets or solid particles by stirring. Therefore, by adjusting the droplet diameter or solid particle diameter, the hollow structure or finally obtained The size of the core-shell structure mesoporous silica particles (composite mesoporous silica particles) can be adjusted.
The dispersion medium of the dispersion (A) is mostly water, but a part of the surfactant (b) and a water-soluble organic solvent that does not interfere with the dispersion of the water-insoluble substance (a), such as methanol, ethanol, Acetone, propanol, isopropanol and the like can be contained.
The ratio of the water-insoluble substance (a) in the dispersion liquid (A) varies depending on the size of the reaction system and the like. For example, the water-insoluble substance (a) is preferably 0.01 to 50% by mass, more preferably 0. 0.05 to 30% by mass, more preferably 0.1 to 10% by mass.

工程(II)
工程(II)は、陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(b)とシリカ源(c)とを含有する溶液(B)を調製する工程である。
溶液(B)含まれる界面活性剤(b)としては、公知の陽イオン界面活性剤及び非イオン界面活性剤を使用することができる。中でも陽イオン界面活性剤が好ましく、下記一般式(1)及び(2)で表される第4級アンモニウム塩がより好ましい。
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価陰イオンを示す。)
前記一般式(1)及び(2)におけるR1及びR2は、炭素数4〜22、好ましくは炭素数6〜18、更に好ましくは炭素数8〜16の直鎖状又は分岐状のアルキル基である。炭素数4〜22のアルキル基としては、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、各種エイコシル基等が挙げられる。
一般式(1)及び(2)におけるXは、高い結晶性を得るという観点から、好ましくはハロゲンイオン、水酸化物イオン、硝酸化物イオン、硫酸化物イオン等の1価陰イオンから選ばれる1種以上である。Xとしては、より好ましくはハロゲンイオンであり、更に好ましくは塩素イオン又は臭素イオンであり、特に好ましくは臭素イオンである。
Process (II)
Step (II) is a step of preparing a solution (B) containing one or more surfactants (b) selected from a cationic surfactant and a nonionic surfactant and a silica source (c). .
As the surfactant (b) contained in the solution (B), known cationic surfactants and nonionic surfactants can be used. Among these, cationic surfactants are preferable, and quaternary ammonium salts represented by the following general formulas (1) and (2) are more preferable.
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represents a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)
R 1 and R 2 in the general formulas (1) and (2) are linear or branched alkyl groups having 4 to 22 carbon atoms, preferably 6 to 18 carbon atoms, and more preferably 8 to 16 carbon atoms. It is. Examples of the alkyl group having 4 to 22 carbon atoms include various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, and various hexadecyl groups. , Various octadecyl groups, various eicosyl groups, and the like.
X in the general formulas (1) and (2) is preferably one selected from monovalent anions such as halogen ions, hydroxide ions, nitrate ions, and sulfate ions from the viewpoint of obtaining high crystallinity. That's it. X is more preferably a halogen ion, still more preferably a chlorine ion or a bromine ion, and particularly preferably a bromine ion.

一般式(1)で表されるアルキルトリメチルアンモニウム塩としては、ブチルトリメチルアンモニウムクロリド、ヘキシルトリメチルアンモニウムクロリド、オクチルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムクロリド、ブチルトリメチルアンモニウムブロミド、ヘキシルトリメチルアンモニウムブロミド、オクチルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムブロミド等が挙げられる。
一般式(2)で表されるジアルキルジメチルアンモニウム塩としては、ジブチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムクロリド、ジオクチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムブロミド、ジオクチルジメチルアンモニウムブロミド、ジドデシルジメチルアンモニウムブロミド、ジテトラデシルジメチルアンモニウムブロミド等が挙げられる。
これらの第四級アンモニウム塩(b)の中では、規則的なメソ細孔を形成させる観点から、特に一般式(1)で表されるアルキルトリメチルアンモニウム塩が好ましく、アルキルトリメチルアンモニウムブロミドまたはクロリドがより好ましい。
界面活性剤(b)は、単独で又は2種以上を混合して用いることができる。
Examples of the alkyltrimethylammonium salt represented by the general formula (1) include butyltrimethylammonium chloride, hexyltrimethylammonium chloride, octyltrimethylammonium chloride, decyltrimethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, hexadecyltrimethyl Ammonium chloride, stearyltrimethylammonium chloride, butyltrimethylammonium bromide, hexyltrimethylammonium bromide, octyltrimethylammonium bromide, decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide Bromide, stearyl trimethyl ammonium bromide, and the like.
Examples of the dialkyldimethylammonium salt represented by the general formula (2) include dibutyldimethylammonium chloride, dihexyldimethylammonium chloride, dioctyldimethylammonium chloride, dihexyldimethylammonium bromide, dioctyldimethylammonium bromide, didodecyldimethylammonium bromide, ditetradecyl. Examples thereof include dimethylammonium bromide.
Among these quaternary ammonium salts (b), from the viewpoint of forming regular mesopores, an alkyltrimethylammonium salt represented by the general formula (1) is particularly preferable, and an alkyltrimethylammonium bromide or chloride is preferable. More preferred.
Surfactant (b) can be used individually or in mixture of 2 or more types.

溶液(B)に含有されるシリカ源(c)としては、加水分解によりシラノール化合物を生成するものが好ましく、具体的には、下記一般式(3)〜(7)で示される化合物を挙げることができる。
SiY4 (3)
3SiY3 (4)
3 2SiY2 (5)
3 3SiY (6)
3Si−R4−SiY3 (7)
(式中、R3はそれぞれ独立して、ケイ素原子に直接炭素原子が結合している有機基を示し、R4は炭素原子を1〜4個有する炭化水素基又はフェニレン基を示し、Yは加水分解によりヒドロキシ基になる1価の加水分解性基を示す。)
より好ましくは、一般式(3)〜(7)において、R3がそれぞれ独立して、水素原子の一部がフッ素原子に置換していてもよい炭素数1〜22の炭化水素基であり、具体的には炭素数1〜22、好ましくは炭素数4〜18、より好ましくは炭素数6〜18、特に好ましくは炭素数8〜16のアルキル基、フェニル基、又はベンジル基であり、R4が炭素数1〜4のアルカンジイル基(メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基、テトラメチレン基等)又はフェニレン基であり、Yが炭素数1〜22、より好ましくは炭素数1〜8、特に好ましくは炭素数1〜4のアルコキシ基、またはフッ素を除くハロゲン基である。
As the silica source (c) contained in the solution (B), those that produce a silanol compound by hydrolysis are preferable, and specific examples include compounds represented by the following general formulas (3) to (7). Can do.
SiY 4 (3)
R 3 SiY 3 (4)
R 3 2 SiY 2 (5)
R 3 3 SiY (6)
Y 3 Si—R 4 —SiY 3 (7)
(In the formula, each R 3 independently represents an organic group in which a carbon atom is directly bonded to a silicon atom, R 4 represents a hydrocarbon group or a phenylene group having 1 to 4 carbon atoms, and Y represents A monovalent hydrolyzable group that becomes a hydroxy group by hydrolysis.)
More preferably, in the general formulas (3) to (7), each R 3 is independently a hydrocarbon group having 1 to 22 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms, Specifically, it is an alkyl group, a phenyl group, or a benzyl group having 1 to 22 carbon atoms, preferably 4 to 18 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 8 to 16 carbon atoms, and R 4 Is an alkanediyl group having 1 to 4 carbon atoms (methylene group, ethylene group, trimethylene group, propane-1,2-diyl group, tetramethylene group, etc.) or phenylene group, and Y is more preferably 1 to 22 carbon atoms. Is a C1-C8, particularly preferably C1-C4 alkoxy group or a halogen group excluding fluorine.

シリカ源(c)の好適例としては、次の化合物が挙げられる。
・一般式(3)において、Yが炭素数1〜3のアルコキシ基であるか、又はフッ素を除くハロゲン基であるシラン化合物。
・一般式(4)又は(5)において、R3がフェニル基、ベンジル基、又は水素原子の一部がフッ素原子に置換されている炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜5の炭化水素基であるトリアルコキシシラン又はジアルコキシシラン。
・一般式(7)において、Yがメトキシ基であって、R4がメチレン基、エチレン基又はフェニレン基である化合物。
これらの中では、テトラメトキシシラン、テトラエトキシシラン、フェニルトリエトキシシラン、1,1,1−トリフルオロプロピルトリエトキシシランが特に好ましい。
シリカ源(c)は、単独で又は2種以上を混合して用いることができる。
Preferable examples of the silica source (c) include the following compounds.
-The silane compound in which Y is a C1-C3 alkoxy group or a halogen group except a fluorine in General formula (3).
In general formula (4) or (5), R 3 is a phenyl group, a benzyl group, or a hydrogen atom in which part of the hydrogen atom is substituted with a fluorine atom, preferably 1 to 10 carbon atoms, Trialkoxysilane or dialkoxysilane which is preferably a hydrocarbon group having 1 to 5 carbon atoms.
A compound in which Y is a methoxy group and R 4 is a methylene group, an ethylene group or a phenylene group in the general formula (7).
Among these, tetramethoxysilane, tetraethoxysilane, phenyltriethoxysilane, and 1,1,1-trifluoropropyltriethoxysilane are particularly preferable.
A silica source (c) can be used individually or in mixture of 2 or more types.

溶液(B)は、界面活性剤(b)とシリカ源(c)を含有するが、更にメタノール、エタノール、アセトン、プロパノール、イソプロパノールから選ばれる1種以上の水溶性有機溶剤を含有することが好ましく、メタノールを含有することがより好ましい。これらの水溶性有機溶剤は脱水処理しておくことが好ましい。
溶液(B)には、水を実質的に含有しないことが好ましい。特にシリカ源(c)としてシラン化合物を用いる場合は、加水分解により生じるシラノールが、溶液(B)中で反応して、中実のメソポーラスシリカないしシリカの固体を形成するおそれがある。
溶液(B)の各成分濃度は、反応系の大きさ等により異なるが、例えば、界面活性剤(b)は好ましくは1〜50質量%、より好ましくは5〜20質量%であり、シリカ源(c)は好ましくは1〜50質量%、より好ましくは5〜20質量%であり、水溶性有機溶剤は好ましくは0〜90質量%、より好ましくは10〜80質量%である。また界面活性剤(d)のモル数に対するシリカ源(c)のモル数の割合、すなわち“シリカ源モル数/界面活性剤モル数”が好ましくは0.1〜50、より好ましくは0.2〜20、最も好ましくは0.3〜10の範囲である。この比率は、(b)成分と(c)成分を別々に添加する場合の1分間あたりの添加の条件でもある。
溶液(B)の調製順序は、特に規定しない。
The solution (B) contains the surfactant (b) and the silica source (c), but preferably further contains one or more water-soluble organic solvents selected from methanol, ethanol, acetone, propanol and isopropanol. More preferably, it contains methanol. These water-soluble organic solvents are preferably dehydrated.
The solution (B) preferably contains substantially no water. In particular, when a silane compound is used as the silica source (c), silanol produced by hydrolysis may react in the solution (B) to form a solid mesoporous silica or silica solid.
The concentration of each component of the solution (B) varies depending on the size of the reaction system and the like. For example, the surfactant (b) is preferably 1 to 50% by mass, more preferably 5 to 20% by mass, and the silica source (C) is preferably 1 to 50% by mass, more preferably 5 to 20% by mass, and the water-soluble organic solvent is preferably 0 to 90% by mass, more preferably 10 to 80% by mass. The ratio of the number of moles of the silica source (c) to the number of moles of the surfactant (d), that is, “silica source mole number / surfactant mole number” is preferably 0.1 to 50, more preferably 0.2. -20, most preferably in the range of 0.3-10. This ratio is also a condition for addition per minute when the component (b) and the component (c) are added separately.
The order of preparing the solution (B) is not particularly defined.

工程(III)
工程(III)は、撹拌下で、分散液(A)に溶液(B)を経時的に添加して反応を行い、水不溶性物質(a)を内包するコアシェル構造のメソポーラスシリカ粒子の水分散液を調整する工程である。
ここで「経時的に添加」とは、溶液(B)を分散液(A)に連続的又は断続的に添加することを意味し、代表的には、経時的に滴下することを意味する。溶液(B)を分散液(A)に添加する場合、溶液(B)を一度に多量に入れ過ぎたり、添加速度を速め過ぎたりすると、分散液(A)中でのシリカの濃度が上昇し、コアシェル構造のメソポーラスシリカ粒子が得られなくなるおそれがある。また、溶液(B)中の界面活性剤(b)の種類を、溶液(B)の添加の途中で変えることもできる。
Process (III)
Step (III) is an aqueous dispersion of mesoporous silica particles having a core-shell structure in which the solution (B) is added to the dispersion (A) over time and the reaction is performed with stirring to react with the water-insoluble substance (a). Is a step of adjusting
Here, “added over time” means that the solution (B) is continuously or intermittently added to the dispersion (A), and typically means dropwise over time. When adding the solution (B) to the dispersion (A), if the solution (B) is added in a large amount at a time or the addition speed is increased too much, the concentration of silica in the dispersion (A) increases. The mesoporous silica particles having a core-shell structure may not be obtained. Further, the type of the surfactant (b) in the solution (B) can be changed during the addition of the solution (B).

溶液(B)の添加速度は、反応系の容量や、分散液(A)中に添加される界面活性剤(b)及びシリカ源(c)の濃度上昇速度等を考慮して適宜調整することができる。
反応は、シリカ源(c)が分散液(A)中で加水分解されることによって進むことから界面活性剤(b)及びシリカ源(c)の分散液(A)中の添加速度はある範囲で制限される。また、用いるシリカ源(c)の種類によって加水分解速度が異なるため、シリカ源(c)によって許容できる添加速度が変わってくる。例えば、テトラエトキシシランは、テトラメトキシシランよりも加水分解速度が遅いため、ドデシルトリメチルアンモニウムブロミドを界面活性剤(b)として用いた場合、界面活性剤(b)及びシリカ源(c)の分散液(A)中の添加速度は、テトラエトキシシランを使用する場合の方を遅くすることが好ましい。
The addition rate of the solution (B) should be appropriately adjusted in consideration of the capacity of the reaction system, the concentration increase rate of the surfactant (b) and the silica source (c) added to the dispersion (A), etc. Can do.
Since the reaction proceeds by hydrolysis of the silica source (c) in the dispersion (A), the addition rate of the surfactant (b) and the silica source (c) in the dispersion (A) is within a certain range. Limited by. Moreover, since a hydrolysis rate changes with kinds of silica source (c) to be used, the allowable addition rate changes with silica sources (c). For example, since tetraethoxysilane has a slower hydrolysis rate than tetramethoxysilane, when dodecyltrimethylammonium bromide is used as the surfactant (b), a dispersion of the surfactant (b) and the silica source (c) The addition rate in (A) is preferably slower when tetraethoxysilane is used.

本発明においては、用いるシリカ源(c)の種類から、溶液(B)の添加速度の上限値を設定することができる。すなわち、なるべく水不溶性物質(a)の表面以外で中実(中空ではない)のメソポーラスシリカ粒子や一般シリカ粒子を作ることなく、効率的に複合シリカ粒子を得るためには、分散液(A)中の1分間当たりのシリカ濃度上昇が、好ましくは20mmol/L以下、より好ましくは10mmol/L以下、更に好ましくは5mmol/L以下であり、界面活性剤(b)の濃度上昇が、好ましくは10mmol/L以下、より好ましくは5mmol/L以下、更に好ましくは3mmol/L以下となるような添加速度で溶液(B)を添加することが好ましい。なお、その下限値は、シリカ源の加水分解が十分に行われる速度であればよく、例えば、先の添加の後、十分に反応を終了させてから、次の添加を行っても本発明の粒子を得ることができる。しかしながら、反応を短時間に終結させて製造効率を上げる観点から、溶液(B)を添加したときの分散液(A)の1分間当たりのシリカの濃度上昇を0.01mmol/L以上、界面活性剤の濃度上昇を0.01mmol/L以上とすることが好ましい。これらの添加速度は、界面活性剤(b)及びシリカ源(c)を別々に添加する場合も、同様である。
また、溶液(B)を連続的又は断続的に添加する場合、分散液(A)100重量部に対して、溶液(B)の投入開始から次の投入開始までの0.01〜120分の間における、溶液(B)の最大添加量は、好ましくは40重量部以下、より好ましくは0.01〜10重量部である。
溶液(B)を分散液(A)に添加する際には、分散液(A)の温度を、予め好ましくは10〜100℃、より好ましくは10〜80℃に調整し、溶液(B)の温度を、好ましくは10〜100℃、より好ましくは10〜80℃に調整しておくことが望ましい。
In this invention, the upper limit of the addition rate of a solution (B) can be set from the kind of silica source (c) to be used. That is, in order to obtain composite silica particles efficiently without making solid (non-hollow) mesoporous silica particles or general silica particles other than the surface of the water-insoluble substance (a) as much as possible, the dispersion liquid (A) The increase in the silica concentration per minute is preferably 20 mmol / L or less, more preferably 10 mmol / L or less, still more preferably 5 mmol / L or less, and the concentration increase of the surfactant (b) is preferably 10 mmol. / L or less, more preferably 5 mmol / L or less, and still more preferably 3 mmol / L or less, at a rate of addition such that the solution (B) is added. The lower limit value may be a rate at which the hydrolysis of the silica source is sufficiently performed. For example, after the previous addition, the reaction is sufficiently terminated and then the next addition may be performed. Particles can be obtained. However, from the viewpoint of finishing the reaction in a short time and increasing the production efficiency, the increase in the concentration of silica per minute of the dispersion (A) when the solution (B) is added is 0.01 mmol / L or more, and the surface activity It is preferable to increase the concentration of the agent to 0.01 mmol / L or more. These addition rates are the same when the surfactant (b) and the silica source (c) are added separately.
In addition, when the solution (B) is added continuously or intermittently, 0.01 to 120 minutes from the start of the addition of the solution (B) to the start of the next addition with respect to 100 parts by weight of the dispersion (A). The maximum addition amount of the solution (B) is preferably 40 parts by weight or less, more preferably 0.01 to 10 parts by weight.
When adding the solution (B) to the dispersion (A), the temperature of the dispersion (A) is preferably adjusted in advance to preferably 10 to 100 ° C., more preferably 10 to 80 ° C. The temperature is preferably adjusted to 10 to 100 ° C, more preferably 10 to 80 ° C.

また、「添加して反応を行う」とは、分散液(A)に溶液(B)を添加しながら連続的に反応させてもよく、一度添加した反応が終了してから次の添加を行って断続的に反応させてもよいことを意味する。溶液(B)の添加時には、生成する各粒子の凝集を防ぐために、反応終了まで撹拌を続けることが好ましく、添加終了後から好ましくは0.01〜24時間、より好ましくは0.1〜10時間撹拌することが好ましい。
工程(II)における分散液中の水不溶性物質(a)、界面活性剤(b)、特に陽イオン界面活性剤、中でも前記一般式(1)及び(2)で表される第4級アンモニウム塩、及びシリカ源(c)の含有量は次のとおりである。
分散液(A)に溶液(B)を添加した後の実質的な濃度は、水不溶性物質(a)が、好ましくは0.1〜50グラム/L、より好ましくは0.3〜40グラム/L、更に好ましくは0.5〜30グラムモル/Lであり、界面活性剤(b)が、好ましくは0.0001〜1モル/L、より好ましくは0.001〜0.5モル/L、更に好ましくは0.01〜0.2モル/Lであり、シリカ源(c)が、好ましくは0.0001〜2モル/L、より好ましくは0.001〜1モル/L、更に好ましくは0.01〜0.5モル/Lである。
なお、分散液(A)に溶液(B)を添加した場合、水不溶性物質(a)、シリカ源(b)及び界面活性剤(c)は複合粒子を形成する。従って前記濃度は原料の添加割合であり、実際の混合液中に含有されている濃度ではない。
In addition, “addition and reaction” may be performed continuously while adding the solution (B) to the dispersion (A), and the next addition is performed after the reaction once added is completed. Meaning that the reaction may be intermittent. During the addition of the solution (B), it is preferable to continue stirring until the end of the reaction in order to prevent aggregation of the generated particles, and preferably 0.01 to 24 hours, more preferably 0.1 to 10 hours after the end of the addition. It is preferable to stir.
Water-insoluble substance (a), surfactant (b), particularly cationic surfactant in the dispersion in step (II), especially quaternary ammonium salts represented by the above general formulas (1) and (2) The content of the silica source (c) is as follows.
The substantial concentration after adding the solution (B) to the dispersion (A) is preferably 0.1 to 50 g / L, more preferably 0.3 to 40 g / L for the water-insoluble substance (a). L, more preferably 0.5 to 30 gram mol / L, and the surfactant (b) is preferably 0.0001 to 1 mol / L, more preferably 0.001 to 0.5 mol / L, further The amount is preferably 0.01 to 0.2 mol / L, and the silica source (c) is preferably 0.0001 to 2 mol / L, more preferably 0.001 to 1 mol / L, still more preferably 0.00. 01 to 0.5 mol / L.
In addition, when the solution (B) is added to the dispersion liquid (A), the water-insoluble substance (a), the silica source (b), and the surfactant (c) form composite particles. Therefore, the said density | concentration is the addition ratio of a raw material, and is not the density | concentration contained in the actual liquid mixture.

反応の進行により、反応液中の界面活性剤(b)の濃度が高くなると、水不溶性物質(a)(例えば、カチオン性ポリマー粒子等の有機高分子化合物)の表面以外でミセルが生成しやすくなり、それが核となり不定形のメソポーラスシリカが生成する。そこで、本発明においては、界面活性剤(b)を溶液(B)中に含有させ、これを添加することにより、反応液中に遊離している界面活性剤(b)の濃度を制御して、ポリマー粒子表面以外でのミセル生成を防止することができる。
また、溶液(B)中に、前記の水溶性有機溶剤が含有されていれば、界面活性剤(b)の臨界ミセル濃度を上げて、反応液中でミセルを生成しにくくすることができ、さらにシリカの加水分解速度を遅くすることができるため好ましい。
シリカ源(c)はアルカリ存在下で加水分解・脱水縮合するが、シリカ源(c)を添加するにつれ反応液のpHが下がり、シリカ源(c)の加水分解・脱水縮合が起こりにくくなる。そこで、シリカ源(c)を効率的に加水分解・脱水縮合することができるようにする観点から、反応液のpHを8.5〜11.5、特にpHを9.0〜11.0に調整することが好ましい。
When the concentration of the surfactant (b) in the reaction solution increases due to the progress of the reaction, micelles are easily formed on the surface other than the surface of the water-insoluble substance (a) (for example, an organic polymer compound such as cationic polymer particles). As a result, amorphous mesoporous silica is produced. Therefore, in the present invention, the surfactant (b) is contained in the solution (B) and added to control the concentration of the surfactant (b) released in the reaction solution. The micelle formation on the surface other than the polymer particle surface can be prevented.
Further, if the water-soluble organic solvent is contained in the solution (B), it is possible to increase the critical micelle concentration of the surfactant (b) and make it difficult to generate micelles in the reaction solution. Furthermore, since the hydrolysis rate of a silica can be made slow, it is preferable.
The silica source (c) undergoes hydrolysis / dehydration condensation in the presence of an alkali. However, as the silica source (c) is added, the pH of the reaction solution decreases, and hydrolysis / dehydration condensation of the silica source (c) hardly occurs. Therefore, from the viewpoint of enabling efficient hydrolysis and dehydration condensation of the silica source (c), the pH of the reaction solution is set to 8.5 to 11.5, particularly to 9.0 to 11.0. It is preferable to adjust.

溶液(B)の添加終了後、静置することで、水不溶性物質(a)の表面に、界面活性剤(b)とシリカ源(c)によりメソ細孔が形成され、内部に水不溶性物質(a)を包含したコアシェル構造のメソポーラスシリカ粒子(以下、「コアシェルシリカ粒子」ともいう)を析出させることができる。得られたコアシェルシリカ粒子は、水中に懸濁した状態で得られる。用途によってはこれをそのまま使用することもできるが、好ましくはコアシェルシリカ粒子を分離して使用する。分離方法としては、ろ過法、遠心分離法等を採用することができる。
工程(III)で得られるコアシェルシリカ粒子は、通常陽イオン界面活性剤等を含む状態で得られるが、工程(III)で得られたコアシェルシリカ粒子を酸性溶液と1回又は複数回接触させること、例えばコアシェルシリカ粒子を酸性水溶液中で混合することにより陽イオン界面活性剤を除去することができる。得られたコアシェルシリカ粒子は、水不溶性物質(a)が揮発ないし消失し過ぎない程度の温度で乾燥させてもよい。用いる酸性溶液としては、塩酸、硝酸、硫酸等の無機酸;酢酸、クエン酸等の有機酸;カチオン交換樹脂等を水やエタノール等に加えた液が挙げられるが、塩酸が特に好ましい。pHは通常1.5〜5.0に調整される。
上記により得られた粒子は、均一な粒子径でメソ細孔構造を表面に有し、水不溶性物質(a)を包含するコアシェル構造のメソポーラスシリカ粒子である。
本発明の方法によれば、全溶液100重量部に対して、製造されるメソポーラスシリカ粒子の割合は、好ましくは0.5〜30重量部、より好ましくは1〜10重量部である。一方、(a)〜(c)成分を一度に添加して製造されるメソポーラスシリカ粒子の割合は、全溶液100重量部に対して最大でも0.25質量部であることを考慮すれば、本発明方法は工業的に極めて有利であることが分かる。
By standing after the addition of the solution (B), mesopores are formed on the surface of the water-insoluble substance (a) by the surfactant (b) and the silica source (c), and the water-insoluble substance is contained inside. Mesoporous silica particles having a core-shell structure including (a) (hereinafter also referred to as “core-shell silica particles”) can be precipitated. The obtained core-shell silica particles are obtained in a state suspended in water. Depending on the application, it can be used as it is, but preferably the core-shell silica particles are used separately. As a separation method, a filtration method, a centrifugal separation method, or the like can be employed.
The core-shell silica particles obtained in the step (III) are usually obtained in a state containing a cationic surfactant, etc., but the core-shell silica particles obtained in the step (III) are brought into contact with the acidic solution one or more times. For example, the cationic surfactant can be removed by mixing the core-shell silica particles in an acidic aqueous solution. The obtained core-shell silica particles may be dried at a temperature at which the water-insoluble substance (a) does not volatilize or disappear excessively. Examples of the acidic solution used include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; organic acids such as acetic acid and citric acid; and solutions obtained by adding a cation exchange resin or the like to water or ethanol. Hydrochloric acid is particularly preferable. The pH is usually adjusted to 1.5 to 5.0.
The particles obtained as described above are mesoporous silica particles having a core-shell structure having a uniform particle size and a mesoporous structure on the surface and including the water-insoluble substance (a).
According to the method of the present invention, the proportion of mesoporous silica particles produced is preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total solution. On the other hand, considering that the proportion of mesoporous silica particles produced by adding the components (a) to (c) at a time is 0.25 parts by mass at the maximum with respect to 100 parts by weight of the total solution, It can be seen that the inventive method is very advantageous industrially.

(コアシェル構造のメソポーラスシリカ粒子)
前記の方法によれば、外殻部が平均細孔径1〜10nmのメソ細孔構造を有し、BET比表面積が100m2/g以上のシリカ粒子であって、該シリカ粒子の内部に水不溶性物質(a)を包含してなるコアシェル構造のメソポーラスシリカ粒子(コアシェルシリカ粒子)を効率的に製造することができる。
コアシェルシリカ粒子の平均細孔径は、好ましくは1〜8nm、より好ましくは1〜5nmである。メソ細孔構造を有する外殻部と粒子内部の中空部分の構造は、透過型電子顕微鏡(TEM)を用いて観察することができ、その細孔径、細孔規則性、外殻部から内部への細孔の繋がり具合を確認することができる。
コアシェルシリカ粒子のメソ細孔構造は、メソ細孔径が揃っていることが特徴の1つである。すなわちコアシェルシリカ粒子のメソ細孔の70%以上、好ましくは75%以上、より好ましくは80%以上が、平均細孔径の±30%以内に入る。ここで、メソ細孔の平均細孔径及び細孔径の分布の程度は、窒素吸着測定を行い、窒素吸着等温線からBJH法により求めた値である。
(Mesoporous silica particles with core-shell structure)
According to the above method, the outer shell portion is a silica particle having a mesopore structure having an average pore diameter of 1 to 10 nm and a BET specific surface area of 100 m 2 / g or more, and is water-insoluble inside the silica particle. The core-shell structure mesoporous silica particles (core-shell silica particles) including the substance (a) can be efficiently produced.
The average pore diameter of the core-shell silica particles is preferably 1 to 8 nm, more preferably 1 to 5 nm. The structure of the outer shell portion having a mesopore structure and the hollow portion inside the particle can be observed using a transmission electron microscope (TEM), and its pore diameter, pore regularity, from the outer shell portion to the inside It is possible to confirm how the pores are connected.
One of the features of the mesopore structure of the core-shell silica particles is that the mesopore diameter is uniform. That is, 70% or more, preferably 75% or more, more preferably 80% or more of the mesopores of the core-shell silica particles fall within ± 30% of the average pore diameter. Here, the average pore diameter of the mesopores and the degree of distribution of the pore diameter are values obtained by performing nitrogen adsorption measurement and using a BJH method from a nitrogen adsorption isotherm.

コアシェルシリカ粒子のBET比表面積は、好ましくは300m2/g以上、より好ましくは400m2/g以上、更に好ましくは500m2/g以上である。
また、その平均粒子径は、好ましくは0.05〜10μm、より好ましくは0.05〜5μm、更に好ましくは0.05〜3μmである。コアシェルシリカ粒子の平均粒子径が0.05〜0.1μmのときのメソ細孔の平均細孔径は好ましくは1〜5nmであり、平均粒子径が0.1〜1μmのときのメソ細孔の平均細孔径は好ましくは1〜8nmであり、平均粒子径が1〜10μmのときのメソ細孔の平均細孔径は好ましくは1〜10nmである。
コアシェルシリカ粒子は、好ましくは粒子全体の80%以上、より好ましくは85%以上、更に好ましくは90%以上、特に好ましくは95%以上が平均粒子径±30%以内の粒子径を有しており、非常に揃った粒子径の粒子群から構成されていることが望ましい。
なお、コアシェルシリカ粒子の平均粒子径は、陽イオン界面活性剤や疎水性有機溶剤の選択、混合時の撹拌力、原料の濃度、溶液の温度等によって調整することができる。コアシェルシリカ粒子の製造工程において、陽イオン界面活性剤を使用する場合は、陽イオン界面活性剤がコアシェルシリカ粒子の内部、メソ細孔内、又はシリカ粒子表面に残留する可能性がある。陽イオン界面活性剤が残留しても問題ない場合は除去する必要はないが、残留する陽イオン界面活性剤の除去を望む場合は、水や酸性水溶液で洗浄処理して置換することにより除去することができる。
The BET specific surface area of the core-shell silica particles is preferably 300 m 2 / g or more, more preferably 400 m 2 / g or more, and still more preferably 500 m 2 / g or more.
Moreover, the average particle diameter becomes like this. Preferably it is 0.05-10 micrometers, More preferably, it is 0.05-5 micrometers, More preferably, it is 0.05-3 micrometers. The average pore diameter of the mesopores when the average particle diameter of the core-shell silica particles is 0.05 to 0.1 μm is preferably 1 to 5 nm, and the mesopores when the average particle diameter is 0.1 to 1 μm. The average pore diameter is preferably 1 to 8 nm, and the average pore diameter of mesopores when the average particle diameter is 1 to 10 μm is preferably 1 to 10 nm.
The core-shell silica particles preferably have a particle size of 80% or more, more preferably 85% or more, still more preferably 90% or more, particularly preferably 95% or more of the total particle size within an average particle size of ± 30%. It is desirable that the particles are composed of a group of particles having a very uniform particle diameter.
The average particle diameter of the core-shell silica particles can be adjusted by selecting a cationic surfactant or a hydrophobic organic solvent, the stirring force at the time of mixing, the concentration of the raw material, the temperature of the solution, and the like. When a cationic surfactant is used in the production process of the core-shell silica particles, the cationic surfactant may remain in the core-shell silica particles, in the mesopores, or on the silica particle surface. If there is no problem even if the cationic surfactant remains, it is not necessary to remove it, but if you want to remove the remaining cationic surfactant, remove it by washing with water or acidic aqueous solution and replacing it. be able to.

コアシェルシリカ粒子における外殻部の平均厚みは、5〜700nmであることが好ましく、10〜500nmであることがより好ましく、20〜400nmであることが更に好ましい。
また、〔外殻部の厚み/平均粒子径〕の比は、0.01〜0.6であることが好ましく、0.05〜0.5であることがより好ましく、0.1〜0.4であることが更に好ましい。
なお本発明において、コアシェルシリカ粒子の平均粒子径及びその分布の程度、並びに外殻部の厚みは、透過型電子顕微鏡(TEM)観察により測定する。具体的には、透過型電子顕微鏡(TEM)観察下で、20〜30個の粒子が含まれる視野中の全粒子の直径および外殻厚みを写真上で実測する。この操作を、視野を5回変えて行う。得られたデータから平均粒子径及びその分布の程度、並びに平均外殻厚みを求める。透過型電子顕微鏡の倍率の目安は1万〜10万倍であるが、シリカ粒子の大きさによって適宜調節される。しかしながら、画面中の粒子のうち、メソ細孔を有するコアシェルシリカ粒子の割合が、30%以下の場合は、観察のための視野を広げて、すなわち倍率を下げて、少なくとも10個の粒子からデータを得るものとする。
The average thickness of the outer shell portion in the core-shell silica particles is preferably 5 to 700 nm, more preferably 10 to 500 nm, and still more preferably 20 to 400 nm.
In addition, the ratio of [thickness of outer shell / average particle diameter] is preferably 0.01 to 0.6, more preferably 0.05 to 0.5, and 0.1 to 0. More preferably, it is 4.
In the present invention, the average particle diameter and the degree of distribution of the core-shell silica particles, and the thickness of the outer shell are measured by observation with a transmission electron microscope (TEM). Specifically, under observation with a transmission electron microscope (TEM), the diameter and outer shell thickness of all particles in a visual field including 20 to 30 particles are measured on a photograph. This operation is performed by changing the field of view five times. From the obtained data, the average particle diameter, the degree of distribution thereof, and the average outer shell thickness are determined. The standard of magnification of the transmission electron microscope is 10,000 to 100,000 times, but is appropriately adjusted depending on the size of the silica particles. However, when the ratio of the core-shell silica particles having mesopores in the particles in the screen is 30% or less, the data for at least 10 particles is expanded by expanding the visual field for observation, that is, by reducing the magnification. Shall be obtained.

コアシェルシリカ粒子の外殻部の構造は、用いるシリカ源により異なる。シリカ源として有機基を有するものを用いた場合、有機基を有するシリカ構造の外殻部が得られ、またシリカ源以外に、他の元素、例えばAl、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、Mn、Fe等の金属やB、P、N、S等の非金属元素を含有するアルコキシ塩やハロゲン化塩等を製造時又は製造後に添加することで、該金属または非金属元素をシリカ粒子の外殻部に存在させることができる。外殻部の構造としては、安定性の観点から、テトラメトキシシランやテトラエトキシシランをシリカ源として製造され、シリカ壁が実質上酸化シリカから構成されていることが好ましい。
コアシェルシリカ粒子は、粉末X線回折(XRD)測定において、結晶格子面間隔(d)=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有するメソ領域に周期性のある物質である。なお、規則性が高くなるとピークは明瞭化され、高次ピークが見られる場合がある。
The structure of the outer shell portion of the core-shell silica particles varies depending on the silica source used. When an organic group having an organic group is used as the silica source, an outer shell of a silica structure having an organic group is obtained. In addition to the silica source, other elements such as Al, Ti, V, Cr, Co, Ni, By adding a metal such as Cu, Zn, Zr, Mn, Fe or an alkoxy salt or a halogenated salt containing a non-metallic element such as B, P, N, or S at the time of or after the production, the metal or non-metal is added. Metal elements can be present in the outer shell of the silica particles. The structure of the outer shell part is preferably manufactured from tetramethoxysilane or tetraethoxysilane as a silica source from the viewpoint of stability, and the silica wall is substantially composed of silica oxide.
The core-shell silica particles have periodicity in a meso region having one or more peaks at a diffraction angle (2θ) corresponding to a crystal lattice spacing (d) = 2 to 12 nm in powder X-ray diffraction (XRD) measurement. It is a substance. In addition, when regularity becomes high, a peak is clarified and a high order peak may be seen.

(中空構造のメソポーラスシリカ粒子)
本発明の中空構造を有するメソポーラスシリカ粒子(以下、「中空シリカ粒子」ともいう)は、コアシェルシリカ粒子を焼成することにより得ることができる。すなわち、前記工程(I)〜(III)の後、下記工程(IV)を行うことにより製造することができる。この場合、コア粒子には焼成によって除去可能な有機性物質が用いられる。
工程(IV):コアシェルシリカ粒子を分散媒から分離し、焼成する工程。
工程(IV)で分散媒から分離して得られたコアシェルシリカ粒子は、必要に応じて、酸性水溶液と接触、水洗、乾燥、また、高温で処理して、内部の疎水性有機溶剤を除去した後、電気炉等で好ましくは350〜800℃、より好ましくは450〜700℃で、1〜10時間焼成する。
(Hollow structure mesoporous silica particles)
The mesoporous silica particles having a hollow structure of the present invention (hereinafter also referred to as “hollow silica particles”) can be obtained by firing the core-shell silica particles. That is, it can manufacture by performing the following process (IV) after the said process (I)-(III). In this case, an organic substance that can be removed by firing is used for the core particles.
Step (IV): A step of separating and firing the core-shell silica particles from the dispersion medium.
The core-shell silica particles obtained by separating from the dispersion medium in step (IV) are contacted with an acidic aqueous solution, washed with water, dried, or treated at a high temperature as necessary to remove the hydrophobic organic solvent inside. Thereafter, baking is performed at 350 to 800 ° C., more preferably 450 to 700 ° C. in an electric furnace or the like for 1 to 10 hours.

前記の方法で得られた中空シリカ粒子は、外殻部の平均細孔径が揃っており、比表面積が大きく、細孔分布がシャープであることが特徴である。
すなわち、中空シリカ粒子の好適態様は、外殻部の平均細孔径が好ましくは1〜10nm、より好ましくは1〜8nm、更に好ましくは1〜5nmのメソ細孔構造を有し、BET比表面積が700m2/g以上の中空シリカ粒子であって、窒素吸着測定を行いBJH法によって求められるメソ細孔の80%以上が平均細孔径±30%以内のものである。
また、中空シリカ粒子のメソ細孔構造は、メソ細孔径が揃っていることが特徴の1つである。中空シリカ粒子のメソ細孔径は、好ましくは75%以上、より好ましくは80%以上が平均細孔径の±30%以内であることが望ましい。
The hollow silica particles obtained by the above-described method are characterized in that the average pore diameter of the outer shell is uniform, the specific surface area is large, and the pore distribution is sharp.
That is, the preferred embodiment of the hollow silica particles has a mesopore structure in which the average pore diameter of the outer shell portion is preferably 1 to 10 nm, more preferably 1 to 8 nm, still more preferably 1 to 5 nm, and the BET specific surface area is It is a hollow silica particle of 700 m 2 / g or more, and 80% or more of mesopores determined by nitrogen adsorption measurement by the BJH method are those having an average pore diameter within ± 30%.
One feature of the mesopore structure of the hollow silica particles is that the mesopore diameter is uniform. The mesopore diameter of the hollow silica particles is preferably 75% or more, more preferably 80% or more, within ± 30% of the average pore diameter.

中空シリカ粒子のBET比表面積は、好ましくは800m2/g以上、より好ましくは850〜1500m2/gである。その平均粒子径は、好ましくは0.05〜10μm、より好ましくは0.05〜5μm、更に好ましくは0.05〜3μmである。中空シリカ粒子の平均粒子径とメソ細孔の平均細孔径の関係は、前記のコアシェルシリカ粒子の場合(段落〔0025〕)と同じである。
また、中空シリカ粒子は、好ましくは粒子全体の80%以上、より好ましくは85%以上、更に好ましくは90%以上、特に好ましくは95%以上が平均粒子径±30%以内の粒子径を有しており、粉末X線回折(XRD)及び/又は電子線回折測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有することが好ましい。
中空シリカ粒子の平均粒子径は、疎水性有機溶剤の選択、混合時の撹拌力、試薬の濃度、溶液の温度、焼成条件等によって調整することができる。
BET surface area of the hollow silica particles is preferably 800 m 2 / g or more, more preferably 850~1500m 2 / g. The average particle diameter is preferably 0.05 to 10 μm, more preferably 0.05 to 5 μm, and still more preferably 0.05 to 3 μm. The relationship between the average particle diameter of the hollow silica particles and the average pore diameter of the mesopores is the same as in the case of the core-shell silica particles (paragraph [0025]).
The hollow silica particles preferably have a particle size of 80% or more, more preferably 85% or more, still more preferably 90% or more, and particularly preferably 95% or more of the whole particles within an average particle size of ± 30%. In powder X-ray diffraction (XRD) and / or electron beam diffraction measurement, it is preferable to have one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm.
The average particle diameter of the hollow silica particles can be adjusted by selection of the hydrophobic organic solvent, stirring force at the time of mixing, reagent concentration, solution temperature, firing conditions, and the like.

好適態様の中空シリカ粒子は、透過型電子顕微鏡(TEM)による観察において、粒子全体の好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上が中空粒子であることを確認することができる。中空シリカ粒子割合の具体的な測定方法は、まず透過型電子顕微鏡(TEM)下で、20〜30個の粒子が含まれる視野中の全粒子から、メソ細孔を有し且つ中空である粒子の個数を数え、この操作を視野を5回変えて行った平均値として求めたものである。
中空シリカ粒子は、好適態様において、透過型電子顕微鏡により観察されたメソ細孔の平均細孔間隔が粉末X線回折(XRD)により得られた構造周期と±30%の範囲で一致する。具体的には、観察されたメソ細孔の中心間距離に√3/2を乗じた値と粉末X線回折により得られた最も低角のピークに対応する面間隔が±30%の範囲で一致する。また上記のとおり、粉末X線回折測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有する、メソ領域に周期性のある物質である。
中空シリカ粒子における外殻部の平均厚みは、5〜700nmであることが好ましく、10〜500nmであることがより好ましく、20〜400nmであることが更に好ましい。
また、〔外殻部の厚み/平均粒子径〕の比は、0.01〜0.6であることが好ましく、0.05〜0.5であることがより好ましく、0.1〜0.4であることが更に好ましい。
中空シリカ粒子の平均粒子径とその分布、外殻部の厚み、メソ細孔の平均細孔径とその分布の測定法は、前記のコアシェルシリカ粒子の場合(段落〔0025〕〜〔0027〕)と同じである。
It is confirmed that the hollow silica particles of the preferred embodiment are preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more of the whole particles as observed by transmission electron microscope (TEM). be able to. The specific method for measuring the hollow silica particle ratio is as follows. First, particles that have mesopores and are hollow from all particles in a visual field containing 20 to 30 particles under a transmission electron microscope (TEM). This operation was obtained as an average value obtained by changing the visual field five times.
In a preferred embodiment, the hollow silica particles have an average pore spacing of mesopores observed with a transmission electron microscope in a range of ± 30% with a structural period obtained by powder X-ray diffraction (XRD). Specifically, the distance between the centers of the observed mesopores is multiplied by √3 / 2 and the plane spacing corresponding to the lowest angle peak obtained by powder X-ray diffraction is within ± 30%. Match. Further, as described above, in powder X-ray diffraction measurement, it is a substance having a periodicity in the meso region having one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm.
The average thickness of the outer shell in the hollow silica particles is preferably 5 to 700 nm, more preferably 10 to 500 nm, and still more preferably 20 to 400 nm.
In addition, the ratio of [thickness of outer shell / average particle diameter] is preferably 0.01 to 0.6, more preferably 0.05 to 0.5, and 0.1 to 0. More preferably, it is 4.
The average particle diameter and distribution of hollow silica particles, the thickness of the outer shell, the average pore diameter of mesopores and the method of measuring the distribution are the same as in the case of the core-shell silica particles (paragraphs [0025] to [0027]). The same.

実施例及び比較例で得られたシリカ粒子の各種測定は、以下の方法により行った。
(1)平均粒子径及び平均外殻厚みの測定
日本電子株式会社製の透過型電子顕微鏡(TEM)JEM−2100を用いて加速電圧160kVで測定を行い、それぞれ20〜30個の粒子が含まれる5視野中の全粒子の直径および外殻厚みを写真上で実測して、平均粒子径及び平均外殻厚みを求めた。観察に用いた試料は高分解能用カーボン支持膜付きCuメッシュ(200−Aメッシュ、応研商事株式会社製)に付着させ、余分な試料をブローで除去して作成した。
(2)BET比表面積、平均細孔径の測定
株式会社島津製作所製、比表面積・細孔分布測定装置、商品名「ASAP2020」を使用し、液体窒素を用いて多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出した。平均細孔径の導出にはBJH法を採用し、そのピーク値の細孔径を平均細孔径とした。前処理は250℃で5時間行った。
(3)粉末X線回折(XRD)測定
理学電機工業株式会社製、粉末X線回折装置、商品名「RINT2500VPC」を用いて、X線源:Cu-kα、管電圧:40mA、管電流:40kV、サンプリング幅:0.02°、発散スリット:1/2°、発散スリット縦:1.2mm、散乱スリット:1/2°、受光スリット:0.15mmの条件で粉末X線回折測定を行った。走査範囲は回折角(2θ)1〜20°、走査速度は4.0°/分で連続スキャン法を用いた。なお、試料は、粉砕した後、アルミニウム板に詰めて測定した。
Various measurements of the silica particles obtained in Examples and Comparative Examples were performed by the following methods.
(1) Measurement of average particle diameter and average outer shell thickness Measured at an acceleration voltage of 160 kV using a transmission electron microscope (TEM) JEM-2100 manufactured by JEOL Ltd., each containing 20 to 30 particles. The diameter and outer shell thickness of all particles in the five fields of view were measured on a photograph to determine the average particle diameter and average outer shell thickness. The sample used for the observation was prepared by adhering to a Cu mesh with a high resolution carbon support film (200-A mesh, manufactured by Oken Shoji Co., Ltd.) and removing the excess sample by blowing.
(2) Measurement of BET specific surface area and average pore diameter Using a specific surface area / pore distribution measuring device manufactured by Shimadzu Corporation, trade name “ASAP2020”, the BET specific surface area is measured by a multipoint method using liquid nitrogen. Then, values were derived within a range in which the parameter C becomes positive. The BJH method was adopted to derive the average pore diameter, and the pore diameter at the peak value was defined as the average pore diameter. The pretreatment was performed at 250 ° C. for 5 hours.
(3) X-ray powder diffraction (XRD) measurement Using a powder X-ray diffractometer, trade name “RINT2500VPC” manufactured by Rigaku Denki Kogyo Co., Ltd., X-ray source: Cu-kα, tube voltage: 40 mA, tube current: 40 kV Sampling width: 0.02 °, divergence slit: 1/2 °, divergence slit length: 1.2 mm, scattering slit: 1/2 °, light receiving slit: 0.15 mm . The scanning range was a diffraction angle (2θ) of 1 to 20 °, the scanning speed was 4.0 ° / min, and the continuous scanning method was used. The sample was crushed and then packed in an aluminum plate for measurement.

製造例1(カチオン性ポリマー粒子の製造)
1L−セパラフルフラスコにイオン交換水600部、メタクリル酸メチル99.5部と塩化メタクロイルオキシエチルトリメチルアンモニウム0.5部をいれ、内温70℃まで昇温させた。次いで水溶性開始剤として2,2'−アゾビス(2−アミジノプロパン)二塩酸塩(和光純薬株式会社製のV−50)0.5部をイオン交換水5部に溶かした溶液を添加し、3時間加熱撹拌を行った。その後さらに75℃で3時間過熱撹拌を行うことで、カチオン性ポリマー粒子を得た(固形分(有効分)含有量13.8%、体積換算平均粒子径0.28μm)。
Production Example 1 (Production of cationic polymer particles)
In a 1 L-Separafull flask, 600 parts of ion exchange water, 99.5 parts of methyl methacrylate and 0.5 parts of methacryloyloxyethyltrimethylammonium chloride were added, and the temperature was raised to an internal temperature of 70 ° C. Next, a solution in which 0.5 part of 2,2′-azobis (2-amidinopropane) dihydrochloride (V-50 manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 5 parts of ion-exchanged water as a water-soluble initiator is added. Stirring was performed for 3 hours. Thereafter, the mixture was further stirred at 75 ° C. for 3 hours to obtain cationic polymer particles (solid content (effective content) content of 13.8%, volume conversion average particle size of 0.28 μm).

実施例1(コアシェルシリカ粒子の製造)
1Lビーカーに水286g、メタノール100g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液に1M水酸化ナトリウム水溶液を入れ、分散液中のpHが10になるように調整した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド(臨界ミセル濃度:0.016モル/L)17.4g、テトラメトキシシラン17gを予め混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥の後した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗後、乾燥して、カチオン性ポリマー粒子を内包し、外殻部がメソ細孔を有するコアシェルシリカ粒子を得た。
このコアシェルシリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。得られたコアシェルシリカ粒子のXRD測定結果を図1に示し、性状を表1に示す。
Example 1 (Production of core-shell silica particles)
In a 1 L beaker, 286 g of water, 100 g of methanol, and 16.3 g of a cationic polymer particle suspension were added and stirred. A 1M aqueous sodium hydroxide solution was added to the dispersion, and the pH in the dispersion was adjusted to 10. Further, 100 g of methanol, 17.4 g of dodecyltrimethylammonium bromide (critical micelle concentration: 0.016 mol / L) and 17 g of tetramethoxysilane were mixed in the dispersion dropwise over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The obtained white precipitate was separated by filtration, washed with water, and dried to obtain core-shell silica particles enclosing the cationic polymer particles and having outer shell portions having mesopores.
The core-shell silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement. The XRD measurement results of the obtained core-shell silica particles are shown in FIG. 1, and the properties are shown in Table 1.

実施例2(コアシェルシリカ粒子の製造)
1Lビーカーに水286g、メタノール100g、1M水酸化ナトリウム水溶液2.25g、ドデシルトリメチルアンモニウムブロミド1.74g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液にテトラメトキシシラン1.7gを加え、10分間撹拌した。この操作により核となる外殻の薄いコアシェル構造のメソポーラスシリカ粒子をはじめに合成した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド15.7g、テトラメトキシシラン15.3gを混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗後、乾燥して、カチオン性ポリマーを内包し、外殻部がメソ細孔を有するコアシェルシリカ粒子を得た。
このコアシェルシリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。得られたコアシェルシリカ粒子の性状を表1に示す。
Example 2 (Production of core-shell silica particles)
In a 1 L beaker, 286 g of water, 100 g of methanol, 2.25 g of 1M aqueous sodium hydroxide solution, 1.74 g of dodecyltrimethylammonium bromide, and 16.3 g of a cationic polymer particle suspension were stirred. To the dispersion, 1.7 g of tetramethoxysilane was added and stirred for 10 minutes. By this operation, mesoporous silica particles with a thin core-shell structure as the core were first synthesized. Further, a mixture of 100 g of methanol, 15.7 g of dodecyltrimethylammonium bromide, and 15.3 g of tetramethoxysilane was added dropwise to the dispersion over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The obtained white precipitate was filtered off, washed with water and dried to obtain core-shell silica particles enclosing a cationic polymer and having an outer shell portion having mesopores.
The core-shell silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement. Table 1 shows the properties of the obtained core-shell silica particles.

実施例3(コアシェルシリカ粒子の製造)
1Lビーカーに水286g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液に1M水酸化ナトリウム水溶液を入れ、分散液中のpHが10になるように調整した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド17.4g、テトラメトキシシラン17gを予め混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗後、乾燥した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗後、乾燥して、カチオン性ポリマー粒子を内包し、外殻部がメソ細孔を有するコアシェルシリカ粒子を得た。
このコアシェルシリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。得られたコアシェルシリカ粒子の性状を表1に示す。
Example 3 (Production of core-shell silica particles)
In a 1 L beaker, 286 g of water and 16.3 g of cationic polymer particle suspension were added and stirred. A 1M aqueous sodium hydroxide solution was added to the dispersion, and the pH in the dispersion was adjusted to 10. Further, 100 g of methanol, 17.4 g of dodecyltrimethylammonium bromide, and 17 g of tetramethoxysilane were mixed in the dispersion liquid dropwise over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The obtained white precipitate was separated by filtration, washed with water, and dried to obtain core-shell silica particles enclosing the cationic polymer particles and having outer shell portions having mesopores.
The core-shell silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement. Table 1 shows the properties of the obtained core-shell silica particles.

比較例1
1Lビーカーに水286g、メタノール100g、1M水酸化ナトリウム水溶液22.8g、ドデシルトリメチルアンモニウムブロミド17.4g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液にテトラメトキシシラン17gを加え、5時間撹拌後、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗後、乾燥した。XRD測定やTEM測定、窒素吸着による細孔分布の測定から、メソ細孔は確認されたが、カチオン性ポリマー粒子を内包したコアシェルシリカ粒子は得られなかった。結果を表1に示す。
Comparative Example 1
In a 1 L beaker, 286 g of water, 100 g of methanol, 22.8 g of 1M aqueous sodium hydroxide solution, 17.4 g of dodecyltrimethylammonium bromide, and 16.3 g of a cationic polymer particle suspension were stirred. 17 g of tetramethoxysilane was added to the dispersion, and the mixture was stirred for 5 hours and then aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The resulting white precipitate was filtered off, washed with water and dried. Mesopores were confirmed from XRD measurement, TEM measurement, and measurement of pore distribution by nitrogen adsorption, but core-shell silica particles enclosing cationic polymer particles were not obtained. The results are shown in Table 1.

Figure 2009249249
Figure 2009249249

実施例4(中空シリカ粒子の製造)
1Lビーカーに水286g、メタノール100g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液に1M水酸化ナトリウム水溶液を入れ、分散液中のpHが10になるように調整した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド17.4g、テトラメトキシシラン17gを予め混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥後、1℃/分の速度で600℃まで昇温した後、2時間600℃で焼成し、カチオン性ポリマー粒子とドデシルトリメチルアンミニウムブロミドを除去して、外殻部がメソ細孔構造を有する中空シリカ粒子を得た。
得られた中空シリカ粒子のXRD測定結果を図2に示し、性状を表2に示す。
この中空シリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。
Example 4 (Production of hollow silica particles)
In a 1 L beaker, 286 g of water, 100 g of methanol, and 16.3 g of a cationic polymer particle suspension were added and stirred. A 1M aqueous sodium hydroxide solution was added to the dispersion, and the pH in the dispersion was adjusted to 10. Further, 100 g of methanol, 17.4 g of dodecyltrimethylammonium bromide, and 17 g of tetramethoxysilane were mixed in the dispersion liquid dropwise over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The resulting white precipitate was filtered off, washed with water, dried, heated to 600 ° C. at a rate of 1 ° C./min, and then calcined at 600 ° C. for 2 hours to obtain cationic polymer particles and dodecyltrimethylammonium bromide. Removal gave hollow silica particles whose outer shell part had a mesoporous structure.
The XRD measurement results of the obtained hollow silica particles are shown in FIG. 2, and the properties are shown in Table 2.
The hollow silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement.

実施例5(中空シリカ粒子の製造)
実施例1で得られたシリカ粒子を1℃/分の速度で600℃まで昇温した後、2時間600℃で焼成し、カチオン性ポリマー粒子とドデシルトリメチルアンミニウムブロミドを除去して、外殻部がメソ細孔構造を有する中空シリカ粒子を得た。得られた中空シリカ粒子の性状を表2に示す。
この中空シリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。
Example 5 (Production of hollow silica particles)
The silica particles obtained in Example 1 were heated to 600 ° C. at a rate of 1 ° C./min and then calcined at 600 ° C. for 2 hours to remove the cationic polymer particles and dodecyltrimethylammonium bromide. Hollow silica particles having a mesopore structure in the part were obtained. Table 2 shows the properties of the obtained hollow silica particles.
The hollow silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement.

実施例6(中空シリカ粒子の製造)
1Lビーカーに水286g、メタノール100g、1M水酸化ナトリウム水溶液2.25g、ドデシルトリメチルアンモニウムブロミド1.74g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液にテトラメトキシシラン1.7gゆっくり加え、10分間撹拌した。この操作により核となる外殻の薄いコアシェル構造のメソポーラスシリカ粒子をはじめに合成した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド15.7g、テトラメトキシシラン15.3gを予め混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗後、乾燥の後、1℃/分の速度で600℃まで昇温したのち、2時間600℃で焼成し、カチオン性ポリマー粒子とドデシルトリメチルアンミニウムブロミドを除去して、外殻部がメソ細孔構造を有する中空シリカ粒子を得た。
得られた中空シリカ粒子の性状を表2に示す。
この中空シリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。
Example 6 (Production of hollow silica particles)
In a 1 L beaker, 286 g of water, 100 g of methanol, 2.25 g of 1M aqueous sodium hydroxide solution, 1.74 g of dodecyltrimethylammonium bromide, and 16.3 g of a cationic polymer particle suspension were stirred. To the dispersion, 1.7 g of tetramethoxysilane was slowly added and stirred for 10 minutes. By this operation, mesoporous silica particles with a thin core-shell structure as the core were first synthesized. Further, 100 g of methanol, 15.7 g of dodecyltrimethylammonium bromide, and 15.3 g of tetramethoxysilane were mixed in the dispersion liquid dropwise over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The obtained white precipitate is filtered off, washed with water, dried, heated to 600 ° C. at a rate of 1 ° C./min, and then baked at 600 ° C. for 2 hours to obtain cationic polymer particles and dodecyltrimethylammonium. The bromide was removed to obtain hollow silica particles whose outer shell part had a mesoporous structure.
Table 2 shows the properties of the obtained hollow silica particles.
The hollow silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement.

実施例7(中空シリカ粒子の製造)
1Lビーカーに水286g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液に1M水酸化ナトリウム水溶液を入れ、分散液中のpHが10になるように調整した。さらにその分散液中にメタノール100g、ドデシルトリメチルアンモニウムブロミド17.4g、テトラメトキシシラン17gを予め混合したものを、2時間かけて滴下した。滴下時に分散液のpHが10になるように、1M水酸化ナトリウム水溶液を随時滴下した。滴下終了後5時間撹拌し、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥後、1℃/分の速度で600℃まで昇温したのち、2時間600℃で焼成し、カチオン性ポリマー粒子とドデシルトリメチルアンミニウムブロミドを除去して、外殻部がメソ細孔を有する中空シリカ粒子を得た。得られた中空シリカ粒子の性状を表2に示す。
この中空シリカ粒子は、粉末X線回折(XRD)測定において、d=2〜12nmの範囲に相当する回折角(2θ)に1本以上のピークを有していた。
Example 7 (Production of hollow silica particles)
In a 1 L beaker, 286 g of water and 16.3 g of cationic polymer particle suspension were added and stirred. A 1M aqueous sodium hydroxide solution was added to the dispersion, and the pH in the dispersion was adjusted to 10. Further, 100 g of methanol, 17.4 g of dodecyltrimethylammonium bromide, and 17 g of tetramethoxysilane were mixed in the dispersion liquid dropwise over 2 hours. A 1M aqueous sodium hydroxide solution was added dropwise at any time so that the pH of the dispersion was 10 at the time of dropwise addition. After completion of dropping, the mixture was stirred for 5 hours and aged for 12 hours. The obtained white precipitate was filtered, washed with water, dried, heated to 600 ° C. at a rate of 1 ° C./min, and then calcined at 600 ° C. for 2 hours to obtain cationic polymer particles and dodecyltrimethylammonium bromide. Removal of hollow silica particles having outer shell portions having mesopores was obtained. Table 2 shows the properties of the obtained hollow silica particles.
The hollow silica particles had one or more peaks at a diffraction angle (2θ) corresponding to a range of d = 2 to 12 nm in powder X-ray diffraction (XRD) measurement.

比較例2(中空シリカ粒子の製造)
1Lビーカーに水300g、メタノール100g、1M水酸化ナトリウム水溶液22.8g、ドデシルトリメチルアンモニウムブロミド17.4g、カチオン性のポリマー粒子懸濁液16.3gを入れ撹拌した。その分散液にテトラメトキシシラン17gを加え、5時間撹拌後、12時間熟成させた。得られた白色沈殿物をろ別し、水洗、乾燥した。乾燥粉末を水100mlに分散し、1M塩酸を用いてpH2に調整し、一晩撹拌した。得られた白色沈殿物をろ別し、水洗、乾燥後、1℃/分の速度で600℃まで昇温したのち、2時間600℃で焼成し、カチオン性ポリマー粒子とドデシルトリメチルアンミニウムブロミドを除去した。
XRD測定やTEM測定、窒素吸着による細孔分布の測定から、メソ細孔は確認されたが、中空シリカ粒子の生成は認められなかった。結果を表2に示す。
Comparative Example 2 (Production of hollow silica particles)
In a 1 L beaker, 300 g of water, 100 g of methanol, 22.8 g of 1M aqueous sodium hydroxide solution, 17.4 g of dodecyltrimethylammonium bromide, and 16.3 g of a cationic polymer particle suspension were stirred. 17 g of tetramethoxysilane was added to the dispersion, and the mixture was stirred for 5 hours and then aged for 12 hours. The resulting white precipitate was filtered off, washed with water and dried. The dry powder was dispersed in 100 ml of water, adjusted to pH 2 with 1M hydrochloric acid, and stirred overnight. The obtained white precipitate was filtered, washed with water, dried, heated to 600 ° C. at a rate of 1 ° C./min, and then calcined at 600 ° C. for 2 hours to obtain cationic polymer particles and dodecyltrimethylammonium bromide. Removed.
Although mesopores were confirmed from XRD measurement, TEM measurement, and measurement of pore distribution by nitrogen adsorption, formation of hollow silica particles was not observed. The results are shown in Table 2.

Figure 2009249249
Figure 2009249249

本発明の製造方法によれば、均質なメソ細孔構造を有し、粒子径が均一な中空構造又はコアシェル構造を有するメソポーラスシリカ粒子を効率よく製造することができ、粒子径の制御も容易である。
得られるコアシェルシリカ粒子及び中空シリカ粒子は、例えば構造選択性を有する触媒担体、吸着剤、物質分離剤、酵素や機能性有機化合物の固定化担体等としての利用が可能である。特に、中空シリカ粒子は、内部に機能性有機化合物を包含させればドラッグデリバリーシステム等に非常に効果的に利用できる。
According to the production method of the present invention, mesoporous silica particles having a homogeneous mesopore structure and a hollow structure or a core-shell structure having a uniform particle diameter can be efficiently produced, and the particle diameter can be easily controlled. is there.
The obtained core-shell silica particles and hollow silica particles can be used, for example, as a catalyst carrier having a structure selectivity, an adsorbent, a substance separating agent, an immobilization carrier for enzymes and functional organic compounds, and the like. In particular, the hollow silica particles can be used very effectively in drug delivery systems and the like if a functional organic compound is included therein.

実施例1で得られたコアシェル構造のメソポーラスシリカ粒子のXRD測定結果である。3 is an XRD measurement result of mesoporous silica particles having a core-shell structure obtained in Example 1. FIG. 実施例4で得られた中空シリカ粒子のXRD測定結果である。4 is an XRD measurement result of hollow silica particles obtained in Example 4. 実施例4で得られた中空シリカ粒子の粒子全体のTEM像である。4 is a TEM image of the entire hollow silica particles obtained in Example 4.

Claims (7)

中空構造又はコアシェル構造を有し、外殻部がメソ細孔構造を有するメソポーラスシリカ粒子の製造方法であって、水不溶性物質(a)及び水を含有する分散液(A)に、陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(b)とシリカ源(c)とを経時的に添加して反応を行う工程を含む、メソポーラスシリカ粒子の製造方法。   A method for producing mesoporous silica particles having a hollow structure or a core-shell structure and having an outer shell portion having a mesoporous structure, the dispersion comprising a water-insoluble substance (a) and water (A) and a cation interface A method for producing mesoporous silica particles, comprising a step of reacting by adding one or more surfactants (b) selected from an surfactant and a nonionic surfactant and a silica source (c) over time. 反応系のpHを8.5〜11.5に調整して行う、請求項1に記載のメソポーラスシリカ粒子の製造方法。   The method for producing mesoporous silica particles according to claim 1, which is carried out by adjusting the pH of the reaction system to 8.5 to 11.5. 水不溶性物質(a)が、疎水性有機溶剤、有機高分子化合物及び無機化合物から選ばれる1種以上である、請求項1又は2に記載のメソポーラスシリカ粒子の製造方法。   The method for producing mesoporous silica particles according to claim 1 or 2, wherein the water-insoluble substance (a) is at least one selected from a hydrophobic organic solvent, an organic polymer compound and an inorganic compound. 有機高分子化合物が、カチオン性水不溶性ポリマー及びノニオン性水不溶性ポリマーである、請求項3に記載のメソポーラスシリカ粒子の製造方法。   The method for producing mesoporous silica particles according to claim 3, wherein the organic polymer compound is a cationic water-insoluble polymer and a nonionic water-insoluble polymer. 界面活性剤(b)が下記一般式(1)及び(2)で表される第4級アンモニウム塩である、請求項1〜4のいずれかに記載のメソポーラスシリカ粒子の製造方法。
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐状アルキル基を示し、Xは1価陰イオンを示す。)
The method for producing mesoporous silica particles according to any one of claims 1 to 4, wherein the surfactant (b) is a quaternary ammonium salt represented by the following general formulas (1) and (2).
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represents a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a monovalent anion.)
シリカ源(c)が、加水分解によりシラノール化合物を生成するものである、請求項1〜5のいずれかに記載のメソポーラスシリカ粒子の製造方法。   The method for producing mesoporous silica particles according to any one of claims 1 to 5, wherein the silica source (c) generates a silanol compound by hydrolysis. 分散液(A)が、更に水溶性有機溶剤を含有したものである、請求項1〜6のいずれかに記載のメソポーラスシリカ粒子の製造方法。   The method for producing mesoporous silica particles according to any one of claims 1 to 6, wherein the dispersion (A) further contains a water-soluble organic solvent.
JP2008100666A 2008-04-08 2008-04-08 Method for producing mesoporous silica particles Active JP5291971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100666A JP5291971B2 (en) 2008-04-08 2008-04-08 Method for producing mesoporous silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100666A JP5291971B2 (en) 2008-04-08 2008-04-08 Method for producing mesoporous silica particles

Publications (2)

Publication Number Publication Date
JP2009249249A true JP2009249249A (en) 2009-10-29
JP5291971B2 JP5291971B2 (en) 2013-09-18

Family

ID=41310288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100666A Active JP5291971B2 (en) 2008-04-08 2008-04-08 Method for producing mesoporous silica particles

Country Status (1)

Country Link
JP (1) JP5291971B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189230A (en) * 2009-02-19 2010-09-02 Kao Corp Process for producing mesoporous silica particle
JP2010208907A (en) * 2009-03-11 2010-09-24 Kao Corp Production method of mesoporous silica particle
JP2012076967A (en) * 2010-10-04 2012-04-19 Canon Inc Method for producing hollow magnesium fluoride particle, antireflection film using the same, and optical element
JP2012246187A (en) * 2011-05-27 2012-12-13 Kao Corp Method for producing composite silica particle
US20130009119A1 (en) * 2010-03-22 2013-01-10 Cabot Security Materials, Inc. Wavelength selective sers nanotags
CN103803556A (en) * 2012-11-05 2014-05-21 中国科学院大连化学物理研究所 Organic modified hydrophobic nano silica hollow ball and preparation method thereof
JP2017518243A (en) * 2014-03-11 2017-07-06 レ イノベーションズ マタレアム インコーポレイテッド Process for the preparation and use of silica-carbon allotrope composites
EP3608016A1 (en) * 2012-05-22 2020-02-12 DSM IP Assets B.V. Hybrid organic-inorganic nano-particles
CN113582188A (en) * 2021-07-08 2021-11-02 河南安彩高科股份有限公司 Preparation method of nano core-shell silica microspheres
WO2022172978A1 (en) * 2021-02-12 2022-08-18 国立大学法人東北大学 Method for producing core-shell porous silica particles, and core-shell porous silica particles
WO2023282158A1 (en) * 2021-07-07 2023-01-12 Agc株式会社 Light scattering silica particles and method for producing light scattering silica particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146711A1 (en) 2009-06-19 2010-12-23 富士通株式会社 Audio signal processing device and audio signal processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JP2006347849A (en) * 2005-06-20 2006-12-28 Toyota Central Res & Dev Lab Inc Core-shell type spherical silica-based mesoporous body and method for producing the same
JP2007044610A (en) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd Porous hollow particle and its producing method
WO2008053695A1 (en) * 2006-10-31 2008-05-08 Kao Corporation Mesoporous silica particles
JP2009035454A (en) * 2007-08-02 2009-02-19 Taiyo Kagaku Co Ltd Spherical mesoporous article
JP2009051680A (en) * 2007-08-24 2009-03-12 Kao Corp Composite silica particle
JP2010503033A (en) * 2006-09-06 2010-01-28 ディーエスエム アイピー アセッツ ビー.ブイ. Core-shell type nanoparticles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JP2006347849A (en) * 2005-06-20 2006-12-28 Toyota Central Res & Dev Lab Inc Core-shell type spherical silica-based mesoporous body and method for producing the same
JP2007044610A (en) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd Porous hollow particle and its producing method
JP2010503033A (en) * 2006-09-06 2010-01-28 ディーエスエム アイピー アセッツ ビー.ブイ. Core-shell type nanoparticles
WO2008053695A1 (en) * 2006-10-31 2008-05-08 Kao Corporation Mesoporous silica particles
JP2009035454A (en) * 2007-08-02 2009-02-19 Taiyo Kagaku Co Ltd Spherical mesoporous article
JP2009051680A (en) * 2007-08-24 2009-03-12 Kao Corp Composite silica particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012063954; G.ZHU et al.: 'Polystyrene Bead-Assisted Self-Assembly of Microstructured Silica Hollow Spheres in Highly Alkaline' J.Am.Chem.Soc. Vol.123. No.31, 20010808, Pages7723-7724, American Chemical Society *
JPN6012063955; Y.ZHU et al.: 'A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property' Microporous and Mesoporous Materials Vol.84, 20050915, Pages218-222, Elsevier *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189230A (en) * 2009-02-19 2010-09-02 Kao Corp Process for producing mesoporous silica particle
JP2010208907A (en) * 2009-03-11 2010-09-24 Kao Corp Production method of mesoporous silica particle
US20150160136A1 (en) * 2010-03-22 2015-06-11 Sicpa Holding Sa Wavelength Selective SERS Nanotags
US20130009119A1 (en) * 2010-03-22 2013-01-10 Cabot Security Materials, Inc. Wavelength selective sers nanotags
CN102906552A (en) * 2010-03-22 2013-01-30 卡伯特安保材料股份有限公司 Wavelength selective SERS nanotags
US9726609B2 (en) 2010-03-22 2017-08-08 Sicpa Holding Sa Wavelength selective SERS nanotags
JP2012076967A (en) * 2010-10-04 2012-04-19 Canon Inc Method for producing hollow magnesium fluoride particle, antireflection film using the same, and optical element
JP2012246187A (en) * 2011-05-27 2012-12-13 Kao Corp Method for producing composite silica particle
EP3608016A1 (en) * 2012-05-22 2020-02-12 DSM IP Assets B.V. Hybrid organic-inorganic nano-particles
CN103803556A (en) * 2012-11-05 2014-05-21 中国科学院大连化学物理研究所 Organic modified hydrophobic nano silica hollow ball and preparation method thereof
JP2017518243A (en) * 2014-03-11 2017-07-06 レ イノベーションズ マタレアム インコーポレイテッド Process for the preparation and use of silica-carbon allotrope composites
WO2022172978A1 (en) * 2021-02-12 2022-08-18 国立大学法人東北大学 Method for producing core-shell porous silica particles, and core-shell porous silica particles
WO2023282158A1 (en) * 2021-07-07 2023-01-12 Agc株式会社 Light scattering silica particles and method for producing light scattering silica particles
CN113582188A (en) * 2021-07-08 2021-11-02 河南安彩高科股份有限公司 Preparation method of nano core-shell silica microspheres
CN113582188B (en) * 2021-07-08 2024-01-30 河南安彩高科股份有限公司 Preparation method of nano core-shell silica microspheres

Also Published As

Publication number Publication date
JP5291971B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5291971B2 (en) Method for producing mesoporous silica particles
JP5192760B2 (en) Composite hollow mesoporous silica particles
JP5364277B2 (en) Hollow silica particles
JP5021395B2 (en) Composite silica particles
JP5284580B2 (en) Mesoporous silica particles
JP5118328B2 (en) Hollow silica particles
JP5603063B2 (en) Method for producing composite silica particles
CN101426725B (en) Core-shell silica and method for producing same
JP5342774B2 (en) Composite mesoporous silica particles
US8658127B2 (en) Method of manufacturing mesoporous zeolite agglomerates
Zhang et al. Preparation of hierarchical dandelion-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis
WO2008053695A1 (en) Mesoporous silica particles
JP5243881B2 (en) Method for producing hollow silica particles
JP6290786B2 (en) Mesoporous titanium dioxide nanoparticles and method for producing the same
TWI647178B (en) Method for preparing Group 4 metal citrate and use thereof
TW201010942A (en) Siliceous materials having tunable porosity and surface morphology and methods of synthesizing same
JP5486164B2 (en) Method for producing mesoporous silica particles
JP5291980B2 (en) Core-shell mesoporous silica particles
JP4099811B2 (en) Shaped porous silica or silica metal composite particles and method for producing the same
CN102858684A (en) Method for the mass production of silver nanoparticles having a uniform size
JP5507099B2 (en) Method for producing mesoporous silica particles
JP2007204293A (en) Porous particle and method for producing the same
JP2004277270A (en) Manufacturing method of mesoporous silica
JP4756484B2 (en) Method for producing fibrous porous silica particles and fibrous porous silica particles
Li et al. Emulsion droplets as a dynamic interface for the direct and large-scale synthesis of ultrathin free-standing mesoporous silica films as well as 2D polymeric and carbon nanomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5291971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250