JP2009035454A - Spherical mesoporous article - Google Patents

Spherical mesoporous article Download PDF

Info

Publication number
JP2009035454A
JP2009035454A JP2007201996A JP2007201996A JP2009035454A JP 2009035454 A JP2009035454 A JP 2009035454A JP 2007201996 A JP2007201996 A JP 2007201996A JP 2007201996 A JP2007201996 A JP 2007201996A JP 2009035454 A JP2009035454 A JP 2009035454A
Authority
JP
Japan
Prior art keywords
spherical mesoporous
mesoporous material
spherical
outer shell
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201996A
Other languages
Japanese (ja)
Other versions
JP5101202B2 (en
Inventor
Mahendra Kapoor
マヘンドラ カプール
Koichi Kitahata
幸一 北畑
Yuki Kasama
勇輝 笠間
Takuji Yokoyama
卓司 横山
Wataru Fujii
亘 藤井
Masaaki Yanagi
正明 柳
Hironobu Nanbu
宏暢 南部
Yoshiki Yamazaki
義樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP2007201996A priority Critical patent/JP5101202B2/en
Publication of JP2009035454A publication Critical patent/JP2009035454A/en
Application granted granted Critical
Publication of JP5101202B2 publication Critical patent/JP5101202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mesoporous article with a novel structure comprising an outer shell having regularly arranged mesopores and an interior cavity, which enables controlled, sustained release of functional substances with a nonconventional, excellent selectivity, is excellent in the adsorption of functional substances and can be suitably used for drug delivery etc. <P>SOLUTION: The problem can be solved by the spherical mesoporous article which has an X-ray refraction pattern having at least one peak at a distance d larger than 2 nm, has the outer shell comprising the mesopores with an average pore diameter of 0.8-20 nm and has the cavity with an outer shell thickness of 0.5-5 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、規則的なメソ細孔から成る外殻を持ち且つ内部に空洞を有することを特徴とする球状メソ多孔体に関する。   The present invention relates to a spherical mesoporous material having an outer shell composed of regular mesopores and having a cavity inside.

従来、平均粒子径が0.1〜300μm程度の中空シリカ粒子は公知である(例えば、特許文献1及び特許文献2参照。)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材料からなるコア上に沈殿させ、シリカシェルを破壊させることなく除去することによって、稠密なシリカシェルからなる中空粒子を製造する方法が公知である(例えば、特許文献3参照。)。さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・シェル構造であるミクロンサイズの球状シリカ粒子が公知である(例えば、特許文献4参照。)。しかしながら、外殻に規則的なメソ細孔を持ったものではなく、選択性および徐放制御に劣るものであった。   Conventionally, hollow silica particles having an average particle diameter of about 0.1 to 300 μm are known (see, for example, Patent Document 1 and Patent Document 2). Also known is a method for producing hollow particles composed of a dense silica shell by precipitating active silica from an aqueous alkali metal silicate solution on a core composed of a material other than silica and removing the silica shell without destroying it. (For example, refer to Patent Document 3). Further, micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell, the center portion is hollow, the outer shell is denser on the outer side, and has a coarser concentration gradient structure on the inner side are known (for example, Patent Documents). 4). However, it did not have regular mesopores in the outer shell, and was inferior in selectivity and controlled release.

特開平6−330606号公報(第1頁−第5頁)JP-A-6-330606 (pages 1 to 5) 特開平7−013137号公報(第1頁−第7頁)JP-A-7-013137 (first page-seventh page) 特表2000−500113号公報(第1頁−第24頁)Special Table 2000-500113 (1st page-24th page) 特開平11−029318号公報(第1頁−第13頁)JP-A-11-029318 (pages 1 to 13)

本発明の目的は外殻に規則的なメソ細孔を持ち且つ内部に空洞を持たせることにより、機能性物質を従来にない優れた選択性、徐放制御が可能な球状メソ多孔体を得ることにある。   It is an object of the present invention to obtain a spherical mesoporous material capable of controlling selectivity and controlled release of a functional substance, which has never existed before, by providing regular mesopores in the outer shell and cavities inside. There is.

すなわち、本発明は、
(1)d間隔が2nmより大きい位置に少なくとも1つのピークを持つX線回折パターンを有し、平均細孔径0.8〜20nmであるメソ細孔から成る外殻を持ち、外殻の厚みが0.5〜10μmである空洞を有する球状メソ多孔体
(2)一次粒子径が10〜150μmである前記1記載の球状メソ多孔体
を提供することにある。
That is, the present invention
(1) having an outer shell composed of mesopores having an X-ray diffraction pattern having at least one peak at a position where the d interval is larger than 2 nm, and having an average pore diameter of 0.8 to 20 nm, and the thickness of the outer shell is A spherical mesoporous material having cavities of 0.5 to 10 μm (2) An object of the present invention is to provide the spherical mesoporous material according to 1 above, wherein the primary particle diameter is 10 to 150 μm.

本発明の球状メソ多孔体により、機能性物質を内部の空洞に担持させ、ドラッグデリバリーの担体や農薬、香料の徐放制御等広い分野での利用が可能である。   The spherical mesoporous material of the present invention can be used in a wide range of fields such as drug delivery carriers, agricultural chemicals, and controlled release of fragrances by supporting a functional substance in the internal cavity.

本発明における球状メソ多孔体とは、規則的なメソポーラス構造を持つ無機酸化物を主成分とする多孔質材料を指す。無機酸化物としては、これに限定されるものではないが、好ましくは、酸化ケイ素や酸化チタン、酸化ジルコニア等が挙げられる。規則性メソポーラス構造の合成の簡便さや構造の安定性の観点から、特に、酸化ケイ素を主成分とすることがより好ましい。   The spherical mesoporous material in the present invention refers to a porous material mainly composed of an inorganic oxide having a regular mesoporous structure. Examples of the inorganic oxide include, but are not limited to, silicon oxide, titanium oxide, and zirconia oxide. In view of the ease of synthesis of the regular mesoporous structure and the stability of the structure, it is more preferable to use silicon oxide as the main component.

本発明における球状メソ多孔体は、d間隔が2nmより大きい位置に少なくとも1つのピークを有するX線回折パターンを有していることが好ましく、d間隔が2nmより大きい位置に1つのピークを有するX線回折パターンを有していることがより好ましい。   The spherical mesoporous material in the present invention preferably has an X-ray diffraction pattern having at least one peak at a position where the d interval is larger than 2 nm, and X having one peak at a position where the d interval is larger than 2 nm. More preferably, it has a line diffraction pattern.

本発明における球状メソ多孔体は、d間隔が2nmより大きい位置に1つのピークを有し、このピークの50%より大きい相対強度のピークを2nmより小さい位置に有さないX線回折パターンを有していることがより好ましい。   The spherical mesoporous material of the present invention has an X-ray diffraction pattern having one peak at a position where the d interval is larger than 2 nm, and a peak having a relative intensity larger than 50% of this peak at a position smaller than 2 nm. More preferably.

X線回折パターンはX線回折測定装置(RINT ULTIMA II 理学電機株式会社製)等により測定することができる。   The X-ray diffraction pattern can be measured by an X-ray diffraction measurement device (RINT ULTIMA II, manufactured by Rigaku Corporation).

本発明における球状メソ多孔体は平均細孔径0.8〜20nmであるメソ多孔体から成る外殻の厚みが0.5〜10μmである空洞を有することが好ましい。   The spherical mesoporous material in the present invention preferably has a cavity having an outer shell thickness of 0.5 to 10 μm made of a mesoporous material having an average pore diameter of 0.8 to 20 nm.

本発明における球状メソ多孔体における細孔の平均細孔径は0.8nm未満であると、多孔質シリカへの機能性物質等の吸着が十分でなく、20nmを超えるものは製造するのが実質的に困難である。従って、上記観点から、本発明における球状メソ多孔体の平均細孔径は、0.8〜20nmであり、好ましくは1.5〜20nmであり、最も好ましくは4〜20nmである。   When the average pore diameter of the pores in the spherical mesoporous material in the present invention is less than 0.8 nm, the adsorption of the functional substance or the like to the porous silica is not sufficient, and those exceeding 20 nm are substantially produced. It is difficult to. Therefore, from the above viewpoint, the average pore diameter of the spherical mesoporous material in the present invention is 0.8 to 20 nm, preferably 1.5 to 20 nm, and most preferably 4 to 20 nm.

細孔の平均細孔径の測定方法については特に限定されるものではないが、例えば、公知の窒素吸着測定法により算出することができる。   The method for measuring the average pore diameter of the pores is not particularly limited, and can be calculated, for example, by a known nitrogen adsorption measurement method.

本発明における球状メソ多孔体の0.8〜20nmの範囲内にある細孔は、機能性物質担持の観点から好ましくは全体の60%以上(体積)であり、より好ましくは80%であり、更に好ましくは90%以上であり、最も好ましくは95%以上である。   The fine pores in the range of 0.8 to 20 nm of the spherical mesoporous material in the present invention are preferably 60% or more (volume) of the whole from the viewpoint of supporting a functional substance, more preferably 80%, More preferably, it is 90% or more, and most preferably 95% or more.

本発明における外殻の厚みは機能性物質担持の観点から0.5〜10μmが好ましく、1〜10μmがより好ましい。   The thickness of the outer shell in the present invention is preferably 0.5 to 10 μm, more preferably 1 to 10 μm, from the viewpoint of supporting a functional substance.

外殻の厚みの測定法は特に限定されるものではないが、例えば、球状メソ多孔体を粉砕して得られた粉砕メソ多孔体を走査型電子顕微鏡観察することにより算出することができる。   The method for measuring the thickness of the outer shell is not particularly limited. For example, it can be calculated by observing a pulverized mesoporous material obtained by pulverizing a spherical mesoporous material with a scanning electron microscope.

本発明における空洞容積は機能性物質担持の観点から500μm/個〜1690000μm/個が好ましく、4000μm/個〜500000μm/個がより好ましく、4000μm/個〜62000μm/個がさらに好ましい。 Cavity volume is 500 [mu] m 3 / number ~1690000μm 3 / Pieces are preferred from the viewpoint of functional substance carried in the present invention, 4000 .mu.m 3 / number ~500000μm 3 / pieces, and even more preferably 4000 .mu.m 3 / number ~62000μm 3 / Pieces .

空洞容積の測定法は特に限定されるものではないが、球状メソ多孔体を粉砕して得られた粉砕メソ多孔体を走査型電子顕微鏡観察することにより得られた空洞を形成する球の半径rからV=4/3πrにより算出することができる。 The method for measuring the cavity volume is not particularly limited, but the radius r of the sphere forming the cavity obtained by observing the pulverized mesoporous material obtained by pulverizing the spherical mesoporous material with a scanning electron microscope From V = 4 / 3πr 3 .

本発明における球状メソ多孔体の比表面積は100m/g未満であると、球状メソ多孔体への機能性物質担持の吸着が十分でない場合があり比表面積が2000m/gより大きいものは、製造するのが実質的に困難である。従って、上記観点から、本発明におけるメソ多孔体の比表面積は好ましくは100〜2000m/g、より好ましくは300〜1500m/g、最も好ましくは450〜1500m/gである。 When the specific surface area of the spherical mesoporous material in the present invention is less than 100 m 2 / g, the adsorption of the functional substance supported on the spherical mesoporous material may not be sufficient, and the specific surface area is more than 2000 m 2 / g. It is practically difficult to manufacture. Therefore, from the above viewpoint, the specific surface area of the mesoporous materials of the present invention is preferably 100-2000 m 2 / g, more preferably 300~1500m 2 / g, most preferably 450~1500m 2 / g.

比表面積の測定法は特に限定されるものではないが、公知の窒素吸着測定により算出することができる。   The method for measuring the specific surface area is not particularly limited, but can be calculated by a known nitrogen adsorption measurement.

本発明における球状メソ多孔体の細孔容積は特に限定されるものではないが、好ましくは、0.1cm/g〜3.0cm/g、より好ましくは0.5cm/g〜2.0cm/g、さらに好ましくは1.0cm/g〜2.0cm/gであるようにコントロールされたものが良い。細孔容量が上記範囲より小さいものものでは、球状メソ多孔体への機能性物質担持の吸着量が十分でない場合があり、細孔容量が上記範囲より大きいものは、製造するのが実質的に困難である。 It is not particularly limited pore volume of the spherical mesoporous material in the present invention, preferably, 0.1cm 3 /g~3.0cm 3 / g, more preferably 0.5 cm 3 / g to 2. 0 cm 3 / g, more preferably it is better that is controlled to be a 1.0cm 3 /g~2.0cm 3 / g. When the pore volume is smaller than the above range, the adsorption amount of the functional substance supported on the spherical mesoporous material may not be sufficient, and when the pore volume is larger than the above range, it is substantially manufactured. Have difficulty.

細孔容積の測定法は特に限定されるものではないが、公知の窒素吸着測定により算出することができる。   The method for measuring the pore volume is not particularly limited, but can be calculated by a known nitrogen adsorption measurement.

本発明の球状メソ多孔体の比表面積(m/g)、細孔容積(cm/g)、平均細孔経(nm)は公知の窒素吸着測定により算出することができる。すなわち、平均細孔径は公知のBJH法により算出することができ、比表面積は公知のBET法により算出することができ、細孔容積は公知のBJH法、t法などにより算出することができる。また、一次粒子径は走査型電子顕微鏡により観察することができる。 The specific surface area (m 2 / g), pore volume (cm 3 / g), and average pore diameter (nm) of the spherical mesoporous material of the present invention can be calculated by a known nitrogen adsorption measurement. That is, the average pore diameter can be calculated by a known BJH method, the specific surface area can be calculated by a known BET method, and the pore volume can be calculated by a known BJH method, t method, or the like. The primary particle diameter can be observed with a scanning electron microscope.

本発明における球状メソ多孔体の外形形状は完全な球体に限定されるものではなく、球状を示す形状であることが好ましい。外形形状は走査型電子顕微鏡で観察することができる。   The outer shape of the spherical mesoporous material in the present invention is not limited to a perfect sphere, and is preferably a shape showing a sphere. The outer shape can be observed with a scanning electron microscope.

本発明における球状メソ多孔体の一次粒子径は10μm未満であると、機能性物質担持の吸着安定性が不充分であり、150μmを超えると機能性物質担持が著しく劣る。従って、上記観点から、本発明における球状メソ多孔体の一次粒子径は、機能性物質担持の吸着安定性の観点から好ましくは10μm〜150μmであり、より好ましくは20μm〜100μmであり、最も好ましくは、20μm〜50μmである。   If the primary particle size of the spherical mesoporous material in the present invention is less than 10 μm, the adsorption stability of the functional substance support is insufficient, and if it exceeds 150 μm, the functional substance support is extremely inferior. Therefore, from the above viewpoint, the primary particle size of the spherical mesoporous material in the present invention is preferably 10 μm to 150 μm, more preferably 20 μm to 100 μm, and most preferably, from the viewpoint of adsorption stability of the functional substance supported. , 20 μm to 50 μm.

本発明における球状メソ多孔体の細孔の形状は特に限定するものではないが、ワームホール型、2dヘキサゴナル型、3dヘキサゴナル型が好ましい。   The shape of the pores of the spherical mesoporous material in the present invention is not particularly limited, but wormhole type, 2d hexagonal type, and 3d hexagonal type are preferable.

なお、細孔の形状は透過型電子顕微鏡観察やX線回折パターン測定により、特定することができる。   The shape of the pore can be specified by observation with a transmission electron microscope or measurement of an X-ray diffraction pattern.

本発明における機能性物質とは、特に限定するものではないが、アスタキサンチン、コエンザイムQ−10等の栄養成分や各種医薬や生理活性物質等の薬理成分、香料、農薬、肥料、殺菌剤、消毒剤、抗菌剤、防カビ剤、防虫剤、殺虫剤、除草剤、害虫忌避剤、動物忌避剤、誘引剤等、種々の機能や作用を有する化学物質が挙げられる。   The functional substance in the present invention is not particularly limited, but includes nutritional components such as astaxanthin and coenzyme Q-10, pharmacological components such as various pharmaceuticals and physiologically active substances, fragrances, agricultural chemicals, fertilizers, bactericides, and disinfectants. , Chemical substances having various functions and actions, such as antibacterial agents, fungicides, insecticides, insecticides, herbicides, pest repellents, animal repellents, and attractants.

本発明の球状メソ多孔体の製造方法としては、特に限定されるものではないが、例えば、無機原料を有機原料と混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させた後、得られた複合体から、有機物を除去する方法が挙げられる。   The method for producing the spherical mesoporous material of the present invention is not particularly limited. For example, by mixing and reacting an inorganic raw material with an organic raw material, an inorganic material skeleton is formed around the organic material as a template. A method of removing the organic substance from the obtained complex after forming a composite of the organic substance and the inorganic substance.

無機原料は、反応後に無機酸化物の細孔構造を成すものであれば特に限定されるものではないが、好ましくはケイ素系やチタン系、ジルコニア系原料等が挙げられる。最も好ましくはケイ素系原料であるが、これは例えば、層状珪酸塩、非層状珪酸塩等の珪酸塩を含む物質及び珪酸塩以外の珪素を含有する物質が挙げられる。層状珪酸塩としては、カネマイト(NaHSi・3HO)、ジ珪酸ナトリウム結晶(NaSi)、マカタイト(NaHSi・5HO)、アイラアイト(NaHSi17・XHO)、マガディアイト(NaHSi1429・XHO)、ケニヤアイト(NaHSi2041・XHO)等が挙げられ、非層状珪酸塩としては、水ガラス(珪酸ソーダ)、ガラス、無定形珪酸ナトリウム等が挙げられる。また、珪酸塩以外の珪素を含有する物質としては、シリカ、シリカ酸化物、シリカ−金属複合酸化物、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトラメチルアンモニウム(TMA)シリケート、テトラエチルオルトシリケート等のシリコンアルコキシド等が挙げられる。これらは、単独で又は2種以上を混合して用いることができる。 The inorganic raw material is not particularly limited as long as it forms the pore structure of the inorganic oxide after the reaction, but preferably includes silicon-based, titanium-based, zirconia-based materials and the like. Most preferably, it is a silicon-based raw material, and examples thereof include substances containing silicates such as layered silicates and non-layered silicates, and substances containing silicon other than silicates. Examples of layered silicates include kanemite (NaHSi 2 O 5 · 3H 2 O), sodium disilicate crystal (Na 2 Si 2 O 5 ), macatite (NaHSi 4 O 9 · 5H 2 O), and Iraite (NaHSi 8 O 17 · XH 2 O), magadiite (Na 2 HSi 14 O 29 · XH 2 O), Kenyaite (Na 2 HSi 20 O 41 · XH 2 O) and the like. Non-layered silicates include water glass (sodium silicate). ), Glass, amorphous sodium silicate and the like. Examples of the substance containing silicon other than silicate include silica, silica oxide, silica-metal composite oxide, tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetramethylammonium (TMA) silicate, and tetraethyl. Examples thereof include silicon alkoxide such as orthosilicate. These can be used alone or in admixture of two or more.

鋳型となる有機原料としては、特に限定されるものではないが、例えば界面活性剤が挙げられ、これは単独で又は2種以上を混合して用いることができる。   Although it does not specifically limit as an organic raw material used as a casting_mold | template, For example, surfactant is mentioned, This can be used individually or in mixture of 2 or more types.

界面活性剤としては特に限定されるものではないが、非イオン型界面活性剤が好ましい。   The surfactant is not particularly limited, but a nonionic surfactant is preferable.

非イオン型界面活性剤としては、特に限定されるものではないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン酸誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリプロピレングリコール、ポリエチレングリコール等のエーテル型のものや、ポリオキシエチレンアルキルアミン等の含窒素型のものを使用することができるが、細孔規則性および空洞容積の観点から、ポリグリセリンに脂肪酸をエステル化したポリグリセリン脂肪酸エステルが好ましい。これらは単独で又は2種以上を混合して用いてもよい。   The nonionic surfactant is not particularly limited. For example, polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether, polyoxyethylene sterol ether, polyoxyethylene Ether type compounds such as lanolinic acid derivatives, polyoxyethylene polyoxypropylene alkyl ether, polypropylene glycol, polyethylene glycol, and nitrogen-containing compounds such as polyoxyethylene alkylamine can be used. From the viewpoint of the cavity volume, a polyglycerol fatty acid ester obtained by esterifying a fatty acid into polyglycerol is preferable. You may use these individually or in mixture of 2 or more types.

ポリグリセリン脂肪酸エステルは細孔規則性および空洞容積の観点から、HLBが14.0〜18.0であることが好ましく、15.0〜18.0であることがさらに好ましく、15.0〜16.0であることが最も好ましい。ここで、HLBは分子中の親水基と親油基のバランスを表し、分子中の親水基が0%の時を0、100%の時を20として等分したものである。   The polyglycerol fatty acid ester preferably has an HLB of 14.0 to 18.0, more preferably 15.0 to 18.0, and more preferably 15.0 to 16 from the viewpoint of pore regularity and void volume. 0.0 is most preferred. Here, HLB represents the balance between the hydrophilic group and the lipophilic group in the molecule, and is equally divided into 0 when the hydrophilic group in the molecule is 0% and 20 when the hydrophilic group is 100%.

ポリグリセリン脂肪酸エステルは細孔規則性および空洞容積の観点から、ポリグリセリン組成中、グリセリン3量体〜10量体の中から選ばれる1種のポリグリセリンの含量が35%以上であることが好ましい。この組成分布はガスクロマトグラフィーや液体クロマトグラフィーにより分析でき、特にポリグリセリンをトリメチルシリル化誘導体とした後、ガスクロマトグラフィーに付すことにより簡便に分析することができる。   From the viewpoint of pore regularity and void volume, the polyglycerin fatty acid ester preferably has a content of one kind of polyglycerin selected from glycerin trimer to 10-mer in the polyglycerin composition is 35% or more. . This composition distribution can be analyzed by gas chromatography or liquid chromatography, and in particular, it can be easily analyzed by subjecting polyglycerin to a trimethylsilylated derivative followed by gas chromatography.

ポリグリセリン脂肪酸エステルは、細孔規則性および空洞容積の観点から、ポリグリセリン脂肪酸エステルの構成脂肪酸の炭素数は12〜14が好ましい。   In the polyglycerol fatty acid ester, the number of carbon atoms of the constituent fatty acid of the polyglycerol fatty acid ester is preferably 12 to 14 from the viewpoint of pore regularity and void volume.

無機原料と有機原料を混合する場合、適当な溶媒を用いても良い。溶媒としては、特に限定されるものではないが、水、アルコール等が挙げられる。   When mixing an inorganic raw material and an organic raw material, an appropriate solvent may be used. Although it does not specifically limit as a solvent, Water, alcohol, etc. are mentioned.

反応溶液中にフッ化アンモニウム等の塩基性物質を添加することが好ましい。   It is preferable to add a basic substance such as ammonium fluoride to the reaction solution.

無機原料と有機原料の混合方法は、特に限定されるものではないが、界面活性剤を酸性溶液に溶解させた後、この溶液に塩基性物質と無機原料を添加し、20℃〜60℃で3時間〜24時間混合することが好ましい。無機原料と界面活性剤の混合比(重量比)は特に限定されるものではないが、無機原料:界面活性剤=1:0.5〜1:2が好ましく、1:1〜1:1.5がより好ましい。無機原料と塩基性物質の混合比(重量比)は特に限定されるものではないが、無機原料:塩基性物質=100:0.1〜100:10が好ましく、100:1〜100:5がより好ましい。   The mixing method of the inorganic raw material and the organic raw material is not particularly limited, but after dissolving the surfactant in the acidic solution, the basic substance and the inorganic raw material are added to the solution, and the temperature is from 20 ° C to 60 ° C. It is preferable to mix for 3 hours to 24 hours. The mixing ratio (weight ratio) between the inorganic raw material and the surfactant is not particularly limited, but inorganic raw material: surfactant = 1: 0.5 to 1: 2 is preferable, and 1: 1 to 1: 1. 5 is more preferable. The mixing ratio (weight ratio) of the inorganic raw material and the basic substance is not particularly limited, but inorganic raw material: basic substance = 100: 0.1 to 100: 10 is preferable, and 100: 1 to 100: 5 is preferable. More preferred.

酸性溶液を調製するための酸性物質は特に限定されるものではないが、塩酸、臭化水素、ヨウ化水素、蟻酸、酢酸、硝酸、硫酸、燐酸等が挙げられる。   The acidic substance for preparing the acidic solution is not particularly limited, and examples thereof include hydrochloric acid, hydrogen bromide, hydrogen iodide, formic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid and the like.

無機原料と有機原料を攪拌し反応させる際のpH条件は、細孔規則性および空洞容積の観点から、酸性条件であれば特に限定されるものではないが、pH3〜pH−3が好ましく、pH1〜pH−3がより好ましく、pH0〜pH−3がさらに好ましい。   The pH condition when the inorganic raw material and the organic raw material are stirred and reacted is not particularly limited as long as it is acidic from the viewpoint of pore regularity and cavity volume, but is preferably pH 3 to pH-3, pH 1 -PH-3 is more preferable, and pH0-pH-3 is more preferable.

有機物と無機物の複合体から有機物を除去する方法としては、複合体を濾取し、水等により洗浄、乾燥した後、400℃〜600℃で焼成する方法や、有機溶媒等により抽出する方法が挙げられる。   As a method for removing the organic substance from the complex of the organic substance and the inorganic substance, there are a method in which the complex is filtered, washed with water and dried, then baked at 400 ° C. to 600 ° C., and extracted with an organic solvent or the like. Can be mentioned.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example.

製造例1
180mlの1.5N塩酸に6.3gのペンタグリセリンモノミリステート/(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0・太陽化学株式会社製)を添加混合し、ペンタグリセリンモノミリステートを完全に溶解させた。
この溶液に0.06gのフッ化アンモニウムと9gのテトラエトキシシラン(TEOS)とデカン15mlを添加した。この溶液(pH0以下)を密封系にて25℃で24時間攪拌した。生じた沈殿物を濾過にて回収後、イオン交換水にて水洗・濾過を3回繰り返した。エタノールにて洗浄・濾過後、この固形物を60℃で3時間乾燥させ、その後540℃で6時間焼成を行い、球状メソ多孔体A2gを得た。
Production Example 1
To 180 ml of 1.5N hydrochloric acid, 6.3 g of pentaglycerin monomyristate / (content of glycerin pentamer in the constituent polyglycerin is 42%, HLB15.0, manufactured by Taiyo Kagaku Co., Ltd.) is added and mixed. The myristate was completely dissolved.
To this solution was added 0.06 g ammonium fluoride, 9 g tetraethoxysilane (TEOS) and 15 ml decane. This solution (pH 0 or lower) was stirred in a sealed system at 25 ° C. for 24 hours. The resulting precipitate was collected by filtration, and then washed with ion-exchanged water and filtered three times. After washing with ethanol and filtration, the solid was dried at 60 ° C. for 3 hours and then calcined at 540 ° C. for 6 hours to obtain 2 g of spherical mesoporous material A.

製造例2
180mlの1.5N塩酸に6.3gのペンタグリセリンモノミリステート/(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0・太陽化学株式会社製)を添加混合し、ペンタグリセリンモノミリステートを完全に溶解させた。
この溶液に0.15gのフッ化アンモニウムと9gのテトラエトキシシラン(TEOS)とデカン15mlを添加した。この溶液(pH0以下)を密封系にて25℃で24時間攪拌した。生じた沈殿物を濾過にて回収後、イオン交換水にて水洗・濾過を3回繰り返した。エタノールにて洗浄・濾過後、この固形物を60℃で3時間乾燥させ、その後540℃で6時間焼成を行い、球状メソ多孔体B2gを得た。
Production Example 2
To 180 ml of 1.5N hydrochloric acid, 6.3 g of pentaglycerin monomyristate / (content of glycerin pentamer in the constituent polyglycerin is 42%, HLB15.0, manufactured by Taiyo Kagaku Co., Ltd.) is added and mixed. The myristate was completely dissolved.
To this solution was added 0.15 g ammonium fluoride, 9 g tetraethoxysilane (TEOS) and 15 ml decane. This solution (pH 0 or lower) was stirred in a sealed system at 25 ° C. for 24 hours. The resulting precipitate was collected by filtration, and then washed with ion-exchanged water and filtered three times. After washing with ethanol and filtration, the solid was dried at 60 ° C. for 3 hours and then calcined at 540 ° C. for 6 hours to obtain 2 g of spherical mesoporous material B.

製造例3
2.1gのペンタグリセリンモノミリステート/(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0・太陽化学株式会社製)にイオン交換水30gを添加し40℃で2時間撹拌した。その後、3N塩酸40gを添加し40℃で2時間撹拌した。
この溶液に水ガラス1号を3g添加し、40℃で65時間撹拌した。生じた沈殿物を濾過にて回収後、イオン交換水にて水洗・濾過を3回繰り返した。エタノールにて洗浄・濾過後、この固形物を60℃で3時間乾燥させ、その後540℃で6時間焼成を行い、球状メソ多孔体C0.8gを得た。
得られた球状メソ多孔体A、B、CのX線回折パターンを測定した。球状メソ多孔体Aの結果を図1に、球状メソ多孔体Bの結果を図2に、球状メソ多孔体Cの結果を図3に示す。
Production Example 3
To 2.1 g of pentaglycerin monomyristate / (content of glycerin pentamer in constituent polyglycerin is 42%, HLB15.0, manufactured by Taiyo Kagaku Co., Ltd.), 30 g of ion-exchanged water was added and stirred at 40 ° C. for 2 hours. . Thereafter, 40 g of 3N hydrochloric acid was added and stirred at 40 ° C. for 2 hours.
3 g of water glass No. 1 was added to this solution and stirred at 40 ° C. for 65 hours. The resulting precipitate was collected by filtration, and then washed with ion-exchanged water and filtered three times. After washing with ethanol and filtration, the solid was dried at 60 ° C. for 3 hours and then calcined at 540 ° C. for 6 hours to obtain 0.8 g of spherical mesoporous material C.
X-ray diffraction patterns of the obtained spherical mesoporous materials A, B, and C were measured. The result of the spherical mesoporous material A is shown in FIG. 1, the result of the spherical mesoporous material B is shown in FIG. 2, and the result of the spherical mesoporous material C is shown in FIG.

図1及び図2及び図3に示すように得られた球状メソ多孔体A、B、CのX線回折パターンはd間隔が2nmより大きい位置にピークを1つ有した。   The X-ray diffraction patterns of the spherical mesoporous materials A, B, and C obtained as shown in FIGS. 1, 2, and 3 had one peak at a position where the d interval was larger than 2 nm.

得られた球状メソ多孔体A、B、Cを公知の窒素吸着法(BJH法)により細孔径分布を測定し、平均細孔径を求めた。球状メソ多孔体Aの結果を図4に、球状メソ多孔体Bの結果を図5に、球状メソ多孔体Cの結果を図6に示す。   The obtained spherical mesoporous materials A, B and C were measured for pore size distribution by a known nitrogen adsorption method (BJH method), and the average pore size was determined. The result of the spherical mesoporous material A is shown in FIG. 4, the result of the spherical mesoporous material B is shown in FIG. 5, and the result of the spherical mesoporous material C is shown in FIG.

図4、図5、図6に示すように得られた球状メソ多孔体Aは平均細孔径10.5nmのメソ細孔を有し、球状メソ多孔体Bは平均細孔径13.9nmのメソ細孔を有し、球状メソ多孔体Cは平均細孔径6.2nmのメソ細孔を有した。   The obtained spherical mesoporous material A has mesopores with an average pore diameter of 10.5 nm, and the spherical mesoporous material B has mesofine particles with an average pore diameter of 13.9 nm as shown in FIGS. The spherical mesoporous material C had pores, and mesopores having an average pore diameter of 6.2 nm.

公知の窒素吸着法により球状メソ多孔体A、B、Cの比表面積(BET法)、細孔容量(BJH法)を算出した。球状メソ多孔体Aの比表面積は、642m/g、細孔容量は1.8cm/gであった。球状メソ多孔体Bの比表面積は、490m/g、細孔容量は1.4cm/gであった。球状メソ多孔体Cの比表面積は、1380m/g、細孔容量は1.6cm/gであった。 Specific surface areas (BET method) and pore volumes (BJH method) of spherical mesoporous materials A, B, and C were calculated by a known nitrogen adsorption method. The specific surface area of the spherical mesoporous material A was 642 m 2 / g, and the pore volume was 1.8 cm 3 / g. The specific surface area of the spherical mesoporous material B was 490 m 2 / g, and the pore volume was 1.4 cm 3 / g. The specific surface area of the spherical mesoporous material C was 1380 m 2 / g, and the pore volume was 1.6 cm 3 / g.

得られたメソ多孔体A、B、Cの外形形状を走査型電子顕微鏡により観察した。球状メソ多孔体Aの結果を図7と図8に、球状メソ多孔体Bの結果を図9と図10に、球状メソ多孔体Cの結果を図11に示す。   The external shapes of the obtained mesoporous materials A, B, and C were observed with a scanning electron microscope. The results of the spherical mesoporous material A are shown in FIGS. 7 and 8, the results of the spherical mesoporous material B are shown in FIGS. 9 and 10, and the results of the spherical mesoporous material C are shown in FIG.

図7及び図8に示すように得られた球状メソ多孔体Aは一次粒子径30μmの球形をしていることが確認された。   As shown in FIGS. 7 and 8, it was confirmed that the obtained spherical mesoporous material A had a spherical shape with a primary particle diameter of 30 μm.

図9及び図10に示すように得られた球状メソ多孔体Bは一次粒子径50μmの球形をしていることが確認された。
図11に示すように得られた球状メソ多孔体Cは一次粒子径50μmの球形をしていることが確認された。
It was confirmed that the spherical mesoporous material B obtained as shown in FIG. 9 and FIG. 10 had a spherical shape with a primary particle diameter of 50 μm.
As shown in FIG. 11, it was confirmed that the obtained spherical mesoporous material C had a spherical shape with a primary particle diameter of 50 μm.

球状メソ多孔体A、B、Cのそれぞれ1gを乳鉢で磨り潰し粉砕球状メソ多孔体A1、B1、C1を得た。粉砕球状メソ多孔体A1、B1、C1の走査型電子顕微鏡観察結果をそれぞれ図12、図13、図14に示す。   1 g of each of the spherical mesoporous materials A, B, and C was ground in a mortar to obtain pulverized spherical mesoporous materials A1, B1, and C1. Scanning electron microscope observation results of the pulverized spherical mesoporous materials A1, B1, and C1 are shown in FIGS. 12, 13, and 14, respectively.

図12、図13、図14に示すように粉砕球状メソ多孔体A1、B1、C1には空洞が観察され、球状メソ多孔体A、B、Cの内部に空洞が形成されていることが確認された。(A1:半径15μm、外殻の厚み1.6μm、空洞を形成する球の半径13.4μm/B1:半径25μm、外殻の厚み1.4μm、空洞を形成する球の半径23.6μm、C1:半径25μm、外殻の厚み7μm、空洞を形成する球の半径18μm)
粉砕球状メソ多孔体A1、B1、C1の半径から球状メソ多孔体A、B、Cの空洞容積を算出したところ10073.6μm/個、55030.6μm/個、24429.0μm/個であった。
As shown in FIGS. 12, 13, and 14, cavities are observed in the pulverized spherical mesoporous materials A1, B1, and C1, and it is confirmed that cavities are formed inside the spherical mesoporous materials A, B, and C. It was done. (A1: Radius 15 μm, outer shell thickness 1.6 μm, radius of the sphere forming the cavity 13.4 μm / B1: radius 25 μm, outer shell thickness 1.4 μm, radius of the sphere forming the cavity 23.6 μm, C1 : Radius 25 μm, outer shell thickness 7 μm, cavity forming sphere radius 18 μm)
When the cavity volume of the spherical mesoporous materials A, B, and C was calculated from the radius of the pulverized spherical mesoporous materials A1, B1, and C1, it was 1007.63.6 μm 3 / piece, 55030.6 μm 3 / piece, and 244429.0 μm 3 / piece. there were.

球状メソ多孔体Aの透過型電子顕微鏡の細孔形状を透過型電子顕微鏡により観察した。球状メソ多孔体Aの透過型電子顕微鏡観察結果を図15に示す   The pore shape of the transmission electron microscope of the spherical mesoporous material A was observed with a transmission electron microscope. The observation result of the transmission mesoscopic microscope of the spherical mesoporous material A is shown in FIG.

透過型電子顕微鏡観察結果の図15およびX線回折パターン測定結果の図1から球状メソ多孔体Aの細孔形状はワームホール型であることが確認された。   It is confirmed from FIG. 15 of the transmission electron microscope observation result and FIG. 1 of the X-ray diffraction pattern measurement result that the pore shape of the spherical mesoporous material A is a wormhole type.

比較品の製造例1
水ガラス溶液をソルビタンモノステアレートとポリオキシエチレンソルビタンモノオレート混合物の局方流動パラフィン溶液と共に乳化し、油中水滴型乳濁液を調整し、さらに硫酸アンモニウム溶液に加えて反応させて放置する。続いて濾過、洗浄、乾燥を行うことにより、多孔体aを得た。
Comparative product production example 1
The water glass solution is emulsified together with a pharmacodynamic liquid paraffin solution of a mixture of sorbitan monostearate and polyoxyethylene sorbitan monooleate to prepare a water-in-oil emulsion, which is then added to the ammonium sulfate solution and allowed to react. Subsequently, the porous body a was obtained by performing filtration, washing, and drying.

比較品の製造例1で得られた多孔体aのX線回折パターンを測定したところピークは観察されなかった。   When the X-ray diffraction pattern of the porous body a obtained in Comparative Production Example 1 was measured, no peak was observed.

比較品の製造例1で得られた多孔体aを公知の窒素吸着法によりの細孔径分布を測定したところ、500nm〜2μmに広く分布していた。   When the pore size distribution of the porous body a obtained in Comparative Production Example 1 was measured by a known nitrogen adsorption method, it was widely distributed in the range of 500 nm to 2 μm.

比較品の製造例1で得られた多孔体aを走査型電子顕微鏡観察したところ5〜300μmの大小様々な球状粒子が観察された。   When the porous body a obtained in Comparative Production Example 1 was observed with a scanning electron microscope, spherical particles of various sizes of 5 to 300 μm were observed.

比較品の製造例1で得られた多孔体aを1g乳鉢で磨り潰し得た粉砕多孔体をa1とし走査型電子顕微鏡観察をしたところ大小様々な不定形空洞が観察された。   When the porous body a obtained in Comparative Example Production Example 1 was ground with a 1 g mortar and the ground porous body was a1, and observed with a scanning electron microscope, large and small amorphous cavities were observed.

本発明により外殻に規則的なメソ細孔を持ち且つ内部に空洞を持った新規な構造を持つメソ多孔体を提供することができ、機能性物質の吸着させドラッグデリバリー等に好適に用いられるものであり、その産業上の利用価値は大である。   According to the present invention, it is possible to provide a mesoporous material having a novel structure having regular mesopores in the outer shell and cavities inside, and is suitably used for drug delivery by adsorbing a functional substance. And its industrial utility value is great.

図1は球状メソ多孔体AのX線回折パターンを示す図である。FIG. 1 is a diagram showing an X-ray diffraction pattern of a spherical mesoporous material A. 図2は球状メソ多孔体BのX線回折パターンを示す図である。FIG. 2 is a diagram showing an X-ray diffraction pattern of the spherical mesoporous material B. FIG. 図3は球状メソ多孔体CのX線回折パターンを示す図である。FIG. 3 is a diagram showing an X-ray diffraction pattern of the spherical mesoporous material C. 図4は球状メソ多孔体Aの細孔経分布を示す図である。FIG. 4 is a view showing the pore size distribution of the spherical mesoporous material A. 図5は球状メソ多孔体Bの細孔経分布を示す図である。FIG. 5 is a view showing the pore size distribution of the spherical mesoporous material B. FIG. 図6は球状メソ多孔体Cの細孔経分布を示す図である。FIG. 6 is a view showing the pore size distribution of the spherical mesoporous material C. FIG. 図7は球状メソ多孔体Aの走査型電子顕微鏡観察結果を示す図である。FIG. 7 is a view showing a result of observation of the spherical mesoporous material A by a scanning electron microscope. 図8は球状メソ多孔体Aの走査型電子顕微鏡観察結果を示す図である。FIG. 8 is a view showing a result of observation of the spherical mesoporous material A by a scanning electron microscope. 図9は球状メソ多孔体Bの走査型電子顕微鏡観察結果を示す図である。FIG. 9 is a view showing the result of observation of the spherical mesoporous material B by a scanning electron microscope. 図10は球状メソ多孔体Bの走査型電子顕微鏡観察結果を示す図である。FIG. 10 is a diagram showing the result of observation of the spherical mesoporous material B by a scanning electron microscope. 図11は球状メソ多孔体Cの走査型電子顕微鏡観察結果を示す図である。FIG. 11 is a diagram showing a result of observation of the spherical mesoporous material C by a scanning electron microscope. 図12は粉砕球状メソ多孔体A1の走査型電子顕微鏡観察結果を示す図である。FIG. 12 is a view showing a result of observation with a scanning electron microscope of the pulverized spherical mesoporous material A1. 図13は粉砕球状メソ多孔体B1の走査型電子顕微鏡観察結果を示す図である。FIG. 13 is a view showing a result of observation with a scanning electron microscope of the pulverized spherical mesoporous material B1. 図14は粉砕球状メソ多孔体C1の走査型電子顕微鏡観察結果を示す図である。FIG. 14 is a view showing a result of observation with a scanning electron microscope of the pulverized spherical mesoporous material C1. 図15は球状メソ多孔体Aの透過型電子顕微鏡観察結果を示す図である。FIG. 15 is a diagram showing a transmission electron microscope observation result of the spherical mesoporous material A. FIG.

Claims (3)

d間隔が2nmより大きい位置に少なくとも1つのピークを持つX線回折パターンを有し、平均細孔径0.8〜20nmであるメソ細孔から成る外殻を持ち、外殻の厚みが0.5〜10μmである空洞を有することを特徴とする球状メソ多孔体。 It has an outer shell composed of mesopores having an X-ray diffraction pattern having at least one peak at a position where the d interval is larger than 2 nm, an average pore diameter of 0.8 to 20 nm, and the thickness of the outer shell is 0.5. A spherical mesoporous material having a cavity of 10 μm to 10 μm. 一次粒子径が10〜150μmである請求項1記載の球状メソ多孔体。 The spherical mesoporous material according to claim 1, wherein the primary particle diameter is 10 to 150 μm. 多孔体が酸化ケイ素を主成分とする骨格を有するシリカ系材料であることを特徴とする請求項1又は2記載の球状メソ多孔体。 3. The spherical mesoporous material according to claim 1 or 2, wherein the porous material is a silica-based material having a skeleton mainly composed of silicon oxide.
JP2007201996A 2007-08-02 2007-08-02 Spherical mesoporous material Expired - Fee Related JP5101202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201996A JP5101202B2 (en) 2007-08-02 2007-08-02 Spherical mesoporous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201996A JP5101202B2 (en) 2007-08-02 2007-08-02 Spherical mesoporous material

Publications (2)

Publication Number Publication Date
JP2009035454A true JP2009035454A (en) 2009-02-19
JP5101202B2 JP5101202B2 (en) 2012-12-19

Family

ID=40437712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201996A Expired - Fee Related JP5101202B2 (en) 2007-08-02 2007-08-02 Spherical mesoporous material

Country Status (1)

Country Link
JP (1) JP5101202B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038984A (en) * 2007-08-06 2009-02-26 Taiyo Kagaku Co Ltd Thermostable glutaminase
JP2009155400A (en) * 2007-12-25 2009-07-16 Kao Corp Compound meso-porous silica particle
JP2009249249A (en) * 2008-04-08 2009-10-29 Kao Corp Production method of mesoporous silica particle
JP2009269767A (en) * 2008-04-30 2009-11-19 Kao Corp Production method of mesoporous silica particle
JP2010208907A (en) * 2009-03-11 2010-09-24 Kao Corp Production method of mesoporous silica particle
JP2012051770A (en) * 2010-09-02 2012-03-15 Bridgestone Corp Porous hollow silica particle
US8927026B2 (en) 2011-04-07 2015-01-06 The Procter & Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US8980292B2 (en) 2011-04-07 2015-03-17 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US9162085B2 (en) 2011-04-07 2015-10-20 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102592A (en) * 2004-10-01 2006-04-20 Shiga Pref Gov Hollow silica microcapsule having mesopore wall and its manufacturing method
JP2007044610A (en) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd Porous hollow particle and its producing method
JP2007137819A (en) * 2005-11-17 2007-06-07 Taiyo Kagaku Co Ltd Porous silica derivative
JP2008150229A (en) * 2006-12-14 2008-07-03 Kao Corp Mesoporous silica particle
JP2008174435A (en) * 2007-01-22 2008-07-31 Kao Corp Mesoporous silica particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102592A (en) * 2004-10-01 2006-04-20 Shiga Pref Gov Hollow silica microcapsule having mesopore wall and its manufacturing method
JP2007044610A (en) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd Porous hollow particle and its producing method
JP2007137819A (en) * 2005-11-17 2007-06-07 Taiyo Kagaku Co Ltd Porous silica derivative
JP2008150229A (en) * 2006-12-14 2008-07-03 Kao Corp Mesoporous silica particle
JP2008174435A (en) * 2007-01-22 2008-07-31 Kao Corp Mesoporous silica particle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038984A (en) * 2007-08-06 2009-02-26 Taiyo Kagaku Co Ltd Thermostable glutaminase
JP2009155400A (en) * 2007-12-25 2009-07-16 Kao Corp Compound meso-porous silica particle
JP2009249249A (en) * 2008-04-08 2009-10-29 Kao Corp Production method of mesoporous silica particle
JP2009269767A (en) * 2008-04-30 2009-11-19 Kao Corp Production method of mesoporous silica particle
JP2010208907A (en) * 2009-03-11 2010-09-24 Kao Corp Production method of mesoporous silica particle
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles
US11096875B2 (en) 2010-04-28 2021-08-24 The Procter & Gamble Company Delivery particle
JP2012051770A (en) * 2010-09-02 2012-03-15 Bridgestone Corp Porous hollow silica particle
US8927026B2 (en) 2011-04-07 2015-01-06 The Procter & Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US8980292B2 (en) 2011-04-07 2015-03-17 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US9162085B2 (en) 2011-04-07 2015-10-20 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
US9561169B2 (en) 2011-04-07 2017-02-07 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US10143632B2 (en) 2011-04-07 2018-12-04 The Procter And Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules

Also Published As

Publication number Publication date
JP5101202B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5101202B2 (en) Spherical mesoporous material
Vazquez et al. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications
Cai et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium
Chen et al. Highly stable and reusable multimodal zeolite TS‐1 based catalysts with hierarchically interconnected three‐level micro–meso–macroporous structure
Guo et al. Triblock copolymer synthesis of highly ordered large-pore periodic mesoporous organosilicas with the aid of inorganic salts
Sun et al. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review
US6630170B2 (en) Mesoporous compositions and method of preparation
Sen et al. One‐Pot Synthesis of Hierarchically Ordered Porous‐Silica Materials with Three Orders of Length Scale
CN102381715B (en) Large-pore-wall cage-shaped silica hollow sphere and preparation method thereof
Han et al. Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity
Chen et al. Nonionic block copolymer and anionic mixed surfactants directed synthesis of highly ordered mesoporous silica with bicontinuous cubic structure
CN1234456C (en) Inorganic oxides with mesoporosity or combined neso- and microporosity and process for preparation thereof
Guo et al. Hollow mesoporous silica nanoparticles for intracellular delivery of fluorescent dye
KR101906792B1 (en) Process for producing inorganic particulate material
KR20120001270A (en) Method for recycling of silica etching waste and method for preparing mesoporous materials
Zheng et al. Mesostructured chitosan–silica hybrid as a biodegradable carrier for a pH-responsive drug delivery system
Xu et al. A facile method for preparation of hollow mesoporous silica sphere and its application
Chandra et al. Highly active 2D hexagonal mesoporous titanium silicate synthesized using a cationic− anionic mixed-surfactant assembly
EP3495321A1 (en) Preparation of powdery, porous crystalline metal silicates by means of flame spray pyrolysis
KR101568337B1 (en) Silver-deposited Hollow Mesoporous Silica Nanospheres and method for preparing the same
KR100831348B1 (en) Nanoporous Bioactive Glass With 3-D Pore Structure and Preparation Method Thereof
Wu et al. A unique transformation route for synthesis of rodlike hollow mesoporous silica particles
Zhao et al. Fabrication of hollow silica spheres in an ionic liquid microemulsion
DE112013005573T5 (en) Near-surface porous pore hybrid monoliths and method of making and using same
Léonard et al. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro-or mesoporous wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees