WO2024096021A1 - Hydrophobic low-loss-tangent silica sol and production method therefor - Google Patents

Hydrophobic low-loss-tangent silica sol and production method therefor Download PDF

Info

Publication number
WO2024096021A1
WO2024096021A1 PCT/JP2023/039319 JP2023039319W WO2024096021A1 WO 2024096021 A1 WO2024096021 A1 WO 2024096021A1 JP 2023039319 W JP2023039319 W JP 2023039319W WO 2024096021 A1 WO2024096021 A1 WO 2024096021A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
group
substituent
modified silica
silicon atom
Prior art date
Application number
PCT/JP2023/039319
Other languages
French (fr)
Japanese (ja)
Inventor
豪 中田
和也 江原
由紀 松山
雅敏 杉澤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024096021A1 publication Critical patent/WO2024096021A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to hydrophobized silica particles with a low dielectric tangent, a dispersion thereof, and a method for producing the same.
  • Nano-order particles are also considered to have various advantages, such as being applicable to transparent polymer materials and having a greater composite effect than micro-order fillers (Patent Document 5, Patent Document 6).
  • Patent Documents 7 and 8 there have been proposals to hydrophobize the surfaces of silica particles to increase dispersibility in hydrophobic solvents and thereby improve the ease of storage, transportation, and mixing with resins.
  • Patent No. 6793282 JP 2004-269636 A Patent No. 6546386 Patent No. 5862886 Patent No. 6813815 Japanese Patent No. 6805538 Japanese Patent No. 6746025
  • nano-order particles have various advantages.
  • existing nano-order particles have a high dielectric tangent, making them difficult to apply to materials for electronic devices and the like that operate in high frequency bands.
  • the particles are either left as is or dispersed in a solvent and then composited with the resin material.
  • inorganic particles generally do not have sufficient dispersion stability, particularly in highly hydrophobic solvents, and sedimentation and separation occur, leaving issues in terms of work efficiency and storage.
  • the present invention was made in consideration of the above circumstances, and aims to provide hydrophobic nano-order particles with a low dielectric tangent, specifically, silica particles with a dielectric tangent of less than 0.01 at 1 GHz and a hydrophobicity of 40% or more, and a dispersion thereof.
  • the present invention provides surface-modified silica particles having a hydrophobicity degree of 40% or more, characterized in that the average primary particle diameter is 5 to 500 nm and the dielectric loss tangent at 1 GHz is less than 0.01;
  • the surface-modified silica particles according to the first aspect, from which a surface modifier has been removed are characterized in that the following items (i) and (ii) are satisfied: (i) The ratio (SH 2 O/SN 2 ) of the specific surface area by water vapor adsorption (S H2O ) to the specific surface area by nitrogen adsorption (S N2 ) is 0.6 or less.
  • the total silanol group ratio represented by the following formula (1) is 5% or less.
  • Total silanol group ratio (%) (Q2 ⁇ 2/4+Q3 ⁇ 1/4+Q4 ⁇ 0/4) Equation (1)
  • Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
  • the surface-modified silica particles according to the first or second aspect characterized in that the ratio of the total number of carbon atoms per unit surface
  • the surface-modified silica particles according to any one of the fourth to sixth aspects in which the organosilicon compound is a compound having a hydrolyzable group together with a substituent selected from the substituent group a.
  • the surface-modified silica particle according to the fourth or fifth aspect in which the surface modifier is at least two types selected from the compounds represented by the following formulas (a) to (c):
  • the surface-modified silica particles are particles whose surfaces are coated with the at least two types of surface modifiers at a ratio of 0.5 to 20 particles per 1 nm2 of the surface area of the particles, or particles whose surfaces are at least partially bound to the at least two types of surface modifiers.
  • a composite material comprising the surface-modified silica particle according to any one of the first to ninth aspects and an organic resin material or a polysiloxane.
  • the composite material according to the eleventh aspect wherein the organic resin material or polysiloxane is at least one selected from the group consisting of a styrene resin, an epoxy resin, a cyanate resin, a phenol resin, an acrylic resin, a maleimide resin, a urethane resin, a polyimide, a polytetrafluoroethylene, a cycloolefin polymer, an unsaturated polyester, a vinyl triazine, a polyphenylene sulfide, a crosslinkable polyphenylene oxide, and a curable polyphenylene ether;
  • the composite material according to the eleventh or twelfth aspect has an application selected from the group consisting of a semiconductor device material, a copper-clad laminate, a flexible wiring material, a flexible display material, an antenna material, an optical wiring material, and a sensing material.
  • the present invention relates to a method for producing a method for producing a semiconductor device comprising the steps (A) to (C) below:
  • Total silanol group ratio (%) (Q2 ⁇ 2/4+Q3 ⁇ 1/4+Q4 ⁇ 0/4) Equation (1)
  • Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxy
  • a method for producing surface-modified silica particles As a fifteenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which either one or both of the step (B) and the step (C) are carried out under reduced pressure; As a sixteenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which the silica sol prepared in the step (A) has a water content of 0.1 to 5 mass %; As a seventeenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which the silica sol prepared in the step (A) is an aqueous silica sol hydrothermally synthesized at 200 to 380° C.
  • step (B) a step of subjecting the silica sol obtained in step (B) to solvent replacement with at least one solvent selected from alcohols, ketones, hydrocarbons, amides, esters, ethers, or amines.
  • the present invention relates to a method for producing a surface-modified silica dispersion, comprising the steps of:
  • the surface-modified silica particles of the present invention are hydrophobic and have the effect of exhibiting low dielectric properties. They can also be well dispersed in organic solvents. Furthermore, the silica particles of the present invention can form composite materials with organic resin materials or polysiloxanes, and are therefore expected to be used in the production of semiconductor device materials, etc.
  • FIG. 1 is a diagram (photograph) showing the appearance of a cured film of the composite material containing the surface-modified silica particles and the maleimide resin obtained in Example 5-1 (FIG. 1(B)), and a cured film of only the maleimide resin (FIG. 1(A)).
  • the surface-modified silica particles of the present invention are silica particles having an average primary particle diameter of 5 to 500 nm, a dielectric dissipation factor of less than 0.01 at 1 GHz, and a hydrophobicity of 40% or more (hereinafter also referred to as hydrophobized silica particles).
  • the surface-modified silica particles according to the present invention preferably satisfy the following items (i) and (II) in the silica particles from which the surface modifier has been removed: "Silica particles from which the surface modifier has been removed” refers to silica particles before surface modification with a surface modifier, i.e., unmodified silica particles (without surface modifying groups).
  • the degree of hydrophobicity referred to in this specification is defined as the concentration (%) expressed in terms of the volume of methanol when silica particles begin to wet when mixed with water and methanol (also known as methanol wettability), and is generally used as an index of the hydrophobicity of the silica surface.
  • the method for measuring the hydrophobicity is, for example, as follows. First, 0.2 g of sample particles (hydrophobized silica particles) is placed in a 200 mL container (beaker, flask, etc.) containing 50 mL of water (ion-exchanged water, etc.).
  • the hydrophobic silica particles according to the present invention have a hydrophobicity of 40% or more, preferably 50% or more.
  • a hydrophobicity of 40% or more when dispersed in a highly hydrophobic solvent, the dispersed state can be stably maintained for a long time, and a re-stirring step before use can be simplified/labor-saving, which is expected to facilitate the preparation of a composite material.
  • the average primary particle diameter of the hydrophobized silica particles according to the present invention can be a specific surface area diameter calculated from the specific surface area (S N2 ) measured by the BET method using nitrogen gas as molecules adsorbed onto the particle surfaces.
  • the hydrophobized silica particles according to the present invention can have an average primary particle size in the range of 5 nm to 500 nm, for example, 5 nm to 250 nm, 5 nm to 200 nm, 5 nm to 120 nm, 5 nm to 100 nm, 20 nm to 500 nm, 20 nm to 100 nm, or 40 nm to 100 nm.
  • the average primary particle size of the hydrophobic silica particles 5 nm to 500 nm the particles can exhibit a low dielectric tangent and can be well dispersed in an organic solvent. Furthermore, when the hydrophobic silica particles are used to mold a composite material, defects can be suppressed and high transparency can be achieved.
  • the ratio (S H2O /S N2 ) of the specific surface area due to water vapor adsorption (S H2O ) to the specific surface area due to nitrogen adsorption (S N2 ) is an indicator of the amount of active sites (surface silanols) present per unit surface area of the particle, and a larger value indicates that more active sites are present on the silica surface.
  • the specific surface area by water vapor adsorption (S H2O ) can be measured by the BET method using water vapor as molecules adsorbed onto the particle surface, and as described above, the specific surface area by nitrogen adsorption (S N2 ) can be measured by the BET method using nitrogen gas as molecules adsorbed onto the particle surface.
  • the hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which a surface modifier has been removed, and have the specific surface area ratio (S H2O /S N2 ) of 0.6 or less. By using silica particles having such a S H2O /S N2 ratio, the surface of the silica particles can be modified without increasing the dielectric tangent, and the dispersibility in organic solvents can be improved.
  • the hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which a surface modifier has been removed, and the specific surface area (S H2O ) determined by water vapor adsorption can be in the range of, for example, 5 to 500 m 2 /g, 5 to 300 m 2 /g, or 5 to 100 m 3 /g.
  • S H2O Specific surface area by water vapor adsorption
  • the hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which the surface modifier has been removed, and have a specific surface area (S N2 ) measured by nitrogen adsorption in the range of, for example, 25 to 550 m 2 /g, or 25 to 300 m 2 /g, or 25 to 250 m 2 /g.
  • S N2 Specific surface area by nitrogen adsorption
  • the silicon atoms in silica include silicon atoms that are not bonded to a hydroxy group and silicon atoms that are bonded to one or two hydroxy groups. That is, silicon atoms in silica have four structures as shown in the following formulas: a silicon atom bonded to two oxygen atoms and two hydroxyl groups (Q2), a silicon atom bonded to three oxygen atoms and one hydroxyl group (Q3), and a silicon atom bonded to four oxygen atoms (Q4). Then, by determining the proportions of Q2, Q3, and Q4 in silicon atoms in the silica, the amount of silanol (Si-OH) groups in the silica can be estimated.
  • the total silanol group ratio refers to the ratio of silanol groups present in all silicon atoms of the Q2 to Q4 structures present in the silica particles.
  • the abundance ratio of silanol groups on silicon atoms having the above Q2 to Q4 structures can be measured, for example, by a 29Si NMR method using a water-dispersed silica sol containing silica particles to be investigated for the abundance ratio, or a 29Si NMR method using a silica particle powder.
  • the spectrum obtained by the 29 Si NMR method is subjected to waveform separation, and the peak observed between ⁇ 80 ppm and ⁇ 105 ppm in chemical shift is identified as being derived from the Q2 structure, the peak observed between ⁇ 90 ppm and ⁇ 115 ppm as being derived from the Q3 structure, and the peak observed between ⁇ 95 ppm and ⁇ 130 ppm as being derived from the Q4 structure.
  • the ratio (%) of the area value of each peak Q2 to Q4 to the total area value (100%) of each peak is the content ratio (mol%) of each structure (Q2 to Q4) in the silica particle to be measured.
  • Total silanol group ratio (%) (Q2 ⁇ 2/4+Q3 ⁇ 1/4+Q4 ⁇ 0/4) Equation (1)
  • Q2, Q3, and Q4 respectively represent the ratio (%) of the peak area attributable to each silicon atom structure to the total peak area (100%) attributable to the silicon atom structure obtained by 29Si NMR measurement, i.e., the content ratio of each structure obtained from the above NMR measurement results.
  • Q2 in the silica particles from which the surface modifier has been removed, in a 29 Si NMR method using a water-dispersed silica sol containing silica particles, Q2 can be 0 to 10, 0 to 5, or 0 to 5, Q3 can be 0 to 20, 0 to 15, 1 to 15, or 5 to 15, and Q4 can be 80 to 100, or 85 to 100.
  • Q2 in the silica particles from which the surface modifier has been removed, in a 29 Si NMR method using a silica particle powder, Q2 can be 0 to 10, 0 to 5, or 0 to 5, Q3 can be 0 to 20, 0 to 15, 1 to 15, or 5 to 15, and Q4 can be 80 to 100, or 85 to 100.
  • the hydrophobized silica particles (surface-modified silica particles) of the present invention have a total silanol group rate of 5% or less in silica particles from which the surface modifier has been removed. If the rate is greater than 5%, the dielectric constant and dielectric tangent will not both be low and the dielectric properties will not be exhibited.
  • the ratio of the total number of carbon atoms per unit surface area is 2 to 40, for example, 2 to 20, 5 to 20, or 5 to 15.
  • the unmodified silica particles constituting the hydrophobized silica particles (surface-modified silica particles) of the present invention are not particularly limited in the method of production, but are preferably heat-treated in water at 200 to 380°C.
  • the heat treatment can be carried out using a pressure-resistant container (autoclave).
  • the hydrophobized silica particles of the present invention have at least a portion of their surface coated with at least two types of surface modifiers, or have at least a portion of each of the at least two types of surface modifiers bonded to at least a portion of their surface.
  • surface modification includes both an embodiment in which the surface of a silica particle is coated with a surface modifier, and an embodiment in which the surface modifier is bonded to the surface of a silica particle, and these embodiments are collectively referred to as "surface-modified silica particles".
  • "at least a part of the surface of the silica particle is coated with a surface modifier” means that the surface modifier (such as an organosilicon compound described later) coats at least a part of the surface of the silica particle, that is, it includes an embodiment in which the surface modifier covers a part of the surface of the silica particle and an embodiment in which the surface modifier covers the entire surface of the silica particle. In this embodiment, it does not matter whether or not the organosilicon compound, which is an example of the surface modifier, is bonded to the surface of the silica particle.
  • the surface modifier such as an organosilicon compound described later
  • the surface modifier (such as an organosilicon compound described below) is bonded to at least a portion of the surface of the silica particle, i.e., it includes an embodiment in which the surface modifier is bonded to a portion of the surface of the silica particle, an embodiment in which the surface modifier is bonded to a portion of the surface of the silica particle and covers at least a portion of the surface, and further an embodiment in which the surface modifier is bonded to the entire surface of the silica particle and covers the entire surface.
  • the surface modifier such as an organosilicon compound described below
  • the surface modifier is an organosilicon compound having at least one substituent selected from the group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond (these may also be collectively referred to simply as "substituent").
  • the hydrophobized silica particles according to the present invention are surface-modified by at least two of the above-mentioned surface modifiers, that is, surface-modified by two or more of the organosilicon compounds having at least one substituent selected from the above-mentioned substituent group a.More specifically, for example, surface-modified by at least two of the organosilicon compounds having at least one substituent a1 selected from the above-mentioned substituent group a and having at least one substituent a2 selected from the above-mentioned substituent group a and different from the above-mentioned substituent a1.Note that, when there are multiple substituents selected from the substituent group a in one organosilicon compound, the substituent with the highest three-dimensional bulkiness among these substituents is treated as the substituent a1 or the substituent a2.
  • the substituent a1 and the substituent a2 are preferably groups having different steric bulkiness.
  • the organosilicon compound may be any compound having a substituent selected from the above-mentioned substituent group a, and examples thereof include silicon compounds having the above-mentioned substituent and a hydrolyzable group described below, organosilicon compounds having the above-mentioned substituent and a Si-O-Si bond, and organosilicon compounds having the above-mentioned substituent and a Si-N-Si bond.
  • substituents in the substituent group a include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, octyl groups, nonyl groups, decyl groups, dodecyl groups, hexadecyl groups, phenyl groups, phenylmethyl groups, tolyl groups, xylyl groups, and vinyl groups.
  • substituents in the substituent group a i.e., alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and substituents having an unsaturated bond
  • substituents in the substituent group a include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, octyl groups, nonyl groups, decyl groups, dodecyl groups, hexadecyl groups, phenyl groups, phenylmethyl groups, tolyl groups,
  • the substituent group a can be a group consisting of a methyl group, an octyl group, a decyl group, a dodecyl group, a hexadecyl group, a phenylmethyl group, a tolyl group and a xylyl group, or can be a group consisting of a methyl group, a phenyl group, a phenylmethyl group and a decyl group.
  • organosilicon compounds for example, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a phenyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a decyl group, a combination of an organosilicon compound having a methyl group, an organosilicon compound having a phenyl group and an organosilicon compound having a decyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a phenylmethyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a tolyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a xylyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having an organosilicon compound having an organosilicon compound having
  • Alkoxy groups are preferred as the hydrolyzable groups, and when multiple groups are present, they may be the same or different.
  • As the alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferred, and a methoxy group is particularly preferred.
  • the organosilicon compound is a silicon compound having the above-mentioned substituents and hydrolyzable groups
  • the organosilicon compound there are no particular limitations on the number of substituents and the number of hydrolyzable groups, but it is preferable for the organosilicon compound to have 1 to 3 of the above-mentioned substituents and 1 to 3 of the hydrolyzable groups (with the total number of both groups being 4 or less) per silicon atom.
  • organosilicon compound having a substituent and a hydrolyzable group examples include methyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, hexadecyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, methyltripoxysilane, dimethyldipropoxysilane, trimethylpropoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, xylyltrimethoxysilane, diphenyldimethylsilane, and the like.
  • silane examples include, but are not limited to, phenyltriethoxysilane, diphenyldiethoxysilane, phenyltripropoxysilane, diphenyldipropoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenyldipropoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, vinyltriethoxysilane, divinyldiethoxysilane, vinyltripropoxysilane, divinyldipropoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltriethoxysilane.
  • the alkyl groups having 1 to 20 carbon atoms, the aryl groups having 6 to 12 carbon atoms, and the substituents having an unsaturated bond are preferably methyl groups, phenyl groups, phenylmethyl groups, and vinyl groups, and when a plurality of groups are present, they may be the same or different from each other.
  • methyl groups are preferred, and a specific example of the organosilicon compound is hexamethyldisiloxane.
  • the alkyl groups having 1 to 20 carbon atoms, the aryl groups having 6 to 12 carbon atoms, and the substituents having an unsaturated bond are preferably methyl groups, phenyl groups, phenylmethyl groups, and vinyl groups, and when a plurality of groups are present, they may be the same or different from each other.
  • methyl groups are preferred, and a specific example of the organosilicon compound is hexamethyldisilazane.
  • organosilicon compound examples include the compounds represented by the following formulas (a) to (c), and at least one of these and another organosilicon compound, or at least two of these, may be selected.
  • the amount of surface treatment (modification) with the organosilicon compound i.e., the amount of organosilicon compound coating or bonding to the particle surface, per 1 nm2 of the surface area of the silica particle can be in the range of, for example, about 0.5 to 40, or alternatively about 0.5 to 20, about 0.5 to 16, about 1 to 20, about 2 to 20, about 5 to 20, or about 10 to 20.
  • the number per 1 nm2 of surface area (amount of surface treatment) referred to here is the number of all organosilicon compounds required for surface modification, i.e., the total amount of at least two types of surface modifiers, and does not intend the amount of surface treatment with each individual surface modifier (organosilicon compound).
  • the dielectric constant and dielectric loss tangent of the hydrophobized silica particles according to the present invention can be measured using a dry powder of the hydrophobized silica particles with a dedicated device, such as a vector network analyzer (product name: FieldFox N6626A, manufactured by KEYSIGHT TECHNOLOGIES).
  • a dedicated device such as a vector network analyzer (product name: FieldFox N6626A, manufactured by KEYSIGHT TECHNOLOGIES).
  • the hydrophobic silica particles preferably have a dielectric loss tangent of less than 0.01, particularly 0.009 or less at a frequency of 1 GHz.
  • the lower limit of the dielectric loss tangent is 0.00001, 0.00005, 0.0001, or 0.0005.
  • the silica dispersion of the present invention is a dispersion in which the hydrophobized silica particles (surface-modified silica particles) are dispersed in at least one organic solvent selected from alcohols, ketones, hydrocarbons, amides, ethers, esters, and amines.
  • the alcohols include, for example, alcohols having 1 to 5 carbon atoms, and specific examples thereof include methanol, ethanol, isopropyl alcohol, and n-butanol.
  • the ketones include, for example, ketones having 1 to 5 carbon atoms, and specific examples thereof include methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and cyclohexanone.
  • Examples of the hydrocarbons include toluene, xylene, n-pentane, n-hexane, and cyclohexane.
  • Examples of the amides include dimethylacetamide, N,N-dimethylformamide, dimethylacrylamide, acryloylmorpholine, and diethylacrylamide.
  • Examples of the ethers include ethylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • Examples of the esters include ethyl acetate and butyl acetate.
  • Examples of the amines include triethylamine, tributylamine, N,N-dimethylaniline, pyridine, and picoline.
  • the content of the hydrophobized silica particles in the dispersion can be expressed as a silica concentration.
  • the silica concentration can be calculated by weighing the calcination residue obtained after calcining the silica dispersion at 1000° C.
  • the silica concentration in the silica dispersion can be, for example, 1% by mass to 60% by mass, 10% by mass to 60% by mass, or 10% by mass to 40% by mass.
  • the water content of the silica dispersion is preferably 5% by mass or less. By adjusting the water content to such a level, the stability of the dispersion may be improved and a composite material with an organic resin material or polysiloxane may be easily obtained.
  • the composite material according to the present invention is a composite material containing the hydrophobized silica particles (surface-modified silica particles) according to the present invention and an organic resin material or polysiloxane.
  • the organic resin material or polysiloxane can be at least one selected from the group consisting of epoxy resins, phenolic resins, acrylic resins, maleimide resins, polyurethanes, polyimides, polytetrafluoroethylene, cycloolefin polymers, unsaturated polyesters, vinyl triazines, crosslinkable polyphenylene oxides, and curable polyphenylene ethers.
  • the method for producing the composite material is not particularly limited, but for example, the composite material can be obtained by mixing a dispersion of hydrophobized silica particles with an organic resin material or a monomer or polymer solution of polysiloxane to prepare a polymerizable composition, removing excess solvent, and then curing with light or heat.
  • the composite material can be obtained by directly adding a powder of hydrophobized silica particles to an organic resin material or a monomer or polymer solution of polysiloxane to prepare a polymerizable composition, removing excess solvent, and then curing with light or heat.
  • the polymerizable composition can be cured by light or heat by using a polymerization initiator.
  • a polymerization initiator examples include a photoradical polymerization initiator or a photocationic polymerization initiator
  • thermal polymerization initiator include a thermal radical polymerization initiator or a thermal cationic polymerization initiator.
  • the polymerization initiator can be used in an amount of 0.01 parts by mass to 50 parts by mass relative to 100 parts by mass of the polymerizable compound.
  • additives used in conventional polymerizable compositions for example, various additives used in the relevant technical field, such as catalysts and pigments for curing acceleration, radical scavengers (quenchers), leveling agents, viscosity modifiers, antioxidants, ultraviolet absorbers, stabilizers, plasticizers, and surfactants, can also be mixed and used.
  • the composite material of the present invention can be used as a semiconductor device material, copper-clad laminate, insulating film, flexible wiring material, flexible display material, antenna material, optical wiring material, or sensing material by selecting an appropriate organic resin material or polysiloxane depending on the intended use.
  • the method for producing hydrophobized silica particles (surface-modified silica particles), i.e., the method for coating (surface treating) the surfaces of silica particles with the organosilicon compound is not particularly limited.
  • two or more types of surface modifiers can be added to and mixed with an organic solvent dispersion of (unmodified) silica particles, thereby causing hydrolysis and condensation of the organosilicon compound to modify the surface of the silica particles.
  • the amount of the organosilicon compound added can be such that the surface of the silica particle is modified in a range of, for example, 0.5 to 20.0 pieces of the organosilicon compound per 1 nm2 of the surface area of the silica particle. For example, 0.5 to 15.0 pieces, 1.0 to 10.0 pieces, or 3.0 to 10.0 pieces per 1 nm2 of the surface area of the silica particle can be added.
  • the amount of the organosilicon compound added refers to the total amount (number) of the multiple types of organosilicon compounds added, and when two types of organosilicon compounds are added, for example, it refers to the total amount (number) of the two types of organosilicon compounds added.
  • the preferred amount of the organosilicon compound added is 5.0 to 10.0 pieces per 1 nm2 of the surface area of the silica particle.
  • the hydrolysis of the organosilicon compound may be complete or partial, but water is necessary, and it is preferable to add about 1 mole or more of water per mole of hydrolyzable groups, [Si-O-Si] bonds, or [Si-N-Si] bonds of the organosilicon compound.Moisture contained in an organic solvent can also be used.
  • hydrolysis may be performed completely or partially, but water is required, and it is preferable to add about 1 mole or more of water per mole of the hydrolyzable group of the organosilicon compound.Moisture contained in an organic solvent can also be used.
  • a catalyst may be used during hydrolysis and condensation.
  • a chelate compound an organic acid, an inorganic acid, an organic base, or an inorganic base may be used alone or in combination. More specifically, for example, an aqueous solution of hydrochloric acid, an aqueous solution of acetic acid, an aqueous solution of ammonia, etc. may be used.
  • the hydrophobic silica particles (surface-modified silica particles) according to the present invention can be produced by a process including a step of mixing, in an organic solvent, silica particles having an average primary particle size of 5 nm to 500 nm, a ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) of 0.6 or less, and a total silanol group rate of 5% or less, and a surface modifier which is at least two types of organosilicon compounds having an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond.
  • the organosilicon compound can be any of those described above.
  • the silica particles to be surface-modified can be preferably those that have been heat-treated in water at 200 to 380° C. using a pressure-resistant vessel (autoclave) or the like, as described above.
  • the amount of the organosilicon compound added can be an amount that allows the silica particles to be surface-modified at a ratio of, for example, 0.5 to 20 particles per 1 nm2 of surface area.
  • the organosilicon compound can be added so that the silica particles are 0.5 to 15.0 particles, 1.0 to 10.0 particles, 3.0 to 10.0 particles, or 5.0 to 10.0 particles per 1 nm2 of surface area.
  • the amount of the organosilicon compound added is the total amount of two or more organosilicon compounds added, and when three types of organosilicon compounds are added, it is regarded as the total amount of the three types.
  • excess organosilicon compounds that do not contribute to surface modification may be present in the reaction system.
  • the organic solvent used in the mixing step may be an organic solvent containing an alcohol and/or a ketone solvent.
  • the alcohol may be one having 1 to 5 carbon atoms, and specific examples thereof include methanol, ethanol, isopropyl alcohol, and n-butanol.
  • the ketone solvent may be one having 1 to 5 carbon atoms, and specific examples thereof include methyl ethyl ketone, methyl isobutyl ketone, and ⁇ -butyrolactone.
  • the mixing step can be carried out at any temperature, for example, 20° C. or higher and lower than 120° C., as long as the temperature is such that the hydrolysis and condensation reaction of the organosilicon compound proceeds. From the viewpoint of reaction efficiency, it is preferable to carry out the reaction at a temperature near the boiling point of the organic solvent, and for example, when the mixing step is carried out using an organic solvent containing methanol, it is preferable to carry out the reaction at a temperature near 65° C. In addition, in order to suppress changes in the silica concentration and the organosilicon compound concentration during the mixing step, the reaction may be carried out in an apparatus equipped with a reflux device, etc., as necessary.
  • the mixing step may be carried out multiple times at the same temperature, or may be carried out multiple times at different temperatures.
  • the mixing step can be carried out for 30 minutes to 24 hours, and from an industrial viewpoint, it is desirable to carry out the mixing step within 24 hours.
  • surface modification is carried out using at least two kinds of organosilicon compounds (surface modifiers), which may be added at once or separately.
  • at least two kinds of organosilicon compounds may be added separately, for example, the organosilicon compound having the bulkier substituent may be added in order to carry out mixing (reaction).
  • dimethoxyphenylmethylsilane (a)) and hexamethyldisiloxane (a compound represented by the formula (c)) are used as two kinds of organosilicon compounds, dimethoxyphenylmethylsilane having a phenyl group, which is a bulkier substituent, may be added first and mixed, and hexamethyldisiloxane having a methyl group, which is less bulky than the phenyl group, may be added later, but is not limited thereto.
  • the mixing step may include a step of adjusting the pH using an organic amine.
  • This pH adjustment step may be carried out once or multiple times before, during, or after the mixing step.
  • the organic amine may be a secondary or tertiary amine, such as an alkylamine, an allylamine, an aralkylamine, an alicyclic amine, an alkanolamine, or a cyclic amine.
  • the organic base compounds include ethylbenzylamine, piperidine, N-methylpiperidine, quinuclidine, diethanolamine, triethanolamine, N-methyldiethanolamine, N,N-dimethylethanol
  • organic base compounds may be used alone or in combination of two or more.
  • the amount of the organic amine added can be, for example, 0.001 to 5% by mass, or 0.01 to 1% by mass, based on the mass of the silica particles.
  • the pH of the mixed solution can be adjusted to 4.0 to 11.0, for example, pH 7.0 to 10.0, or for example, pH 8.0 to 10.0, by adding the organic amine.
  • the liquid obtained after the mixing step i.e., the liquid containing the surface-modified silica particles
  • the liquid obtained after the mixing step can be used as a surface-modified silica dispersion in the production of the above-mentioned composite material.
  • at least a part of the organic solvent contained in the mixed liquid obtained by the mixing step can be replaced with another organic solvent.
  • the other organic solvent at least one or more selected from the group consisting of alcohols, ketones, ethers, esters, hydrocarbons, and nitrogen-containing organic compounds can be used.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol; ketones such as methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and cyclohexanone; ethers such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and propylene glycol methyl ether acetate; esters such as ethyl acetate and butyl acetate; hydrocarbons such as toluene, xylene, n-pentane, n-hexane, and cyclo
  • a specific example of the method for producing silica particles includes a production method including the following steps (A) to (C), but is not limited to these methods (steps).
  • Total silanol group ratio (%) (Q2 ⁇ 2/4+Q3 ⁇ 1/4+Q4 ⁇ 0/4) Equation (1)
  • Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl
  • the amount of organosilicon compound added in this production method and the conditions for step (B), i.e., hydrolysis, can be as described above.
  • the silica sol prepared in the step (A) may have a water content of 0.1 to 5% by mass, for example, 3.0% by mass or less.
  • the silica sol prepared in step (A) may be an aqueous silica sol obtained by hydrothermal synthesis at 200 to 380° C. and 2 to 22 MPa, and then solvent-substitution with an alcohol having 1 to 4 carbon atoms.
  • steps (B) and (C) can be carried out, for example, under reduced pressure.
  • a step of adjusting the pH using the above-mentioned organic amine may be included, as necessary, at any one or more of the steps before, during, and after the step (B).
  • step (B) above when at least two types of surface modifiers and the silica sol obtained in the step (A) are heated and stirred, multiple types of surface modifiers may be heated and stirred simultaneously with the silica sol, or some types of the multiple types and the remaining types may be heated and stirred separately with the silica sol, or each type may be heated and stirred individually with the silica sol.
  • the surface modifiers may be heated and stirred with the silica sol in the order starting with the organosilicon compound having the bulkier substituent.
  • the silica sol obtained after the step (B) can be used as a surface-modified silica dispersion in the production of the above-mentioned composite material, and may be subjected to solvent replacement, for example, by the step (D) described below.
  • specific examples of the method for producing a surface-modified silica dispersion include a production method including the following steps (A) and (B), and a production method including step (D) in addition to steps (A) and (B), but are not limited to these methods (steps).
  • silica sol and surface modifiers used in the examples and comparative examples are as follows.
  • the properties of the silica particles are shown in Table 1.
  • [Silica sol] Water-dispersed silica sol a (Nissan Chemical Industries, Ltd., product name: ST-OL, 45 nm, pH 3, silica concentration 20% by mass)
  • Water-dispersed silica sol b (Nissan Chemical Industries, Ltd., product name: ST-O, 12 nm, pH 3, silica concentration 20% by mass)
  • Water-dispersed silica sol c Synthesis Example 1, 80 nm, pH 3, silica concentration 20% by mass)
  • DMMPS dimethoxymethylphenylsilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: LS-2720)
  • DTMS decyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-3103C)
  • HMDS hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF-96L-0.65CS)
  • silica concentration of the water-dispersed silica sol, the methanol-dispersed silica sol, and the dispersion of surface-modified silica particles was calculated by placing the silica sol or the dispersion in a crucible, heating to remove the solvent, calcining at 1000°C, and weighing the calcination residue.
  • Organic solvent content The content of the organic solvent in the dispersion of the surface-modified silica particles was determined by gas chromatography (Shimadzu Corporation, GC-2014s). Gas chromatography conditions: Column: 3 mm x 1 m glass column Packing material: Polapack Q Column temperature: 130 to 230°C (heating rate: 8°C/min) Carrier: N2 40mL/min Detector: FID Injection volume: 1 ⁇ L The internal standard was acetonitrile.
  • the nitrogen adsorption specific surface area (S N2 ) of the silica particles in the water-dispersed silica sol was measured by removing the water-soluble cations in the water-dispersed silica sol with a cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B), drying the silica sol at 290°C to prepare a measurement sample, and using a nitrogen adsorption specific surface area measuring device, Monosorb (manufactured by Quantachrome Instruments Japan, LLC), to measure the specific surface area.
  • a cation exchange resin manufactured by The Dow Chemical Company, product name: Amberlite IR-120B
  • NMR Measurement of Silica Sol or Dry Powder of Silica Sol and Calculation of Total Silanol Group Ratio ⁇ NMR Measurement Condition A: 29Si NMR Spectrum Measurement of Silica Sol> 0.5 mL D 2 O was added to 2 mL of water-dispersed silica sol to prepare a measurement sample, which was then placed in a 10 mm diameter polytetrafluoroethylene (PTFE) sample tube for measurement.
  • PTFE polytetrafluoroethylene
  • the measurement conditions were 29 Si resonance frequency of 99.36 MHz, spectrum width of 37.4 kHz, X_Pulse of 90°, Relaxation_Delay of 120 seconds, and measurement temperature of room temperature.
  • Data analysis was performed using JEOL Ltd. software "Delta 5.3.1", and waveform separation analysis was performed on each peak of the spectrum after Fourier transformation, with the center position, height, and half-width of the peak shape created by a Gaussian waveform (Gauss Model) as variable parameters.
  • Gaussian waveform Gaussian waveform
  • ⁇ NMR Measurement Condition B 29Si NMR Spectrum Measurement of Dry Powder of Silica Sol> The silica sol was dried in a vacuum dryer at 100° C. to obtain a measurement sample.
  • a 500 MHz nuclear magnetic resonance apparatus (model name "AVANCE III 500", manufactured by Bruker) was used, a CP/MAS probe with a diameter of 4.0 mm was attached, the observation nucleus was 29Si, and the measurement was performed by the DD/MAS method.
  • the measurement conditions were 29Si resonance frequency of 99.36 MHz, 29Si 90° pulse width of 4.6 ⁇ sec, 1H resonance frequency of 500.13 MHz, MAS rotation speed of 10 kHz, spectrum width of 30 kHz, and measurement temperature of room temperature.
  • Total number of carbon atoms per unit surface area (unit: nm 2 ) of silica particles was calculated by the following procedure. (1) 4 mL of an organic solvent dispersion silica sol of surface-modified silica particles was placed in a 30 cc centrifuge tube, and 20 mL of hexane was added to cause clouding due to aggregation, separation, or precipitation. (2) After centrifuging, the supernatant in which the unbound surface modifier was dissolved was removed.
  • the dynamic light scattering particle size was measured using a dynamic light scattering particle size measuring device (manufactured by Malvern Panalytical, product name: Zetasizer Nano).
  • 0.1 g of the silica particle dispersion was dispensed into a glass cell with an optical path length of 10 mm, and the same solvent as the dispersion medium of the silica particle dispersion was further added to obtain a silica particle dispersion in which the silica concentration was adjusted so that the count rate when the attenuator was 7 was 200 to 400 kcps.
  • the prepared silica particle dispersion was adjusted in the cell so that the height of the liquid surface from the bottom of the cell was about 1 cm, and the dynamic light scattering particle size of the silica particle dispersion was measured with the attenuator 7.
  • Non-Patent Document 1 A. Murota, N. Tsubokawa, Effect of alkyl chain length on the reactivity of ultrafine silica particles with alkylalkoxysilanes in a dry system, Journal of the Japan Society of Colour Material 74 (4), 178-184, 2001.
  • aqueous sodium silicate solution (a) was passed through a column packed with a hydrogen-type strongly acidic cation exchange resin (manufactured by The Dow Chemical Company, trade name: Amberlite IR-120B) at a space velocity of 4.5 per hour to remove cations, thereby preparing an aqueous activated silicic acid solution.
  • the obtained active silicic acid aqueous solution was adjusted to pH 8.5 to 9.5 by adding 10% by mass of sodium hydroxide aqueous solution to obtain a stabilized active silicic acid aqueous solution.
  • the SiO2 concentration of the obtained stabilized active silicic acid aqueous solution was 3.2% by mass.
  • the obtained colloidal silica dispersion was concentrated to a SiO2 concentration of 33 mass% at room temperature using a commercially available ultrafiltration device equipped with a polysulfone ultrafiltration membrane with a molecular weight cutoff of 200,000 (manufactured by Advantec Co., Ltd., product name: Q2000 150E), thereby obtaining a colloidal silica dispersion as a precursor with an adjusted SiO2 concentration.
  • colloidal silica dispersion as a precursor with the adjusted SiO2 concentration was passed through a column packed with a cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B) at a space velocity of 10 per hour to remove cations, and a 10% by mass aqueous solution of sodium hydroxide was added to the obtained dispersion to adjust the pH to 7 to 8.
  • the colloidal silica dispersion as a precursor with the SiO2 concentration and pH adjusted obtained above was placed in a reaction apparatus equipped with a stirrer, a heater, etc., in a 3 L SUS pressure-resistant container, and the liquid temperature in the container was adjusted to 250 to 260° C. by heating.
  • the container was heated for 9 hours and 20 minutes while maintaining the temperature in the container at 250 to 260° C.
  • 50 g of the colloidal silica dispersion obtained above was placed in a 100 ml plastic container, 25 ml of a cation exchange resin (manufactured by Dow Chemical Company, product name: Amberlite IR-120B) was added, and the mixture was held for 30 minutes while stirring with a magnetic stirrer to remove cations.
  • a cation exchange resin manufactured by Dow Chemical Company, product name: Amberlite IR-120B
  • MEK methyl ethyl ketone
  • DMMPS methyl ethyl ketone
  • diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
  • the obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 42.7% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a total silanol ratio of 1.7% (Q2: 0%, Q3: 7.0%, Q4: 93.0%, calculated from the 29Si NMR spectrum measured using the procedure shown in the above-mentioned NMR measurement condition B, except that the above methyl ethyl ketone dispersion was dried in a vacuum dryer at 100 °C to prepare a measurement sample), and the ratio of the total number of carbon atoms per unit surface area (unit: nm2 ) of the surface-modified silica particles was 10.
  • Example 1-2 Instead of DMMPS in step (b) of Example 1-1, DTMS was added so that the amount of DTMS was 1.0 particle per nm2 of the surface area of the silica particles contained in the silica sol, and the mixture was similarly maintained at 60° C. for 3 hours. Except for this, operations were carried out in the same manner as in steps (a) to (c) of Example 1-1 to prepare a methanol-dispersed silica sol, a methanol/MEK dispersion of surface-modified silica particles, and a methyl ethyl ketone dispersion of surface-modified silica particles.
  • Examples 1-3 A methanol-dispersed silica sol, a methanol/MEK dispersion of surface-modified silica particles, and a methyl ethyl ketone dispersion of surface-modified silica particles were prepared by carrying out the same operations as in steps (a) to (c) of Example 1-1 , except that after the addition of DMMPS in step (b) of Example 1-1, DTMS was additionally added so that the amount of DTMS was 1.0 particle per nm2 of the surface area of the silica particles contained in the silica sol, the mixture was maintained at 60° C. for 3 hours, and then HMDS was added.
  • Examples 1 to 4 660 g of the water-dispersed silica sol c prepared in Synthesis Example 1 was diluted with methanol to 1,000 g, and this was placed in a 2 L eggplant-shaped flask-equipped evaporator, and then methanol was gradually added while distilling off water at 120° C. and 580 Torr, thereby replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass % or less, the replacement was terminated, and 1,000 g of methanol-dispersed silica sol was obtained.
  • the resulting methanol-dispersed silica sol had a silica concentration of 13.2% by mass, a water content of 1.6% by mass, and a viscosity of 0.9 mPa ⁇ s.
  • 20 g of the obtained methanol-dispersed silica sol was placed in a 100-mL eggplant-shaped flask, and while stirring with a magnetic stirrer, 3.0 g of methyl ethyl ketone (MEK) and DTMS were added in an amount that would result in 3 particles per 1 nm2 of the surface area of the silica particles as determined by the nitrogen adsorption method, and the mixture was heated to 60°C and held for 3 hours.
  • MEK methyl ethyl ketone
  • HMDS was added in an amount that would result in 5 particles per 1 nm2 of the surface area of the silica particles, and the mixture was heated to 60°C and held for 3 hours. Then, diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
  • the recovery flask containing the methanol/MEK dispersion of the surface-modified silica particles was set in a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80°C and a reduced pressure of 550 to 350 Torr, replacing the dispersion medium with methyl ethyl ketone to obtain a methyl ethyl ketone dispersion of the surface-modified silica particles.
  • the obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 10.1% by mass, a water content of 0.1% by mass or less, and a methanol content of 0.1% by mass or less.
  • Examples 1 to 5 660 g of the water-dispersed silica sol c prepared in Synthesis Example 1 was diluted with methanol to 1,000 g, and this was placed in a 2 L eggplant-shaped flask-equipped evaporator, and then water was distilled off at 120° C. and 580 Torr while gradually adding methanol, thereby replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass % or less, the replacement was stopped, and 1,000 g of methanol-dispersed silica sol was obtained.
  • the resulting methanol-dispersed silica sol had a silica concentration of 13.2% by mass, a water content of 1.6% by mass, and a viscosity of 0.9 mPa ⁇ s.
  • 20 g of the obtained methanol-dispersed silica sol was placed in a 100-mL eggplant-shaped flask, and while stirring with a magnetic stirrer, 3.0 g of methyl ethyl ketone (MEK) and DMMPS were added in an amount that would result in 6 particles per 1 nm2 of the surface area of the silica particles as determined by the nitrogen adsorption method, and the mixture was heated to 60°C and held for 3 hours.
  • MEK methyl ethyl ketone
  • HMDS was added in an amount that would result in 5 particles per 1 nm2 of the surface area of the silica particles, and the mixture was heated to 60°C and held for 3 hours. Then, diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
  • the recovery flask containing the methanol/MEK dispersion of the surface-modified silica particles was set in a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80°C and a reduced pressure of 550 to 350 Torr, replacing the dispersion medium with methyl ethyl ketone to obtain a methyl ethyl ketone dispersion of the surface-modified silica particles.
  • the obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 10.3% by mass, a water content of 0.1% by mass or less, and a methanol content of 0.1% by mass or less.
  • Example 1-1 1,000 g of the methanol-dispersed silica sol obtained in step (a) of Example 1-1 was placed in a 2-liter eggplant-shaped flask, and while stirring with a magnetic stirrer, 150 g of methyl ethyl ketone and an amount of DMMPS such that the number of particles becomes 3 per 1 nm2 of the surface area of the silica particles determined by a nitrogen adsorption method were added, and the mixture was heated to 60° C. and maintained for 3 hours. Thereafter, diisopropylamine was added so that the pH (1+1+1) became 8.0 to 10.0, and the mixture was heated to 60° C.
  • Comparative Example 1-2 A methyl ethyl ketone dispersion of surface-modified silica particles was prepared by carrying out the same operation as in Comparative Example 1-1, except that 5 particles of HMDS per 1 nm2 of the surface area of the silica particles contained in the silica sol were added instead of DMMPS in Comparative Example 1-1.
  • Comparative Examples 1 to 4 water-dispersed silica sol b was used.
  • Example 2-1 The methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was dried in a vacuum dryer at 100° C., and the obtained silica gel was pulverized in a mortar and further dried at 150° C. for 1 hour to prepare silica powder.
  • the dielectric constant and dielectric loss tangent of the obtained silica powder were measured at 23° C. and a frequency of 1 GHz.
  • the dielectric properties of the surface-modified silica particles are shown in Table 2.
  • Example 2-2 to 2-5 Comparative Examples 2-1 to 2-4
  • silica powders were prepared in the same manner as in Example 2-1, and the dielectric constant and dielectric loss tangent were measured.
  • the dielectric properties of the surface-modified silica particles are shown in Table 2.
  • Example 3-1 The methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was dried in a vacuum dryer at 100° C. to prepare silica powder. The hydrophobicity of the obtained silica powder was measured. The hydrophobicity of the surface-modified silica particles is shown in Table 2.
  • Examples 3-2 to 3-5, Comparative Examples 3-1 to 3-4 For the methyl ethyl ketone dispersions of the surface-modified silica particles obtained in Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-3 and the water-dispersed silica sol b in Comparative Example 1-4, silica powders were prepared in the same manner as in Example 3-1, and the hydrophobicity was measured. The hydrophobicity of the surface-modified silica particles is shown in Table 2.
  • Example 4-1 The hexane compatibility of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was confirmed. The hexane compatibility of the surface-modified silica particles is shown in Table 2.
  • Example 4-2, Comparative Example 4-1 The hexane compatibility of the methyl ethyl ketone dispersions of the surface-modified silica particles obtained in Example 1-3 and Comparative Example 1-1 was confirmed. The hexane compatibility of the surface-modified silica particles is shown in Table 2.
  • Example 5-1 The compatibility of the surface-modified silica particles and an organic resin material (maleimide resin) was confirmed for the surface-modified silica particles obtained in Example 1-1.
  • 50 g of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was charged into a 300-milliliter eggplant-shaped flask, and 20 g of a low-viscosity liquid maleimide resin (maleimide-terminated polyimide resin, product name: BMI-689, 1000 to 2000 cP (25° C.), manufactured by DMI Co., Ltd.) was added while stirring with a magnetic stirrer.
  • a low-viscosity liquid maleimide resin maleimide-terminated polyimide resin, product name: BMI-689, 1000 to 2000 cP (25° C.), manufactured by DMI Co., Ltd.
  • the eggplant-shaped flask containing the mixture of the obtained methyl ethyl ketone dispersion of the surface-modified silica particles and the maleimide resin was set in a rotary evaporator, and distillation was performed at a bath temperature of 80° C. and a reduced pressure of 400 to 30 Torr, and the dispersion medium was replaced from methyl ethyl ketone to maleimide resin, thereby obtaining a maleimide resin dispersion of the surface-modified silica particles.
  • the obtained maleimide resin dispersion of surface-modified silica particles had a silica concentration of 30.4% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a methyl ethyl ketone content of 0.1% by mass or less, a viscosity of 6000 to 7000 cP (B-type viscometer, temperature 25°C), an average dispersed particle size measured by dynamic light scattering (hereinafter referred to as dynamic light scattering particle size) of 79.2 nm, and a yellow transparent appearance.
  • the obtained maleimide resin dispersion of surface-modified silica particles showed no change in appearance even after being left to stand at room temperature for one week, and no precipitate was formed.
  • the obtained maleimide resin dispersion of surface-modified silica particles was applied to a glass substrate degreased with acetone using a hand-applied bar coater (gap: 25 ⁇ m), baked for 30 minutes on a hot plate heated to 100° C. under a nitrogen atmosphere, and then baked for 120 minutes after raising the temperature of the hot plate to 230° C. to obtain a cured film of a composite material containing surface-modified silica particles and maleimide resin (see FIG. 1(B)).
  • the obtained cured film was yellow and transparent, and no repellency was observed with the glass substrate (note that in FIG. 1, the periphery of the portion where the resin dispersion and the low-viscosity liquid maleimide resin described below were applied is indicated by a black frame for reference).
  • the film thickness was measured with a constant pressure thickness meter (manufactured by Teclock Corporation, model: PG-01A) and was 19 ⁇ m.
  • the above-mentioned low-viscosity liquid maleimide resin product name: BMI-689 alone was used and applied to a glass substrate degreased with acetone using a hand-applied bar coater (gap: 25 ⁇ m), followed by baking for 30 minutes on a hot plate heated to 100° C. under a nitrogen atmosphere, and then further increasing the temperature of the hot plate to 230° C. and baking for 120 minutes, thereby obtaining a cured film of only the maleimide resin (see FIG. 1(A)).
  • the obtained cured film was yellow and transparent, but repelling from the glass substrate was observed.
  • Example 5-2 The compatibility of the surface-modified silica particles and an organic resin material (epoxy resin) was confirmed for the surface-modified silica particles obtained in Example 1-1.
  • 50 g of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was charged into a 300-milliliter eggplant-shaped flask, and 20 g of an epoxy resin (manufactured by Nippon Steel Chemical & Material Co., Ltd., bisphenol A-type epoxy resin, product name: YD-8125, 3900 to 5300 cP) was added while stirring with a magnetic stirrer.
  • an epoxy resin manufactured by Nippon Steel Chemical & Material Co., Ltd., bisphenol A-type epoxy resin, product name: YD-8125, 3900 to 5300 cP
  • the eggplant-shaped flask containing the mixture of the obtained methyl ethyl ketone dispersion of the surface-modified silica particles and the epoxy resin was set in a rotary evaporator, and distillation was performed at a bath temperature of 80° C. and a reduced pressure of 400 to 30 Torr, and the dispersion medium was entirely replaced from methyl ethyl ketone to epoxy resin, thereby obtaining an epoxy resin dispersion of the surface-modified silica particles.
  • the obtained epoxy resin dispersion of surface-modified silica particles had a silica concentration of 32.1% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a methyl ethyl ketone content of 0.1% by mass or less, a viscosity of 14,000 to 16,000 cP (B-type viscometer, temperature 25° C.), an average dispersed particle size measured by dynamic light scattering method (hereinafter, dynamic light scattering particle size) of 78.7 nm, and an epoxy equivalent of 264 g/eq (in accordance with JIS K7236), and was white and transparent in appearance. Furthermore, the obtained epoxy resin dispersion of surface-modified silica particles showed no change in appearance even after being left to stand at room temperature for one week, and no precipitate was formed.
  • the surface-modified silica particles of Examples 1-1 to 1-5 had an average primary particle size of 5 nm to 500 nm, a dielectric loss tangent value of less than 0.01 at a frequency of 1 GHz (Examples 2-1 to 2-5), and a hydrophobicity degree (%) of 40 or more (Examples 3-1 to 3-5), confirming that they achieved both low dielectric properties and high hydrophobicity.
  • the surface-modified silica particles of Examples 1-1 to 1-5 had a water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of 0.6 or less and a total silanol group ratio of 5% or less in the silica particles (silica sol a, silica sol c) before surface modification, and were surface-modified silica particles treated with at least two different surface modifiers.
  • S H2O /S N2 water vapor adsorption surface area/nitrogen adsorption surface area
  • the surface-modified silica particles of Comparative Examples 1-1 and 1-2 had an average primary particle size of 5 nm to 500 nm and a dielectric loss tangent value of less than 0.01 at a frequency of 1 GHz (Comparative Examples 2-1 to 2-2), but had a hydrophobicity (%) of less than 40 (Comparative Examples 3-1 to 3-2), making them silica particles with poor hydrophobicity.
  • the surface-modified silica particles of Comparative Examples 1-1 and 1-2 had a water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of the silica particles (silica sol a) before surface modification of 0.6 or less and a total silanol group ratio of 5% or less, and the surface-modified silica particles were 5% or less, but were surface-modified silica particles treated with one type of surface modifier.
  • S H2O /S N2 water vapor adsorption surface area/nitrogen adsorption surface area
  • the surface-modified silica particles of Comparative Example 1-3 had an average primary particle diameter of 5 nm to 500 nm and a hydrophobicity degree (%) of 40 or more (Comparative Example 3-3), but the dielectric tangent value at a frequency of 1 GHz was significantly greater than 0.01 (Comparative Example 2-3), and the silica particles did not satisfy the low dielectric characteristic.
  • the surface-modified silica particles of Comparative Example 1-3 were silica particles treated with at least two different surface modifiers, and the water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of the silica particles (silica sol c) before surface modification was 0.6 or more, and the total silanol group ratio was 5% or more.
  • the silica particles of Comparative Example 1-4 i.e., the unmodified silica particles, had an average primary particle diameter of 5 nm to 500 nm, but the dielectric tangent value at a frequency of 1 GHz was significantly greater than 0.01 (Comparative Example 2-4), and the hydrophobicity (%) was 0 (Comparative Example 3-4).
  • the results shown in the comparative examples above indicate that it is not easy to realize nano-order silica particles that have both a low dielectric tangent and a high degree of hydrophobicity.
  • Example 1-1 and Example 1-3 which are methyl ethyl ketone dispersions containing surface-modified silica particles with a hydrophobicity of 40 or more, were judged to be OK in terms of hexane compatibility (Examples 4-1 and 4-2).
  • the hydrophobic silica particles according to the present invention are particles that realize a high hydrophobicity of 40% or more and reduce the dielectric loss tangent of conventional hydrophobic silica sol to less than half.
  • the hydrophobicity can be improved by 20% or more while maintaining the low dielectric loss tangent of surface-modified silica particles coated with a single surface modifier, making them suitable not only for use in composite materials but also for use in high frequency applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

[Problem] to provide silica particles having a loss tangent of less than 0.01 at 1 GHz and a hydrophobicity of 40% or greater, and a dispersion thereof. [Solution] Surface modified silica particles having a hydrophobicity of 40% or greater, said silica particles being characterized in that the average primary particle size is 5-500 nm and the loss tangent is less than 0.01 at 1 GHz.

Description

疎水化低誘電正接シリカゾル、及びその製造方法Hydrophobized low dielectric tangent silica sol and method for producing same
 本発明は、疎水化された、誘電正接の低いシリカ粒子とその分散液、およびその製造方法に関する。 The present invention relates to hydrophobized silica particles with a low dielectric tangent, a dispersion thereof, and a method for producing the same.
 近年、5Gなどの通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の活用が広がっている。
 高周波数帯の適用に伴い、回路信号の伝送損失が大きくなる問題が生じるため、一般的にアンテナ・回路・基板等の電気電子部品を構成する絶縁体には、誘電正接の低い材料が用いられる。絶縁体材料に用いられるポリマー材料は、一般に誘電率が低いが、誘電正接は高いものが多い。一方、セラミック材料はその逆の特性を持つものが多い。そのため、これら材料を組み合わせ、低誘電率と低誘電正接の両特性を両立させたセラミックフィラー充填ポリマー材料が普及している(特許文献1、特許文献2)。
In recent years, with the increase in the amount of information and communication in the field of communications such as 5G, the use of high-frequency bands has become widespread in electronic devices and communications devices.
The use of high frequency bands poses the problem of increased transmission loss of circuit signals, so materials with low dielectric loss tangents are generally used for insulators that make up electrical and electronic components such as antennas, circuits, and boards. Polymer materials used as insulator materials generally have low dielectric constants but high dielectric loss tangents. On the other hand, ceramic materials often have the opposite characteristics. For this reason, ceramic filler-filled polymer materials that combine these materials to achieve both low dielectric constant and low dielectric loss tangent properties have become widespread (Patent Document 1, Patent Document 2).
 上記セラミックフィラー(無機充填材)として、マイクロオーダーの大きさを有する溶融シリカが一般に広く普及しているが、製造上生じる粗大粒子が成形品の性能に大きな影響を与えるため、粗大粒子の分離や除去が課題となっている(非特許文献1、特許文献2、特許文献3、特許文献4)。
 一方、平均粒子径がナノオーダーのシリカ粒子は、製造上の粗大粒子が生じにくく、且つ、ろ過や遠心分離が可能であるため、万が一、粗大粒子が生じた場合においても分離・除去することが容易であるという点で優位とされている。またナノオーダーの粒子は、透明ポリマー材料への適用が可能であることやマイクロオーダーのフィラーに比べて複合効果が大きいなど様々なメリットがあるとされている(特許文献5、特許文献6)。
 他方、シリカ粒子表面を疎水化して疎水性溶媒への分散性を高め、保管・輸送や、樹脂との混合時の作業性の向上を図って提案がある(特許文献7、特許文献8)。
As the above-mentioned ceramic filler (inorganic filler), fused silica having a size on the order of microns is generally widely used. However, since coarse particles generated during production have a significant effect on the performance of molded articles, separation and removal of the coarse particles has become an issue (Non-Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4).
On the other hand, silica particles with an average particle size of nano-order are considered to have an advantage in that coarse particles are less likely to be produced during production, and because filtration and centrifugation are possible, even if coarse particles are produced, they can be easily separated and removed. Nano-order particles are also considered to have various advantages, such as being applicable to transparent polymer materials and having a greater composite effect than micro-order fillers (Patent Document 5, Patent Document 6).
On the other hand, there have been proposals to hydrophobize the surfaces of silica particles to increase dispersibility in hydrophobic solvents and thereby improve the ease of storage, transportation, and mixing with resins (Patent Documents 7 and 8).
特開2014-24916号公報JP 2014-24916 A 特許第6793282号公報Patent No. 6793282 特開2004-269636号公報JP 2004-269636 A 特許第6546386号公報Patent No. 6546386 特許第5862886号公報Patent No. 5862886 特許第6813815号公報Patent No. 6813815 特許第6805538号公報Japanese Patent No. 6805538 特許第6746025号公報Japanese Patent No. 6746025
 上述したように、セラミックフィラーにおいて、ナノオーダーの粒子は様々な長所を有するものの、既存のナノオーダーの粒子は誘電正接が高く、高周波数帯で作動する電子機器等の材料への適用は困難であった。
 またこうしたナノオーダーの粒子を樹脂材料と複合化する際、該粒子をそのまま、あるいは溶媒に分散させ、これを前記樹脂材料との複合化がなされるが、一般に無機材料の粒子は特に疎水性が高い溶媒における分散安定性が十分でなく、沈降・分離が生じるなど、作業効率や保管時において課題が残る。
 このように、既存のナノオーダーの粒子において、低誘電正接と高疎水化度とを両立させることは困難であった。
As described above, in ceramic fillers, nano-order particles have various advantages. However, existing nano-order particles have a high dielectric tangent, making them difficult to apply to materials for electronic devices and the like that operate in high frequency bands.
Furthermore, when such nano-order particles are to be composited with a resin material, the particles are either left as is or dispersed in a solvent and then composited with the resin material. However, inorganic particles generally do not have sufficient dispersion stability, particularly in highly hydrophobic solvents, and sedimentation and separation occur, leaving issues in terms of work efficiency and storage.
As described above, it has been difficult for existing nano-order particles to achieve both a low dielectric tangent and a high degree of hydrophobicity.
 本発明は、上記事情を鑑みてなされたものであり、疎水化された粒子であり、且つ低誘電正接を有するナノオーダーの粒子を提供すること、具体的には、1GHzにおける誘電正接が0.01未満であり且つ疎水化度が40%以上であるシリカ粒子とその分散液を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide hydrophobic nano-order particles with a low dielectric tangent, specifically, silica particles with a dielectric tangent of less than 0.01 at 1 GHz and a hydrophobicity of 40% or more, and a dispersion thereof.
 すなわち本発明は、第1観点として、平均一次粒子径が5~500nmであり、1GHzにおける誘電正接が0.01未満であることを特徴とする、疎水化度が40%以上の表面修飾シリカ粒子、
 第2観点として、表面修飾剤が除去されたシリカ粒子において、下記(i)、及び(ii)の事項を満たすことを特徴とする第1観点に記載の表面修飾シリカ粒子、
(i)水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SHO/SN)が0.6以下である。
(ii)下記式(1)で示される全シラノール基率が5%以下である。
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
[式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
 第3観点として、前記表面修飾シリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数の割合が、2~40個であることを特徴とする、第1観点又は第2観点に記載の表面修飾シリカ粒子、
 第4観点として、前記表面修飾シリカ粒子はその表面の少なくとも一部が、少なくとも2種の表面修飾剤で被覆されていることを特徴とし、前記少なくとも2種の表面修飾剤が、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、第1観点乃至第3観点のうちいずれか一項に記載の表面修飾シリカ粒子、
 第5観点として、前記表面修飾シリカ粒子はその少なくとも一部の表面に、少なくとも2種の表面修飾剤のそれぞれ少なくとも一部が結合してなることを特徴とし、前記少なくとも2種の表面修飾剤が、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、第1観点乃至第3観点のうちいずれか一項に記載の表面修飾シリカ粒子、
 第6観点として、前記置換基群aが、メチル基、フェニル基、フェニルメチル基及びデシル基からなる群である、第4観点又は第5観点に記載の表面修飾シリカ粒子、
 第7観点として、前記有機ケイ素化合物が、前記置換基群aから選択される置換基とともに加水分解性基を有する化合物である、第4観点乃至第6観点のうちいずれか一項に記載の表面修飾シリカ粒子、
 第8観点として、前記表面修飾剤が、下記式(a)~(c)で示される化合物から選択される少なくとも2種である、第4観点又は第5観点に記載の表面修飾シリカ粒子、
Figure JPOXMLDOC01-appb-C000002
 第9観点として、前記表面修飾シリカ粒子は、その表面積1nm当たり0.5個~20個の割合で、前記少なくとも2種の表面修飾剤で表面が被覆されている粒子であるか又は前記少なくとも2種の表面修飾剤の少なくとも一部が表面に結合してなる粒子である、
第3観点乃至第8観点のうちいずれか一項に記載の表面修飾シリカ粒子、
 第10観点として、第1観点乃至第9観点のうちいずれか一項に記載の表面修飾シリカ粒子がアルコール類、ケトン類、炭化水素類、アミド類、エーテル類、エステル類及びアミン類から選ばれる少なくとも1種の有機溶媒に分散する、シリカ分散液、
 第11観点として、第1観点乃至第9観点のうちいずれか一項に記載の表面修飾シリカ粒子と、有機樹脂材料又はポリシロキサンとを含むコンポジット材料、
 第12観点として、前記有機樹脂材料又はポリシロキサンが、スチレン樹脂、エポキシ樹脂、シアネート樹脂、フェノール樹脂、アクリル樹脂、マレイミド樹脂、ウレタン樹脂、ポリイミド、ポリテトラフルオロエチレン、シクロオレフィンポリマー、不飽和ポリエステル、ビニルトリアジン、ポリフェニレンサルファイド、架橋性ポリフェニレンオキサイド及び硬化性ポリフェニレンエーテルからなる群から選択される少なくとも1種である、第11観点に記載のコンポジット材料、
 第13観点として、半導体デバイス材料、銅張積層板、フレキシブル配線材料、フレキシブルディスプレイ材料、アンテナ材料、光配線材料及びセンシング材料からなる群から選択される用途を有する、第11観点又は第12観点に記載のコンポジット材料、
 第14観点として、下記(A)工程~(C)工程:
(A)工程:平均一次粒子径が5~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、下記式(1)で示される全シラノール基率が5%以下:
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
[式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
であるシリカ粒子を分散質とし、炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
(B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを、40~100℃で0.1~10時間の加熱撹拌を行う工程、及び
(C)工程:(B)工程後のシリカゾルから前記アルコール溶媒を除去する工程、
を含む、
表面修飾シリカ粒子の製造方法、
 第15観点として、(B)工程及び(C)工程のいずれか一方又は両方が減圧下で行われる、第14観点に記載の表面修飾シリカ粒子の製造方法、
 第16観点として、(A)工程で準備するシリカゾルが、水分量が0.1~5質量%のシリカゾルである、第14観点に記載の表面修飾シリカ粒子の製造方法、
 第17観点として、(A)工程で準備するシリカゾルが、200~380℃、2MPa~22MPaで水熱合成された水性シリカゾルを、炭素原子数1~4のアルコールに溶媒置換したシリカゾルである、第14観点に記載の表面修飾シリカ粒子の製造方法、
 第18観点として、下記(A)工程、(B)工程及び(D)工程:
(A)工程:平均一次粒子径が5~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、下記式(1)で示される全シラノール基率が5%以下:
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
[式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
であるシリカ粒子を分散質とし、炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
(B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを、40~100℃で0.1~10時間の加熱撹拌を行う工程、及び
(D)(B)工程後のシリカゾルをアルコール類、ケトン類、炭化水素類、アミド類、エステル類、エーテル類又はアミン類から選ばれる少なくとも1種の溶媒に溶媒置換する工程、
を含む、表面修飾シリカ分散液の製造方法に関する。
That is, in a first aspect, the present invention provides surface-modified silica particles having a hydrophobicity degree of 40% or more, characterized in that the average primary particle diameter is 5 to 500 nm and the dielectric loss tangent at 1 GHz is less than 0.01;
As a second aspect, the surface-modified silica particles according to the first aspect, from which a surface modifier has been removed, are characterized in that the following items (i) and (ii) are satisfied:
(i) The ratio (SH 2 O/SN 2 ) of the specific surface area by water vapor adsorption (S H2O ) to the specific surface area by nitrogen adsorption (S N2 ) is 0.6 or less.
(ii) The total silanol group ratio represented by the following formula (1) is 5% or less.
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
[In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
As a third aspect, the surface-modified silica particles according to the first or second aspect, characterized in that the ratio of the total number of carbon atoms per unit surface area (unit: nm 2 ) of the surface-modified silica particles is 2 to 40;
As a fourth aspect, the surface-modified silica particle according to any one of the first to third aspects, characterized in that at least a part of the surface of the surface-modified silica particle is coated with at least two types of surface modifiers, and the at least two types of surface modifiers include an organosilicon compound having at least one substituent a1 selected from substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from substituent group a and different from the substituent a1;
As a fifth aspect, the surface-modified silica particle according to any one of the first to third aspects, characterized in that the surface-modified silica particle has at least a portion of each of at least two types of surface modifiers bonded to at least a portion of the surface thereof, and the at least two types of surface modifiers include an organosilicon compound having at least one substituent a1 selected from substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from substituent group a and different from the substituent a1;
As a sixth aspect, the surface-modified silica particles according to the fourth or fifth aspect, in which the substituent group a is a group consisting of a methyl group, a phenyl group, a phenylmethyl group, and a decyl group.
As a seventh aspect, the surface-modified silica particles according to any one of the fourth to sixth aspects, in which the organosilicon compound is a compound having a hydrolyzable group together with a substituent selected from the substituent group a.
According to an eighth aspect, the surface-modified silica particle according to the fourth or fifth aspect, in which the surface modifier is at least two types selected from the compounds represented by the following formulas (a) to (c):
Figure JPOXMLDOC01-appb-C000002
As a ninth aspect, the surface-modified silica particles are particles whose surfaces are coated with the at least two types of surface modifiers at a ratio of 0.5 to 20 particles per 1 nm2 of the surface area of the particles, or particles whose surfaces are at least partially bound to the at least two types of surface modifiers.
The surface-modified silica particles according to any one of the third to eighth aspects,
As a tenth aspect, a silica dispersion in which the surface-modified silica particles according to any one of the first to ninth aspects are dispersed in at least one organic solvent selected from alcohols, ketones, hydrocarbons, amides, ethers, esters, and amines;
According to an eleventh aspect, there is provided a composite material comprising the surface-modified silica particle according to any one of the first to ninth aspects and an organic resin material or a polysiloxane.
According to a twelfth aspect, the composite material according to the eleventh aspect, wherein the organic resin material or polysiloxane is at least one selected from the group consisting of a styrene resin, an epoxy resin, a cyanate resin, a phenol resin, an acrylic resin, a maleimide resin, a urethane resin, a polyimide, a polytetrafluoroethylene, a cycloolefin polymer, an unsaturated polyester, a vinyl triazine, a polyphenylene sulfide, a crosslinkable polyphenylene oxide, and a curable polyphenylene ether;
As a thirteenth aspect, the composite material according to the eleventh or twelfth aspect has an application selected from the group consisting of a semiconductor device material, a copper-clad laminate, a flexible wiring material, a flexible display material, an antenna material, an optical wiring material, and a sensing material.
As a fourteenth aspect, the present invention relates to a method for producing a method for producing a semiconductor device comprising the steps (A) to (C) below:
Step (A): an average primary particle size is 5 to 500 nm, the ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) is 0.6 or less, and the total silanol group rate represented by the following formula (1) is 5% or less:
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
[In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
preparing a silica sol having silica particles as a dispersoid and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a1 selected from a substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1, and the silica sol obtained in Step (A) at 40 to 100° C. for 0.1 to 10 hours; and Step (C): a step of removing the alcohol solvent from the silica sol obtained in Step (B).
including,
A method for producing surface-modified silica particles,
As a fifteenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which either one or both of the step (B) and the step (C) are carried out under reduced pressure;
As a sixteenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which the silica sol prepared in the step (A) has a water content of 0.1 to 5 mass %;
As a seventeenth aspect, the method for producing surface-modified silica particles according to the fourteenth aspect, in which the silica sol prepared in the step (A) is an aqueous silica sol hydrothermally synthesized at 200 to 380° C. and 2 to 22 MPa, and the aqueous silica sol is subjected to solvent substitution with an alcohol having 1 to 4 carbon atoms;
As an eighteenth aspect, the present invention provides a method for producing a method for manufacturing a semiconductor device comprising the following steps (A), (B) and (D):
Step (A): an average primary particle size is 5 to 500 nm, the ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) is 0.6 or less, and the total silanol group rate represented by the following formula (1) is 5% or less:
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
[In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
preparing a silica sol having silica particles as a dispersoid and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a1 selected from the substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1, and the silica sol obtained in step (A) at 40 to 100° C. for 0.1 to 10 hours; and (D) a step of subjecting the silica sol obtained in step (B) to solvent replacement with at least one solvent selected from alcohols, ketones, hydrocarbons, amides, esters, ethers, or amines.
The present invention relates to a method for producing a surface-modified silica dispersion, comprising the steps of:
 本発明の表面修飾シリカ粒子は疎水性であり、低い誘電特性を示すという効果を奏する。また、有機溶媒にも良好に分散可能である。さらに本発明によるシリカ粒子は有機樹脂材料又はポリシロキサンとコンポジット材料を形成することが可能なため、半導体デバイス材料などの製造が期待できる。 The surface-modified silica particles of the present invention are hydrophobic and have the effect of exhibiting low dielectric properties. They can also be well dispersed in organic solvents. Furthermore, the silica particles of the present invention can form composite materials with organic resin materials or polysiloxanes, and are therefore expected to be used in the production of semiconductor device materials, etc.
図1は、実施例5-1で得られた表面修飾シリカ粒子とマレイミド樹脂を含むコンポジット材料の硬化膜(図1(B))と前記マレイミド樹脂のみの硬化膜(図1(A))の外観を示す図(写真)である。FIG. 1 is a diagram (photograph) showing the appearance of a cured film of the composite material containing the surface-modified silica particles and the maleimide resin obtained in Example 5-1 (FIG. 1(B)), and a cured film of only the maleimide resin (FIG. 1(A)).
<表面修飾シリカ粒子>
 本発明の表面修飾シリカ粒子は、平均一次粒子径が5~500nmであり、1GHzにおける誘電正接が0.01未満であり、疎水化度が40%以上であるシリカ粒子(以下、疎水化シリカ粒子とも称する)である。
<Surface-modified silica particles>
The surface-modified silica particles of the present invention are silica particles having an average primary particle diameter of 5 to 500 nm, a dielectric dissipation factor of less than 0.01 at 1 GHz, and a hydrophobicity of 40% or more (hereinafter also referred to as hydrophobized silica particles).
 本発明に係る上記表面修飾シリカ粒子は、表面修飾剤が除去されたシリカ粒子において、下記(i)及び(II)の事項を満たすことが好ましい。なお“表面修飾剤が除去されたシリカ粒子”とは、表面修飾剤による表面修飾前のシリカ粒子を意味し、すなわち未修飾(表面修飾基のない)のシリカ粒子を意味するものである。
(i)水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下である、
(ii)下記式(1)で示される全シラノール基率が5%以下である、
 全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
[式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
The surface-modified silica particles according to the present invention preferably satisfy the following items (i) and (II) in the silica particles from which the surface modifier has been removed: "Silica particles from which the surface modifier has been removed" refers to silica particles before surface modification with a surface modifier, i.e., unmodified silica particles (without surface modifying groups).
(i) the ratio (S H2O /S N2 ) of the specific surface area by water vapor adsorption (S H2O ) to the specific surface area by nitrogen adsorption (S N2 ) is 0.6 or less;
(ii) the total silanol group ratio represented by the following formula (1) is 5% or less,
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
[In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
<疎水化度>
 本明細書で言及する疎水化度とは、水とメタノールの混合にシリカ粒子が湿潤し始める際のメタノールの容量で表示される濃度(%)(別名:メタノールウェッタビリティ)として定義され、シリカ表面の疎水性を表す指標として一般に用いられている。
 疎水化度の測定方法は、例えば以下のとおりである。まず、水(イオン交換水等)50mLが入った200mLの容器(ビーカー、フラスコ等)に、サンプル粒子(疎水化シリカ粒子)0.2g入れる。次に、マグネチックスターラー等を用いて上記水中におけるサンプルを撹拌しながら、メタノールをビュレット等から滴下して加える。サンプルの全量がメタノールにより湿潤し、水面に浮かんでいたサンプルが目視によって完全に沈降したと判断したとき、メタノールの滴下を止め、このときの水とメタノールの混合相中におけるメタノール容量を100分率で表し、この数値を疎水化度とする(下記式(2)参照)。
 疎水化度(%)=[VMeOH/(VMeOH+50)]×100・・・式(2)
   VMeOH:滴下したメタノール容量(単位:mL)
 本発明に係る疎水化シリカ粒子は、疎水化度が40%以上であり、好ましくは50%以上とすることができる。疎水化度が40%以上であることにより、疎水性の高い溶媒に分散した際、長時間安定して分散状態を維持することができ、使用前の再撹拌工程等を簡略化/省力化することができ、コンポジット材料の調製を容易とすることが期待できる。
<Hydrophobicity>
The degree of hydrophobicity referred to in this specification is defined as the concentration (%) expressed in terms of the volume of methanol when silica particles begin to wet when mixed with water and methanol (also known as methanol wettability), and is generally used as an index of the hydrophobicity of the silica surface.
The method for measuring the hydrophobicity is, for example, as follows. First, 0.2 g of sample particles (hydrophobized silica particles) is placed in a 200 mL container (beaker, flask, etc.) containing 50 mL of water (ion-exchanged water, etc.). Next, while stirring the sample in the water using a magnetic stirrer, etc., methanol is added dropwise from a burette, etc. When the entire amount of the sample is wetted with methanol and the sample floating on the water surface is judged to have completely settled by visual observation, the dropping of methanol is stopped, and the volume of methanol in the mixed phase of water and methanol at this time is expressed as a percentage, and this value is the hydrophobicity (see formula (2) below).
Hydrophobicity (%) = [V MeOH / (V MeOH + 50)] × 100 ... Formula (2)
V MeOH : Volume of methanol dropped (unit: mL)
The hydrophobic silica particles according to the present invention have a hydrophobicity of 40% or more, preferably 50% or more. By having a hydrophobicity of 40% or more, when dispersed in a highly hydrophobic solvent, the dispersed state can be stably maintained for a long time, and a re-stirring step before use can be simplified/labor-saving, which is expected to facilitate the preparation of a composite material.
<平均一次粒子径>
 本発明に係る疎水化シリカ粒子の平均一次粒子径は、粒子表面への吸着分子として窒素ガスを用いたBET法により測定される比表面積(SN2)から算出された比表面積径を採用することができる。
 比表面積径(平均一次粒子径:D(nm))は、窒素吸着法(BET法)によって測定された比表面積SN2(m/g)から、D(nm)=2720/Sの式によって計算される一次粒子径であり、球状シリカ粒子に換算した粒子直径を意味する。
 本発明に係る疎水化シリカ粒子は、平均一次粒子径が5nm~500nmの範囲、例えば5nm~250nm、5nm~200nm、5nm~120nm、5nm~100nm、20nm~500nm、20nm~100nm、或いは40nm~100nmの範囲のものとすることができる。
 平均一次粒子径を5nm~500nmの疎水化シリカ粒子とすることで、低い誘電正接を示すとともに、有機溶媒へ良好に分散させることができる。また、該疎水化シリカ粒子を用いたコンポジット材料を成型した場合に、欠陥の抑制や、高い透明性を発現させることができる。
<Average primary particle size>
The average primary particle diameter of the hydrophobized silica particles according to the present invention can be a specific surface area diameter calculated from the specific surface area (S N2 ) measured by the BET method using nitrogen gas as molecules adsorbed onto the particle surfaces.
The specific surface area diameter (average primary particle diameter: D (nm)) is the primary particle diameter calculated from the specific surface area S (m 2 /g) measured by the nitrogen adsorption method (BET method) by the formula D (nm) = 2720/S, and means the particle diameter converted into spherical silica particles.
The hydrophobized silica particles according to the present invention can have an average primary particle size in the range of 5 nm to 500 nm, for example, 5 nm to 250 nm, 5 nm to 200 nm, 5 nm to 120 nm, 5 nm to 100 nm, 20 nm to 500 nm, 20 nm to 100 nm, or 40 nm to 100 nm.
By making the average primary particle size of the hydrophobic silica particles 5 nm to 500 nm, the particles can exhibit a low dielectric tangent and can be well dispersed in an organic solvent. Furthermore, when the hydrophobic silica particles are used to mold a composite material, defects can be suppressed and high transparency can be achieved.
<比表面積比(SH2O/SN2)>
 水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)は、粒子の表面積あたりの活性点(表面シラノール)の存在量の指標であり、この値が大きいほどシリカ表面に活性点が多く存在することを示す。
 前記水蒸気吸着による比表面積(SH2O)は、粒子表面への吸着分子として水蒸気を用いたBET法により、また前述したように前記窒素吸着による比表面積(SN2)は、粒子表面への吸着分子として窒素ガスを用いたBET法により、それぞれ測定することができる。
 本発明にかかる疎水化シリカ粒子(表面修飾シリカ粒子)は、表面修飾剤が除去されたシリカ粒子において、上記比表面積比(SH2O/SN2)が0.6以下のものを用いることができる。このようなSH2O/SN2を有するシリカ粒子を用いることにより、誘電正接の増加を招くことなく、シリカ粒子の表面修飾を行うことができ、有機溶媒への分散性を良好なものとすることができる。
<Specific surface area ratio (S H2O /S N2 )>
The ratio (S H2O /S N2 ) of the specific surface area due to water vapor adsorption (S H2O ) to the specific surface area due to nitrogen adsorption (S N2 ) is an indicator of the amount of active sites (surface silanols) present per unit surface area of the particle, and a larger value indicates that more active sites are present on the silica surface.
The specific surface area by water vapor adsorption (S H2O ) can be measured by the BET method using water vapor as molecules adsorbed onto the particle surface, and as described above, the specific surface area by nitrogen adsorption (S N2 ) can be measured by the BET method using nitrogen gas as molecules adsorbed onto the particle surface.
The hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which a surface modifier has been removed, and have the specific surface area ratio (S H2O /S N2 ) of 0.6 or less. By using silica particles having such a S H2O /S N2 ratio, the surface of the silica particles can be modified without increasing the dielectric tangent, and the dispersibility in organic solvents can be improved.
〈水蒸気吸着による比表面積(SH2O)〉
 本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)は、表面修飾剤が除去されたシリカ粒子において、水蒸気吸着による比表面積(SH2O)が例えば5~500m/g、又は5~300m/g、5~100m/gの範囲のものを用いることができる。
 比表面積(SH2O)を5~500m/gとすることで、吸湿による誘電正接の低下を抑制して、シリカ粒子の表面修飾を行うことができ、有機溶媒への良好な分散性を可能にすることができる。
<Specific surface area by water vapor adsorption (S H2O )>
The hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which a surface modifier has been removed, and the specific surface area (S H2O ) determined by water vapor adsorption can be in the range of, for example, 5 to 500 m 2 /g, 5 to 300 m 2 /g, or 5 to 100 m 3 /g.
By setting the specific surface area (S H2O ) to 5 to 500 m 2 /g, it is possible to suppress a decrease in dielectric tangent due to moisture absorption, perform surface modification of the silica particles, and enable good dispersibility in organic solvents.
〈窒素吸着による比表面積(SN2)〉
 本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)は、表面修飾剤が除去されたシリカ粒子において、例えば窒素吸着による比表面積(SN2)が例えば25~550m/g、又は25~300m/g、又は25~250m/gの範囲のものを用いることができる。
 比表面積(SN2)を25~550m/gとすることで、低い誘電正接を維持することができる。
<Specific surface area by nitrogen adsorption (S N2 )>
The hydrophobized silica particles (surface-modified silica particles) according to the present invention can be silica particles from which the surface modifier has been removed, and have a specific surface area (S N2 ) measured by nitrogen adsorption in the range of, for example, 25 to 550 m 2 /g, or 25 to 300 m 2 /g, or 25 to 250 m 2 /g.
By setting the specific surface area (S N2 ) to 25 to 550 m 2 /g, a low dielectric tangent can be maintained.
<全シラノール基率>
 シリカ中のケイ素原子には、ヒドロキシ基と結合していないケイ素、及び1又は2つのヒドロキシ基と結合しているケイ素が存在する。
 すなわち、シリカ中のケイ素原子は、下記式に示すように、2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子(Q2)、3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子(Q3)、そして4つの酸素原子が結合したケイ素原子(Q4)の4つの構造をとる。
Figure JPOXMLDOC01-appb-C000003
 そして、シリカ中のケイ素原子におけるQ2、Q3、Q4の割合を求めることで、当該シリカのシラノール(Si-OH)基量を見積もることができる。
 本明細書において、全シラノール基率とは、シリカ粒子に存在するQ2~Q4構造の全ケイ素原子におけるシラノール基の存在率を表す。
<Total silanol group ratio>
The silicon atoms in silica include silicon atoms that are not bonded to a hydroxy group and silicon atoms that are bonded to one or two hydroxy groups.
That is, silicon atoms in silica have four structures as shown in the following formulas: a silicon atom bonded to two oxygen atoms and two hydroxyl groups (Q2), a silicon atom bonded to three oxygen atoms and one hydroxyl group (Q3), and a silicon atom bonded to four oxygen atoms (Q4).
Figure JPOXMLDOC01-appb-C000003
Then, by determining the proportions of Q2, Q3, and Q4 in silicon atoms in the silica, the amount of silanol (Si-OH) groups in the silica can be estimated.
In this specification, the total silanol group ratio refers to the ratio of silanol groups present in all silicon atoms of the Q2 to Q4 structures present in the silica particles.
 上記Q2~Q4構造のケイ素原子が有するシラノール基の存在率は、例えば該存在率の調査対象であるシリカ粒子を含む水分散シリカゾルを用いた29Si NMR法又はシリカ粒子粉末を用いた29Si NMR法により測定することができる。
 具体的には、29Si NMR法より得られたスペクトルを波形分離し、ケミカルシフト-80ppmから-105ppm間に観測されたピークをQ2構造由来、-90ppmから-115ppm間に観測されるピークをQ3構造由来、-95ppmから-130ppm間に観測されるピークをQ4構造由来と同定する。このとき、各ピークの面積値の合計(100%)に対するQ2~Q4の各ピーク面積値の割合(%)が、測定対象であるシリカ粒子における各構造(Q2~Q4)の含有比率(mol%)となる。そしてこの値と、Q2~Q4の各構造における酸素原子とヒドロキシ基の合計モル数に対するヒドロキシ基の含有割合を用いて、次式に従って全シラノール基率(%)を算出することができる。
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
 上記式中、Q2、Q3及びQ4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)、すなわち上記NMR測定結果から得られる各構造の含有比率を示す。
 本発明に係る上記表面修飾シリカ粒子は、表面修飾剤が除去されたシリカ粒子において、シリカ粒子を含む水分散シリカゾルを用いた29Si NMR法では、Q2は0~10、0~5、又は0~5とすることができ、Q3は0~20、0~15、1~15、又は5~15とすることができ、Q4は80~100、又は85~100とすることができる。また、表面修飾剤が除去されたシリカ粒子において、シリカ粒子粉末を用いた29Si NMR法ではQ2は0~10、0~5、又は0~5とすることができ、Q3は0~20、0~15、1~15、又は5~15とすることができ、Q4は80~100、又は85~100とすることができる。
The abundance ratio of silanol groups on silicon atoms having the above Q2 to Q4 structures can be measured, for example, by a 29Si NMR method using a water-dispersed silica sol containing silica particles to be investigated for the abundance ratio, or a 29Si NMR method using a silica particle powder.
Specifically, the spectrum obtained by the 29 Si NMR method is subjected to waveform separation, and the peak observed between −80 ppm and −105 ppm in chemical shift is identified as being derived from the Q2 structure, the peak observed between −90 ppm and −115 ppm as being derived from the Q3 structure, and the peak observed between −95 ppm and −130 ppm as being derived from the Q4 structure. At this time, the ratio (%) of the area value of each peak Q2 to Q4 to the total area value (100%) of each peak is the content ratio (mol%) of each structure (Q2 to Q4) in the silica particle to be measured. Then, using this value and the content ratio of hydroxyl groups to the total number of moles of oxygen atoms and hydroxyl groups in each structure Q2 to Q4, the total silanol group ratio (%) can be calculated according to the following formula.
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
In the above formula, Q2, Q3, and Q4 respectively represent the ratio (%) of the peak area attributable to each silicon atom structure to the total peak area (100%) attributable to the silicon atom structure obtained by 29Si NMR measurement, i.e., the content ratio of each structure obtained from the above NMR measurement results.
In the surface-modified silica particles according to the present invention, in the silica particles from which the surface modifier has been removed, in a 29 Si NMR method using a water-dispersed silica sol containing silica particles, Q2 can be 0 to 10, 0 to 5, or 0 to 5, Q3 can be 0 to 20, 0 to 15, 1 to 15, or 5 to 15, and Q4 can be 80 to 100, or 85 to 100. In addition, in the silica particles from which the surface modifier has been removed, in a 29 Si NMR method using a silica particle powder, Q2 can be 0 to 10, 0 to 5, or 0 to 5, Q3 can be 0 to 20, 0 to 15, 1 to 15, or 5 to 15, and Q4 can be 80 to 100, or 85 to 100.
 本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)は、表面修飾剤が除去されたシリカ粒子において、全シラノール基率は5%以下であり、5%より大きいと、誘電率・誘電正接ともに低い誘電特性を示すことができない。 The hydrophobized silica particles (surface-modified silica particles) of the present invention have a total silanol group rate of 5% or less in silica particles from which the surface modifier has been removed. If the rate is greater than 5%, the dielectric constant and dielectric tangent will not both be low and the dielectric properties will not be exhibited.
 本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)の一態様において、その単位表面積(単位:nm)当たりの総炭素原子数の割合は2~40個であり、また例えば2~20個、5~20個、又は5~15個である。 In one embodiment of the hydrophobized silica particles (surface-modified silica particles) according to the present invention, the ratio of the total number of carbon atoms per unit surface area (unit: nm 2 ) is 2 to 40, for example, 2 to 20, 5 to 20, or 5 to 15.
 また、本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)を構成する未修飾のシリカ粒子は、その製造方法に特に制限はないが、好ましくは水中で200~380℃で加熱処理されたものである。前記加熱処理は耐圧容器(オートクレーブ)を用いて行うことができる。 The unmodified silica particles constituting the hydrophobized silica particles (surface-modified silica particles) of the present invention are not particularly limited in the method of production, but are preferably heat-treated in water at 200 to 380°C. The heat treatment can be carried out using a pressure-resistant container (autoclave).
<表面修飾剤>
 好ましい態様において、本発明の疎水化シリカ粒子は、その表面の少なくとも一部が、少なくとも2種の表面修飾剤で被覆されている態様であるか、あるいは、その少なくとも一部の表面に、少なくとも2種の表面修飾剤のそれぞれ少なくとも一部が結合してなる態様である。
 本明細書において、「表面修飾」とは、表面修飾剤によってシリカ粒子表面が被覆されている態様、並びに、前記表面修飾剤がシリカ粒子表面に結合している態様のいずれをも含み、これらの態様をまとめて「表面修飾シリカ粒子」と称している。
 なお本発明において、「シリカ粒子の表面の少なくとも一部が・・・表面修飾剤で被覆されている」とは、表面修飾剤(後述する有機ケイ素化合物等)がシリカ粒子表面の少なくとも一部を被覆した態様であればよく、すなわち、該表面修飾剤がシリカ粒子の表面の一部を覆う態様、該表面修飾剤がシリカ粒子の表面全体を覆う態様を包含するものである。この態様は、表面修飾剤の一例である有機ケイ素化合物とシリカ粒子表面との結合の有無は問わない。
 また本発明において、「シリカ粒子の少なくとも一部の表面に・・・表面修飾剤の・・・少なくとも一部が結合してなる」とは、表面修飾剤(後述する有機ケイ素化合物等)がシリカ粒子表面の少なくとも一部に結合した態様であればよく、すなわち、該表面修飾剤シリカ粒子の表面の一部に結合してなる態様、該表面修飾剤がシリカ粒子の表面の一部に結合し表面の少なくとも一部を覆う態様、さらには、該表面修飾剤がシリカ粒子の表面全体に結合し表面全体を覆う態様などを包含するものである。
<Surface Modifier>
In a preferred embodiment, the hydrophobized silica particles of the present invention have at least a portion of their surface coated with at least two types of surface modifiers, or have at least a portion of each of the at least two types of surface modifiers bonded to at least a portion of their surface.
In this specification, the term "surface modification" includes both an embodiment in which the surface of a silica particle is coated with a surface modifier, and an embodiment in which the surface modifier is bonded to the surface of a silica particle, and these embodiments are collectively referred to as "surface-modified silica particles".
In the present invention, "at least a part of the surface of the silica particle is coated with a surface modifier" means that the surface modifier (such as an organosilicon compound described later) coats at least a part of the surface of the silica particle, that is, it includes an embodiment in which the surface modifier covers a part of the surface of the silica particle and an embodiment in which the surface modifier covers the entire surface of the silica particle. In this embodiment, it does not matter whether or not the organosilicon compound, which is an example of the surface modifier, is bonded to the surface of the silica particle.
In the present invention, "at least a portion of the surface modifier is bonded to at least a portion of the surface of the silica particle" means that the surface modifier (such as an organosilicon compound described below) is bonded to at least a portion of the surface of the silica particle, i.e., it includes an embodiment in which the surface modifier is bonded to a portion of the surface of the silica particle, an embodiment in which the surface modifier is bonded to a portion of the surface of the silica particle and covers at least a portion of the surface, and further an embodiment in which the surface modifier is bonded to the entire surface of the silica particle and covers the entire surface.
 本発明の一態様において、前記表面修飾剤は、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基(これらをまとめて単に“置換基”とも称する)を有する有機ケイ素化合物である。
 好ましい態様において本発明に係る疎水化シリカ粒子は、前述した通り、少なくとも2種の前記表面修飾剤によって表面修飾されており、すなわち前記置換基群aから選択される少なくとも1つの置換基を有する有機ケイ素化合物2種以上によって表面修飾されている。より具体的には、例えば前記置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物との少なくとも2種によって表面修飾されている。なお1の有機系ケイ素化合物において、置換基群aから選択される複数の置換基が存在する場合、それら置換基の中でも立体的な嵩高さが最も高い置換基を、置換基a1や置換基a2として扱う。
 また、表面修飾に使用する2種以上(複数種)の有機ケイ素化合物において、例えば前記置換基a1と置換基a2は、立体的な嵩高さが異なる基であることが好ましい。
 なおn種の表面修飾剤によって表面修飾剤により表面修飾されている場合には、置換基群aから選択される少なくとも1つの置換基(a1、a2、・・・・an)を有する有機ケイ素化合物n種によって表面修飾されていることを意味する。
In one embodiment of the present invention, the surface modifier is an organosilicon compound having at least one substituent selected from the group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond (these may also be collectively referred to simply as "substituent").
In a preferred embodiment, the hydrophobized silica particles according to the present invention are surface-modified by at least two of the above-mentioned surface modifiers, that is, surface-modified by two or more of the organosilicon compounds having at least one substituent selected from the above-mentioned substituent group a.More specifically, for example, surface-modified by at least two of the organosilicon compounds having at least one substituent a1 selected from the above-mentioned substituent group a and having at least one substituent a2 selected from the above-mentioned substituent group a and different from the above-mentioned substituent a1.Note that, when there are multiple substituents selected from the substituent group a in one organosilicon compound, the substituent with the highest three-dimensional bulkiness among these substituents is treated as the substituent a1 or the substituent a2.
In the two or more (plural kinds) of organosilicon compounds used for surface modification, for example, the substituent a1 and the substituent a2 are preferably groups having different steric bulkiness.
In addition, when the surface is modified with n types of surface modifying agents, this means that the surface is modified with n types of organosilicon compounds having at least one substituent (a1, a2, . . . an) selected from the substituent group a.
 有機ケイ素化合物は、前記置換基群aから選択される置換基を有する化合物であればよく、例えば、前記置換基及び後述する加水分解性基を有するケイ素化合物、前記置換基及びSi-O-Si結合を有する有機ケイ素化合物、及び前記置換基及びSi-N-Si結合を有する有機ケイ素化合物を挙げることができる。これら有機ケイ素化合物を用いて前記シリカ粒子を表面修飾することにより、表面修飾シリカ粒子を得ることができる。 The organosilicon compound may be any compound having a substituent selected from the above-mentioned substituent group a, and examples thereof include silicon compounds having the above-mentioned substituent and a hydrolyzable group described below, organosilicon compounds having the above-mentioned substituent and a Si-O-Si bond, and organosilicon compounds having the above-mentioned substituent and a Si-N-Si bond. By surface-modifying the silica particles with these organosilicon compounds, surface-modified silica particles can be obtained.
 前記置換基群aの置換基、すなわち、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、フェニル基、フェニルメチル基、トリル基、キシリル基、ビニル基を挙げることができる。同一の有機ケイ素化合物中に前記置換基が複数存在する場合には同一であっても互いに異なってもよい。
 中でも、置換基群aは、メチル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、フェニルメチル基、トリル基及びキシリル基からなる群とすることができ、あるいはまたメチル基、フェニル基、フェニルメチル基及びデシル基からなる群とすることができる。
 従って、例えば2種以上の有機ケイ素化合物としては、例えばメチル基を有する有機ケイ素化合物とフェニル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とデシル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とフェニル基を有する有機ケイ素化合物とデシル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とフェニルメチル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とトリル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とキシリル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とオクチル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とドデシル基を有する有機ケイ素化合物の組み合わせ、メチル基を有する有機ケイ素化合物とヘキサデシル基を有する有機ケイ素化合物の組み合わせ等を挙げることができるが、これらに限定されない。
Examples of the substituents in the substituent group a, i.e., alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and substituents having an unsaturated bond, include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, octyl groups, nonyl groups, decyl groups, dodecyl groups, hexadecyl groups, phenyl groups, phenylmethyl groups, tolyl groups, xylyl groups, and vinyl groups. When a plurality of such substituents are present in the same organosilicon compound, they may be the same or different from each other.
Among them, the substituent group a can be a group consisting of a methyl group, an octyl group, a decyl group, a dodecyl group, a hexadecyl group, a phenylmethyl group, a tolyl group and a xylyl group, or can be a group consisting of a methyl group, a phenyl group, a phenylmethyl group and a decyl group.
Therefore, for example, as the two or more kinds of organosilicon compounds, for example, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a phenyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a decyl group, a combination of an organosilicon compound having a methyl group, an organosilicon compound having a phenyl group and an organosilicon compound having a decyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a phenylmethyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a tolyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a xylyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having an octyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a dodecyl group, a combination of an organosilicon compound having a methyl group and an organosilicon compound having a hexadecyl group, etc. can be mentioned, but is not limited to these.
 また前記加水分解性基としてはアルコキシ基が好ましく、複数存在する場合には同一であっても互いに異なっていてもよい。アルコキシ基としては、炭素原子1~3のアルコキシ基が好ましく、特にメトキシ基が好ましい。 Alkoxy groups are preferred as the hydrolyzable groups, and when multiple groups are present, they may be the same or different. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferred, and a methoxy group is particularly preferred.
 前記有機ケイ素化合物が、前記置換基及び加水分解性基を有するケイ素化合物である場合、置換基数と加水分解性基数に特に制限は無いが、ケイ素原子あたり、前記置換基数1~3個、及び加水分解性基1~3個(ただし両基の合計は4以内)を有することが好ましい。
 前記置換基及び加水分解性基を有する有機ケイ素化合物としては、具体的には、メチルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、メチルトリプロポキシシラン、ジメチルジプロポキシシラン、トリメチルプロポキシシラン、フェニルトリメトキシシラン、トリルトリメトキシシラン、キシリルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、フェニルトリプロポキシシラン、ジフェニルジプロポキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルジプロポキシシラン、ビニルトリメトキシシラン、ジビニルジメトキシシラン、ビニルトリエトキシシラン、ジビニルジエトキシシラン、ビニルトリプロポキシシラン、ジビニルジプロポキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシランなどが挙げられるがこれらに限定されない。
When the organosilicon compound is a silicon compound having the above-mentioned substituents and hydrolyzable groups, there are no particular limitations on the number of substituents and the number of hydrolyzable groups, but it is preferable for the organosilicon compound to have 1 to 3 of the above-mentioned substituents and 1 to 3 of the hydrolyzable groups (with the total number of both groups being 4 or less) per silicon atom.
Specific examples of the organosilicon compound having a substituent and a hydrolyzable group include methyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, hexadecyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, methyltripoxysilane, dimethyldipropoxysilane, trimethylpropoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, xylyltrimethoxysilane, diphenyldimethylsilane, and the like. Examples of the silane include, but are not limited to, phenyltriethoxysilane, diphenyldiethoxysilane, phenyltripropoxysilane, diphenyldipropoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenyldipropoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, vinyltriethoxysilane, divinyldiethoxysilane, vinyltripropoxysilane, divinyldipropoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltriethoxysilane.
 前記置換基及びSi-O-Si結合を有する有機ケイ素化合物の置換基における、前記炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基としては、メチル基、フェニル基、フェニルメチル基、ビニル基が好ましく、複数存在する場合には同一であっても互いに異なってもよい。特にメチル基が好ましく、有機ケイ素化合物の具体例としては、ヘキサメチルジシロキサンが挙げられる。
 前記置換基及びSi-N-Si結合を有する有機ケイ素化合物の置換基における、前記炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基としては、メチル基、フェニル基、フェニルメチル基、ビニル基が好ましく、複数存在する場合には同一であっても互いに異なってもよい。特にメチル基が好ましく、有機ケイ素化合物の具体例としては、ヘキサメチルジシラザンが挙げられる。
In the substituents of the organosilicon compounds having the above-mentioned substituents and Si-O-Si bonds, the alkyl groups having 1 to 20 carbon atoms, the aryl groups having 6 to 12 carbon atoms, and the substituents having an unsaturated bond are preferably methyl groups, phenyl groups, phenylmethyl groups, and vinyl groups, and when a plurality of groups are present, they may be the same or different from each other. In particular, methyl groups are preferred, and a specific example of the organosilicon compound is hexamethyldisiloxane.
In the substituents of the organosilicon compounds having the above-mentioned substituents and Si-N-Si bonds, the alkyl groups having 1 to 20 carbon atoms, the aryl groups having 6 to 12 carbon atoms, and the substituents having an unsaturated bond are preferably methyl groups, phenyl groups, phenylmethyl groups, and vinyl groups, and when a plurality of groups are present, they may be the same or different from each other. In particular, methyl groups are preferred, and a specific example of the organosilicon compound is hexamethyldisilazane.
 これらの中でも、有機ケイ素化合物としては下記式(a)~式(c)で示される化合物を好ましく挙げることができ、これらの少なくとも一種と別の有機ケイ素化合物、あるいはまたこれらの少なくとも二種を選択することができる。
Figure JPOXMLDOC01-appb-C000004
Among these, preferred examples of the organosilicon compound include the compounds represented by the following formulas (a) to (c), and at least one of these and another organosilicon compound, or at least two of these, may be selected.
Figure JPOXMLDOC01-appb-C000004
 前記有機ケイ素化合物による表面処理(修飾)量、すなわち、粒子表面を被覆する又は粒子表面に結合した有機ケイ素化合物は、シリカ粒子の表面積1nm当たり、例えば0.5個~40個程度、あるいはまた0.5~20個程度、0.5~16個程度、1~20個程度、2~20個程度、5~20個程度、又は10~20個程度の範囲とすることができる。ここでいう表面積1nm当たりの個数(表面処理量)は、表面修飾に要した全有機ケイ素化合物の個数、すなわち少なくとも2種の表面修飾剤全体としての量であり、個々の表面修飾剤(有機ケイ素化合物)による表面処理量を意図したものではない。 The amount of surface treatment (modification) with the organosilicon compound, i.e., the amount of organosilicon compound coating or bonding to the particle surface, per 1 nm2 of the surface area of the silica particle can be in the range of, for example, about 0.5 to 40, or alternatively about 0.5 to 20, about 0.5 to 16, about 1 to 20, about 2 to 20, about 5 to 20, or about 10 to 20. The number per 1 nm2 of surface area (amount of surface treatment) referred to here is the number of all organosilicon compounds required for surface modification, i.e., the total amount of at least two types of surface modifiers, and does not intend the amount of surface treatment with each individual surface modifier (organosilicon compound).
<誘電特性の測定>
 本発明に係る疎水化シリカ粒子の誘電率及び誘電正接は、疎水化シリカ粒子の乾燥粉を用い、専用の装置を用いて測定することができる。専用の装置としては、例えば、ベクトルネットワークアナライザ(商品名:FieldFox N6626A、KEYSIGHT TECHNOLOGIES製)などが挙げられる。
 有機樹脂材料又はポリシロキサンとコンポジット化し絶縁体用途に適応する場合、疎水性シリカ粒子の周波数1GHzにおける誘電正接が0.01未満、特に0.009以下であることが好ましい。また、誘電正接の下限値としては、0.00001、又は0.00005、又は0.0001、又は0.0005である。
<Measurement of dielectric properties>
The dielectric constant and dielectric loss tangent of the hydrophobized silica particles according to the present invention can be measured using a dry powder of the hydrophobized silica particles with a dedicated device, such as a vector network analyzer (product name: FieldFox N6626A, manufactured by KEYSIGHT TECHNOLOGIES).
When the hydrophobic silica particles are composited with an organic resin material or polysiloxane to be used as an insulator, the hydrophobic silica particles preferably have a dielectric loss tangent of less than 0.01, particularly 0.009 or less at a frequency of 1 GHz. The lower limit of the dielectric loss tangent is 0.00001, 0.00005, 0.0001, or 0.0005.
<シリカ分散液>
 本発明のシリカ分散液は、前記疎水化シリカ粒子(表面修飾シリカ粒子)がアルコール類、ケトン類、炭化水素類、アミド類、エーテル類、エステル類及びアミン類から選ばれる少なくとも1種の有機溶媒に分散してなる分散液である。
 前記アルコール類は、例えば炭素原子数1~5のアルコールが挙げられ、具体的には、メタノール、エタノール、イソプロピルアルコール、n-ブタノールなどが挙げられる。
 前記ケトン類は、例えば炭素原子数1~5のケトン類が挙げられ、具体的には、メチルエチルケトン、メチルイソブチルケトン、γ-ブチルラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、シクロヘキサノンなどが挙げられる。
 前記炭化水素類は、例えばトルエン、キシレン、n-ペンタン、n-ヘキサン、シクロヘキサンなどが挙げられる。
 前記アミド類は、例えばジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルアクリルアミド、アクリロイルモルホリン、ジエチルアクリルアミドなどが挙げられる。
 前記エーテル類は、例えばエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルなどが挙げられる。
 前記エステル類は、例えば酢酸エチル、酢酸ブチルなどが挙げられる。
 前記アミン類は、例えばトリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ピリジン、ピコリンなどが挙げられる。
 該分散液中における疎水化シリカ粒子の含有量は、シリカ濃度として表すことができる。
 シリカ濃度は、シリカ分散液を1000℃で焼成した後に得られる焼成残分を計量することで算出することができる。シリカ分散液におけるシリカ濃度は、例えば1質量%~60質量%、又は10質量%~60質量%、10質量%~40質量%とすることができる。
 また、前記シリカ分散液の水分含有量は5質量%以下であることが好ましい。このような水分含有量にすることで、分散液の安定性が良好となることや有機樹脂材料又はポリシロキサンとのコンポジット材料を得やすくなることがある。
<Silica Dispersion>
The silica dispersion of the present invention is a dispersion in which the hydrophobized silica particles (surface-modified silica particles) are dispersed in at least one organic solvent selected from alcohols, ketones, hydrocarbons, amides, ethers, esters, and amines.
The alcohols include, for example, alcohols having 1 to 5 carbon atoms, and specific examples thereof include methanol, ethanol, isopropyl alcohol, and n-butanol.
The ketones include, for example, ketones having 1 to 5 carbon atoms, and specific examples thereof include methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and cyclohexanone.
Examples of the hydrocarbons include toluene, xylene, n-pentane, n-hexane, and cyclohexane.
Examples of the amides include dimethylacetamide, N,N-dimethylformamide, dimethylacrylamide, acryloylmorpholine, and diethylacrylamide.
Examples of the ethers include ethylene glycol monomethyl ether and propylene glycol monomethyl ether.
Examples of the esters include ethyl acetate and butyl acetate.
Examples of the amines include triethylamine, tributylamine, N,N-dimethylaniline, pyridine, and picoline.
The content of the hydrophobized silica particles in the dispersion can be expressed as a silica concentration.
The silica concentration can be calculated by weighing the calcination residue obtained after calcining the silica dispersion at 1000° C. The silica concentration in the silica dispersion can be, for example, 1% by mass to 60% by mass, 10% by mass to 60% by mass, or 10% by mass to 40% by mass.
The water content of the silica dispersion is preferably 5% by mass or less. By adjusting the water content to such a level, the stability of the dispersion may be improved and a composite material with an organic resin material or polysiloxane may be easily obtained.
<コンポジット材料>
 本発明に係るコンポジット材料は、本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)と有機樹脂材料又はポリシロキサンとを含むコンポジット材料である。
 前記有機樹脂材料又はポリシロキサンは、エポキシ樹脂、フェノール樹脂、アクリル樹脂、マレイミド樹脂、ポリウレタン、ポリイミド、ポリテトラフルオロエチレン、シクロオレフィンポリマー、不飽和ポリエステル、ビニルトリアジン、架橋性ポリフェニレンオキサイド及び硬化性ポリフェニレンエーテルからなる群から選ばれる少なくとも1種から選択することができる。
<Composite materials>
The composite material according to the present invention is a composite material containing the hydrophobized silica particles (surface-modified silica particles) according to the present invention and an organic resin material or polysiloxane.
The organic resin material or polysiloxane can be at least one selected from the group consisting of epoxy resins, phenolic resins, acrylic resins, maleimide resins, polyurethanes, polyimides, polytetrafluoroethylene, cycloolefin polymers, unsaturated polyesters, vinyl triazines, crosslinkable polyphenylene oxides, and curable polyphenylene ethers.
 前記コンポジット材料の作製方法は、特に制限はないが、例えば、疎水化シリカ粒子の分散液と有機樹脂材料又はポリシロキサンのモノマー乃至ポリマー溶液とを混合し重合性組成物を調製した後、余剰な溶媒を除去した後に、光又は熱硬化させることによりコンポジット材料を得ることができる。また、疎水化シリカ粒子の粉末を、直接、有機樹脂材料又はポリシロキサンのモノマー乃至ポリマー溶液に添加し重合性組成物を作製し、余剰な溶媒を除去した後に、光又は熱硬化させることでもコンポジット材料を得ることができる。
 重合性組成物におけるシリカ粒子と有機樹脂材料又はポリシロキサンのモノマー乃至ポリマー溶液との混合割合は、疎水化シリカ粒子と有機樹脂材料又はポリシロキサンのモノマー乃至ポリマーとの質量比で、疎水化シリカ粒子:有機樹脂材料又はポリシロキサンのモノマー乃至ポリマー=1:100~0.1、例えば1:20~0.1にて含有することができる。
The method for producing the composite material is not particularly limited, but for example, the composite material can be obtained by mixing a dispersion of hydrophobized silica particles with an organic resin material or a monomer or polymer solution of polysiloxane to prepare a polymerizable composition, removing excess solvent, and then curing with light or heat. Alternatively, the composite material can be obtained by directly adding a powder of hydrophobized silica particles to an organic resin material or a monomer or polymer solution of polysiloxane to prepare a polymerizable composition, removing excess solvent, and then curing with light or heat.
The mixing ratio of the silica particles to the organic resin material or the monomer or polymer solution of polysiloxane in the polymerizable composition can be such that the mass ratio of the hydrophobized silica particles to the organic resin material or the monomer or polymer of polysiloxane is hydrophobized silica particles:organic resin material or monomer or polymer of polysiloxane=1:100 to 0.1, for example, 1:20 to 0.1.
 重合性組成物は重合開始剤を使用することにより、光又は熱にて硬化させることができる。光重合開始剤として、光ラジカル重合開始剤、又は光カチオン重合開始剤が挙げられ、熱重合開始剤として、熱ラジカル重合開始剤、又は熱カチオン重合開始剤が挙げられる。また、重合開始剤は、重合性化合物100質量部に対して、0.01質量部~50質量部の範囲で用いることができる。
 また任意成分として、従来の重合性組成物(コンポジット材料)に使用される慣用の添加剤、例えば、硬化促進用の触媒や顔料、ラジカル捕捉剤(クエンチャー)、レベリング剤、粘度調整剤、酸化防止剤、紫外線吸収剤、安定剤、可塑剤、界面活性剤等の当該技術分野で使用されている各種添加剤を混合して使用することもできる。
The polymerizable composition can be cured by light or heat by using a polymerization initiator. Examples of the photopolymerization initiator include a photoradical polymerization initiator or a photocationic polymerization initiator, and examples of the thermal polymerization initiator include a thermal radical polymerization initiator or a thermal cationic polymerization initiator. The polymerization initiator can be used in an amount of 0.01 parts by mass to 50 parts by mass relative to 100 parts by mass of the polymerizable compound.
In addition, as optional components, conventional additives used in conventional polymerizable compositions (composite materials), for example, various additives used in the relevant technical field, such as catalysts and pigments for curing acceleration, radical scavengers (quenchers), leveling agents, viscosity modifiers, antioxidants, ultraviolet absorbers, stabilizers, plasticizers, and surfactants, can also be mixed and used.
 本発明のコンポジット材料は、使用用途に応じて適切な有機樹脂材料又はポリシロキサンを選択することにより、半導体デバイス材料、銅張積層板、絶縁膜、フレキシブル配線材料、フレキシブルディスプレイ材料、アンテナ材料、光配線材料又はセンシング材料として用いることができる。 The composite material of the present invention can be used as a semiconductor device material, copper-clad laminate, insulating film, flexible wiring material, flexible display material, antenna material, optical wiring material, or sensing material by selecting an appropriate organic resin material or polysiloxane depending on the intended use.
<疎水化シリカ粒子(表面修飾シリカ粒子)の製造方法>
 疎水化シリカ粒子(表面修飾シリカ粒子)の製造方法、すなわち、前記有機ケイ素化合物によるシリカ粒子表面の被覆(表面処理)方法は、特に制限はないが、例えば、(未修飾の)シリカ粒子の有機溶媒分散液に、2種以上の表面修飾剤を添加し混合することで、有機ケイ素化合物の加水分解と縮合が生じてシリカ粒子を表面修飾することができる。
<Method of producing hydrophobized silica particles (surface-modified silica particles)>
The method for producing hydrophobized silica particles (surface-modified silica particles), i.e., the method for coating (surface treating) the surfaces of silica particles with the organosilicon compound, is not particularly limited. For example, two or more types of surface modifiers can be added to and mixed with an organic solvent dispersion of (unmodified) silica particles, thereby causing hydrolysis and condensation of the organosilicon compound to modify the surface of the silica particles.
 有機ケイ素化合物の添加量は、シリカ粒子の表面積1nm当たり、例えば有機ケイ素化合物が0.5個~20.0個程度の範囲で表面修飾されるように添加することができる。例えばシリカ粒子の表面積1nm当たり0.5個~15.0個、又は1.0個~10.0個、又は3.0~10.0個にて添加することができる。ここで有機ケイ素化合物の添加量とは、添加した複数種の有機ケイ素化合物の全量(個数)であり、例えば2種の有機ケイ素化合物を添加した場合、添加した2種の有機ケイ素化合物の合計量(個数)をいう。なお表面修飾に寄与しない余剰の有機ケイ素化合物が系内に存在していてもよいが、好ましい有機ケイ素化合物の添加量はシリカ粒子が表面積1nm当たり5.0~10.0個である。 The amount of the organosilicon compound added can be such that the surface of the silica particle is modified in a range of, for example, 0.5 to 20.0 pieces of the organosilicon compound per 1 nm2 of the surface area of the silica particle. For example, 0.5 to 15.0 pieces, 1.0 to 10.0 pieces, or 3.0 to 10.0 pieces per 1 nm2 of the surface area of the silica particle can be added. Here, the amount of the organosilicon compound added refers to the total amount (number) of the multiple types of organosilicon compounds added, and when two types of organosilicon compounds are added, for example, it refers to the total amount (number) of the two types of organosilicon compounds added. Although an excess of the organosilicon compound that does not contribute to the surface modification may be present in the system, the preferred amount of the organosilicon compound added is 5.0 to 10.0 pieces per 1 nm2 of the surface area of the silica particle.
 有機ケイ素化合物の加水分解は完全に加水分解を行うことでも、部分的に加水分解することでもよいが、水が必要であり、前記有機ケイ素化合物の加水分解性基又は[Si-O-Si]結合又は[Si-N-Si]結合の1モルに対して1モル程度以上の水を添加することが好ましい。また、有機溶媒中に含まれる水分を利用することもできる。
 加水分解性基を有する有機ケイ素化合物を用いる場合は、加水分解を完全に加水分解を行うことでも、部分的に加水分解することでもよいが、水が必要であり、前記有機ケイ素化合物の加水分解性基1モルに対して1モル程度以上の水を添加することが好ましい。また、有機溶媒中に含まれる水分を利用することもできる。
 加水分解し縮合させる際に、触媒を用いることもできる。加水分解触媒としてはキレート化合物、有機酸、無機酸、有機塩基、又は無機塩基を単独で用い又は併用することができる。より具体的には、例えば、塩酸水溶液、酢酸、アンモニア水溶液等を用いることができる。
The hydrolysis of the organosilicon compound may be complete or partial, but water is necessary, and it is preferable to add about 1 mole or more of water per mole of hydrolyzable groups, [Si-O-Si] bonds, or [Si-N-Si] bonds of the organosilicon compound.Moisture contained in an organic solvent can also be used.
When using an organosilicon compound having a hydrolyzable group, hydrolysis may be performed completely or partially, but water is required, and it is preferable to add about 1 mole or more of water per mole of the hydrolyzable group of the organosilicon compound.Moisture contained in an organic solvent can also be used.
A catalyst may be used during hydrolysis and condensation. As the hydrolysis catalyst, a chelate compound, an organic acid, an inorganic acid, an organic base, or an inorganic base may be used alone or in combination. More specifically, for example, an aqueous solution of hydrochloric acid, an aqueous solution of acetic acid, an aqueous solution of ammonia, etc. may be used.
 より詳細には、例えば、平均一次粒子径が5nm~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、全シラノール基率が5%以下であるシリカ粒子と、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基を有する少なくとも2種の有機ケイ素化合物である表面修飾剤とを、有機溶媒中で混合する工程を含みて、本発明に係る疎水化シリカ粒子(表面修飾シリカ粒子)を製造することができる。
 前記有機ケイ素化合物は前述したものを用いることができ、また、表面修飾がなされるシリカ粒子は、前述したように水中で、耐圧容器(オートクレーブ)などを用いて200~380℃で加熱処理されたものを好ましく用いることができる。
More specifically, the hydrophobic silica particles (surface-modified silica particles) according to the present invention can be produced by a process including a step of mixing, in an organic solvent, silica particles having an average primary particle size of 5 nm to 500 nm, a ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) of 0.6 or less, and a total silanol group rate of 5% or less, and a surface modifier which is at least two types of organosilicon compounds having an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond.
The organosilicon compound can be any of those described above. The silica particles to be surface-modified can be preferably those that have been heat-treated in water at 200 to 380° C. using a pressure-resistant vessel (autoclave) or the like, as described above.
 上記混合工程において、有機ケイ素化合物の添加量は、シリカ粒子の表面積1nm当たり、例えば0.5個~20個の割合で表面修飾される量とすることができる。具体的には、シリカ粒子が表面積1nm当たり0.5個~15.0個、又は1.0個~10.0個、又は3.0~10.0個、あるいは5.0~10.0個の割合となるように、有機ケイ素化合物を添加することができる。有機ケイ素化合物の添加量は、添加した2種以上の有機ケイ素化合物の全体量であり、例えば3種の有機ケイ素化合物を添加した場合には3種の合計量として捉える。なお、表面修飾に寄与しない余剰の有機ケイ素化合物が反応系内に存在していてもよい。 In the above mixing step, the amount of the organosilicon compound added can be an amount that allows the silica particles to be surface-modified at a ratio of, for example, 0.5 to 20 particles per 1 nm2 of surface area. Specifically, the organosilicon compound can be added so that the silica particles are 0.5 to 15.0 particles, 1.0 to 10.0 particles, 3.0 to 10.0 particles, or 5.0 to 10.0 particles per 1 nm2 of surface area. The amount of the organosilicon compound added is the total amount of two or more organosilicon compounds added, and when three types of organosilicon compounds are added, it is regarded as the total amount of the three types. In addition, excess organosilicon compounds that do not contribute to surface modification may be present in the reaction system.
 前記混合工程に用いる有機溶媒は、アルコール及び/又はケトン系溶媒を含む有機溶媒を用いることができる。
 アルコールは炭素原子数1~5のアルコールが挙げられ、具体的には、メタノール、エタノール、イソプロピルアルコール、n-ブタノールなどが挙げられる。
 ケトン系溶媒は炭素原子数1~5のケトン系溶媒が挙げられ、具体的には、メチルエチルケトン、メチルイソブチルケトン、γ-ブチルラクトンなどが挙げられる。
The organic solvent used in the mixing step may be an organic solvent containing an alcohol and/or a ketone solvent.
The alcohol may be one having 1 to 5 carbon atoms, and specific examples thereof include methanol, ethanol, isopropyl alcohol, and n-butanol.
The ketone solvent may be one having 1 to 5 carbon atoms, and specific examples thereof include methyl ethyl ketone, methyl isobutyl ketone, and γ-butyrolactone.
 前記混合工程は、前記有機ケイ素化合物の加水分解と縮合反応が進行する温度であれば、特に制限されず、例えば20℃以上120℃未満の温度にて行うことができる。
 反応効率の点では有機溶媒の沸点付近で行なうことが好ましく、例えば、メタノールを含む有機溶媒を用いて混合工程を実施するのであれば65℃付近で行なうことが好ましい。なお、混合工程におけるシリカ濃度や有機ケイ素化合物濃度の変化を抑えることを目的に、必要に応じて還流装置などを備えた装置で反応を実施してもよい。また混合工程は、同一の温度で複数回行うこともでき、また異なる温度で複数回行うこともできる。
 なお、混合工程は30分から24時間にて行うことができ、工業的な観点から24時間以内で行なうことが望ましい。
 また本発明にあっては少なくとも2種の有機ケイ素化合物(表面修飾剤)を用いて表面修飾を実施するが、これらは一度に投入してもよいし、別々に投入してもよい。好ましい態様において、少なくとも2種の有機ケイ素化合物はそれぞれ別々に投入され得、例えば、より嵩高い置換基を有する有機ケイ素化合物から順に投入して混合(反応)を実施することができる。一例として、2種の有機ケイ素化合物としてジメトキシフェニルメチルシラン(前記式(a)で表される化合物)とヘキサメチルジシロキサン(前記式(c)で表される化合物)とを用いる場合、より嵩高い置換基であるフェニル基を有するジメトキシフェニルメチルシランを先に投入して混合し、フェニル基より嵩高さが小さいメチル基を有するヘキサメチルジシロキサンを後に投入することができるが、これに限定されない。
The mixing step can be carried out at any temperature, for example, 20° C. or higher and lower than 120° C., as long as the temperature is such that the hydrolysis and condensation reaction of the organosilicon compound proceeds.
From the viewpoint of reaction efficiency, it is preferable to carry out the reaction at a temperature near the boiling point of the organic solvent, and for example, when the mixing step is carried out using an organic solvent containing methanol, it is preferable to carry out the reaction at a temperature near 65° C. In addition, in order to suppress changes in the silica concentration and the organosilicon compound concentration during the mixing step, the reaction may be carried out in an apparatus equipped with a reflux device, etc., as necessary. The mixing step may be carried out multiple times at the same temperature, or may be carried out multiple times at different temperatures.
The mixing step can be carried out for 30 minutes to 24 hours, and from an industrial viewpoint, it is desirable to carry out the mixing step within 24 hours.
In the present invention, surface modification is carried out using at least two kinds of organosilicon compounds (surface modifiers), which may be added at once or separately. In a preferred embodiment, at least two kinds of organosilicon compounds may be added separately, for example, the organosilicon compound having the bulkier substituent may be added in order to carry out mixing (reaction). As an example, when dimethoxyphenylmethylsilane (a compound represented by the formula (a)) and hexamethyldisiloxane (a compound represented by the formula (c)) are used as two kinds of organosilicon compounds, dimethoxyphenylmethylsilane having a phenyl group, which is a bulkier substituent, may be added first and mixed, and hexamethyldisiloxane having a methyl group, which is less bulky than the phenyl group, may be added later, but is not limited thereto.
 さらに、前記混合工程は、有機アミンを用いてpH調整する工程を含むことができる。このpH調整工程は、混合工程の前、混合工程の途中、混合工程後のいずれか1回、または複数回行なうことができる。
 前記有機アミンとしては第2級、又は第3級アミンを用いることができる。第2級、又は第3級アミンとして、アルキルアミン、アリルアミン、アラルキルアミン、脂環式アミン、アルカノールアミン及び環状アミン等を用いることができる。
 具体的には、ジエチルアミン、トリエチルアミン、ジイソプロピルアミン、トリ-イソプロピルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジイソブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルアミン、ジペンチルアミン、トリペンチルアミン、ジ-2-エチルヘキシルアミン、ジ-n-オクチルアミン、トリ-n-オクチルアミン、N-エチルジイソプロピルアミン、ジシクロヘキシルアミン、N,N-ジメチルブチルアミン、N,N-ジメチルヘキシルアミン、N,N-ジメチルオクチルアミン、N,N-ジメチルベンジルアミン、ピペリジン、N-メチルピペリジン、キヌクリジン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、トリイソプロパノールアミン、イミダゾール、イミダゾール誘導体、1,8-ジアザ-ビシクロ(5,4,0)ウンデカ-7-エン、1,5-ジアザ-ビシクロ(4,3,0)ノナ-5-エン1,4-ジアザ-ビシクロ(2,2,2)オクタン、ジアリルアミン等が挙げられる。これらの有機塩基化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機アミンの添加量は、例えばシリカ粒子の質量に対して、0.001~5質量%、0.01~1質量%にて行うことができる。また、有機アミンの添加により、混合溶液のpHを4.0~11.0に調整することができ、例えばpH7.0~10.0、また例えばpH8.0~10.0である。
Furthermore, the mixing step may include a step of adjusting the pH using an organic amine. This pH adjustment step may be carried out once or multiple times before, during, or after the mixing step.
The organic amine may be a secondary or tertiary amine, such as an alkylamine, an allylamine, an aralkylamine, an alicyclic amine, an alkanolamine, or a cyclic amine.
Specifically, diethylamine, triethylamine, diisopropylamine, tri-isopropylamine, di-n-propylamine, tri-n-propylamine, diisobutylamine, di-n-butylamine, tri-n-butylamine, dipentylamine, tripentylamine, di-2-ethylhexylamine, di-n-octylamine, tri-n-octylamine, N-ethyldiisopropylamine, dicyclohexylamine, N,N-dimethylbutylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethylamine, Examples of the organic base compounds include ethylbenzylamine, piperidine, N-methylpiperidine, quinuclidine, diethanolamine, triethanolamine, N-methyldiethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, N,N-dibutylethanolamine, triisopropanolamine, imidazole, imidazole derivatives, 1,8-diaza-bicyclo(5,4,0)undec-7-ene, 1,5-diaza-bicyclo(4,3,0)non-5-ene1,4-diaza-bicyclo(2,2,2)octane, and diallylamine. These organic base compounds may be used alone or in combination of two or more.
The amount of the organic amine added can be, for example, 0.001 to 5% by mass, or 0.01 to 1% by mass, based on the mass of the silica particles. The pH of the mixed solution can be adjusted to 4.0 to 11.0, for example, pH 7.0 to 10.0, or for example, pH 8.0 to 10.0, by adding the organic amine.
 また、混合工程後に得られた液、すなわち、表面修飾シリカ粒子を含有する液は、表面修飾シリカ分散液として、前述したコンポジット材料の製造に用いることができる。
 そして、コンポジット材料の製造しやすさの観点などから、前記混合工程により得られた混合液に含まれる、有機溶媒の少なくとも一部を、他の有機溶媒に置換することができる。他の有機溶媒としては、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類及び含窒素有機化合物類からなる群から選ばれる少なくとも一種又は二種以上を用いることができる。これら置換する溶媒は、混合液の有機溶媒と異なっていれば特に制限はなく、コンポジット化しようする有機樹脂材料又はポリシロキサンの溶解性の観点で選択してもよい。
 他の有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、γ-ブチルラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、シクロヘキサノンなどのケトン類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセタートなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル類、トルエン、キシレン、n-ペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類、そしてジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルホルムアミド、ジメチルアクリルアミド、アクリロイルモルホリン、ジエチルアクリルアミド等のアミド類やトリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ピリジン、ピコリン等のアミン類などの含窒素有機化合物類などが挙げられる。
 置換方法は公知の方法を用いることができ、例えば、ロータリーエバポレータ等による蒸発法、あるいは、限外ろ過膜を用いた限外ろ過法により他の有機溶媒に置換することができる。
Furthermore, the liquid obtained after the mixing step, i.e., the liquid containing the surface-modified silica particles, can be used as a surface-modified silica dispersion in the production of the above-mentioned composite material.
From the viewpoint of ease of production of the composite material, at least a part of the organic solvent contained in the mixed liquid obtained by the mixing step can be replaced with another organic solvent. As the other organic solvent, at least one or more selected from the group consisting of alcohols, ketones, ethers, esters, hydrocarbons, and nitrogen-containing organic compounds can be used. There is no particular restriction on the type of solvent to be replaced as long as it is different from the organic solvent in the mixed liquid, and it may be selected from the viewpoint of the solubility of the organic resin material or polysiloxane to be composited.
Examples of other organic solvents include alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol; ketones such as methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and cyclohexanone; ethers such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and propylene glycol methyl ether acetate; esters such as ethyl acetate and butyl acetate; hydrocarbons such as toluene, xylene, n-pentane, n-hexane, and cyclohexane; and nitrogen-containing organic compounds such as amides such as dimethylacetamide, N,N-dimethylformamide, N,N-dimethylformamide, dimethylacrylamide, acryloylmorpholine, and diethylacrylamide; and amines such as triethylamine, tributylamine, N,N-dimethylaniline, pyridine, and picoline.
The replacement method can be a known method, for example, replacement with another organic solvent can be performed by evaporation using a rotary evaporator or the like, or ultrafiltration using an ultrafiltration membrane.
 シリカ粒子の製造方法の具体例の一つとして、下記(A)工程乃至(C)工程を含む製造方法を挙げることができるが、これら方法(工程)には限定されない。
(A)工程:平均一次粒子径が5~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、下記式(1)で示される全シラノール基率が5%以下:
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
[式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
であるシリカ粒子を分散質とし炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
(B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基aを有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを40~100℃で0.1~10時間の加熱撹拌を行う工程、
(C)工程:(B)工程後のシリカゾルから前記アルコール溶媒を除去する工程。
 本製造方法における有機ケイ素化合物の添加量や、(B)工程、すなわち加水分解の条件等は前述のとおりとすることができる。
A specific example of the method for producing silica particles includes a production method including the following steps (A) to (C), but is not limited to these methods (steps).
Step (A): an average primary particle size is 5 to 500 nm, the ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) is 0.6 or less, and the total silanol group rate represented by the following formula (1) is 5% or less:
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
[In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
preparing a silica sol having silica particles as a dispersant and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a selected from the group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the group a and different from the substituent a1, and the silica sol obtained in step (A) at 40 to 100° C. for 0.1 to 10 hours;
Step (C): A step of removing the alcohol solvent from the silica sol after step (B).
The amount of organosilicon compound added in this production method and the conditions for step (B), i.e., hydrolysis, can be as described above.
 前記(A)工程で準備するシリカゾルは、0.1~5質量%の水分量、例えば3.0質量%以下の水分量を有するシリカゾルとすることができる。
 また(A)工程で準備するシリカゾルは、200~380℃、2MPa~22MPaで水熱合成された水性シリカゾルを、炭素原子数1~4のアルコールに溶媒置換したシリカゾルとすることができる。
The silica sol prepared in the step (A) may have a water content of 0.1 to 5% by mass, for example, 3.0% by mass or less.
The silica sol prepared in step (A) may be an aqueous silica sol obtained by hydrothermal synthesis at 200 to 380° C. and 2 to 22 MPa, and then solvent-substitution with an alcohol having 1 to 4 carbon atoms.
 前記(B)工程及び(C)工程のいずれか一方又は双方は、例えば減圧下で実施することができる。
 なお(B)工程の前、(B)工程の途中、また(B)工程後の何れか又は複数において、必要に応じて、前述の有機アミンを用いたpH調製する工程を含んでいてもよい。
Either or both of the steps (B) and (C) can be carried out, for example, under reduced pressure.
In addition, a step of adjusting the pH using the above-mentioned organic amine may be included, as necessary, at any one or more of the steps before, during, and after the step (B).
 また前記(B)工程において、少なくとも2種の表面修飾剤と(A)工程で得られたシリカゾルとを加熱撹拌する際、表面修飾剤は複数種を同時にシリカゾルと加熱撹拌してもよいし、複数種の一部の種と残りの種とを別々にシリカゾルと加熱撹拌してもよいし、あるいはまた個々にシリカゾルと加熱撹拌してもよい。例えば、より嵩高い置換基を有する有機ケイ素化合物から順にシリカゾルと加熱撹拌を実施することができる。 In addition, in the step (B) above, when at least two types of surface modifiers and the silica sol obtained in the step (A) are heated and stirred, multiple types of surface modifiers may be heated and stirred simultaneously with the silica sol, or some types of the multiple types and the remaining types may be heated and stirred separately with the silica sol, or each type may be heated and stirred individually with the silica sol. For example, the surface modifiers may be heated and stirred with the silica sol in the order starting with the organosilicon compound having the bulkier substituent.
 また、前記(B)工程後のシリカゾルは表面修飾シリカ分散液として、前述したコンポジット材料の製造に用いることができ、例えば後述する(D)工程によって溶媒置換してもよい。
 すなわち、表面修飾シリカ分散液の製造方法の具体例として、下記(A)工程及び(B)工程を含む製造方法、そして(A)工程、(B)工程に加えさらに(D)工程を含む製造方法を挙げることができるが、これら方法(工程)には限定されない。
(A)工程:平均一次粒子径5~500nmを有するシリカ粒子を分散質とし炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
(B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを、40~100℃で0.1~10時間の加熱撹拌を行う工程、及び
(D)(B)工程後のシリカゾルをアルコール類、ケトン類、炭化水素類、アミド類、エステル類、エーテル類又はアミン類から選ばれる少なくとも1種の溶媒に溶媒置換する工程。
 本製造方法におけるアルコール類、ケトン類、炭化水素類、アミド類及びアミン類(含窒素有機化合物類)、エステル類、エーテル類の具体例や溶媒の置換方法等は前述のとおりとすることができる。
Furthermore, the silica sol obtained after the step (B) can be used as a surface-modified silica dispersion in the production of the above-mentioned composite material, and may be subjected to solvent replacement, for example, by the step (D) described below.
Specifically, specific examples of the method for producing a surface-modified silica dispersion include a production method including the following steps (A) and (B), and a production method including step (D) in addition to steps (A) and (B), but are not limited to these methods (steps).
Step (A): preparing a silica sol containing silica particles having an average primary particle size of 5 to 500 nm as a dispersoid and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a1 selected from substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1, and the silica sol obtained in step (A) at 40 to 100°C for 0.1 to 10 hours; and (D) a step of solvent-substitution of the silica sol obtained in step (B) with at least one solvent selected from alcohols, ketones, hydrocarbons, amides, esters, ethers, or amines.
Specific examples of alcohols, ketones, hydrocarbons, amides, amines (nitrogen-containing organic compounds), esters, and ethers in this production method, as well as the method of replacing the solvent, can be as described above.
 以下、実施例および比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。 The present invention will be explained in more detail below with examples and comparative examples, but the present invention is not limited to the following examples.
 実施例、及び比較例で使用したシリカゾル並びに表面修飾剤は以下の通りである。シリカ粒子の特性を表1に示す。
[シリカゾル]
水分散シリカゾルa(日産化学(株)製、商品名:ST-OL、45nm、pH3、シリカ濃度20質量%)
水分散シリカゾルb(日産化学(株)製、商品名:ST-O、12nm、pH3、シリカ濃度20質量%)
水分散シリカゾルc(合成例1、80nm、pH3、シリカ濃度20質量%)
The silica sol and surface modifiers used in the examples and comparative examples are as follows. The properties of the silica particles are shown in Table 1.
[Silica sol]
Water-dispersed silica sol a (Nissan Chemical Industries, Ltd., product name: ST-OL, 45 nm, pH 3, silica concentration 20% by mass)
Water-dispersed silica sol b (Nissan Chemical Industries, Ltd., product name: ST-O, 12 nm, pH 3, silica concentration 20% by mass)
Water-dispersed silica sol c (Synthesis Example 1, 80 nm, pH 3, silica concentration 20% by mass)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[表面修飾剤(有機ケイ素化合物)]
DMMPS:ジメトキシメチルフェニルシラン(信越化学工業(株)製、商品名:LS-2720)
DTMS:デシルトリメトキシシラン(信越化学工業(株)製、商品名:KBM-3103C)
HMDS:ヘキサメチルジシロキサン(信越化学工業(株)製、商品名:KF-96L-0.65CS)
[Surface modifier (organosilicon compound)]
DMMPS: dimethoxymethylphenylsilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: LS-2720)
DTMS: decyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-3103C)
HMDS: hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF-96L-0.65CS)
 以下の方法に従い、上記水分散シリカゾル、実施例及び比較例で調製した表面修飾シリカ粒子の分散液、並びに該分散液製造工程中のシリカゾル及び分散液の物性を測定及び評価した。 The physical properties of the above water-dispersed silica sol, the dispersions of surface-modified silica particles prepared in the Examples and Comparative Examples, and the silica sol and dispersions during the dispersion manufacturing process were measured and evaluated according to the following methods.
[シリカ(SiO)濃度の測定]
 水分散シリカゾル、メタノール分散シリカゾル及び表面修飾シリカ粒子の分散液のシリカ濃度は、これらシリカゾル又は分散液を坩堝に取り、加熱により溶媒を除去した後、1000℃で焼成し、焼成残分を計量して算出した。
[Measurement of Silica (SiO 2 ) Concentration]
The silica concentration of the water-dispersed silica sol, the methanol-dispersed silica sol, and the dispersion of surface-modified silica particles was calculated by placing the silica sol or the dispersion in a crucible, heating to remove the solvent, calcining at 1000°C, and weighing the calcination residue.
[水分散シリカゾルのpH測定方法]
 水分散シリカゾルのpHは、pHメーター(東亞ディーケーケー(株)製、MM-43X)を用いて測定した。
[Method for measuring pH of water-dispersed silica sol]
The pH of the water-dispersed silica sol was measured using a pH meter (MM-43X, manufactured by DKK-Toa Corporation).
[有機溶媒分散シリカゾルのpH測定方法]
 メタノール分散シリカゾルのpHは、メタノール分散シリカゾルを含む対象サンプルとメタノールと純水を質量比で1:1:1にて混合した液をpHメーター東亞ディーケーケー(株)製、MM-43X)で測定した。本測定方法で測定したpHはpH(1+1+1)と表記した。
[Method for measuring pH of silica sol dispersed in organic solvent]
The pH of the methanol-dispersed silica sol was measured by mixing a target sample containing the methanol-dispersed silica sol with methanol and pure water in a mass ratio of 1:1:1 using a pH meter (MM-43X, manufactured by Toa DKK Corporation). The pH measured by this measurement method was expressed as pH (1+1+1).
[水分量]
 表面修飾シリカ粒子の分散液及びその製造工程中のシリカゾルに含まれる水分量は、カールフィッシャー水分計(京都電子工業(株)製、商品名:MKA-610)を用いてカールフィッシャー滴定法にて測定した。
[amount of water]
The water content in the dispersion of the surface-modified silica particles and in the silica sol during the production process thereof was measured by Karl Fischer titration using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Manufacturing Co., Ltd., product name: MKA-610).
[有機溶媒含有量]
 表面修飾シリカ粒子の分散液中の有機溶媒含有量は、ガスクロマトグラフィー((株)島津製作所、GC-2014s)にて求めた。
ガスクロマトグラフィー条件:
カラム:3mm×1mガラスカラム
充填剤:ポーラパックQ
カラム温度:130~230℃(昇温8℃/min)
キャリアー:N 40mL/min
検出器:FID
注入量:1μL
内部標準:アセトニトリルを採用した。
[Organic solvent content]
The content of the organic solvent in the dispersion of the surface-modified silica particles was determined by gas chromatography (Shimadzu Corporation, GC-2014s).
Gas chromatography conditions:
Column: 3 mm x 1 m glass column Packing material: Polapack Q
Column temperature: 130 to 230°C (heating rate: 8°C/min)
Carrier: N2 40mL/min
Detector: FID
Injection volume: 1 μL
The internal standard was acetonitrile.
[粘度の測定]
 表面処理シリカ粒子製造工程中の分散液の粘度はオストワルド粘度計(柴田科学(株)製)を用いて測定した。
[Viscosity measurement]
The viscosity of the dispersion during the surface-treated silica particle production process was measured using an Ostwald viscometer (manufactured by Shibata Scientific Co., Ltd.).
[比表面積の測定、並びに比表面積比及び平均一次粒子径]
〈水蒸気吸着法の比表面積(SH2O)の測定〉
 水分散シリカゾルにおけるシリカ粒子の水蒸気吸着法の比表面積(SH2O)は、水分散シリカゾル中の水溶性の陽イオン及び陰イオンを、陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)、陰イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIRA400J)、陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)の順で除去した後、該シリカゾルを290℃にて乾燥して測定試料とし、これを水蒸気吸着法の比表面積測定装置(ティー・エス・インスツルメンツ・ジャパン(株)製、Q5000SA)を用いて測定した。
[Measurement of specific surface area, specific surface area ratio and average primary particle size]
<Measurement of specific surface area (S H2O ) by water vapor adsorption method>
The specific surface area (S H2O ) of the silica particles in the water-dispersed silica sol by the water vapor adsorption method was measured by removing the water-soluble cations and anions in the water-dispersed silica sol using a cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B), anion exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IRA400J), and cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B) in that order, and then drying the silica sol at 290°C to prepare a measurement sample, which was then measured using a specific surface area measuring device by the water vapor adsorption method (manufactured by TS Instruments Japan, Ltd., Q5000SA).
〈窒素吸着法の比表面積(SN2)の測定〉
 水分散シリカゾルにおけるシリカ粒子の窒素吸着法の比表面積(SN2)は、水分散シリカゾル中の水溶性の陽イオンを陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)で除去した後、該シリカゾルを290℃にて乾燥して測定試料とし、これを窒素吸着法の比表面積測定装置 Monosorb(カンタクローム・インスツルメンツ・ジャパン合同会社製)を用いて測定した。
<Measurement of specific surface area (S N2 ) by nitrogen adsorption method>
The nitrogen adsorption specific surface area (S N2 ) of the silica particles in the water-dispersed silica sol was measured by removing the water-soluble cations in the water-dispersed silica sol with a cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B), drying the silica sol at 290°C to prepare a measurement sample, and using a nitrogen adsorption specific surface area measuring device, Monosorb (manufactured by Quantachrome Instruments Japan, LLC), to measure the specific surface area.
〈水蒸気吸着の比表面積と窒素吸着の比表面積の比(SH2O/SN2)〉
 上記測定で得られた水蒸気吸着法の比表面積と窒素吸着法の比表面積の値を用いて、比表面積比を下記式(3)より算出した。
 水蒸気/窒素吸着の比表面積比(SH2O/SN2)=水蒸気吸着法の比表面積/窒素吸着法の比表面積・・・式(3)
<Ratio of specific surface area for water vapor adsorption to specific surface area for nitrogen adsorption (S H2O /S N2 )>
Using the values of the specific surface area by the water vapor adsorption method and the specific surface area by the nitrogen adsorption method obtained in the above measurement, the specific surface area ratio was calculated according to the following formula (3).
Specific surface area ratio of water vapor/nitrogen adsorption (S H2O /S N2 )=specific surface area of water vapor adsorption method/specific surface area of nitrogen adsorption method (Equation (3))
〈平均一次粒子径〉
 平均一次粒子径は、上記の窒素吸着法で得られた比表面積SN2(m/g)から、下記式(4)を用い、球状粒子に換算して算出した。
 平均一次粒子径(nm)=2720/SN2(m/g)・・・式(4)
<Average primary particle size>
The average primary particle size was calculated from the specific surface area S N2 (m 2 /g) obtained by the nitrogen adsorption method described above, using the following formula (4) in terms of spherical particles.
Average primary particle diameter (nm)=2720/S N2 (m 2 /g) (4)
[シリカゾルまたはシリカゾルの乾燥粉末におけるNMRの測定及び全シラノール基率の算出]
〈NMR測定条件A:シリカゾルの29Si NMRスペクトル測定〉
 2mLの水分散シリカゾルに0.5mLDOを添加して測定試料とし、これを直径10mmのポリテトラフルオロエチレン(PTFE)製試料管に入れて測定した。500MHzの核磁気共鳴装置(機種名「ECA 500」、日本電子(株)製)を用い、直径10mmの29Siフリープローブを装着し、観測核を29Siとして、1次元NMRスペクトルを測定した。測定条件は、29Si共鳴周波数を99.36MHz、スペクトル幅を37.4kHz、X_Pulseを90°、Relaxation_Delayを120秒、測定温度を室温とした。データ解析は日本電子(株)ソフトウェア「Delta 5.3.1」を使用し、フーリエ変換後のスペクトルの各ピークについて、ガウス波形(Gauss Model)により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、波形分離解析を行った。波形分離後、ケミカルシフト-80ppmから-105ppm間に観測されたピークをQ2構造由来、-90ppmから-115ppm間に観測されるピークをQ3構造由来、-95ppmから-130ppm間に観測されるピークをQ4構造由来と同定した。
〈NMR測定条件B:シリカゾルの乾燥粉末の29Si NMRスペクトル測定〉
 シリカゾルを100℃真空乾燥機で乾燥させ、測定サンプルとした。500MHzの核磁気共鳴装置(機種名「AVANCE III 500」、Bruker社製)を用い、直径4.0mmのCP/MAS用プローブを装着し、観測核を29Siとし、DD/MAS法で測定した。測定条件は、29Si共鳴周波数を99.36MHz、29Si90°パルス幅を4.6μ秒、H共鳴周波数を500.13MHz、MAS回転数を10kHz、スペクトル幅を30kHz、測定温度を室温とした。データ解析はBruker社ソフトウェア「TopSpin 3.6.0」を使用し、フーリエ変換後のスペクトルの各ピークについて、ローレンツ波形とガウス波形の混合(Gauss/Lorentz Model)により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、波形分離解析を行った。波形分離後、ケミカルシフト-80ppmから-105ppm間に観測されたピークをQ2構造由来、-90ppmから-115ppm間に観測されるピークをQ3構造由来、-95ppmから-130ppm間に観測されるピークをQ4構造由来と同定した。
〈全シラノール基率〉
 水分散シリカゾル中のシリカ粒子の全シラノール基率は、上記29Si NMRスペクトル測定より得た各ピークの面積値より算出した。
 波形分離後の各ピーク(Q2、Q3、Q4)の面積値の合計(100%)に対する、各ピークの面積値の割合(%)を各構造の含有比率とし、下記式(1)より全シラノール基率を算出した。式中のQ2、Q3及びQ4は、NMR測定結果から得られる各構造の含有比率を示す。
全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4)・・・式(1)
[NMR Measurement of Silica Sol or Dry Powder of Silica Sol and Calculation of Total Silanol Group Ratio]
<NMR Measurement Condition A: 29Si NMR Spectrum Measurement of Silica Sol>
0.5 mL D 2 O was added to 2 mL of water-dispersed silica sol to prepare a measurement sample, which was then placed in a 10 mm diameter polytetrafluoroethylene (PTFE) sample tube for measurement. A 500 MHz nuclear magnetic resonance apparatus (model name "ECA 500", manufactured by JEOL Ltd.) was used, a 10 mm diameter 29 Si free probe was attached, and the observation nucleus was 29 Si to measure a one-dimensional NMR spectrum. The measurement conditions were 29 Si resonance frequency of 99.36 MHz, spectrum width of 37.4 kHz, X_Pulse of 90°, Relaxation_Delay of 120 seconds, and measurement temperature of room temperature. Data analysis was performed using JEOL Ltd. software "Delta 5.3.1", and waveform separation analysis was performed on each peak of the spectrum after Fourier transformation, with the center position, height, and half-width of the peak shape created by a Gaussian waveform (Gauss Model) as variable parameters. After waveform separation, the peaks observed between −80 ppm and −105 ppm in chemical shift were identified as coming from the Q2 structure, the peaks observed between −90 ppm and −115 ppm as coming from the Q3 structure, and the peaks observed between −95 ppm and −130 ppm as coming from the Q4 structure.
<NMR Measurement Condition B: 29Si NMR Spectrum Measurement of Dry Powder of Silica Sol>
The silica sol was dried in a vacuum dryer at 100° C. to obtain a measurement sample. A 500 MHz nuclear magnetic resonance apparatus (model name "AVANCE III 500", manufactured by Bruker) was used, a CP/MAS probe with a diameter of 4.0 mm was attached, the observation nucleus was 29Si, and the measurement was performed by the DD/MAS method. The measurement conditions were 29Si resonance frequency of 99.36 MHz, 29Si 90° pulse width of 4.6 μsec, 1H resonance frequency of 500.13 MHz, MAS rotation speed of 10 kHz, spectrum width of 30 kHz, and measurement temperature of room temperature. Data analysis was performed using Bruker's software "TopSpin 3.6.0", and waveform separation analysis was performed for each peak of the spectrum after Fourier transformation, using the center position, height, and half-width of the peak shape created by mixing Lorentzian and Gaussian waveforms (Gauss/Lorentz Model) as variable parameters. After waveform separation, the peak observed between chemical shifts of -80 ppm and -105 ppm was identified as originating from the Q2 structure, the peak observed between -90 ppm and -115 ppm was identified as originating from the Q3 structure, and the peak observed between -95 ppm and -130 ppm was identified as originating from the Q4 structure.
<Total silanol group ratio>
The total silanol group ratio of the silica particles in the water-dispersed silica sol was calculated from the area value of each peak obtained by the above 29 Si NMR spectrum measurement.
The ratio (%) of the area value of each peak to the sum (100%) of the area values of the peaks (Q2, Q3, Q4) after waveform separation was taken as the content ratio of each structure, and the total silanol group ratio was calculated from the following formula (1), where Q2, Q3, and Q4 represent the content ratio of each structure obtained from the NMR measurement results.
Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
〈シリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数〉
 以下の手順にて、シリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数を算出した。
(1)30ccの遠心分離管に表面修飾シリカ粒子の有機溶媒分散シリカゾル4mLを入れ、ヘキサンを20mL添加し、凝集による白濁、分離あるいはまた沈殿を生じさせた。
(2)遠心分離機にかけた後、未結合の表面修飾剤が溶解した上澄み液を除去した。
(3)アセトン4mLを添加して、遠心分離による沈殿物を再溶解させた後、ヘキサン20mLを添加した。
(4)再度(2)~(3)を行い、上澄み液を除去した。
(5)得られた混合物を真空乾燥後、得られた粉末を乳鉢で粉砕し、150℃2時間で乾燥させた。この乾燥粉末について、元素分析装置(パーキンエルマ-社製、機種名:元素分析装置2400II)を用いて炭素含有量を測定した。得られた炭素含有量と窒素吸着法の比表面積(SN2)からシリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数を定量した。
<Total number of carbon atoms per unit surface area (unit: nm 2 ) of silica particles>
The total number of carbon atoms per unit surface area (unit: nm 2 ) of the silica particles was calculated by the following procedure.
(1) 4 mL of an organic solvent dispersion silica sol of surface-modified silica particles was placed in a 30 cc centrifuge tube, and 20 mL of hexane was added to cause clouding due to aggregation, separation, or precipitation.
(2) After centrifuging, the supernatant in which the unbound surface modifier was dissolved was removed.
(3) 4 mL of acetone was added to redissolve the precipitate from the centrifugation, and then 20 mL of hexane was added.
(4) (2) to (3) were repeated, and the supernatant was removed.
(5) The mixture was dried in a vacuum, and the powder was pulverized in a mortar and dried at 150° C. for 2 hours. The carbon content of this dried powder was measured using an elemental analyzer (Perkin-Elmer, model name: Elemental Analyzer 2400II). The total number of carbon atoms per unit surface area (unit: nm 2 ) of the silica particles was quantified from the carbon content and the specific surface area (S N2 ) measured by the nitrogen adsorption method.
〈動的光散乱粒子径〉
 動的光散乱粒子径は、動的光散乱粒子径測定装置(Malvern Panalytical社製、商品名:Zetasizer Nano)を用いて測定した。光路長10mmのガラス製セルにシリカ粒子分散液を0.1g分取し、さらに該シリカ粒子分散液の分散媒と同一溶媒を添加して減衰機(Attenuator)が7のときのカウントレートが200~400kcpsとなるようにシリカ濃度が調製されたシリカ粒子分散液を得た。該調製されたシリカ粒子分散液を前記セルにセル底面から液面の高さが1cm程度になるよう調整し、減衰機7でシリカ粒子分散液の動的光散乱粒子径を測定した。
<Dynamic Light Scattering Particle Size>
The dynamic light scattering particle size was measured using a dynamic light scattering particle size measuring device (manufactured by Malvern Panalytical, product name: Zetasizer Nano). 0.1 g of the silica particle dispersion was dispensed into a glass cell with an optical path length of 10 mm, and the same solvent as the dispersion medium of the silica particle dispersion was further added to obtain a silica particle dispersion in which the silica concentration was adjusted so that the count rate when the attenuator was 7 was 200 to 400 kcps. The prepared silica particle dispersion was adjusted in the cell so that the height of the liquid surface from the bottom of the cell was about 1 cm, and the dynamic light scattering particle size of the silica particle dispersion was measured with the attenuator 7.
[誘電率および誘電正接の測定]
 測定周波数1GHz用空洞共振器治具(キーコム(株)製)を用いて、PTFE製のサンプルチューブ(長さ30mm、内径3mm)内に粉末サンプル(後述する実施例2-1~2-5、比較例2-1~2-4で得たシリカ粉末)を充填後、ベクトルネットワークアナライザ(商品名:N5227A、KEYSIGHT TECHNOLOGIES製)にて、測定サンプルの誘電率及び誘電正接を測定した。
[Measurement of dielectric constant and dielectric loss tangent]
Using a cavity resonator jig for measuring frequency 1 GHz (manufactured by Keycom Corporation), a powder sample (silica powder obtained in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-4 described later) was filled into a PTFE sample tube (length 30 mm, inner diameter 3 mm) using a cavity resonator jig for measuring frequency 1 GHz (manufactured by Keycom Corporation), and then the dielectric constant and dielectric loss tangent of the measurement sample were measured using a vector network analyzer (product name: N5227A, manufactured by KEYSIGHT TECHNOLOGIES).
[疎水化度の測定]
 疎水化度は、200mLのビーカーに50mLの純水と0.2gの粉末サンプル(後述実施例3-1~3-5、比較例3-1~3-4で得たシリカ粉末)とを入れ、撹拌しながらメタノールを滴下し、水面に浮かんでいた試料が完全に沈降するまでのメタノールの滴下量(VMeOH、単位:mL)を測定し、下記式から算出した(参考:非特許文献1)。
    疎水化度(%)=[VMeOH/(VMeOH+50)]×100・・・式(2)
〈非特許文献1〉
室田青道、坪川紀夫、乾式系における超微粒子シリカとアルキルアルコキシシランとの 反応性に及ぼすアルキル鎖長の影響、Journal of the Japan Society of Colour Material 74 (4)、178-184、2001.
[Measurement of hydrophobicity]
The degree of hydrophobicity was calculated from the following formula (Reference: Non-Patent Document 1) by placing 50 mL of pure water and 0.2 g of a powder sample (silica powder obtained in Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-4 described later) in a 200 mL beaker, dropping methanol into it with stirring, and measuring the amount of methanol dropped until the sample floating on the water surface completely sank (V MeOH , unit: mL).
Hydrophobicity (%) = [V MeOH / (V MeOH + 50)] × 100 Formula (2)
Non-Patent Document 1:
A. Murota, N. Tsubokawa, Effect of alkyl chain length on the reactivity of ultrafine silica particles with alkylalkoxysilanes in a dry system, Journal of the Japan Society of Colour Material 74 (4), 178-184, 2001.
[ヘキサン相溶性試験]
 サンプルとヘキサンとの相溶性は、20mLのガラス瓶にサンプル(後述するように、実施例1-1、1-3及び比較例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液)1mLとヘキサン1mLとを入れ、振とう後に外観を確認した。振とう後、サンプルとヘキサンとの混合溶液が、ゲル化または凝集物が生じた場合を相溶性NGとし、ゲル化または凝集物が生じていない場合を相溶性OKとした。
[Hexane compatibility test]
The compatibility of the sample with hexane was evaluated by placing 1 mL of the sample (a methyl ethyl ketone dispersion of surface-modified silica particles obtained in Examples 1-1 and 1-3 and Comparative Example 1-1, as described below) and 1 mL of hexane in a 20 mL glass bottle, shaking the bottle, and then checking the appearance. If the mixed solution of the sample and hexane after shaking showed gelation or aggregates, the compatibility was judged as NG, and if no gelation or aggregates were found, the compatibility was judged as OK.
(合成例1)水分散シリカゾルcの合成
 原料の水溶性アルカリ金属ケイ酸塩として、JIS3号のケイ酸ナトリウム水溶液を用意した。このケイ酸ナトリウム水溶液の水以外の主な成分において、SiO濃度は28.8質量%、NaO濃度は9.47質量%であった。
 上記ケイ酸ナトリウム水溶液を純水にて希釈し、SiO濃度が4質量%のケイ酸ナトリウム水溶液(a)を調製した。
 次いで、上記ケイ酸ナトリウム水溶液(a)を、水素型強酸性陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)が充填されたカラムに1時間当たりの空間速度4.5で通液し、陽イオンを除去することで活性珪酸水溶液を作製した。
 得られた活性珪酸水溶液に10質量%の水酸化ナトリウム水溶液を添加してpH8.5~9.5に調整することで、安定化された活性珪酸水溶液を得た。得られた安定化された活性珪酸水溶液のSiO濃度は3.2質量%であった。
 内容積3LのSUS製耐圧容器に撹拌機、加熱装置等が具備された反応装置に、上記で得られた安定化された活性珪酸水溶液2,400gを入れ、加熱によって容器内液温を130~150℃に調節した。容器内の温度が130~150℃に達した後、容器内の温度を130~150℃に保ったまま、2時間30分加熱することで10~15nmの平均一次粒子径を有するコロイド状シリカ分散液を得た。
 得られたコロイド状シリカ分散液を、分画分子量20万のポリサルホン製の限外ろ過膜(株式会社アドバンテック社製、商品名:Q2000 150E)が装着された市販の限外ろ過装置を用いて、室温でSiO濃度33質量%となるまで濃縮することで、SiO濃度が調整された前駆体としてのコロイド状シリカ分散液を得た。
 上記SiO濃度が調整された前駆体としてのコロイド状シリカ分散液を、陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)が充填されたカラムに1時間当たりの空間速度10で通液し陽イオンを除去し、得られた分散液に10質量%の水酸化ナトリウム水溶液を添加してpH7~8に調整した。
 上記で得られたSiO濃度及びpHが調整された前駆体としてのコロイド状シリカ分散液を、内容積3LのSUS製耐圧容器に撹拌機、加熱装置等が具備された反応装置に投入し、加熱によって容器内液温を250~260℃に調節した。容器内の温度が250~260℃に達した後、容器内の温度を250~260℃に保ったまま、9時間20分加熱した。
 上記で得られたコロイド状シリカ分散液50gを100mlのポリ容器に仕込み、陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)を25ml加え、マグネチックスターラーで撹拌しながら30分間保持し、陽イオンを除去した。次いで、得られたコロイド状シリカ分散液50gを100mlのポリ容器に仕込み、陰イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIRA400J)を25ml加え、マグネチックスターラーで撹拌しながら30分間保持し、陰イオンを除去した。
 次いで、得られたコロイド状シリカ分散液50gを100mlのポリ容器の仕込み、陽イオン交換樹脂(ダウ・ケミカル社製、商品名:アンバーライトIR-120B)を25ml加え、マグネチックスターラーで撹拌しながら30分間保持し、陽イオンを除去した。
 上記陽イオン・陰イオンを除去したコロイド状シリカ分散液に純水を加え、シリカ濃度が20質量%になるように調整し、水分散シリカゾルcとして得た。
(Synthesis Example 1) Synthesis of Water-Dispersed Silica Sol c As a raw material water-soluble alkali metal silicate, a sodium silicate aqueous solution of JIS No. 3 was prepared. In the main components other than water of this sodium silicate aqueous solution, the SiO2 concentration was 28.8 mass% and the Na2O concentration was 9.47 mass%.
The above sodium silicate aqueous solution was diluted with pure water to prepare a sodium silicate aqueous solution (a) having a SiO2 concentration of 4 mass%.
Next, the above-mentioned aqueous sodium silicate solution (a) was passed through a column packed with a hydrogen-type strongly acidic cation exchange resin (manufactured by The Dow Chemical Company, trade name: Amberlite IR-120B) at a space velocity of 4.5 per hour to remove cations, thereby preparing an aqueous activated silicic acid solution.
The obtained active silicic acid aqueous solution was adjusted to pH 8.5 to 9.5 by adding 10% by mass of sodium hydroxide aqueous solution to obtain a stabilized active silicic acid aqueous solution. The SiO2 concentration of the obtained stabilized active silicic acid aqueous solution was 3.2% by mass.
2,400 g of the stabilized activated silicic acid aqueous solution obtained above was placed in a reaction apparatus comprising a 3 L SUS pressure vessel equipped with a stirrer, a heater, etc., and the liquid temperature in the vessel was adjusted to 130 to 150° C. by heating. After the temperature in the vessel reached 130 to 150° C., the vessel was heated for 2 hours and 30 minutes while maintaining the temperature in the vessel at 130 to 150° C., thereby obtaining a colloidal silica dispersion having an average primary particle size of 10 to 15 nm.
The obtained colloidal silica dispersion was concentrated to a SiO2 concentration of 33 mass% at room temperature using a commercially available ultrafiltration device equipped with a polysulfone ultrafiltration membrane with a molecular weight cutoff of 200,000 (manufactured by Advantec Co., Ltd., product name: Q2000 150E), thereby obtaining a colloidal silica dispersion as a precursor with an adjusted SiO2 concentration.
The above-mentioned colloidal silica dispersion as a precursor with the adjusted SiO2 concentration was passed through a column packed with a cation exchange resin (manufactured by The Dow Chemical Company, product name: Amberlite IR-120B) at a space velocity of 10 per hour to remove cations, and a 10% by mass aqueous solution of sodium hydroxide was added to the obtained dispersion to adjust the pH to 7 to 8.
The colloidal silica dispersion as a precursor with the SiO2 concentration and pH adjusted obtained above was placed in a reaction apparatus equipped with a stirrer, a heater, etc., in a 3 L SUS pressure-resistant container, and the liquid temperature in the container was adjusted to 250 to 260° C. by heating. After the temperature in the container reached 250 to 260° C., the container was heated for 9 hours and 20 minutes while maintaining the temperature in the container at 250 to 260° C.
50 g of the colloidal silica dispersion obtained above was placed in a 100 ml plastic container, 25 ml of a cation exchange resin (manufactured by Dow Chemical Company, product name: Amberlite IR-120B) was added, and the mixture was held for 30 minutes while stirring with a magnetic stirrer to remove cations. Next, 50 g of the colloidal silica dispersion obtained was placed in a 100 ml plastic container, 25 ml of anion exchange resin (manufactured by Dow Chemical Company, product name: Amberlite IRA400J) was added, and the mixture was held for 30 minutes while stirring with a magnetic stirrer to remove anions.
Next, 50 g of the obtained colloidal silica dispersion was placed in a 100 ml plastic container, and 25 ml of a cation exchange resin (manufactured by The Dow Chemical Company, trade name: Amberlite IR-120B) was added, and the mixture was held for 30 minutes while stirring with a magnetic stirrer to remove cations.
Pure water was added to the colloidal silica dispersion from which the cations and anions had been removed, and the silica concentration was adjusted to 20% by mass, to obtain water-dispersed silica sol c.
[実施例1-1]
(a)工程:水分散シリカゾルa 2,500gを撹拌機、コンデンサー、温度計及び注入口2個を備えた内容積3Lのガラス製反応器に仕込み、加温して該シリカゾルを沸騰させた。反応器内のシリカゾルを沸騰させたままの状態で、別のボイラーで発生させたメタノールの蒸気を反応器内のシリカゾル中に連続的に吹き込み、分散媒である水をメタノールに置換した。メタノール分散液の水分量が3.0質量%以下になったところで置換を終了し、メタノール分散シリカゾルを1,250g得た。
 得られたメタノール分散シリカゾルは、シリカ濃度40.5質量%、水分量1.5質量%、粘度2.5mPa・sであった。
[Example 1-1]
Step (a): 2,500 g of water-dispersed silica sol a was charged into a 3 L glass reactor equipped with a stirrer, a condenser, a thermometer and two inlets, and the silica sol was boiled by heating. While the silica sol in the reactor was boiling, methanol steam generated in another boiler was continuously blown into the silica sol in the reactor, replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass% or less, the replacement was terminated, and 1,250 g of methanol-dispersed silica sol was obtained.
The resulting methanol-dispersed silica sol had a silica concentration of 40.5% by mass, a water content of 1.5% by mass, and a viscosity of 2.5 mPa·s.
(b)工程:得られたメタノール分散シリカゾル1,000gを2リットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、メチルエチルケトン(MEK)を150g、さらに窒素吸着法により求められるシリカ粒子の表面積1nm当たり3個になる量にてDMMPSを添加し、60℃に加熱して3時間保持した。その後、さらにシリカ粒子の表面積1nmあたり5個となる量のHMDSを添加し、60℃に加熱して3時間保持した。その後、pH(1+1+1)が8.0~10.0になるようにジイソプロピルアミンを添加し、60℃に加熱して1時間保持し、表面修飾シリカ粒子のメタノール/MEK分散液を作製した。 (b) step: 1,000 g of the obtained methanol-dispersed silica sol was placed in a 2-liter eggplant-shaped flask, and while stirring with a magnetic stirrer, 150 g of methyl ethyl ketone (MEK) and DMMPS were added in an amount that would result in 3 particles per 1 nm2 of the surface area of the silica particles as determined by the nitrogen adsorption method, and the mixture was heated to 60°C and held for 3 hours. Thereafter, HMDS was added in an amount that would result in 5 particles per 1 nm2 of the surface area of the silica particles, and the mixture was heated to 60°C and held for 3 hours. Thereafter, diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
(c)工程:その後、表面修飾シリカ粒子のメタノール/MEK分散液が入ったナス型フラスコをロータリーエバポレータにセットし、浴温80℃、550~350Torrの減圧下で、メチルエチルケトンを供給しながら蒸留を行い、分散媒をメチルエチルケトンに置換することで、表面修飾シリカ粒子のメチルエチルケトン分散液を得た。
 得られた表面修飾シリカ粒子のメチルエチルケトン分散液は、シリカ濃度42.7質量%、水分量0.1質量%以下、メタノール量0.1質量%以下、全シラノール率1.7%(Q2:0%、Q3:7.0%、Q4:93.0%、上記メチルエチルケトン分散液を100℃真空乾燥機で乾燥させ、測定サンプルとした以外は前述のNMR測定条件Bに示す手順にて測定した29Si NMRスペクトルから算出)、表面修飾シリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数の割合が10個であった。
Step (c): Thereafter, the recovery flask containing the methanol/MEK dispersion of the surface-modified silica particles was set in a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80° C. and a reduced pressure of 550 to 350 Torr. The dispersion medium was replaced with methyl ethyl ketone, thereby obtaining a methyl ethyl ketone dispersion of the surface-modified silica particles.
The obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 42.7% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a total silanol ratio of 1.7% (Q2: 0%, Q3: 7.0%, Q4: 93.0%, calculated from the 29Si NMR spectrum measured using the procedure shown in the above-mentioned NMR measurement condition B, except that the above methyl ethyl ketone dispersion was dried in a vacuum dryer at 100 °C to prepare a measurement sample), and the ratio of the total number of carbon atoms per unit surface area (unit: nm2 ) of the surface-modified silica particles was 10.
[実施例1-2]
 実施例1-1の(b)工程におけるDMMPSの代わりに、シリカゾル中に含まれるシリカ粒子の表面積1nm当たりDTMSを1.0個となるように添加し、同様に60℃で3時間保持したこと以外は、実施例1-1の(a)~(c)工程と同様に操作を実施し、メタノール分散シリカゾル、表面修飾シリカ粒子のメタノール/MEK分散液、及び表面修飾シリカ粒子のメチルエチルケトン分散液を調製した。
[Example 1-2]
Instead of DMMPS in step (b) of Example 1-1, DTMS was added so that the amount of DTMS was 1.0 particle per nm2 of the surface area of the silica particles contained in the silica sol, and the mixture was similarly maintained at 60° C. for 3 hours. Except for this, operations were carried out in the same manner as in steps (a) to (c) of Example 1-1 to prepare a methanol-dispersed silica sol, a methanol/MEK dispersion of surface-modified silica particles, and a methyl ethyl ketone dispersion of surface-modified silica particles.
[実施例1-3]
 実施例1-1の(b)工程におけるDMMPSを添加した後、追加でシリカゾル中に含まれるシリカ粒子の表面積1nm当たりDTMSを1.0個となるように添加して60℃で3時間保持し、その後HMDSを添加したこと以外は、実施例1-1の(a)~(c)工程と同様に操作を実施し、メタノール分散シリカゾル、表面修飾シリカ粒子のメタノール/MEK分散液、及び表面修飾シリカ粒子のメチルエチルケトン分散液を調製した。
[Examples 1-3]
A methanol-dispersed silica sol, a methanol/MEK dispersion of surface-modified silica particles, and a methyl ethyl ketone dispersion of surface-modified silica particles were prepared by carrying out the same operations as in steps (a) to (c) of Example 1-1 , except that after the addition of DMMPS in step (b) of Example 1-1, DTMS was additionally added so that the amount of DTMS was 1.0 particle per nm2 of the surface area of the silica particles contained in the silica sol, the mixture was maintained at 60° C. for 3 hours, and then HMDS was added.
[実施例1-4]
 合成例1で調製した水分散シリカゾルc 660gをメタノールで1,000gに希釈し、これを2Lのナス型フラスコ付きエバポレーターに投入して、次いでメタノールを徐々に添加しながら120℃580Torrで水を留去することにより、分散媒である水をメタノールに置換した。メタノール分散液の水分量が3.0質量%以下になったところで置換を終了し、メタノール分散シリカゾルを1,000g得た。
 得られたメタノール分散シリカゾルは、シリカ濃度13.2質量%、水分量1.6質量%、粘度0.9mPa・sであった。
 得られたメタノール分散シリカゾル20gを100ミリリットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、メチルエチルケトン(MEK)を3.0g、さらに窒素吸着法により求められるシリカ粒子の表面積1nm当たり3個になる量にてDTMSを添加し、60℃に加熱して3時間保持した。その後、さらにシリカ粒子の表面積1nmあたり5個となる量のHMDSを添加し、60℃に加熱して3時間保持した。その後、pH(1+1+1)が8.0~10.0になるようにジイソプロピルアミンを添加し、60℃に加熱して1時間保持し、表面修飾シリカ粒子のメタノール/MEK分散液を作製した。
 次いで、表面修飾シリカ粒子のメタノール/MEK分散液が入ったナス型フラスコをロータリーエバポレータにセットし、浴温80℃、550~350Torrの減圧下で、メチルエチルケトンを供給しながら蒸留を行い、分散媒をメチルエチルケトンに置換することで、表面修飾シリカ粒子のメチルエチルケトン分散液を得た。
 得られた表面修飾シリカ粒子のメチルエチルケトン分散液は、シリカ濃度10.1質量%、水分量0.1質量%以下、メタノール量0.1質量%以下であった。
[Examples 1 to 4]
660 g of the water-dispersed silica sol c prepared in Synthesis Example 1 was diluted with methanol to 1,000 g, and this was placed in a 2 L eggplant-shaped flask-equipped evaporator, and then methanol was gradually added while distilling off water at 120° C. and 580 Torr, thereby replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass % or less, the replacement was terminated, and 1,000 g of methanol-dispersed silica sol was obtained.
The resulting methanol-dispersed silica sol had a silica concentration of 13.2% by mass, a water content of 1.6% by mass, and a viscosity of 0.9 mPa·s.
20 g of the obtained methanol-dispersed silica sol was placed in a 100-mL eggplant-shaped flask, and while stirring with a magnetic stirrer, 3.0 g of methyl ethyl ketone (MEK) and DTMS were added in an amount that would result in 3 particles per 1 nm2 of the surface area of the silica particles as determined by the nitrogen adsorption method, and the mixture was heated to 60°C and held for 3 hours. Then, HMDS was added in an amount that would result in 5 particles per 1 nm2 of the surface area of the silica particles, and the mixture was heated to 60°C and held for 3 hours. Then, diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
Next, the recovery flask containing the methanol/MEK dispersion of the surface-modified silica particles was set in a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80°C and a reduced pressure of 550 to 350 Torr, replacing the dispersion medium with methyl ethyl ketone to obtain a methyl ethyl ketone dispersion of the surface-modified silica particles.
The obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 10.1% by mass, a water content of 0.1% by mass or less, and a methanol content of 0.1% by mass or less.
[実施例1-5]
 合成例1で調製した水分散シリカゾルc 660gをメタノールで1,000gに希釈し、これを2Lのナス型フラスコ付きエバポレーターに投入して、次いでメタノールを徐々に添加しながら120℃580Torrで水を留去することにより、分散媒である水をメタノールに置換した。メタノール分散液の水分量が3.0質量%以下になったところで置換を終了し、メタノール分散シリカゾルを1,000g得た。
 得られたメタノール分散シリカゾルは、シリカ濃度13.2質量%、水分量1.6質量%、粘度0.9mPa・sであった。
 得られたメタノール分散シリカゾル20gを100ミリリットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、メチルエチルケトン(MEK)を3.0g、さらに窒素吸着法により求められるシリカ粒子の表面積1nm当たり6個になる量にてDMMPSを添加し、60℃に加熱して3時間保持した。その後、さらにシリカ粒子の表面積1nmあたり5個となる量のHMDSを添加し、60℃に加熱して3時間保持した。その後、pH(1+1+1)が8.0~10.0になるようにジイソプロピルアミンを添加し、60℃に加熱して1時間保持し、表面修飾シリカ粒子のメタノール/MEK分散液を作製した。
 次いで、表面修飾シリカ粒子のメタノール/MEK分散液が入ったナス型フラスコをロータリーエバポレータにセットし、浴温80℃、550~350Torrの減圧下で、メチルエチルケトンを供給しながら蒸留を行い、分散媒をメチルエチルケトンに置換することで、表面修飾シリカ粒子のメチルエチルケトン分散液を得た。
 得られた表面修飾シリカ粒子のメチルエチルケトン分散液は、シリカ濃度10.3質量%、水分量0.1質量%以下、メタノール量0.1質量%以下であった。
[Examples 1 to 5]
660 g of the water-dispersed silica sol c prepared in Synthesis Example 1 was diluted with methanol to 1,000 g, and this was placed in a 2 L eggplant-shaped flask-equipped evaporator, and then water was distilled off at 120° C. and 580 Torr while gradually adding methanol, thereby replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass % or less, the replacement was stopped, and 1,000 g of methanol-dispersed silica sol was obtained.
The resulting methanol-dispersed silica sol had a silica concentration of 13.2% by mass, a water content of 1.6% by mass, and a viscosity of 0.9 mPa·s.
20 g of the obtained methanol-dispersed silica sol was placed in a 100-mL eggplant-shaped flask, and while stirring with a magnetic stirrer, 3.0 g of methyl ethyl ketone (MEK) and DMMPS were added in an amount that would result in 6 particles per 1 nm2 of the surface area of the silica particles as determined by the nitrogen adsorption method, and the mixture was heated to 60°C and held for 3 hours. Then, HMDS was added in an amount that would result in 5 particles per 1 nm2 of the surface area of the silica particles, and the mixture was heated to 60°C and held for 3 hours. Then, diisopropylamine was added so that the pH (1+1+1) was 8.0 to 10.0, and the mixture was heated to 60°C and held for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
Next, the recovery flask containing the methanol/MEK dispersion of the surface-modified silica particles was set in a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80°C and a reduced pressure of 550 to 350 Torr, replacing the dispersion medium with methyl ethyl ketone to obtain a methyl ethyl ketone dispersion of the surface-modified silica particles.
The obtained methyl ethyl ketone dispersion of the surface-modified silica particles had a silica concentration of 10.3% by mass, a water content of 0.1% by mass or less, and a methanol content of 0.1% by mass or less.
[比較例1-1]
 実施例1-1の(a)工程で得られたメタノール分散シリカゾル1,000gを2リットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、メチルエチルケトンを150g、窒素吸着法により求められるシリカ粒子の表面積1nm当たり3個になる量にてDMMPSを添加し、60℃に加熱して3時間保持し、その後、pH(1+1+1)が8.0~10.0になるようにジイソプロピルアミンを添加し、60℃に加熱して1時間保持し、表面修飾シリカ粒子のメタノール/MEK分散液を作製した。
 その後、実施例1-1の(c)工程と同様に操作を実施し、表面修飾シリカ粒子のメチルエチルケトン分散液を調製した。
[Comparative Example 1-1]
1,000 g of the methanol-dispersed silica sol obtained in step (a) of Example 1-1 was placed in a 2-liter eggplant-shaped flask, and while stirring with a magnetic stirrer, 150 g of methyl ethyl ketone and an amount of DMMPS such that the number of particles becomes 3 per 1 nm2 of the surface area of the silica particles determined by a nitrogen adsorption method were added, and the mixture was heated to 60° C. and maintained for 3 hours. Thereafter, diisopropylamine was added so that the pH (1+1+1) became 8.0 to 10.0, and the mixture was heated to 60° C. and maintained for 1 hour to prepare a methanol/MEK dispersion of surface-modified silica particles.
Thereafter, the same operation as in step (c) of Example 1-1 was carried out to prepare a methyl ethyl ketone dispersion of surface-modified silica particles.
[比較例1-2]
 比較例1-1におけるDMMPSの代わりに、シリカゾル中に含まれるシリカ粒子の表面積1nm当たりHMDSを5個添加したこと以外は、比較例1-1と同様に操作を実施し、表面修飾シリカ粒子のメチルエチルケトン分散液を調製した。
[Comparative Example 1-2]
A methyl ethyl ketone dispersion of surface-modified silica particles was prepared by carrying out the same operation as in Comparative Example 1-1, except that 5 particles of HMDS per 1 nm2 of the surface area of the silica particles contained in the silica sol were added instead of DMMPS in Comparative Example 1-1.
[比較例1-3]
 水分散シリカゾルb 1,525gを2Lのナス型フラスコ付きエバポレーターに投入して、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、分散媒である水をメタノールに置換した。メタノール分散液の水分量が3.0質量%以下になったところで置換を終了し、メタノール分散シリカゾルを1,000g得た。
 得られたメタノール分散シリカゾルは、シリカ濃度30.5質量%、水分量1.7質量%、粘度1.6mPa・sであった。
 更に、実施例1-1の(b)~(c)工程と同様に操作を実施し、表面修飾シリカ粒子のメタノール分散液、そして表面修飾シリカ粒子のメチルエチルケトン分散液を調製した。
[Comparative Example 1-3]
1,525 g of water-dispersed silica sol b was put into a 2 L eggplant-shaped flask-equipped evaporator, and then methanol was gradually added while distilling off water at 600 Torr, thereby replacing the water, which was the dispersion medium, with methanol. When the water content of the methanol dispersion became 3.0 mass% or less, the replacement was stopped, and 1,000 g of methanol-dispersed silica sol was obtained.
The resulting methanol-dispersed silica sol had a silica concentration of 30.5% by mass, a water content of 1.7% by mass, and a viscosity of 1.6 mPa·s.
Furthermore, operations similar to those in steps (b) and (c) of Example 1-1 were carried out to prepare a methanol dispersion of surface-modified silica particles and a methyl ethyl ketone dispersion of surface-modified silica particles.
[比較例1-4]
 比較例1-4として水分散シリカゾルbを採用した。
[Comparative Examples 1 to 4]
As Comparative Example 1-4, water-dispersed silica sol b was used.
[実施例2-1]
 実施例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液を100℃真空乾燥機で乾燥し、得られたシリカゲルを乳鉢で粉砕した後、更に150℃で1時間乾燥させてシリカ粉末を作製した。
 得られたシリカ粉末について、23℃、周波数1GHzにおけるシリカ粉末の誘電率、及び誘電正接を測定した。表面修飾シリカ粒子の誘電特性を表2に示す。
[Example 2-1]
The methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was dried in a vacuum dryer at 100° C., and the obtained silica gel was pulverized in a mortar and further dried at 150° C. for 1 hour to prepare silica powder.
The dielectric constant and dielectric loss tangent of the obtained silica powder were measured at 23° C. and a frequency of 1 GHz. The dielectric properties of the surface-modified silica particles are shown in Table 2.
[実施例2-2~実施例2-5、比較例2-1~比較例2-4]
 実施例1-2~実施例1-5、比較例1-1~比較例1-3で得られた表面修飾シリカ粒子のメチルエチルケトン分散液及び比較例1-4の水分散シリカゾルbについて、実施例2-1と同様にシリカ粉末を作製し、誘電率及び誘電正接を測定した。表面修飾シリカ粒子の誘電特性を表2に示す。
[Examples 2-2 to 2-5, Comparative Examples 2-1 to 2-4]
For the methyl ethyl ketone dispersions of the surface-modified silica particles obtained in Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-3 and the water-dispersed silica sol b in Comparative Example 1-4, silica powders were prepared in the same manner as in Example 2-1, and the dielectric constant and dielectric loss tangent were measured. The dielectric properties of the surface-modified silica particles are shown in Table 2.
[実施例3-1]
 実施例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液を100℃真空乾燥機で乾燥し、シリカ粉末を作製した。
 得られたシリカ粉末について、疎水化度を測定した。表面修飾シリカ粒子の疎水化度を表2に示す。
[Example 3-1]
The methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was dried in a vacuum dryer at 100° C. to prepare silica powder.
The hydrophobicity of the obtained silica powder was measured. The hydrophobicity of the surface-modified silica particles is shown in Table 2.
[実施例3-2~実施例3-5、比較例3-1~比較例3-4]
 実施例1-2~実施例1-5、比較例1-1~比較例1-3で得られた表面修飾シリカ粒子のメチルエチルケトン分散液及び比較例1-4の水分散シリカゾルbについて、実施例3-1と同様にシリカ粉末を作製し、疎水化度を測定した。表面修飾シリカ粒子の疎水化度を表2に示す。
[Examples 3-2 to 3-5, Comparative Examples 3-1 to 3-4]
For the methyl ethyl ketone dispersions of the surface-modified silica particles obtained in Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-3 and the water-dispersed silica sol b in Comparative Example 1-4, silica powders were prepared in the same manner as in Example 3-1, and the hydrophobicity was measured. The hydrophobicity of the surface-modified silica particles is shown in Table 2.
[実施例4-1]
 実施例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液について、表面修飾シリカ粒子のメチルエチルケトン分散液のヘキサン相溶性を確認した。表面修飾シリカ粒子のヘキサン相溶性を表2に示す。
[Example 4-1]
The hexane compatibility of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was confirmed. The hexane compatibility of the surface-modified silica particles is shown in Table 2.
[実施例4-2、比較例4-1]
 実施例1-3及び比較例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液について、表面修飾シリカ粒子のメチルエチルケトン分散液のヘキサン相溶性を確認した。表面修飾シリカ粒子のヘキサン相溶性を表2に示す。
[Example 4-2, Comparative Example 4-1]
The hexane compatibility of the methyl ethyl ketone dispersions of the surface-modified silica particles obtained in Example 1-3 and Comparative Example 1-1 was confirmed. The hexane compatibility of the surface-modified silica particles is shown in Table 2.
[実施例5-1]
 実施例1-1で得られた表面修飾シリカ粒子について、表面修飾シリカ粒子と有機樹脂材料(マレイミド樹脂)の相溶性を確認した。実施例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液50gを300ミリリットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、低粘度液状マレイミド樹脂(DMI社製、マレイミド終端化ポリイミド樹脂 商品名:BMI-689、1000~2000cP(25℃))20gを加えた。その後、得られた表面修飾シリカ粒子のメチルエチルケトン分散液とマレイミド樹脂との混合液が入ったナス型フラスコをロータリーエバポレータにセットし、浴温80℃、400~30Torrの減圧下で蒸留を行い、分散媒をメチルエチルケトンからマレイミド樹脂に置換することで、表面修飾シリカ粒子のマレイミド樹脂分散液を得た。
 得られた表面修飾シリカ粒子のマレイミド樹脂分散液は、シリカ濃度30.4質量%、水分量0.1質量%以下、メタノール量0.1質量%以下、メチルエチルケトン量0.1質量%以下、粘度:6000~7000cP(B型粘度計、温度25℃)、動的光散乱法による平均分散粒子径(以下、動的光散乱法粒子径)79.2nm、であり外観は黄色透明であった。更に、得られた表面修飾シリカ粒子のマレイミド樹脂分散液は、室温1週間静置後においても外観変化なく、析出沈降物も生じなかった。
 更に、得られた表面修飾シリカ粒子のマレイミド樹脂分散液をアセトンで脱脂したガラス基板に手塗りのバーコーター(gap:25μm)で塗布し、窒素雰囲気下の下、100℃に加熱したホットプレート上で30分間焼成し、更にホットプレートの温度を230℃に昇温後、120分間焼成することで、表面修飾シリカ粒子とマレイミド樹脂とを含むコンポジット材料の硬化膜(図1(B)参照)を得た。得られた硬化膜は黄色透明であり、ガラス基板とのはじきがみられなかった(なお図1において、樹脂分散液及び後述の低粘度液状マレイミド樹脂を塗布した部分の周辺を参考までに黒枠にて示す)。尚、膜厚は定圧厚さ測定器(株式会社テクロック製、型式:PG-01A)で測定し、19μmであった。
 一方、表面修飾シリカ粒子を使用しない例として、上記低粘度液状マレイミド樹脂(商品名:BMI-689)のみを用い、これをアセトンで脱脂したガラス基板に手塗りのバーコーター(gap:25μm)で塗布し、窒素雰囲気下の下、100℃に加熱したホットプレート上で30分間焼成し、更にホットプレートの温度を230℃に昇温後、120分間焼成することで、マレイミド樹脂のみの硬化膜(図1(A)参照)を得た。得られた硬化膜は黄色透明であったが、ガラス基板とのはじきがみられた。
[Example 5-1]
The compatibility of the surface-modified silica particles and an organic resin material (maleimide resin) was confirmed for the surface-modified silica particles obtained in Example 1-1. 50 g of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was charged into a 300-milliliter eggplant-shaped flask, and 20 g of a low-viscosity liquid maleimide resin (maleimide-terminated polyimide resin, product name: BMI-689, 1000 to 2000 cP (25° C.), manufactured by DMI Co., Ltd.) was added while stirring with a magnetic stirrer. Thereafter, the eggplant-shaped flask containing the mixture of the obtained methyl ethyl ketone dispersion of the surface-modified silica particles and the maleimide resin was set in a rotary evaporator, and distillation was performed at a bath temperature of 80° C. and a reduced pressure of 400 to 30 Torr, and the dispersion medium was replaced from methyl ethyl ketone to maleimide resin, thereby obtaining a maleimide resin dispersion of the surface-modified silica particles.
The obtained maleimide resin dispersion of surface-modified silica particles had a silica concentration of 30.4% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a methyl ethyl ketone content of 0.1% by mass or less, a viscosity of 6000 to 7000 cP (B-type viscometer, temperature 25°C), an average dispersed particle size measured by dynamic light scattering (hereinafter referred to as dynamic light scattering particle size) of 79.2 nm, and a yellow transparent appearance. Furthermore, the obtained maleimide resin dispersion of surface-modified silica particles showed no change in appearance even after being left to stand at room temperature for one week, and no precipitate was formed.
The obtained maleimide resin dispersion of surface-modified silica particles was applied to a glass substrate degreased with acetone using a hand-applied bar coater (gap: 25 μm), baked for 30 minutes on a hot plate heated to 100° C. under a nitrogen atmosphere, and then baked for 120 minutes after raising the temperature of the hot plate to 230° C. to obtain a cured film of a composite material containing surface-modified silica particles and maleimide resin (see FIG. 1(B)). The obtained cured film was yellow and transparent, and no repellency was observed with the glass substrate (note that in FIG. 1, the periphery of the portion where the resin dispersion and the low-viscosity liquid maleimide resin described below were applied is indicated by a black frame for reference). The film thickness was measured with a constant pressure thickness meter (manufactured by Teclock Corporation, model: PG-01A) and was 19 μm.
On the other hand, as an example in which surface-modified silica particles were not used, the above-mentioned low-viscosity liquid maleimide resin (product name: BMI-689) alone was used and applied to a glass substrate degreased with acetone using a hand-applied bar coater (gap: 25 μm), followed by baking for 30 minutes on a hot plate heated to 100° C. under a nitrogen atmosphere, and then further increasing the temperature of the hot plate to 230° C. and baking for 120 minutes, thereby obtaining a cured film of only the maleimide resin (see FIG. 1(A)). The obtained cured film was yellow and transparent, but repelling from the glass substrate was observed.
[実施例5-2]
 実施例1-1で得られた表面修飾シリカ粒子について、表面修飾シリカ粒子と有機樹脂材料(エポキシ樹脂)の相溶性を確認した。実施例1-1で得られた表面修飾シリカ粒子のメチルエチルケトン分散液50gを300ミリリットルのナス型フラスコに仕込み、マグネチックスターラーで撹拌しながら、エポキシ樹脂(日鉄ケミカル&マテリアル社製、ビスフェノールA型エポキシ樹脂、商品名:YD-8125、3900~5300cP)20gを加えた。その後、得られた表面修飾シリカ粒子のメチルエチルケトン分散液とエポキシ樹脂の混合液が入ったナス型フラスコをロータリーエバポレータにセットし、浴温80℃、400~30Torrの減圧下で蒸留を行い、分散媒をすべてメチルエチルケトンからエポキシ樹脂に置換することで、表面修飾シリカ粒子のエポキシ樹脂分散液を得た。
 得られた表面修飾シリカ粒子のエポキシ樹脂分散液は、シリカ濃度32.1質量%、水分量0.1質量%以下、メタノール量0.1質量%以下、メチルエチルケトン量0.1質量%以下、粘度:14000~16000cP(B型粘度計、温度25℃)、動的光散乱法による平均分散粒子径(以下、動的光散乱法粒子径)78.7nm、エポキシ当量264g/eq(JIS K7236に準拠)であり、外観は白色透明であった。
 更に、得られた表面修飾シリカ粒子のエポキシ樹脂分散液は、室温1週間静置後においても外観変化なく、析出沈降物も生じなかった。
[Example 5-2]
The compatibility of the surface-modified silica particles and an organic resin material (epoxy resin) was confirmed for the surface-modified silica particles obtained in Example 1-1. 50 g of the methyl ethyl ketone dispersion of the surface-modified silica particles obtained in Example 1-1 was charged into a 300-milliliter eggplant-shaped flask, and 20 g of an epoxy resin (manufactured by Nippon Steel Chemical & Material Co., Ltd., bisphenol A-type epoxy resin, product name: YD-8125, 3900 to 5300 cP) was added while stirring with a magnetic stirrer. Thereafter, the eggplant-shaped flask containing the mixture of the obtained methyl ethyl ketone dispersion of the surface-modified silica particles and the epoxy resin was set in a rotary evaporator, and distillation was performed at a bath temperature of 80° C. and a reduced pressure of 400 to 30 Torr, and the dispersion medium was entirely replaced from methyl ethyl ketone to epoxy resin, thereby obtaining an epoxy resin dispersion of the surface-modified silica particles.
The obtained epoxy resin dispersion of surface-modified silica particles had a silica concentration of 32.1% by mass, a water content of 0.1% by mass or less, a methanol content of 0.1% by mass or less, a methyl ethyl ketone content of 0.1% by mass or less, a viscosity of 14,000 to 16,000 cP (B-type viscometer, temperature 25° C.), an average dispersed particle size measured by dynamic light scattering method (hereinafter, dynamic light scattering particle size) of 78.7 nm, and an epoxy equivalent of 264 g/eq (in accordance with JIS K7236), and was white and transparent in appearance.
Furthermore, the obtained epoxy resin dispersion of surface-modified silica particles showed no change in appearance even after being left to stand at room temperature for one week, and no precipitate was formed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、実施例1-1乃至実施例1-5の表面修飾シリカ粒子は、平均一次粒子径が5nm~500nmであり、周波数1GHzにおける誘電正接の値が0.01未満を示し(実施例2-1~2-5)、且つ、疎水化度(%)が40以上を示し(実施例3-1~3-5)、低誘電特性と高疎水化を両立することが確認された。実施例1-1乃至実施例1-5の表面修飾シリカ粒子は、表面修飾前のシリカ粒子(シリカゾルa、シリカゾルc)における水蒸気吸着表面積/窒素吸着表面積(SH2O/SN2)は0.6以下であり、且つ、全シラノール基率は5%以下であり、また当該表面修飾シリカ粒子は、少なくとも2種の異なる表面修飾剤で処理した表面修飾シリカ粒子である。 As shown in Table 2, the surface-modified silica particles of Examples 1-1 to 1-5 had an average primary particle size of 5 nm to 500 nm, a dielectric loss tangent value of less than 0.01 at a frequency of 1 GHz (Examples 2-1 to 2-5), and a hydrophobicity degree (%) of 40 or more (Examples 3-1 to 3-5), confirming that they achieved both low dielectric properties and high hydrophobicity. The surface-modified silica particles of Examples 1-1 to 1-5 had a water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of 0.6 or less and a total silanol group ratio of 5% or less in the silica particles (silica sol a, silica sol c) before surface modification, and were surface-modified silica particles treated with at least two different surface modifiers.
 一方、比較例1-1及び比較例1-2の表面修飾シリカ粒子は、平均一次粒子径が5nm~500nmであり、周波数1GHzにおける誘電正接の値が0.01未満を示すものの(比較例2-1~2-2)、疎水化度(%)は40未満を示し(比較例3-1~3-2)、疎水化度に劣るシリカ粒子であった。比較例1-1及び比較例1-2の表面修飾シリカ粒子は、表面修飾前のシリカ粒子(シリカゾルa)における水蒸気吸着表面積/窒素吸着表面積(SH2O/SN2)は0.6以下であり、且つ、全シラノール基率は5%以下であり、また当該表面修飾シリカ粒子は5%以下であり、ただし1種類の表面修飾剤で処理した表面修飾シリカ粒子であった。
 また、比較例1-3の表面修飾シリカ粒子は、平均一次粒子径が5nm~500nmであり、疎水化度(%)が40以上を示すものの(比較例3-3)、周波数1GHzにおける誘電正接の値が0.01を大きく上回り(比較例2-3)、低誘電特性を満たしていないシリカ粒子であった。比較例1-3の表面修飾シリカ粒子は、少なくとも2種の異なる表面修飾剤で処理したシリカ粒子であり、表面修飾前のシリカ粒子(シリカゾルc)における水蒸気吸着表面積/窒素吸着表面積(SH2O/SN2)は0.6以上であり、また全シラノール基率は5%以上であった。
 さらに、比較例1-4のシリカ粒子、すなわち未修飾のシリカ粒子は、平均一次粒子径が5nm~500nmであるが、周波数1GHzにおける誘電正接の値が0.01を大きく上回るとともに(比較例2-4)、疎水化度(%)が0(比較例3-4)であった。
 以上、比較例に示す結果は、低誘電正接と高疎水化度とを両立させたナノオーダーのシリカ粒子の実現が容易でないことを示すものである。
On the other hand, the surface-modified silica particles of Comparative Examples 1-1 and 1-2 had an average primary particle size of 5 nm to 500 nm and a dielectric loss tangent value of less than 0.01 at a frequency of 1 GHz (Comparative Examples 2-1 to 2-2), but had a hydrophobicity (%) of less than 40 (Comparative Examples 3-1 to 3-2), making them silica particles with poor hydrophobicity. The surface-modified silica particles of Comparative Examples 1-1 and 1-2 had a water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of the silica particles (silica sol a) before surface modification of 0.6 or less and a total silanol group ratio of 5% or less, and the surface-modified silica particles were 5% or less, but were surface-modified silica particles treated with one type of surface modifier.
The surface-modified silica particles of Comparative Example 1-3 had an average primary particle diameter of 5 nm to 500 nm and a hydrophobicity degree (%) of 40 or more (Comparative Example 3-3), but the dielectric tangent value at a frequency of 1 GHz was significantly greater than 0.01 (Comparative Example 2-3), and the silica particles did not satisfy the low dielectric characteristic. The surface-modified silica particles of Comparative Example 1-3 were silica particles treated with at least two different surface modifiers, and the water vapor adsorption surface area/nitrogen adsorption surface area (S H2O /S N2 ) of the silica particles (silica sol c) before surface modification was 0.6 or more, and the total silanol group ratio was 5% or more.
Furthermore, the silica particles of Comparative Example 1-4, i.e., the unmodified silica particles, had an average primary particle diameter of 5 nm to 500 nm, but the dielectric tangent value at a frequency of 1 GHz was significantly greater than 0.01 (Comparative Example 2-4), and the hydrophobicity (%) was 0 (Comparative Example 3-4).
The results shown in the comparative examples above indicate that it is not easy to realize nano-order silica particles that have both a low dielectric tangent and a high degree of hydrophobicity.
 また表2に示すように、疎水化度が40以上を示す、表面修飾シリカ粒子が分散したメチルエチルケトン分散液である実施例1-1、及び実施例1-3は、ヘキサン相溶性の判定がOKであることを確認した(実施例4-1、4-2)。 Also, as shown in Table 2, it was confirmed that Example 1-1 and Example 1-3, which are methyl ethyl ketone dispersions containing surface-modified silica particles with a hydrophobicity of 40 or more, were judged to be OK in terms of hexane compatibility (Examples 4-1 and 4-2).
 さらに、本発明に係る表面修飾シリカ粒子は、有機樹脂材料とのコンポジット材料としたとき、室温1週間静置後においても外観変化や析出沈降物の発生がなく、高い安定性を有する材料であることが確認された(実施例5-1及び実施例5-2)。また図1に示すように、ガラス基板に対して硬化膜を形成した際、有機樹脂材料(マレイミド樹脂)のみであると基板に対してはじきが生じる結果(図1(A))となったが、本発明に係る表面修飾シリカ粒子を前記有機樹脂材料(マレイミド樹脂)に添加しコンポジット材料とすることで、その硬化膜はガラス基板に対してはじきを生じることなく(図1(B))、透明性を有する膜(成形体)を形成することができた。 Furthermore, when the surface-modified silica particles according to the present invention were used as a composite material with an organic resin material, there was no change in appearance or the occurrence of precipitates or sediments even after leaving the material at room temperature for one week, and it was confirmed that the material is highly stable (Examples 5-1 and 5-2). As shown in FIG. 1, when a cured film was formed on a glass substrate, the organic resin material (maleimide resin) alone resulted in repelling the substrate (FIG. 1(A)). However, by adding the surface-modified silica particles according to the present invention to the organic resin material (maleimide resin) to form a composite material, the cured film did not repel the glass substrate (FIG. 1(B)), and a transparent film (molded product) could be formed.
 本発明に係る疎水化シリカ粒子は、40%以上もの高い疎水化度を実現し、また従来の疎水化シリカゾルの誘電正接を半分以下に低減する粒子である。すなわち単独の表面修飾剤で被覆した表面修飾シリカ粒子の低誘電誘電正接を維持しつつ、疎水化度を2割以上も向上させることができるものであり、コンポジット材料への適用を好適なものとするだけでなく、高い高周波用途への適用が期待できる。
 
 
The hydrophobic silica particles according to the present invention are particles that realize a high hydrophobicity of 40% or more and reduce the dielectric loss tangent of conventional hydrophobic silica sol to less than half. In other words, the hydrophobicity can be improved by 20% or more while maintaining the low dielectric loss tangent of surface-modified silica particles coated with a single surface modifier, making them suitable not only for use in composite materials but also for use in high frequency applications.

Claims (18)

  1. 平均一次粒子径が5~500nmであり、1GHzにおける誘電正接が0.01未満であることを特徴とする、疎水化度が40%以上の表面修飾シリカ粒子。 Surface-modified silica particles with a hydrophobicity of 40% or more, characterized by an average primary particle diameter of 5 to 500 nm and a dielectric tangent of less than 0.01 at 1 GHz.
  2. 表面修飾剤が除去されたシリカ粒子において、下記(i)、及び(ii)の事項を満たすことを特徴とする、請求項1に記載の表面修飾シリカ粒子。
    (i)水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SHO/SN)が0.6以下である。
    (ii)下記式(1)で示される全シラノール基率が5%以下である。
    全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
    [式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
    2. The surface-modified silica particles according to claim 1, wherein the silica particles from which the surface modifier has been removed satisfy the following requirements (i) and (ii):
    (i) The ratio (SH 2 O/SN 2 ) of the specific surface area by water vapor adsorption (S H2O ) to the specific surface area by nitrogen adsorption (S N2 ) is 0.6 or less.
    (ii) The total silanol group ratio represented by the following formula (1) is 5% or less.
    Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
    [In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
  3. 前記表面修飾シリカ粒子の単位表面積(単位:nm)当たりの総炭素原子数の割合が、2~40個である請求項1又は請求項2に記載の表面修飾シリカ粒子。 3. The surface-modified silica particles according to claim 1, wherein the ratio of the total number of carbon atoms per unit surface area (unit: nm 2 ) of the surface-modified silica particles is 2 to 40.
  4. 前記表面修飾シリカ粒子はその表面の少なくとも一部が、少なくとも2種の表面修飾剤で被覆されていることを特徴とし、
    前記少なくとも2種の表面修飾剤が、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、
    請求項1乃至請求項3のうちいずれか一項に記載の表面修飾シリカ粒子。
    The surface-modified silica particles are characterized in that at least a part of the surface thereof is coated with at least two types of surface modifiers;
    the at least two types of surface modifiers include an organosilicon compound having at least one substituent a1 selected from the substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1;
    The surface-modified silica particle according to claim 1 .
  5. 前記表面修飾シリカ粒子はその少なくとも一部の表面に、少なくとも2種の表面修飾剤のそれぞれ少なくとも一部が結合してなることを特徴とし、
    前記少なくとも2種の表面修飾剤が、炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、
    請求項1乃至請求項3のうちいずれか一項に記載の表面修飾シリカ粒子。
    the surface-modified silica particles are characterized in that at least a portion of each of at least two types of surface modifiers is bonded to at least a portion of the surface of the surface-modified silica particles;
    the at least two types of surface modifiers include an organosilicon compound having at least one substituent a1 selected from the substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1;
    The surface-modified silica particle according to claim 1 .
  6. 前記置換基群aが、メチル基、フェニル基、フェニルメチル基及びデシル基からなる群である、請求項4又は請求項5に記載の表面修飾シリカ粒子。 The surface-modified silica particles according to claim 4 or 5, wherein the substituent group a is a group consisting of a methyl group, a phenyl group, a phenylmethyl group, and a decyl group.
  7. 前記有機ケイ素化合物が、前記置換基群aから選択される置換基とともに加水分解性基を有する化合物である、請求項4乃至請求項6のうちいずれか一項に記載の表面修飾シリカ粒子。 The surface-modified silica particles according to any one of claims 4 to 6, wherein the organosilicon compound is a compound having a hydrolyzable group together with a substituent selected from the substituent group a.
  8. 前記表面修飾剤が、下記式(a)~(c)で示される化合物から選択される少なくとも2種である、請求項4又は請求項5に記載の表面修飾シリカ粒子。
    Figure JPOXMLDOC01-appb-C000001
    6. The surface-modified silica particles according to claim 4, wherein the surface modifier is at least two types selected from the compounds represented by the following formulas (a) to (c):
    Figure JPOXMLDOC01-appb-C000001
  9. 前記表面修飾シリカ粒子は、その表面積1nm当たり0.5個~20個の割合で、前記少なくとも2種の表面修飾剤で表面が被覆されている粒子であるか又は前記少なくとも2種の表面修飾剤の少なくとも一部が表面に結合してなる粒子である、
    請求項3乃至請求項8のうちいずれか一項に記載の表面修飾シリカ粒子。
    The surface-modified silica particles are particles whose surfaces are coated with the at least two types of surface modifiers at a ratio of 0.5 to 20 particles per 1 nm2 of the surface area, or particles whose surfaces are at least partially bound to the at least two types of surface modifiers.
    The surface-modified silica particle according to any one of claims 3 to 8.
  10. 請求項1乃至請求項9のうちいずれか一項に記載の表面修飾シリカ粒子がアルコール類、ケトン類、炭化水素類、アミド類、エーテル類、エステル類及びアミン類から選ばれる少なくとも1種の有機溶媒に分散する、シリカ分散液。 A silica dispersion in which the surface-modified silica particles according to any one of claims 1 to 9 are dispersed in at least one organic solvent selected from alcohols, ketones, hydrocarbons, amides, ethers, esters, and amines.
  11. 請求項1乃至請求項9のうちいずれか一項に記載の表面修飾シリカ粒子と、有機樹脂材料又はポリシロキサンとを含むコンポジット材料。 A composite material comprising the surface-modified silica particles according to any one of claims 1 to 9 and an organic resin material or a polysiloxane.
  12. 前記有機樹脂材料が、スチレン樹脂、エポキシ樹脂、シアネート樹脂、フェノール樹脂、アクリル樹脂、マレイミド樹脂、ウレタン樹脂、ポリイミド、ポリテトラフルオロエチレン、シクロオレフィンポリマー、不飽和ポリエステル、ビニルトリアジン、ポリフェニレンサルファイド、架橋性ポリフェニレンオキサイド及び硬化性ポリフェニレンエーテルからなる群から選択される少なくとも1種である、請求項11に記載のコンポジット材料。 The composite material according to claim 11, wherein the organic resin material is at least one selected from the group consisting of styrene resin, epoxy resin, cyanate resin, phenol resin, acrylic resin, maleimide resin, urethane resin, polyimide, polytetrafluoroethylene, cycloolefin polymer, unsaturated polyester, vinyl triazine, polyphenylene sulfide, crosslinkable polyphenylene oxide, and curable polyphenylene ether.
  13. 半導体デバイス材料、銅張積層板、絶縁膜、フレキシブル配線材料、フレキシブルディスプレイ材料、アンテナ材料、光配線材料及びセンシング材料からなる群から選択される用途を有する、請求項11又は請求項12に記載のコンポジット材料。 The composite material according to claim 11 or 12, which has an application selected from the group consisting of semiconductor device materials, copper-clad laminates, insulating films, flexible wiring materials, flexible display materials, antenna materials, optical wiring materials, and sensing materials.
  14. 下記(A)工程~(C)工程:
    (A)工程:平均一次粒子径が5~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、下記式(1)で示される全シラノール基率が5%以下:
    全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
    [式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
    であるシリカ粒子を分散質とし、炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
    (B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを、40~100℃で0.1~10時間の加熱撹拌を行う工程、及び
    (C)工程:(B)工程後のシリカゾルから前記アルコール溶媒を除去する工程、
    を含む、
    表面修飾シリカ粒子の製造方法。
    The following steps (A) to (C):
    Step (A): an average primary particle size is 5 to 500 nm, the ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) is 0.6 or less, and the total silanol group rate represented by the following formula (1) is 5% or less:
    Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
    [In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
    preparing a silica sol having silica particles as a dispersoid and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
    Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a1 selected from a substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1, and the silica sol obtained in Step (A) at 40 to 100° C. for 0.1 to 10 hours; and Step (C): a step of removing the alcohol solvent from the silica sol obtained after Step (B).
    including,
    A method for producing surface-modified silica particles.
  15. (B)工程及び(C)工程のいずれか一方又は両方が減圧下で行われる、
    請求項14に記載の表面修飾シリカ粒子の製造方法。
    Either or both of the steps (B) and (C) are carried out under reduced pressure;
    The method for producing the surface-modified silica particles according to claim 14.
  16. (A)工程で準備するシリカゾルが、水分量が0.1~5質量%のシリカゾルである、請求項14に記載の表面修飾シリカ粒子の製造方法。 The method for producing surface-modified silica particles according to claim 14, wherein the silica sol prepared in step (A) has a water content of 0.1 to 5 mass %.
  17. (A)工程で準備するシリカゾルが、200~380℃、2MPa~22MPaで水熱合成された水性シリカゾルを、炭素原子数1~4のアルコールに溶媒置換したシリカゾルである、請求項14に記載の表面修飾シリカ粒子の製造方法。 The method for producing surface-modified silica particles according to claim 14, wherein the silica sol prepared in step (A) is an aqueous silica sol hydrothermally synthesized at 200 to 380°C and 2 to 22 MPa, and the solvent is replaced with an alcohol having 1 to 4 carbon atoms.
  18. 下記(A)工程、(B)工程及び(D)工程:
    (A)工程:平均一次粒子径が5~500nmであり、水蒸気吸着による比表面積(SH2O)と窒素吸着による比表面積(SN2)との比(SH2O/SN2)が0.6以下であり、且つ、下記式(1)で示される全シラノール基率が5%以下:
    全シラノール基率(%)=(Q2×2/4+Q3×1/4+Q4×0/4) ・・・式(1)
    [式(1)中、Q2、Q3、Q4はそれぞれ、29Si NMR測定により得られるケイ素原子の構造に由来するピーク面積の合計(100%)に対する各ケイ素原子の構造に由来するピーク面積の割合(%)であって、Q2は2つの酸素原子及び2つのヒドロキシ基が結合したケイ素原子の構造、Q3は3つの酸素原子及び1つのヒドロキシ基が結合したケイ素原子の構造、Q4は4つの酸素原子が結合したケイ素原子の構造に由来するピーク面積の割合を表す。]
    であるシリカ粒子を分散質とし、炭素原子数1~4のアルコールを分散媒とするシリカゾルを準備する工程、
    (B)工程:炭素原子数1~20のアルキル基、炭素原子数6~12のアリール基、及び不飽和結合を有する置換基からなる置換基群aから選択される少なくとも1つの置換基a1を有する有機ケイ素化合物と、前記置換基群aから選択され、前記置換基a1とは異なる少なくとも1つの置換基a2を有する有機ケイ素化合物を含む、少なくとも2種の表面修飾剤と、(A)工程で得られたシリカゾルとを、40~100℃で0.1~10時間の加熱撹拌を行う工程、及び
    (D)(B)工程後のシリカゾルをアルコール類、ケトン類、炭化水素類、アミド類、エステル類、エーテル類又はアミン類から選ばれる少なくとも1種の溶媒に溶媒置換する工程、
    を含む、
    表面修飾シリカ分散液の製造方法。
     
    The following steps (A), (B) and (D):
    Step (A): an average primary particle size is 5 to 500 nm, the ratio (S H2O /S N2 ) of the specific surface area determined by water vapor adsorption (S H2O ) to the specific surface area determined by nitrogen adsorption (S N2 ) is 0.6 or less, and the total silanol group rate represented by the following formula (1) is 5% or less:
    Total silanol group ratio (%)=(Q2×2/4+Q3×1/4+Q4×0/4) Equation (1)
    [In formula (1), Q2, Q3, and Q4 each represent the percentage (%) of the peak area derived from each silicon atom structure relative to the total peak area (100%) derived from the silicon atom structure obtained by 29Si NMR measurement, where Q2 represents the percentage of the peak area derived from a silicon atom structure having two oxygen atoms and two hydroxyl groups bonded thereto, Q3 represents the percentage of the peak area derived from a silicon atom structure having three oxygen atoms and one hydroxyl group bonded thereto, and Q4 represents the percentage of the peak area derived from a silicon atom structure having four oxygen atoms bonded thereto.]
    preparing a silica sol having silica particles as a dispersoid and an alcohol having 1 to 4 carbon atoms as a dispersion medium;
    Step (B): a step of heating and stirring at least two types of surface modifiers including an organosilicon compound having at least one substituent a1 selected from the substituent group a consisting of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a substituent having an unsaturated bond, and an organosilicon compound having at least one substituent a2 selected from the substituent group a and different from the substituent a1, and the silica sol obtained in step (A) at 40 to 100° C. for 0.1 to 10 hours; and (D) a step of subjecting the silica sol obtained in step (B) to solvent replacement with at least one solvent selected from alcohols, ketones, hydrocarbons, amides, esters, ethers, or amines.
    including,
    A method for producing a surface-modified silica dispersion.
PCT/JP2023/039319 2022-10-31 2023-10-31 Hydrophobic low-loss-tangent silica sol and production method therefor WO2024096021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174545 2022-10-31
JP2022-174545 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024096021A1 true WO2024096021A1 (en) 2024-05-10

Family

ID=90930532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039319 WO2024096021A1 (en) 2022-10-31 2023-10-31 Hydrophobic low-loss-tangent silica sol and production method therefor

Country Status (1)

Country Link
WO (1) WO2024096021A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014214061A (en) * 2013-04-26 2014-11-17 株式会社トクヤマ Hydrophobic inorganic oxide powder, and method of producing the same
JP2016079061A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2020097498A (en) * 2018-12-17 2020-06-25 株式会社アドマテックス Filler for electronic material, method for producing the same, method for producing resin composition for electronic material, substrate for high frequency, and slurry for electronic material
WO2020195205A1 (en) * 2019-03-26 2020-10-01 デンカ株式会社 Spherical silica powder
WO2023145780A1 (en) * 2022-01-28 2023-08-03 日産化学株式会社 Low-dielectric-tangent silica sol, and method for producing low-dielectric-tangent silica sol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014214061A (en) * 2013-04-26 2014-11-17 株式会社トクヤマ Hydrophobic inorganic oxide powder, and method of producing the same
JP2016079061A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2020097498A (en) * 2018-12-17 2020-06-25 株式会社アドマテックス Filler for electronic material, method for producing the same, method for producing resin composition for electronic material, substrate for high frequency, and slurry for electronic material
WO2020195205A1 (en) * 2019-03-26 2020-10-01 デンカ株式会社 Spherical silica powder
WO2023145780A1 (en) * 2022-01-28 2023-08-03 日産化学株式会社 Low-dielectric-tangent silica sol, and method for producing low-dielectric-tangent silica sol

Similar Documents

Publication Publication Date Title
JP5650786B2 (en) Method for preparing hydrophobic silica
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
RU2137712C1 (en) Method of silylation of inorganic oxides, and highly apolar pyrogenic silicic acid prepared by this method
US6896958B1 (en) Substantially transparent, abrasion-resistant films containing surface-treated nanocrystalline particles
EP1678267B1 (en) Composition for producing a barrier layer for gases
KR100549715B1 (en) Coating solution for forming porous silica film, coated substrate and short fiber silica
JP5793198B2 (en) Surface-coated inorganic powder
JP2009513741A (en) Silane formulations with high filler content
KR20100041735A (en) Surface-treated metal oxide particles
US20100021725A1 (en) Organofunctional silicone resin layers on metal oxides
KR100744976B1 (en) Inorganic oxide
KR102351824B1 (en) A method of surface modification of SiO2 with silane coupling agent
JP5865466B2 (en) Silica particle material and filler-containing resin composition
JP7339613B1 (en) Low dielectric loss tangent silica sol and method for producing low dielectric loss tangent silica sol
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
WO2024096021A1 (en) Hydrophobic low-loss-tangent silica sol and production method therefor
WO2010073970A1 (en) Polysiloxane composition and method for producing the same
JP5687785B2 (en) Method for surface treatment of silica particles
JPWO2018096914A1 (en) Inorganic particle-siloxane composite, method for producing the same, and inorganic particle-containing silicone composition
CN117730055A (en) Low dielectric loss tangent silica sol and method for producing low dielectric loss tangent silica sol
TWI829896B (en) Silicon dioxide-titanium dioxide composite oxide powder
JP2024008588A (en) Polymer-coated low dielectric constant loss tangent silica sol and method for producing the same
WO2024095774A1 (en) Organosilica sol and production method therefor
CN118145654A (en) Aluminum-containing silica sol dispersed in nitrogen-containing solvent, and resin composition