JP5509414B2 - Solar cell evaluation apparatus and solar cell evaluation method - Google Patents

Solar cell evaluation apparatus and solar cell evaluation method Download PDF

Info

Publication number
JP5509414B2
JP5509414B2 JP2010017288A JP2010017288A JP5509414B2 JP 5509414 B2 JP5509414 B2 JP 5509414B2 JP 2010017288 A JP2010017288 A JP 2010017288A JP 2010017288 A JP2010017288 A JP 2010017288A JP 5509414 B2 JP5509414 B2 JP 5509414B2
Authority
JP
Japan
Prior art keywords
light
solar cell
measurement
unit
evaluation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010017288A
Other languages
Japanese (ja)
Other versions
JP2011155225A (en
Inventor
裕之 藤原
元宏 河野
克雄 杉本
弘行 保井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Gifu University
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Gifu University
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Gifu University, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2010017288A priority Critical patent/JP5509414B2/en
Publication of JP2011155225A publication Critical patent/JP2011155225A/en
Application granted granted Critical
Publication of JP5509414B2 publication Critical patent/JP5509414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、薄膜型太陽電池の品質を評価する太陽電池評価装置に関する。   The present invention relates to a solar cell evaluation apparatus for evaluating the quality of a thin film solar cell.

近年、地球環境問題への注目の高まりにより、クリーンな太陽光を利用する太陽電池の開発が行われている。太陽電池として、例えば、シリコン結晶型、シリコン薄膜型、化合物半導体型、色素増感型のものが実現され、特に、大面積化および低コスト化が可能なシリコン薄膜型太陽電池が次世代の太陽電池として注目されている。   In recent years, solar cells using clean sunlight have been developed due to increasing attention to global environmental problems. As the solar cell, for example, a silicon crystal type, a silicon thin film type, a compound semiconductor type, and a dye sensitized type are realized. In particular, a silicon thin film type solar cell capable of increasing the area and reducing the cost is the next generation solar cell. It is attracting attention as a battery.

また、太陽電池の開発に伴い、太陽電池の電気特性を測定する様々な手法が提案されている。例えば、特許文献1に開示される太陽電池評価装置は、太陽電池の全面に光を照射する全体照明光源、スポット状の光を照射する部分照明光源、および、太陽電池に発生する電流を測定する電流測定器を備える。太陽電池評価装置の駆動時には、全体照明光源が太陽電池全体に光を照射するとともに、部分照明光源による光スポットの照射位置が太陽電池上を走査する。電流測定器では、部分照明光源による光の照射に並行して太陽電池の電流出力値が順次測定される。太陽電池モジュール上に欠陥部分が存在すると、欠陥部分が照射位置となる際に電流出力値が低下するため、欠陥部分の位置の検出が可能となる。   Also, with the development of solar cells, various methods for measuring the electrical characteristics of solar cells have been proposed. For example, the solar cell evaluation apparatus disclosed in Patent Document 1 measures a total illumination light source that irradiates light on the entire surface of the solar cell, a partial illumination light source that irradiates spot-like light, and a current generated in the solar cell. A current measuring device is provided. When the solar cell evaluation apparatus is driven, the entire illumination light source irradiates the entire solar cell, and the irradiation position of the light spot by the partial illumination light source scans on the solar cell. In the current measuring device, the current output value of the solar cell is sequentially measured in parallel with the light irradiation by the partial illumination light source. If there is a defective portion on the solar cell module, the current output value decreases when the defective portion becomes the irradiation position, so that the position of the defective portion can be detected.

特許文献2に開示される太陽電池の性能評価装置は、太陽電池に光を照射するとともに光源兼用測定電極および対向測定電極を備える。性能評価装置の駆動時には、光源兼用測定電極が太陽電池に光を照射しつつ太陽電池の表面に接触し、対向測定電極が太陽電池の裏面に接触する。これにより、太陽電池の電極接触部における回路短絡電流や回路開放電圧等が測定される。   The solar cell performance evaluation apparatus disclosed in Patent Document 2 irradiates the solar cell with light and includes a light source combined measurement electrode and a counter measurement electrode. When the performance evaluation apparatus is driven, the light source / measuring electrode contacts the surface of the solar cell while irradiating the solar cell with light, and the counter measuring electrode contacts the back surface of the solar cell. Thereby, the circuit short circuit current, the circuit open voltage, etc. in the electrode contact part of a solar cell are measured.

特許文献3に開示される太陽電池モジュールの特性測定装置では、キセノンランプから太陽電池に向けてパルス光が照射され、パルス光の照射に同期して電流源の電流を変化させつつ電圧計により電圧が測定される。これにより、太陽電池モジュールのIV特性(電流電圧特性)が取得される。特許文献4に開示される太陽電池セル特性の評価方法では、まず、ソーラーシミュレータにて発生したロングパルス光が太陽電池セルの1つのユニットセルに照射される。太陽電池セルの背面電極には測定端子が接続されており、ロングパルス光が照射されている間に測定端子の負荷を複数回調整して電圧および電流が複数回測定され、特性パラメータが求められる。   In the solar cell module characteristic measuring apparatus disclosed in Patent Document 3, pulsed light is irradiated from a xenon lamp toward the solar cell, and a voltage is measured by a voltmeter while changing the current of the current source in synchronization with the irradiation of the pulsed light. Is measured. Thereby, IV characteristic (current voltage characteristic) of a solar cell module is acquired. In the solar cell characteristics evaluation method disclosed in Patent Document 4, first, long pulse light generated by a solar simulator is irradiated to one unit cell of the solar cells. A measurement terminal is connected to the back electrode of the solar cell, and the voltage and current are measured multiple times by adjusting the load of the measurement terminal multiple times while the long pulse light is irradiated, and characteristic parameters are obtained. .

特開2009−111215号公報JP 2009-11115 A 特開2004−241449号公報JP 2004-241449 A 特開2001−102609号公報JP 2001-102609 A 特開2005−197432号公報JP 2005-197432 A

ところで、太陽電池の電気特性には、半導体層や透明電極の膜厚、光吸収特性、光学バンドギャップ等の光学特性が複雑に影響しており、特許文献1ないし4に示されるように電流や電圧を測定しても電気特性の低下の原因は特定されない。このため、太陽電池の製造における歩留まりを効率よく向上することができない。   By the way, the electrical characteristics of the solar cell are complicatedly affected by the optical characteristics such as the film thickness of the semiconductor layer and the transparent electrode, the light absorption characteristics, and the optical band gap. Even if the voltage is measured, the cause of the deterioration of the electrical characteristics is not specified. For this reason, the yield in manufacture of a solar cell cannot be improved efficiently.

本発明は、上記課題に鑑みなされたものであり、製造プロセスにおける太陽電池の電気特性の低下の原因を推定して歩留まりを向上することを目的としている。   This invention is made | formed in view of the said subject, and it aims at estimating the cause of the fall of the electrical property of the solar cell in a manufacturing process, and improving a yield.

請求項1に記載の発明は、薄膜型太陽電池の品質を評価する太陽電池評価装置であって、受光面に沿って配列され、直列に接続される複数の太陽電池セルに光を照射して前記複数の太陽電池セルを導通状態とする第1光照射部と、前記複数の太陽電池セル上の複数の測定位置に局所的に光を順次照射する第2光照射部と、前記複数の測定位置のそれぞれに光が照射された際に前記複数の太陽電池セルにて生じる電圧および電流の少なくとも一方を測定する電気測定部と、前記複数の測定位置における、屈折率、消衰係数、膜厚、光吸収係数および表面粗度のうち少なくともつに対応する複数種類の測定値を、光学的手法により前記複数の太陽電池セルと非接触にて取得する光学測定部と、前記複数の測定位置における前記複数種類の測定値である複数種類の測定値分布と、前記電気測定部により取得された前記複数の測定位置における電気特性である電気特性分布とを比較することにより、前記電気特性分布と最も相関性を有する測定値分布の種類を特定する種類特定部とを備える。 Invention of Claim 1 is a solar cell evaluation apparatus which evaluates the quality of a thin film type solar cell, Comprising: Light is irradiated to the several photovoltaic cell arrayed along the light-receiving surface and connected in series. A first light irradiating unit that brings the plurality of solar cells into a conductive state; a second light irradiating unit that sequentially irradiates light to a plurality of measurement positions on the plurality of solar cells; and the plurality of measurements. An electrical measurement unit that measures at least one of voltage and current generated in the plurality of solar cells when light is irradiated to each of the positions, and a refractive index, an extinction coefficient, and a film thickness at the plurality of measurement positions. , An optical measurement unit that acquires a plurality of types of measurement values corresponding to at least two of the light absorption coefficient and the surface roughness by an optical method in a non-contact manner with the plurality of solar cells, and the plurality of measurement positions The multiple types of measured values in A measurement value distribution having the most correlation with the electrical property distribution by comparing a plurality of types of measurement value distributions with an electrical property distribution that is an electrical property at the plurality of measurement positions acquired by the electrical measurement unit. A type specifying unit for specifying the type .

請求項に記載の発明は、請求項に記載の太陽電池評価装置であって、前記光学測定部が、分光エリプソメータである。 Invention of Claim 2 is a solar cell evaluation apparatus of Claim 1 , Comprising: The said optical measurement part is a spectroscopic ellipsometer.

請求項に記載の発明は、請求項1または2に記載の太陽電池評価装置であって、前記第1光照射部が、前記複数の太陽電池セルに沿ってライン状の光を照射する。 According to a third aspect of the invention, a solar cell evaluation device according to claim 1 or 2, wherein the first light irradiation part irradiates the linear light along said plurality of solar cells.

請求項に記載の発明は、請求項1ないしのいずれかに記載の太陽電池評価装置であって、前記複数の太陽電池セルが、第1の波長の光の照射により第2の波長の光よりも効率よく発電を行う第1発電層と、前記第2の波長の光の照射により前記第1の波長の光よりも効率よく発電を行う第2発電層とを積層して有し、前記第2光照射部が、前記第1の波長の光と前記第2の波長の光とを個別に前記複数の測定位置に照射する。 Invention of Claim 4 is a solar cell evaluation apparatus in any one of Claim 1 thru | or 3 , Comprising: These solar cells are 2nd wavelength by irradiation of the light of 1st wavelength. A first power generation layer that generates power more efficiently than light and a second power generation layer that generates power more efficiently than light of the first wavelength by irradiation with light of the second wavelength; The second light irradiation unit irradiates the plurality of measurement positions individually with the light with the first wavelength and the light with the second wavelength.

請求項に記載の発明は、薄膜型太陽電池の品質を評価する太陽電池評価方法であって、a)受光面に沿って配列され、直列に接続される複数の太陽電池セルに光を照射して前記複数の太陽電池セルを導通状態とする工程と、b)前記a)工程が行われている間に、前記複数の太陽電池セル上の複数の測定位置に局所的にさらに光を順次照射する工程と、c)前記b)工程おける前記複数の測定位置への光の照射に同期して、前記複数の太陽電池セルにて生じる電圧および電流の少なくとも一方を測定することにより、電気特性分布を取得する工程と、d)前記複数の測定位置における、屈折率、消衰係数、膜厚、光吸収係数および表面粗度の少なくとも2つに対応する複数種類の測定値を、光学的手法により前記複数の太陽電池セルと非接触にて取得することにより、複数種類の測定値分布を取得する工程と、e)前記複数種類の測定値分布と、前記電気特性分布とを比較することにより、前記電気特性分布と最も相関性を有する測定値分布の種類を特定する工程とを備える。 Invention of Claim 5 is a solar cell evaluation method which evaluates the quality of a thin film type solar cell, Comprising: Light is irradiated to the several photovoltaic cell arrayed along the light-receiving surface and connected in series A step of bringing the plurality of solar cells into a conductive state, and b) while the step a) is being performed, the light is further sequentially sequentially supplied to a plurality of measurement positions on the plurality of solar cells. An electrical characteristic by measuring at least one of voltage and current generated in the plurality of solar cells in synchronization with irradiation of light to the plurality of measurement positions in step c) and b) A step of obtaining a distribution; and d) a plurality of types of measurement values corresponding to at least two of a refractive index, an extinction coefficient, a film thickness, a light absorption coefficient, and a surface roughness at the plurality of measurement positions by an optical technique. The non-contact with the plurality of solar cells Obtaining a plurality of types of measured value distributions by acquiring in step e), and e) comparing the plurality of types of measured value distributions with the electrical property distributions to obtain the most correlation with the electrical property distributions. And a step of identifying the type of the measured value distribution.

本発明によれば、製造プロセスにおける太陽電池の電気特性の低下の原因を推定して歩留まりを向上することができる。また、複数種類の測定値のうち電気特性に影響するものを特定することができる。請求項の発明では、太陽電池セルの各発電層における品質評価を行うことができる。 According to the present invention, it is possible to improve the yield by estimating the cause of the deterioration of the electrical characteristics of the solar cell in the manufacturing process. In addition, it is possible to identify a plurality of types of measurement values that affect the electrical characteristics. In invention of Claim 4 , quality evaluation in each electric power generation layer of a photovoltaic cell can be performed.

太陽電池評価装置を示す図である。It is a figure which shows a solar cell evaluation apparatus. 太陽電池セルの断面図である。It is sectional drawing of a photovoltaic cell. 太陽電池評価装置の構成を示す図である。It is a figure which shows the structure of a solar cell evaluation apparatus. 第1光照射部および第2光照射部を示す図である。It is a figure which shows a 1st light irradiation part and a 2nd light irradiation part. 制御部の構成を示す図である。It is a figure which shows the structure of a control part. 太陽電池評価装置の動作の流れを示す図である。It is a figure which shows the flow of operation | movement of a solar cell evaluation apparatus. 太陽電池の平面図である。It is a top view of a solar cell. 電気特性分布を示す図である。It is a figure which shows electrical property distribution. 測定値分布を示す図である。It is a figure which shows measured value distribution. 他の測定値分布を示す図である。It is a figure which shows other measured value distribution. さらに他の測定値分布を示す図である。It is a figure which shows other measured value distribution. 第2光照射部の他の例を示す図である。It is a figure which shows the other example of a 2nd light irradiation part.

図1は、本発明の一の実施の形態に係る太陽電池評価装置1を示す図である。太陽電池評価装置1は、シリコン薄膜型太陽電池9(以下、単に「太陽電池9」という。)の品質の評価に利用される。太陽電池9では、帯状の複数の太陽電池セル91が図1中のZ方向に垂直な受光面92に沿って配列される。複数の太陽電池セル91は互いに直列に接続され、太陽電池9の出力電圧は、太陽電池セル91の出力電圧の和となる。太陽電池9では、太陽電池セル91間における電子と正孔との再結合により電流が発生するため、電流の大きさは、発電効率が最も低い太陽電池セル91にて発生する電流の大きさとほぼ同じとなる。   FIG. 1 is a diagram showing a solar cell evaluation apparatus 1 according to an embodiment of the present invention. The solar cell evaluation apparatus 1 is used to evaluate the quality of a silicon thin film solar cell 9 (hereinafter simply referred to as “solar cell 9”). In the solar cell 9, a plurality of strip-shaped solar cells 91 are arranged along a light receiving surface 92 perpendicular to the Z direction in FIG. 1. The plurality of solar battery cells 91 are connected in series with each other, and the output voltage of the solar battery 9 is the sum of the output voltages of the solar battery cells 91. In the solar cell 9, a current is generated due to recombination of electrons and holes between the solar cells 91. Therefore, the magnitude of the current is almost equal to the magnitude of the current generated in the solar cell 91 having the lowest power generation efficiency. It will be the same.

図2は太陽電池セル91の断面図である。ただし、厚さを強調して示している。太陽電池セル91は二層の発電層が積層されたタンデム型であり、上部に水素化アモルファスシリコンを主成分とする第1の発電層(以下、「トップセル911」という。)および下部に微結晶シリコンを主成分とする第2の発電層(以下、「ボトムセル912」という。)を有する。トップセル911の上側には、透明電極913およびガラス基板914が位置し、ボトムセル912の下側には裏面電極915が位置する。   FIG. 2 is a cross-sectional view of the solar battery cell 91. However, the thickness is highlighted. The solar cell 91 is a tandem type in which two power generation layers are stacked, and a first power generation layer (hereinafter, referred to as “top cell 911”) mainly composed of hydrogenated amorphous silicon is formed on the upper portion and a minute portion on the lower portion. It has a second power generation layer (hereinafter referred to as “bottom cell 912”) mainly composed of crystalline silicon. A transparent electrode 913 and a glass substrate 914 are positioned above the top cell 911, and a back electrode 915 is positioned below the bottom cell 912.

トップセル911は、p−i−n構造となっており、p型半導体の層9111とn型半導体の層9112との間に真性半導体の層9113が形成される。ボトムセル912においても、p型半導体の層9121とn型半導体の層9122との間に真性半導体の層9123が形成され、真性半導体の層9123の膜厚は、トップセル911における真性半導体の層9113の5〜10倍である。   The top cell 911 has a pin structure, and an intrinsic semiconductor layer 9113 is formed between the p-type semiconductor layer 9111 and the n-type semiconductor layer 9112. Also in the bottom cell 912, an intrinsic semiconductor layer 9123 is formed between the p-type semiconductor layer 9121 and the n-type semiconductor layer 9122, and the intrinsic semiconductor layer 9123 has an intrinsic semiconductor layer 9113 in the top cell 911. 5 to 10 times.

トップセル911では、吸収スペクトル帯のピーク値がおよそ500nmであり、可視光が照射されることにより、赤外光が照射される場合よりも効率よく発電が行われる。ボトムセル912では、吸収スペクトル帯のピーク値がおよそ850nmであり、赤外光が照射されることにより、可視光が照射される場合よりも効率よく発電が行われる。また、トップセル911の各層9111〜9113およびボトムセル912の各層9121〜9123の表面は、無数の起伏が形成されたテクスチャ構造となっており、トップセル911およびボトムセル912における入射光の反射率が低下する。このような光の閉じ込め効果により、トップセル911およびボトムセル912にて太陽光が効率よく吸収される。図2では、起伏を誇張して示している。   In the top cell 911, the peak value of the absorption spectrum band is about 500 nm, and power generation is performed more efficiently when irradiated with visible light than when irradiated with infrared light. In the bottom cell 912, the peak value of the absorption spectrum band is approximately 850 nm, and power generation is performed more efficiently by irradiation with infrared light than when irradiation with visible light is performed. Further, the surface of each layer 9111 to 9113 of the top cell 911 and the surface of each layer 9121 to 9123 of the bottom cell 912 has a texture structure in which numerous undulations are formed, and the reflectance of incident light in the top cell 911 and the bottom cell 912 is reduced. To do. Due to the light confinement effect, sunlight is efficiently absorbed by the top cell 911 and the bottom cell 912. In FIG. 2, undulations are exaggerated.

図3は太陽電池評価装置1の構成を示すブロック図である。図1および図3に示すように、太陽電池評価装置1は、ライン光源である第1光照射部11、太陽電池セル91に局所的に光を照射する第2光照射部12、分光エリプソメータ13、太陽電池9の電圧および電流を測定する電気測定部14、移動機構15並びに制御部16(図3のみに示す。)を備える。図1に示すように、移動機構15は、太陽電池セル91の伸びる方向である図1中のY方向に移動可能なY方向移動部151、および、複数の太陽電池セル91が並ぶ配列方向である図1中のX方向に移動可能なX方向移動部152を備える。X方向、Y方向およびZ方向は互いに垂直であり、Z方向が上下方向に対応する。X方向移動部152はY方向移動部151上に設けられ、X方向移動部152には、第2光照射部12および分光エリプソメータ13が固定される。Y方向移動部151には、(+Y)方向に伸びる棒状の2本の支持部153が設けられ、2本の支持部153の先端には第1光照射部11の両端部が接続される。   FIG. 3 is a block diagram showing the configuration of the solar cell evaluation apparatus 1. As shown in FIGS. 1 and 3, the solar cell evaluation apparatus 1 includes a first light irradiation unit 11 that is a line light source, a second light irradiation unit 12 that locally irradiates light to the solar cells 91, and a spectroscopic ellipsometer 13. , An electric measurement unit 14 that measures the voltage and current of the solar cell 9, a moving mechanism 15, and a control unit 16 (shown only in FIG. 3). As shown in FIG. 1, the moving mechanism 15 is arranged in a direction in which a plurality of solar cells 91 are arranged, and a Y-direction moving portion 151 that can move in the Y direction in FIG. An X-direction moving unit 152 that is movable in the X direction in FIG. 1 is provided. The X direction, the Y direction, and the Z direction are perpendicular to each other, and the Z direction corresponds to the vertical direction. The X direction moving unit 152 is provided on the Y direction moving unit 151, and the second light irradiation unit 12 and the spectroscopic ellipsometer 13 are fixed to the X direction moving unit 152. The Y-direction moving part 151 is provided with two rod-like support parts 153 extending in the (+ Y) direction, and both ends of the first light irradiation part 11 are connected to the tips of the two support parts 153.

図4は、第1光照射部11および第2光照射部12を図1のY−Z平面にて切断した断面図であり、太陽電池評価装置1の他の部材の図示を省略している。図4では、第1光照射部11および第2光照射部12の内部構成を簡略化して示し、平行斜線の図示を省略している。第1光照射部11は、X方向に伸びる基板111上に実装された複数の発光ダイオード112およびレンズユニット113を備え、複数の発光ダイオード112からの光はX方向に関して均一化され、光軸J1に沿って全ての太陽電池セル91を跨いでライン状に照射される。   4 is a cross-sectional view of the first light irradiation unit 11 and the second light irradiation unit 12 taken along the YZ plane of FIG. 1, and illustration of other members of the solar cell evaluation device 1 is omitted. . In FIG. 4, the internal structure of the 1st light irradiation part 11 and the 2nd light irradiation part 12 is shown simplified, and illustration of a parallel oblique line is abbreviate | omitted. The first light irradiation unit 11 includes a plurality of light emitting diodes 112 and a lens unit 113 mounted on a substrate 111 extending in the X direction, and light from the plurality of light emitting diodes 112 is made uniform in the X direction, and the optical axis J1. Is irradiated in a line shape across all the solar battery cells 91.

第2光照射部12は、白色光源部121およびチョッパ122を備え、白色光源部121では、およそ350nm〜750nmの波長帯の光が出射される。チョッパ122は、複数の開口1221aを有する遮光部1221および遮光部1221を回転する駆動部1222を備える。第2光照射部12の駆動時には、遮光部1221の回転により白色光源部121からの光が一定の間隔にて開口1221aを通過する。これにより、一定の周期のパルス光が光軸J2に沿って太陽電池セル91に照射される。   The second light irradiation unit 12 includes a white light source unit 121 and a chopper 122, and the white light source unit 121 emits light having a wavelength band of about 350 nm to 750 nm. The chopper 122 includes a light shielding unit 1221 having a plurality of openings 1221a and a driving unit 1222 that rotates the light shielding unit 1221. When the second light irradiation unit 12 is driven, the light from the white light source unit 121 passes through the opening 1221a at regular intervals by the rotation of the light shielding unit 1221. Thereby, the pulse light of a fixed period is irradiated to the photovoltaic cell 91 along the optical axis J2.

図1に示すように、分光エリプソメータ13は、照明部131および受光部132を備え、照明部131から太陽電池9に向けて偏光した白色光が照射され、受光部132にて太陽電池9からの反射光が受光される。受光部132は、反射光が入射する検光子および反射光の分光強度を取得する分光器を有し、検光子の回転位置、および、分光器により取得された反射光の分光強度が、図3に示す制御部16へと出力される。制御部16では、複数の波長の光のそれぞれの偏光状態として、p偏光成分とs偏光成分との位相差および反射振幅比角が求められる。   As shown in FIG. 1, the spectroscopic ellipsometer 13 includes an illumination unit 131 and a light receiving unit 132, and is irradiated with polarized white light from the illumination unit 131 toward the solar cell 9. The reflected light is received. The light receiving unit 132 includes an analyzer that receives reflected light and a spectroscope that acquires the spectral intensity of the reflected light. The rotational position of the analyzer and the spectral intensity of the reflected light acquired by the spectroscope are shown in FIG. Is output to the control unit 16 shown in FIG. In the control unit 16, the phase difference between the p-polarized component and the s-polarized component and the reflection amplitude ratio angle are obtained as the polarization states of the light having a plurality of wavelengths.

さらに、太陽電池セル91と同様の構造のモデルが設定され、モデルにおける理論上の位相差および反射振幅比角が、制御部16にて求められた上記位相差および反射振幅比角に最も近くなるように、モデルのトップセルおよびボトムセルの各層並びに透明電極の膜厚、屈折率および消衰係数が所定の数値範囲内にてフィッティングされる。これにより、これらの膜厚、屈折率および消衰係数が決定される。   Furthermore, a model having the same structure as that of the solar battery cell 91 is set, and the theoretical phase difference and reflection amplitude ratio angle in the model are closest to the phase difference and reflection amplitude ratio angle obtained by the control unit 16. In this way, the thickness, refractive index, and extinction coefficient of each layer of the top cell and bottom cell of the model and the transparent electrode are fitted within a predetermined numerical range. Thereby, the film thickness, refractive index, and extinction coefficient are determined.

図2に示すトップセル911の各層9111〜9113に関して、屈折率および消衰係数により誘電関数が求められ、誘電関数に基づいて光吸収係数および光学バンドギャップが求められる。なお、光吸収係数および光学バンドギャップは、トップセル911が太陽光スペクトルを吸収する際の指標となる。ボトムセル912の各層9121〜9123に関しても同様に誘電関数が求められ、誘電関数に基づいて光吸収係数、光学バンドギャップおよび結晶性が求められる。透明電極913では、誘電関数に基づいて光吸収係数、光学バンドギャップ、抵抗値および表面粗度が求められる。以下の説明では、屈折率、消衰係数、膜厚、光吸収係数、光学バンドギャップ、結晶性および表面粗度を区別することなく「測定値」と呼ぶ。なお、ここでの「測定値」は、光学的手法により取得された測定値を指し、電気測定部14により取得される後述の電気特性は含まない。太陽電池評価装置1では、分光エリプソメータ13が利用されることにより、太陽電池9の発電効率に影響する複数種類の測定値が高精度に取得される。   For each of the layers 9111 to 9113 of the top cell 911 shown in FIG. 2, a dielectric function is obtained from the refractive index and the extinction coefficient, and a light absorption coefficient and an optical band gap are obtained based on the dielectric function. Note that the light absorption coefficient and the optical band gap are indexes when the top cell 911 absorbs the sunlight spectrum. The dielectric function is similarly obtained for each of the layers 9121 to 9123 of the bottom cell 912, and the light absorption coefficient, the optical band gap, and the crystallinity are obtained based on the dielectric function. In the transparent electrode 913, a light absorption coefficient, an optical band gap, a resistance value, and a surface roughness are obtained based on a dielectric function. In the following description, the refractive index, extinction coefficient, film thickness, light absorption coefficient, optical band gap, crystallinity, and surface roughness are referred to as “measured values” without distinction. The “measured value” here refers to a measured value acquired by an optical method, and does not include an electrical characteristic described later acquired by the electrical measuring unit 14. In the solar cell evaluation apparatus 1, by using the spectroscopic ellipsometer 13, a plurality of types of measurement values that affect the power generation efficiency of the solar cell 9 are obtained with high accuracy.

図3に示すように、電気測定部14は、太陽電池9の短絡電流を測定するロックインアンプ141および開放電圧を測定する電圧計142を備える。本実施の形態では、ロックインアンプ141により短絡電流のみが測定されるものとする。   As shown in FIG. 3, the electrical measurement unit 14 includes a lock-in amplifier 141 that measures the short-circuit current of the solar cell 9 and a voltmeter 142 that measures the open circuit voltage. In the present embodiment, it is assumed that only the short-circuit current is measured by the lock-in amplifier 141.

図5は、制御部16の構成を示す図である。制御部16は、記憶部161、表示部162および種類特定部163を備える。記憶部161では、図3の電気測定部14にて取得された多数の短絡電流(正確にはその値、以下同様)が電気特性分布21として記憶され、分光エリプソメータ13にて取得された複数種類の多数の測定値が、複数種類の測定値分布22として記憶される。種類特定部163は省略可能である。   FIG. 5 is a diagram illustrating a configuration of the control unit 16. The control unit 16 includes a storage unit 161, a display unit 162, and a type specifying unit 163. In the storage unit 161, a large number of short-circuit currents (accurately, the same values hereinafter) acquired by the electrical measurement unit 14 of FIG. 3 are stored as electrical characteristic distributions 21, and a plurality of types acquired by the spectroscopic ellipsometer 13 Are stored as a plurality of types of measurement value distributions 22. The type specifying unit 163 can be omitted.

図6は、太陽電池評価装置1の動作の流れを示す図である。ただし、ステップS20は作業者により行われてよく、制御部16に種類特定部163が設けられる場合は、後述するように種類特定部163の演算処理により行われてもよい。   FIG. 6 is a diagram showing a flow of operations of the solar cell evaluation apparatus 1. However, step S20 may be performed by an operator, and when the type specifying unit 163 is provided in the control unit 16, it may be performed by calculation processing of the type specifying unit 163 as described later.

図7は太陽電池9の平面図である。太陽電池9に対する測定が行われる際には、まず、図1に示す第1光照射部11が、図7中に二点鎖線にて示すように、X方向、すなわち、複数の太陽電池セル91の全てに対して、それらの直列接続方向に沿うライン状の光を照射し、光が照射された領域(以下、「ライン照射領域81」という。)が導通状態となる(ステップS11)。第1光照射部11から出射される光の強度は低く、太陽電池9では、僅かに発電が行われる(すなわち、太陽電池9が軽く導通した状態となる。)。   FIG. 7 is a plan view of the solar cell 9. When measurement is performed on the solar cell 9, first, the first light irradiation unit 11 illustrated in FIG. 1 is in the X direction, that is, a plurality of solar cells 91, as indicated by a two-dot chain line in FIG. 7. All of these are irradiated with line-shaped light along their series connection direction, and the region irradiated with light (hereinafter referred to as “line irradiation region 81”) becomes conductive (step S11). The intensity of light emitted from the first light irradiation unit 11 is low, and the solar cell 9 generates power slightly (that is, the solar cell 9 is lightly conductive).

次に、図1の第2光照射部12が、図7における最も下側に位置する太陽電池セル91のライン照射領域81と重なる位置にパルス光を繰り返し照射する(ステップS12)。図7では、当該位置に照射された光の輪郭を円にて示している。以下、各太陽電池セル91のライン照射領域81と重なる位置を「測定位置82」と呼ぶ。第2光照射部12は、太陽電池セル91に高強度の光を照射する疑似太陽光としての役割を果たし、ライン照射領域81では、図7の最も下側の測定位置82にて大きな電流が発生する。   Next, the 2nd light irradiation part 12 of FIG. 1 repeatedly irradiates a pulsed light to the position which overlaps with the line irradiation area | region 81 of the photovoltaic cell 91 located in the lowest side in FIG. 7 (step S12). In FIG. 7, the outline of the light irradiated to the position is indicated by a circle. Hereinafter, the position overlapping the line irradiation region 81 of each solar battery cell 91 is referred to as “measurement position 82”. The 2nd light irradiation part 12 plays the role as pseudo sunlight which irradiates the high intensity | strength light to the photovoltaic cell 91, and in a line irradiation area | region 81, a big electric current is in the lowest measurement position 82 of FIG. Occur.

図3に示すように、ロックインアンプ141には、パルス光のON/OFFを示す信号がチョッパ122から参照信号として入力され、パルス光の照射に同期して太陽電池9の短絡電流が高感度にて測定される(ステップS13)。   As shown in FIG. 3, the lock-in amplifier 141 receives a signal indicating ON / OFF of the pulsed light as a reference signal from the chopper 122, and the short-circuit current of the solar cell 9 is highly sensitive in synchronization with the irradiation of the pulsed light. (Step S13).

短絡電流の測定が完了すると、図1に示す分光エリプソメータ13では、照明部131から図7の最も下側に位置する太陽電池セル91の測定位置82に向けて偏向光が照射され、測定位置82からの反射光が受光部132にて受光される。図3の制御部16では、受光部132にて取得された反射光の位相差および反射振幅比角に基づいて図2に示すトップセル911およびボトムセル912の各層における複数種類の測定値が求められる(ステップS14)。ステップS14が実行される間は、必要に応じて第1光照射部11による光照射は停止される。   When the measurement of the short-circuit current is completed, the spectroscopic ellipsometer 13 shown in FIG. 1 irradiates the deflected light from the illumination unit 131 toward the measurement position 82 of the solar cell 91 located on the lowermost side in FIG. The light reflected from the light is received by the light receiving unit 132. 3 obtains a plurality of types of measurement values in each layer of the top cell 911 and the bottom cell 912 shown in FIG. 2 based on the phase difference and reflection amplitude ratio angle of the reflected light acquired by the light receiving unit 132. (Step S14). While step S14 is performed, the light irradiation by the first light irradiation unit 11 is stopped as necessary.

次に、図1に示すX方向移動部152により、第2光照射部12および分光エリプソメータ13が、相対位置を一定に保った状態にて(−X)方向に僅かに移動する(ステップS15,S16)。そして、第2光照射部12が図7の下から2番目に位置する太陽電池セル91の測定位置82上に位置すると、上述の動作と同様に、第2光照射部12により測定位置82にパルス光が照射されてロックインアンプ141(図3参照)により太陽電池9の短絡電流が測定される(ステップS12,S13)。また、分光エリプソメータ13により、測定位置82における種々の測定値が測定される(ステップS14)。以下の説明では、測定位置82に第2光照射部12から光が照射された際に太陽電池9にて生じる短絡電流を「測定位置82に対応する短絡電流」と表現する。   Next, the X-direction moving unit 152 shown in FIG. 1 slightly moves the second light irradiation unit 12 and the spectroscopic ellipsometer 13 in the (−X) direction while keeping the relative position constant (step S15, S16). And when the 2nd light irradiation part 12 is located on the measurement position 82 of the photovoltaic cell 91 located in the 2nd from the bottom of FIG. 7, similarly to the above-mentioned operation | movement, it will be in the measurement position 82 by the 2nd light irradiation part 12. Pulse light is irradiated and the short-circuit current of the solar cell 9 is measured by the lock-in amplifier 141 (see FIG. 3) (steps S12 and S13). Further, the spectroscopic ellipsometer 13 measures various measured values at the measurement position 82 (step S14). In the following description, the short-circuit current generated in the solar cell 9 when the measurement position 82 is irradiated with light from the second light irradiation unit 12 is expressed as “short-circuit current corresponding to the measurement position 82”.

太陽電池評価装置1では、第1光照射部11による光の照射が継続される間に、第2光照射部12および分光エリプソメータ13が、(−X)方向に向かって太陽電池9に対して相対的に移動を繰り返し(ステップS15,S16)、複数の測定位置82のそれぞれに対応する短絡電流および複数種類の測定値が取得される(ステップS12〜S14)。   In the solar cell evaluation device 1, while the light irradiation by the first light irradiation unit 11 is continued, the second light irradiation unit 12 and the spectroscopic ellipsometer 13 are directed toward the solar cell 9 in the (−X) direction. The movement is relatively repeated (steps S15 and S16), and a short-circuit current and a plurality of types of measurement values corresponding to each of the plurality of measurement positions 82 are acquired (steps S12 to S14).

ライン照射領域81上の全ての測定位置82に対応する測定が完了すると(ステップS15)、ライン照射領域81の位置を変更するか否かが確認される(ステップS17)。ライン照射領域81の位置を変更する場合、図1に示す第1光照射部11、第2光照射部12および分光エリプソメータ13が、Y方向移動部151によりY方向に移動される(ステップS18)。第1光照射部11の移動により、図7のライン照射領域81は(+Y)方向に僅かに移動する。そして、第2光照射部12を用いる短絡電流の測定、および、分光エリプソメータ13による複数種類の測定値の取得が、複数の測定位置82に対して順次行われる(ステップS12〜S16)。   When the measurement corresponding to all the measurement positions 82 on the line irradiation area 81 is completed (step S15), it is confirmed whether or not to change the position of the line irradiation area 81 (step S17). When changing the position of the line irradiation region 81, the first light irradiation unit 11, the second light irradiation unit 12, and the spectroscopic ellipsometer 13 shown in FIG. 1 are moved in the Y direction by the Y direction moving unit 151 (step S18). . Due to the movement of the first light irradiation unit 11, the line irradiation region 81 in FIG. 7 slightly moves in the (+ Y) direction. Then, the measurement of the short-circuit current using the second light irradiation unit 12 and the acquisition of a plurality of types of measurement values by the spectroscopic ellipsometer 13 are sequentially performed on the plurality of measurement positions 82 (steps S12 to S16).

ライン照射領域81の変更および複数回の測定が繰り返し行われると(ステップS12〜S18)、やがてライン照射領域81が太陽電池9の図7における右側の端部まで移動し、最後のライン照射領域81に対する測定動作の完了により太陽電池9に対する測定動作が終了する。   When the line irradiation area 81 is changed and measurement is repeated a plurality of times (steps S12 to S18), the line irradiation area 81 eventually moves to the right end in FIG. 7 of the solar cell 9, and the last line irradiation area 81 is reached. When the measurement operation for is completed, the measurement operation for the solar cell 9 is completed.

図5に示すように、制御部16では、複数の測定位置82における短絡電流が電気特性分布として取得され、測定値の種類毎に、複数の測定位置82における測定値が測定値分布として取得される(ステップS19)。電気特性分布および種々の測定値分布は表示部162に表示される。   As shown in FIG. 5, in the control unit 16, short-circuit currents at a plurality of measurement positions 82 are acquired as electrical characteristic distributions, and measurement values at a plurality of measurement positions 82 are acquired as measurement value distributions for each type of measurement values. (Step S19). The electrical characteristic distribution and various measured value distributions are displayed on the display unit 162.

図8は、短絡電流の電気特性分布71を例示する図であり、1つの測定位置82に1つの矩形領域711(以下、「画素711」という。)が対応する。図8の各画素711は、対応する測定位置82へのパルス光の照射による短絡電流の大きさに応じて多階調にて示されている。図9ないし図11は、3種類の測定値に対応する測定値分布72〜74を例示する図であり、図8と同様に、測定値の大きさに応じて各画素711を多階調にて示している。   FIG. 8 is a diagram illustrating an electrical characteristic distribution 71 of a short-circuit current, and one rectangular region 711 (hereinafter referred to as “pixel 711”) corresponds to one measurement position 82. Each pixel 711 in FIG. 8 is shown in multiple gradations according to the magnitude of the short-circuit current due to the irradiation of the pulse light to the corresponding measurement position 82. 9 to 11 are diagrams illustrating measurement value distributions 72 to 74 corresponding to three types of measurement values. Similarly to FIG. 8, each pixel 711 has multiple gradations according to the magnitude of the measurement values. It shows.

図8の電気特性分布71と図9ないし図11の測定値分布72〜74とを比較すると、図10の測定値分布73では、階調値の分布が、電気特性分布71の階調値の分布と類似しており、測定値分布73が電気特性分布71と最も相関性を有することが判る。このように、作業者が表示部162を見ることにより、短絡電流に最も影響を与える測定値分布の種類が特定される(ステップS20)。   Comparing the electrical characteristic distribution 71 of FIG. 8 with the measured value distributions 72 to 74 of FIGS. 9 to 11, the measured value distribution 73 of FIG. It is similar to the distribution, and it can be seen that the measured value distribution 73 has the most correlation with the electrical characteristic distribution 71. Thus, when the operator looks at the display unit 162, the type of the measured value distribution that most affects the short-circuit current is specified (step S20).

ステップS20が図3の種類特定部163により実行される場合は、電気特性分布71および測定値分布72〜74は、画像として表示される必要はなく、多値の画像データとして扱われる。この場合、図5に示す種類特定部163が互いに対応する画素の値を比較するピクセル比較法により、電気特性分布と最も相関性を有する測定値分布の種類を特定する。   When step S20 is executed by the type specifying unit 163 in FIG. 3, the electrical characteristic distribution 71 and the measured value distributions 72 to 74 do not need to be displayed as images, but are handled as multivalued image data. In this case, the type specifying unit 163 shown in FIG. 5 specifies the type of the measured value distribution most correlated with the electrical characteristic distribution by a pixel comparison method in which the values of the corresponding pixels are compared.

具体例としては、まず、電気特性分布71の短絡電流の値が、最大値および最小値を基準として0〜1の値に正規化され、同様に、測定値分布72〜74の測定値も0〜1の値に正規化される。次に、同じ測定位置82における電気特性分布71と各測定値分布との差分絶対値を示す差分画像が求められる。そして、差分画像のうち画素値の合計が最も小さいものに対応する測定値分布が電気特性分布71と最も相関性を有するものとして特定される。相関性を数値として求める手法としては、様々な数学的相関値の算出方法が利用されてよい。   As a specific example, first, the value of the short circuit current of the electrical characteristic distribution 71 is normalized to a value of 0 to 1 with reference to the maximum value and the minimum value, and similarly, the measurement values of the measurement value distributions 72 to 74 are also 0. Normalized to a value of ~ 1. Next, a difference image indicating an absolute difference value between the electrical characteristic distribution 71 and each measurement value distribution at the same measurement position 82 is obtained. Then, the measured value distribution corresponding to the difference image having the smallest sum of the pixel values is identified as having the most correlation with the electrical characteristic distribution 71. As a method for obtaining the correlation as a numerical value, various mathematical correlation value calculation methods may be used.

制御部16では、測定値の種類に応じて、適宜、測定値分布が修正されてよい。例えば、測定値の大きさの大小を反転することにより、電気特性分布71と比較可能な測定値分布が作成されてもよい。   In the control unit 16, the measurement value distribution may be corrected as appropriate according to the type of the measurement value. For example, a measurement value distribution that can be compared with the electrical characteristic distribution 71 may be created by inverting the magnitude of the measurement value.

以上に説明したように、太陽電池評価装置1では、複数の測定位置82における光照射時の短絡電流と、光学的に取得される種々の測定値との関係を取得することができ、電気特性評価と構造評価とを同時に行うことができる。その結果、太陽電池9の品質低下の原因を推定することが可能となる。品質低下の原因は、製造プロセスにフィードバックされ、太陽電池9の製造における歩留まりが向上される。   As described above, the solar cell evaluation apparatus 1 can acquire the relationship between the short-circuit current at the time of light irradiation at the plurality of measurement positions 82 and various measured values that are optically acquired. Evaluation and structural evaluation can be performed simultaneously. As a result, it is possible to estimate the cause of the quality deterioration of the solar cell 9. The cause of the quality deterioration is fed back to the manufacturing process, and the yield in manufacturing the solar cell 9 is improved.

太陽電池評価装置1では、ライン光源である第1光照射部11が利用されることにより、大型の太陽電池9であっても、太陽電池9全体に光を照射する場合に比べて、容易に導通状態を得ることができる。第1光照射部11、第2光照射部12および分光エリプソメータ13は移動機構15に固定された状態にて太陽電池9上を移動することから、大型の太陽電池9を移動する場合よりも太陽電池評価装置1の構造が簡素化される。   In the solar cell evaluation apparatus 1, by using the first light irradiation unit 11 that is a line light source, even a large-sized solar cell 9 can be easily compared with a case where light is irradiated to the entire solar cell 9. A conduction state can be obtained. Since the 1st light irradiation part 11, the 2nd light irradiation part 12, and the spectroscopic ellipsometer 13 move on the solar cell 9 in the state fixed to the moving mechanism 15, it is solar rather than the case where the large sized solar cell 9 is moved. The structure of the battery evaluation apparatus 1 is simplified.

太陽電池評価装置1では、分光エリプソメータ13を用いることにより、複数種類の測定値分布をほぼ同時に取得することができる。これにより、電気特性分布71を多数の測定値分布と容易に比較する、いわゆる、コンビナトリアル手法が利用可能となり、効率的に電気特性に関連する測定値の種類が特定される。   In the solar cell evaluation apparatus 1, by using the spectroscopic ellipsometer 13, a plurality of types of measurement value distributions can be acquired almost simultaneously. This makes it possible to use a so-called combinatorial method that easily compares the electrical characteristic distribution 71 with a large number of measured value distributions, and efficiently specifies the types of measured values related to the electrical characteristics.

太陽電池評価装置1では、ロックインアンプ141に代えて電圧計142が利用されてもよい。電圧計142は、第2光照射部12による測定位置82への光の照射に同期して太陽電池9の開放電圧を測定し、制御部16にて、複数の開放電圧と複数の測定位置82との関係を示す電気特性分布が取得される。また、電流と電圧との関係が測定され、複数の測定位置82に対応する曲線因子が電気特性分布として取得されてもよい。このように、太陽電池評価装置1では、電気特性分布として様々な電気特性を示すものが取得されてよい。   In solar cell evaluation apparatus 1, voltmeter 142 may be used instead of lock-in amplifier 141. The voltmeter 142 measures the open voltage of the solar cell 9 in synchronization with the irradiation of the light to the measurement position 82 by the second light irradiation unit 12, and the control unit 16 has a plurality of open voltages and a plurality of measurement positions 82. An electrical characteristic distribution indicating the relationship is obtained. Further, the relationship between the current and the voltage may be measured, and the curve factor corresponding to the plurality of measurement positions 82 may be acquired as the electrical characteristic distribution. As described above, the solar cell evaluation apparatus 1 may acquire various electric characteristics as the electric characteristic distribution.

図12は、第2光照射部の他の例を示す図である。第2光照射部12aには、可視光透過フィルタ124aおよび赤外光透過フィルタ124bを備える波長選択部123が設けられる。可視光透過フィルタ124aおよび赤外光透過フィルタ124bは円板部1231の開口に嵌め込まれており、円板部1231は、モータ等の切替部1232により回転する。これにより、可視光透過フィルタ124aおよび赤外光透過フィルタ124bのいずれか一方が、白色光源部121から出射される光の光路上に位置する。太陽電池評価装置1の他の構造は、図1と同様であり、太陽電池評価装置1の動作は、第2光照射部12aに関連する動作を除いて図1の太陽電池評価装置1とほぼ同様である。   FIG. 12 is a diagram illustrating another example of the second light irradiation unit. The second light irradiation unit 12a is provided with a wavelength selection unit 123 including a visible light transmission filter 124a and an infrared light transmission filter 124b. The visible light transmission filter 124a and the infrared light transmission filter 124b are fitted into the opening of the disk part 1231. The disk part 1231 is rotated by a switching part 1232 such as a motor. Thereby, one of the visible light transmission filter 124 a and the infrared light transmission filter 124 b is positioned on the optical path of the light emitted from the white light source unit 121. The other structure of the solar cell evaluation device 1 is the same as that of FIG. 1, and the operation of the solar cell evaluation device 1 is almost the same as that of the solar cell evaluation device 1 of FIG. 1 except for the operation related to the second light irradiation unit 12a. It is the same.

第2光照射部12aにより、太陽電池9に光が照射される際には、まず、波長選択部123の切替部1232により円板部1231が回転されて可視光透過フィルタ124aが光路上に配置される。次に、白色光源部121からの光のうち可視光透過フィルタ124aを透過した可視光が、チョッパ122により一定周期のパルス光とされる。可視光の照射により、図2に示す太陽電池セル91では、トップセル911がボトムセル912よりも効率よく発電し、主としてトップセル911にて発生した短絡電流が、図4に示すロックインアンプ141にて測定される。   When the solar cell 9 is irradiated with light by the second light irradiation unit 12a, first, the disk unit 1231 is rotated by the switching unit 1232 of the wavelength selection unit 123, and the visible light transmission filter 124a is arranged on the optical path. Is done. Next, of the light from the white light source unit 121, visible light that has passed through the visible light transmission filter 124 a is converted into pulsed light having a constant period by the chopper 122. In the solar battery cell 91 shown in FIG. 2, the top cell 911 generates power more efficiently than the bottom cell 912 by irradiation with visible light, and a short-circuit current mainly generated in the top cell 911 is generated in the lock-in amplifier 141 shown in FIG. Measured.

次に、切替部1232により円板部1231が回転されて赤外光透過フィルタ124bが光路上に位置し、赤外光透過フィルタ124bを透過した赤外光がチョッパ122により一定周期のパルス光とされる。赤外光の照射により、ボトムセル912がトップセル911よりも効率よく発電し、主としてボトムセル912にて発生した短絡電流がロックインアンプ141にて測定される。   Next, the disk portion 1231 is rotated by the switching portion 1232 so that the infrared light transmission filter 124b is positioned on the optical path, and the infrared light transmitted through the infrared light transmission filter 124b is converted into pulsed light having a constant period by the chopper 122. Is done. The bottom cell 912 generates power more efficiently than the top cell 911 by irradiation with infrared light, and a short-circuit current generated mainly in the bottom cell 912 is measured by the lock-in amplifier 141.

このように、第2光照射部12aでは、第1の波長の光である可視光と第2の波長の光である赤外光とを太陽電池9に個別に照射することにより、トップセル911およびボトムセル912を選択的に発電させることができる。制御部16では、トップセル911およびボトムセル912のそれぞれの電気特性分布が作成され、各電気特性分布が、作業者または種類特定部163により複数種類の測定値分布と比較されることにより、各電気特性分布と最も相関性を有する測定値分布が特定される。   Thus, in the 2nd light irradiation part 12a, the top cell 911 is irradiated by individually irradiating the solar cell 9 with the visible light which is the light of the 1st wavelength, and the infrared light which is the light of the 2nd wavelength. In addition, the bottom cell 912 can be selectively generated. In the control unit 16, electric characteristic distributions of the top cell 911 and the bottom cell 912 are created, and each electric characteristic distribution is compared with a plurality of types of measurement value distributions by the operator or the type specifying unit 163, thereby A measured value distribution that is most correlated with the characteristic distribution is identified.

太陽電池評価装置1では、トップセル911およびボトムセル912の品質評価を個別に行うことができ、トップセル911およびボトムセル912のそれぞれにおいて短絡電流が低下した場合、短絡電流の低下の原因となる測定値の種類を特定することができる。その結果、太陽電池9の製造における歩留まりの向上が実現される。なお、第2光照射部12aが用いられる場合においても、電気特性として短絡電流以外のものが利用されてよい。   In the solar cell evaluation apparatus 1, the quality evaluation of the top cell 911 and the bottom cell 912 can be performed individually. When the short circuit current is reduced in each of the top cell 911 and the bottom cell 912, the measurement value that causes the short circuit current to decrease Can be specified. As a result, an improvement in yield in manufacturing the solar cell 9 is realized. Even when the second light irradiation unit 12a is used, an electrical characteristic other than the short-circuit current may be used.

以上、本発明の実施の形態について説明したが、上記実施の形態は、様々な変更が可能である。太陽電池評価装置1では、光学的手法を用いて太陽電池9と非接触にて測定が行われるのであれば、分光エリプソメータ13以外の他の光学測定部が利用されてもよい。例えば、干渉式膜厚計や表面粗度を測定するレーザ顕微鏡が利用されてもよく、複数種類の光学測定部が組み合わされて利用されてもよい。太陽電池評価装置1では、複数の測定位置82における屈折率、消衰係数、膜厚、光吸収係数および表面粗度の測定値(これらの測定値に実質的に対応する他の名称の測定値であってもよい。)のうち少なくとも2つを測定して電気特性分布と最も相関性を有する測定値分布の種類を特定することにより、電気特性の低下の原因が特定される可能性が大幅に高まる。太陽電池評価装置1では、上記5種類の測定値のうち1つのみが測定されてもよく、この場合であっても取得された測定値が電気特性に影響を与えるものであるか否かをある程度判断することができ、電気特性低下の原因特定に利用することができる。すなわち、太陽電池評価装置1では上記測定値のうち少なくとも1つが測定される。 As mentioned above, although embodiment of this invention was described , the said embodiment can be variously changed. In the solar cell evaluation apparatus 1, an optical measurement unit other than the spectroscopic ellipsometer 13 may be used as long as the measurement is performed in a non-contact manner with the solar cell 9 using an optical technique. For example, an interference film thickness meter or a laser microscope that measures surface roughness may be used, or a plurality of types of optical measurement units may be used in combination. In the solar cell evaluation apparatus 1, measured values of refractive index, extinction coefficient, film thickness, light absorption coefficient, and surface roughness at a plurality of measurement positions 82 (measured values of other names substantially corresponding to these measured values). Measurement of at least two of these and identifying the type of measurement value distribution that is most correlated with the electrical property distribution, the possibility of identifying the cause of the degradation of electrical properties is greatly increased. To increase. In the solar cell evaluation apparatus 1, only one of the five types of measurement values may be measured. Even in this case, whether or not the acquired measurement value affects the electrical characteristics is determined. It can be judged to some extent, and can be used to identify the cause of the deterioration of electrical characteristics. In other words, the solar cell evaluation apparatus 1 measures at least one of the measured values.

第1光照射部11の構造は様々に変更されてよく、例えば、直線状に配列された光ファイバからライン状の照明光が出射されてもよい。   The structure of the 1st light irradiation part 11 may be changed variously, for example, the linear illumination light may be radiate | emitted from the optical fiber arranged in linear form.

上記実施の形態では、第1光照射部11に代えて太陽電池9の全面に光を照射する照射部が利用されてもよい。この場合、例えば、第2光照射部12および分光エリプソメータ13が、太陽電池セル91の伸びる方向に移動するとともに、太陽電池セル91の配列方向に間欠移動してもよい。上記実施の形態では、複数の測定位置82に対応する短絡電流を測定して電気特性分布が取得された後に、複数種類の測定値を測定して複数種類の測定値分布が取得されてもよい。また、電気特性分布を取得する工程の前に測定値分布を取得する工程が行われてもよい。   In the said embodiment, it replaces with the 1st light irradiation part 11, and the irradiation part which irradiates light to the whole surface of the solar cell 9 may be utilized. In this case, for example, the second light irradiation unit 12 and the spectroscopic ellipsometer 13 may move intermittently in the arrangement direction of the solar cells 91 while moving in the direction in which the solar cells 91 extend. In the above embodiment, after the short-circuit current corresponding to the plurality of measurement positions 82 is measured and the electrical characteristic distribution is acquired, the plurality of types of measurement values may be measured and the plurality of types of measurement value distributions may be acquired. . Moreover, the process of acquiring a measured value distribution may be performed before the process of acquiring an electrical characteristic distribution.

第2光照射部12では、白色光源部121に代えて複数の波長帯の光を出射する複数種類の発光ダイオードやレーザダイオードが利用されてもよい。太陽電池評価装置1は、1層のみ、または、3層以上の発電層を有する太陽電池に利用されてもよく、薄膜型太陽電池であれば、色素増感型のものやCIGS太陽電池等の化合物半導体型のものに利用されてよい。   In the 2nd light irradiation part 12, it replaces with the white light source part 121, and multiple types of light emitting diodes and laser diodes which radiate | emit the light of a some wavelength band may be utilized. The solar cell evaluation device 1 may be used for a solar cell having only one layer or three or more power generation layers. If the solar cell evaluation device 1 is a thin-film solar cell, a dye-sensitized solar cell, a CIGS solar cell, etc. It may be used for a compound semiconductor type.

1 太陽電池評価装置
9 太陽電池
11 第1光照射部
12 第2光照射部
13 分光エリプソメータ
14 電気測定部
15 移動機構
71 電気特性分布
72〜74 測定値分布
82 測定位置
91 太陽電池セル
92 受光面
163 種類特定部
911 トップセル
912 ボトムセル
DESCRIPTION OF SYMBOLS 1 Solar cell evaluation apparatus 9 Solar cell 11 1st light irradiation part 12 2nd light irradiation part 13 Spectroscopic ellipsometer 14 Electrical measurement part 15 Movement mechanism 71 Electrical property distribution 72-74 Measurement value distribution 82 Measurement position 91 Solar cell 92 Light-receiving surface 163 Type specific part 911 Top cell 912 Bottom cell

Claims (5)

薄膜型太陽電池の品質を評価する太陽電池評価装置であって、
受光面に沿って配列され、直列に接続される複数の太陽電池セルに光を照射して前記複数の太陽電池セルを導通状態とする第1光照射部と、
前記複数の太陽電池セル上の複数の測定位置に局所的に光を順次照射する第2光照射部と、
前記複数の測定位置のそれぞれに光が照射された際に前記複数の太陽電池セルにて生じる電圧および電流の少なくとも一方を測定する電気測定部と、
前記複数の測定位置における、屈折率、消衰係数、膜厚、光吸収係数および表面粗度のうち少なくとも2つに対応する複数種類の測定値を、光学的手法により前記複数の太陽電池セルと非接触にて取得する光学測定部と、
前記複数の測定位置における前記複数種類の測定値である複数種類の測定値分布と、前記電気測定部により取得された前記複数の測定位置における電気特性である電気特性分布とを比較することにより、前記電気特性分布と最も相関性を有する測定値分布の種類を特定する種類特定部と、
を備えることを特徴とする太陽電池評価装置。
A solar cell evaluation apparatus for evaluating the quality of a thin film solar cell,
A first light irradiation unit arranged along the light receiving surface and irradiating light to the plurality of solar cells connected in series to bring the plurality of solar cells into a conductive state;
A second light irradiating section for sequentially irradiating light locally to a plurality of measurement positions on the plurality of solar cells;
An electrical measurement unit that measures at least one of voltage and current generated in the plurality of solar cells when light is irradiated to each of the plurality of measurement positions;
A plurality of types of measurement values corresponding to at least two of refractive index, extinction coefficient, film thickness, light absorption coefficient, and surface roughness at the plurality of measurement positions are optically measured with the plurality of solar cells. An optical measurement unit that is acquired in a non-contact manner;
By comparing a plurality of types of measurement value distributions that are the plurality of types of measurement values at the plurality of measurement positions, and an electrical property distribution that is an electrical characteristic at the plurality of measurement positions acquired by the electrical measurement unit, A type identifying unit that identifies the type of the measured value distribution most correlated with the electrical characteristic distribution;
A solar cell evaluation apparatus comprising:
請求項に記載の太陽電池評価装置であって、
前記光学測定部が、分光エリプソメータであることを特徴とする太陽電池評価装置。
It is a solar cell evaluation apparatus of Claim 1 , Comprising:
The solar cell evaluation apparatus, wherein the optical measurement unit is a spectroscopic ellipsometer.
請求項1または2に記載の太陽電池評価装置であって、
前記第1光照射部が、前記複数の太陽電池セルに沿ってライン状の光を照射することを特徴とする太陽電池評価装置。
The solar cell evaluation apparatus according to claim 1 or 2 ,
The solar cell evaluation apparatus, wherein the first light irradiation unit irradiates line-shaped light along the plurality of solar cells.
請求項1ないしのいずれかに記載の太陽電池評価装置であって、
前記複数の太陽電池セルが、第1の波長の光の照射により第2の波長の光よりも効率よく発電を行う第1発電層と、前記第2の波長の光の照射により前記第1の波長の光よりも効率よく発電を行う第2発電層とを積層して有し、
前記第2光照射部が、前記第1の波長の光と前記第2の波長の光とを個別に前記複数の測定位置に照射することを特徴とする太陽電池評価装置。
It is a solar cell evaluation apparatus in any one of Claims 1 thru | or 3 , Comprising:
The plurality of solar cells have a first power generation layer that generates power more efficiently than light of the second wavelength by irradiation with light of the first wavelength, and the first power generation layer by irradiation of light of the second wavelength. A second power generation layer that generates power more efficiently than light of a wavelength,
The solar light evaluation apparatus, wherein the second light irradiation unit individually irradiates the plurality of measurement positions with light of the first wavelength and light of the second wavelength.
薄膜型太陽電池の品質を評価する太陽電池評価方法であって、
a)受光面に沿って配列され、直列に接続される複数の太陽電池セルに光を照射して前記複数の太陽電池セルを導通状態とする工程と、
b)前記a)工程が行われている間に、前記複数の太陽電池セル上の複数の測定位置に局所的にさらに光を順次照射する工程と、
c)前記b)工程おける前記複数の測定位置への光の照射に同期して、前記複数の太陽電池セルにて生じる電圧および電流の少なくとも一方を測定することにより、電気特性分布を取得する工程と、
d)前記複数の測定位置における、屈折率、消衰係数、膜厚、光吸収係数および表面粗度の少なくとも2つに対応する複数種類の測定値を、光学的手法により前記複数の太陽電池セルと非接触にて取得することにより、複数種類の測定値分布を取得する工程と、
e)前記複数種類の測定値分布と、前記電気特性分布とを比較することにより、前記電気特性分布と最も相関性を有する測定値分布の種類を特定する工程と、
を備えることを特徴とする太陽電池評価方法。
A solar cell evaluation method for evaluating the quality of a thin film solar cell,
a) irradiating light to a plurality of solar cells arranged in series along the light receiving surface and connected in series to bring the plurality of solar cells into a conductive state;
b) a step of sequentially irradiating the plurality of measurement positions on the plurality of solar cells locally with light while the step a) is performed;
c) A step of acquiring an electrical characteristic distribution by measuring at least one of a voltage and a current generated in the plurality of solar cells in synchronization with light irradiation to the plurality of measurement positions in the step b). When,
d) A plurality of types of measured values corresponding to at least two of a refractive index, an extinction coefficient, a film thickness, a light absorption coefficient, and a surface roughness at the plurality of measurement positions by an optical method. And obtaining a plurality of types of measurement value distributions by obtaining them in a non-contact manner,
e) identifying the type of measurement value distribution most correlated with the electrical property distribution by comparing the plurality of types of measurement value distributions with the electrical property distribution;
A solar cell evaluation method comprising:
JP2010017288A 2010-01-28 2010-01-28 Solar cell evaluation apparatus and solar cell evaluation method Expired - Fee Related JP5509414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017288A JP5509414B2 (en) 2010-01-28 2010-01-28 Solar cell evaluation apparatus and solar cell evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017288A JP5509414B2 (en) 2010-01-28 2010-01-28 Solar cell evaluation apparatus and solar cell evaluation method

Publications (2)

Publication Number Publication Date
JP2011155225A JP2011155225A (en) 2011-08-11
JP5509414B2 true JP5509414B2 (en) 2014-06-04

Family

ID=44540962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017288A Expired - Fee Related JP5509414B2 (en) 2010-01-28 2010-01-28 Solar cell evaluation apparatus and solar cell evaluation method

Country Status (1)

Country Link
JP (1) JP5509414B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089332B2 (en) * 2011-09-08 2017-03-08 国立研究開発法人産業技術総合研究所 Solar cell inspection method and apparatus
JP2013070046A (en) * 2011-09-08 2013-04-18 National Institute Of Advanced Industrial & Technology Defect failure detection method and device of solar cell
JP5423999B2 (en) * 2011-12-22 2014-02-19 パルステック工業株式会社 Solar panel inspection method
JP6320286B2 (en) * 2014-12-17 2018-05-09 三菱電機ビルテクノサービス株式会社 Performance inspection device for photovoltaic power generation system
JP6781985B2 (en) * 2016-08-31 2020-11-11 国立研究開発法人産業技術総合研究所 Solar cell evaluation method and evaluation device and solar cell evaluation program
WO2019244313A1 (en) * 2018-06-21 2019-12-26 三菱電機株式会社 Data processing device, data processing method, and method for manufacturing solar cell module
WO2024203428A1 (en) * 2023-03-31 2024-10-03 株式会社カネカ Photovoltaic system and short circuit detection method for photovoltaic system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739247Y2 (en) * 1986-02-18 1995-09-06 三洋電機株式会社 Photocurrent distribution analyzer for light receiving element
JPH0593608A (en) * 1991-10-01 1993-04-16 Mitsubishi Rayon Co Ltd Measuring apparatus for pitch of phosphor
JPH05234917A (en) * 1992-02-21 1993-09-10 Sumitomo Metal Ind Ltd Forming method of semiconductor thin film and its equipment
JP3795103B2 (en) * 1994-07-21 2006-07-12 シャープ株式会社 Method for forming phosphorus-containing titanium oxide film and solar cell manufacturing apparatus
JP3462272B2 (en) * 1994-09-07 2003-11-05 浜松ホトニクス株式会社 Array electrode substrate inspection equipment
JP2001036111A (en) * 1999-07-16 2001-02-09 Matsushita Battery Industrial Co Ltd Thin-film solar cell and method for evaluating the same
JP2001102609A (en) * 1999-09-28 2001-04-13 Kanegafuchi Chem Ind Co Ltd Device for measuring characteristic of photoelectric conversion device
JP2001111070A (en) * 1999-10-06 2001-04-20 Matsushita Battery Industrial Co Ltd Evaluation method of window layer for solar cell
JP4185246B2 (en) * 2000-12-27 2008-11-26 シャープ株式会社 Laminated solar cell and method for manufacturing the same
JP4765052B2 (en) * 2002-12-19 2011-09-07 独立行政法人産業技術総合研究所 Integrated thin film solar cell evaluation apparatus and evaluation method
JP4625941B2 (en) * 2003-02-04 2011-02-02 独立行政法人産業技術総合研究所 Solar cell performance evaluation system
JP2004273870A (en) * 2003-03-11 2004-09-30 Canon Inc Method and device for measuring laminated photoelectric conversion element
JP2005197432A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Method for measuring solar cell characteristics
JP4613053B2 (en) * 2004-11-18 2011-01-12 株式会社カネカ Method for measuring characteristics of multi-junction photoelectric conversion element test cell and spectrum adjustment method for approximate solar light source
JP4617141B2 (en) * 2004-11-18 2011-01-19 株式会社カネカ Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element
JP2009111215A (en) * 2007-10-31 2009-05-21 Toshiba Mitsubishi-Electric Industrial System Corp Solar cell evaluation apparatus
JP2009152441A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric converter, and photoelectric converter
WO2009142187A1 (en) * 2008-05-22 2009-11-26 株式会社カネカ Thin film photoelectric conversion device and method for manufacturing the same
US20100006785A1 (en) * 2008-07-14 2010-01-14 Moshe Finarov Method and apparatus for thin film quality control
JP2011049474A (en) * 2009-08-28 2011-03-10 Sharp Corp Solar battery evaluation apparatus

Also Published As

Publication number Publication date
JP2011155225A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5509414B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
US8299416B2 (en) High speed quantum efficiency measurement apparatus utilizing solid state lightsource
US8190386B2 (en) Apparatus and method to characterize multijunction photovoltaic solar cells
CN101696942B (en) Multi-junction solar cell and AC electroluminescence testing method and device of each sub cell
JP5804362B2 (en) Inspection apparatus and inspection method
EP2631635B1 (en) Inspection apparatus and inspection method
WO2014005185A1 (en) Methods for inspecting semiconductor wafers
JP5310946B2 (en) Solar simulator and solar cell inspection device
Shan et al. High-speed imaging/mapping spectroscopic ellipsometry for in-line analysis of roll-to-roll thin-film photovoltaics
JP2010073990A (en) Inspecting apparatus of photoelectric conversion device module
JP5835795B2 (en) Inspection method and inspection apparatus
EP3599717B1 (en) Optical characterisation of a coefficient of bi-faciality of a bifacial solar module
EP3599718B1 (en) Optical characterisation of the electronic transport properties of a bifacial photovoltaic module
JP6781985B2 (en) Solar cell evaluation method and evaluation device and solar cell evaluation program
KR101325356B1 (en) Method and apparatus for measuring properties of solar cell
JP4765052B2 (en) Integrated thin film solar cell evaluation apparatus and evaluation method
JP2011049474A (en) Solar battery evaluation apparatus
Kiliani Luminescence imaging techniques for silicon photovoltaics
US20230282526A1 (en) Method and device for measuring the thickness of thin films even on rough substrates
RU2384838C1 (en) TESTING METHOD OF CHIPS OF CASCADE PHOTOCONVERTERS BASED ON Al-Ga-In-As-P CONNECTIONS AND DEVICE FOR IMPLEMENTATION THEREOF
Finn et al. Multiple junction cell characterization using the LBIC method: early results, issues, and pathways to improvement
FR3111739A1 (en) Optical characterization of the thermal degradation coefficient of photovoltaic devices
Rale Multi-transition solar cells with localised states
JP2013140869A (en) Solar battery inspection system, inspection device, inspection method, and solar battery inspection device manufacturing method
Schwalm et al. Solar Cell Characterization with High Spatial Resolution

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5509414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees