JP6781985B2 - Solar cell evaluation method and evaluation device and solar cell evaluation program - Google Patents

Solar cell evaluation method and evaluation device and solar cell evaluation program Download PDF

Info

Publication number
JP6781985B2
JP6781985B2 JP2016170095A JP2016170095A JP6781985B2 JP 6781985 B2 JP6781985 B2 JP 6781985B2 JP 2016170095 A JP2016170095 A JP 2016170095A JP 2016170095 A JP2016170095 A JP 2016170095A JP 6781985 B2 JP6781985 B2 JP 6781985B2
Authority
JP
Japan
Prior art keywords
solar cell
light
excitation light
wavelength
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016170095A
Other languages
Japanese (ja)
Other versions
JP2018038184A (en
Inventor
敏光 望月
敏光 望月
白澤 勝彦
勝彦 白澤
功 坂田
功 坂田
秀尚 高遠
秀尚 高遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016170095A priority Critical patent/JP6781985B2/en
Publication of JP2018038184A publication Critical patent/JP2018038184A/en
Application granted granted Critical
Publication of JP6781985B2 publication Critical patent/JP6781985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は太陽電池の評価方法及び評価装置並びに太陽電池の評価用プログラムに係り、特に太陽電池の内部量子効率の測定結果に基づいて太陽電池の性能を評価する評価方法及び評価装置並びに評価用プログラムに関する。 The present invention relates to an evaluation method and an evaluation device for a solar cell and an evaluation program for the solar cell, and in particular, an evaluation method and an evaluation device and an evaluation program for evaluating the performance of the solar cell based on the measurement result of the internal quantum efficiency of the solar cell. Regarding.

太陽電池には表面での光励起キャリアの再結合を抑制するためにパッシベーション膜と呼ばれる、絶縁体や半導体の薄膜が太陽光照射面側(以下、表面側とも称する)に成膜される。シリコン系の太陽電池においては、窒化シリコン、酸化ケイ素、酸化アルミニウムなどがパッシベーション膜に使われる。このような絶縁体によるパッシベーション膜を表面側に有する太陽電池には、表面側と反対側の裏面に合金層をBSF(Back Surface Field)層として有する構造のものが多い。この合金層は電界効果パッシベーション膜として振舞う。 In a solar cell, a thin film of an insulator or a semiconductor called a passivation film is formed on the sunlight irradiation surface side (hereinafter, also referred to as the surface side) in order to suppress recombination of photoexcited carriers on the surface. In silicon-based solar cells, silicon nitride, silicon oxide, aluminum oxide, etc. are used for the passivation film. Many solar cells having a passivation film made of such an insulator on the front surface side have an alloy layer as a BSF (Back Surface Field) layer on the back surface opposite to the front surface side. This alloy layer behaves as a field effect passivation film.

しかし、上記の合金層は再結合速度が絶縁体によるパッシベーション膜よりも速くなり易く、また、合金層での光の吸収が効率低下の原因となる。そこで、近年では合金層に代わり光損失も再結合も少なくし、高電圧・高電流ひいては高効率を実現するための新しいパッシベーション膜を裏面側にも作る方式の太陽電池が主流になりつつある。例としては、裏面側に絶縁膜を有する構造(PERC:Passivated Emitter and Rear Contact Cell)、拡散層を有する構造(PERT:Passivated Emitter,Rear Totally-diffused)、ヘテロ接合層を有する構造(HIT:Heterojunction with Intrinsic Thin-layer)などがある。 However, the above-mentioned alloy layer tends to have a faster recombination rate than the passivation film made of an insulator, and the absorption of light in the alloy layer causes a decrease in efficiency. Therefore, in recent years, solar cells of a method in which light loss and recombination are reduced instead of an alloy layer, and a new passivation film for achieving high voltage and high current and thus high efficiency are formed on the back surface side are becoming mainstream. Examples include a structure having an insulating film on the back surface side (PERC: Passivated Emitter and Rear Contact Cell), a structure having a diffusion layer (PERT: Passivated Emitter, Rear Totally-diffused), and a structure having a heterojunction layer (HIT: Heterojunction). with Intrinsic Thin-layer) and so on.

このような裏面側にパッシベーション膜を有する太陽電池は、以前の構造より複雑であるため、裏面プロセスの最適化が重要であり、開発段階等で裏面パッシベーション膜の評価が行えれば最適化が大きく加速される。また、裏面側パッシベーション膜の評価は、太陽電池の裏面が熱サイクル、電圧、光照射、湿気、経時変化を含む何らかの原因で劣化した際の故障原因の特定を容易にする。 Since such a solar cell having a passivation film on the back surface side is more complicated than the previous structure, it is important to optimize the back surface process, and if the back surface passivation film can be evaluated at the development stage, the optimization will be large. It will be accelerated. Further, the evaluation of the passivation film on the back surface side facilitates the identification of the cause of failure when the back surface of the solar cell deteriorates for some reason including thermal cycle, voltage, light irradiation, humidity, and aging.

太陽電池の裏面側パッシベーション膜の特性は、主に長波長領域での分光感度の変化として現れる。シリコン系太陽電池において量子効率が測定できる場合は、励起波長900nm〜950nmの領域の量子効率が変化する様子で裏面側パッシベーション膜でのキャリア再結合速度を定性的に評価できる。この場合、量子効率の変化は1%程度であるから、測定位置での反射を同時に測定するタイプの、例えば特許文献1に記載の内部量子効率測定装置による高精度測定が必要である。太陽電池が両面受光可能な構造である場合は、裏面受光で量子効率測定を行い、300〜500nmの短波長領域での量子効率からパッシベーション膜でのキャリア再結合速度を定性的に評価できる。 The characteristics of the passivation film on the back surface side of the solar cell appear mainly as a change in spectral sensitivity in the long wavelength region. When the quantum efficiency can be measured in a silicon-based solar cell, the carrier recombination rate in the backside passivation film can be qualitatively evaluated by changing the quantum efficiency in the region of the excitation wavelength of 900 nm to 950 nm. In this case, since the change in quantum efficiency is about 1%, high-precision measurement by a type that simultaneously measures reflection at the measurement position, for example, the internal quantum efficiency measuring device described in Patent Document 1, is required. When the solar cell has a structure capable of receiving light on both sides, the quantum efficiency can be measured by receiving light on the back side, and the carrier recombination rate in the passivation film can be qualitatively evaluated from the quantum efficiency in the short wavelength region of 300 to 500 nm.

ここで、量子効率とは、或る波長の単色光が太陽電池に入射された際に、その光子が外部電流として取り出される確率を表す。太陽電池内部の品質を評価するにあたっては、太陽電池の反射率をRとしたとき、(1−R)で表される量で量子効率を除算して得られる内部量子効率がよく使われる(例えば、非特許文献1参照)。ある光子が太陽電池のnp接合にあたる位置で吸収されるとほぼ100%の確率で外部電流として取り出せるが、np接合から離れた位置で光子が吸収された場合、当該光子に起因する少数キャリアがnp接合まで拡散してはじめて外部電流として取り出せる。この場合、表面や半導体内部での被輻射再結合によりある確率で少数キャリアがnp接合まで到達しない。これを主因として、励起波長が短いと光子の大部分がnp接合より表面側で吸収されるため表面側での再結合の影響を主に受け、量子効率が1より小さくなる。 Here, the quantum efficiency represents the probability that a photon is taken out as an external current when monochromatic light of a certain wavelength is incident on the solar cell. In evaluating the quality inside a solar cell, the internal quantum efficiency obtained by dividing the quantum efficiency by the amount represented by (1-R) is often used when the reflectance of the solar cell is R (for example). , See Non-Patent Document 1). When a photon is absorbed at the position corresponding to the pn junction of the solar cell, it can be taken out as an external current with almost 100% probability, but when the photon is absorbed at a position away from the pn junction, the minority carriers caused by the photon are np. It can be taken out as an external current only after it has diffused to the junction. In this case, the minority carriers do not reach the np junction with a certain probability due to radiation recombination on the surface or inside the semiconductor. With this as the main cause, when the excitation wavelength is short, most of the photons are absorbed on the surface side of the np junction, so that they are mainly affected by recombination on the surface side, and the quantum efficiency becomes smaller than 1.

図9は、太陽電池表面の再結合速度が量子効率に及ぼす影響を示す、太陽電池の入射光波長対内部量子効率特性を示す。同図に示す特性は表面側が平坦であり、裏面側が完全導体による電極が取り付けられた結晶シリコン太陽電池で、厚みは300μm、接合深さは1μm、少数キャリアの表面再結合速度は表面側で4cm/s、裏面側で27cm/s、拡散長は表面側で1.5μm、裏面側で200μmとし、計算方法は連続の式及びドルーデモデルにより得た特性である。図9中、実線Iは表面再結合速度を表面側及び裏面側共に100cm/sとしたときの特性、破線IIは裏面側再結合速度を2000cm/sまで増やした場合の特性、点線IIIは表面側再結合速度を2000cm/sまで増やした場合の特性を示す。図9に示すように、いずれも長波長と短波長の内部量子効率が下がっている様子が分かる。従来の太陽電池の評価方法では、このような内部量子効率の変化から太陽電池の性能低下の原因を探索している。 FIG. 9 shows the incident light wavelength vs. internal quantum efficiency characteristic of the solar cell, which shows the effect of the recombination rate on the surface of the solar cell on the quantum efficiency. The characteristics shown in the figure are a crystalline silicon solar cell with a flat front surface and a perfect conductor electrode attached to the back surface. The thickness is 300 μm, the bonding depth is 1 μm, and the surface recombination rate of minority carriers is 4 cm on the surface side. The calculation method is / s, 27 cm / s on the back surface side, the diffusion length is 1.5 μm on the front surface side, and 200 μm on the back surface side, and the calculation method is the characteristics obtained by the continuity equation and the Drude model. In FIG. 9, the solid line I is the characteristic when the front surface recombination speed is 100 cm / s on both the front surface side and the back surface side, the broken line II is the characteristic when the back surface side recombination speed is increased to 2000 cm / s, and the dotted line III is the surface surface. The characteristics when the side recombination rate is increased to 2000 cm / s are shown. As shown in FIG. 9, it can be seen that the internal quantum efficiencies of the long wavelength and the short wavelength are reduced in both cases. In the conventional evaluation method of a solar cell, the cause of the deterioration of the performance of the solar cell is searched for from such a change in the internal quantum efficiency.

次に、従来の太陽電池の他の評価方法について説明する。裏面での低い量子効率の理由が分かっている場合に限れば、その原因に特徴的な構造を観察しながら製造プロセスの最適化を行えばよい。例えば、両面に絶縁膜のあるPERC構造の太陽電池では、裏面側のアルミ電極に空洞ができ易く、これによって太陽電池としての特性が著しく悪化する。そこで、従来は超音波探傷機を使う方法や、単に太陽電池を切断して電子顕微鏡によって観察する方法で上記空洞などを発見している。 Next, another evaluation method of the conventional solar cell will be described. Only when the reason for the low quantum efficiency on the back surface is known, the manufacturing process may be optimized while observing the structure characteristic of the cause. For example, in a solar cell having a PERC structure having insulating films on both sides, cavities are likely to be formed in the aluminum electrode on the back surface side, which significantly deteriorates the characteristics of the solar cell. Therefore, conventionally, the above cavities and the like have been discovered by a method using an ultrasonic flaw detector or a method of simply cutting a solar cell and observing it with an electron microscope.

特開2002−353474号公報JP-A-2002-353474

P.Rappaport,Solar Energy 3(4) 8-18(1959)P.Rappaport, Solar Energy 3 (4) 8-18 (1959)

しかしながら、裏面側パッシベーション膜を有する太陽電池において、発電特性が設計よりも悪い場合、内部量子効率の変化から太陽電池の性能低下の原因を探索する従来の太陽電池の評価方法(第1の従来方法)では、励起光のスポットサイズ及び励起波長で決まる空間分解能を変化させた内部量子効率の測定ができないため、裏面側のどこが悪いのかを特定できない。一方、太陽電池を破壊して超音波探傷機や電子顕微鏡で発電特性の低下の原因を特定する後者の従来の太陽電池の評価方法(第2の従来方法)では、想定した原因と異なる異常が太陽電池にある場合異常が発見されず、その太陽電池の評価方法のみで原因の究明を行おうとすると、総当たり的に各種の測定を行わなければならない。 However, in a solar cell having a passive film on the back surface side, when the power generation characteristics are worse than the design, a conventional solar cell evaluation method (first conventional method) for searching for the cause of the deterioration of the performance of the solar cell from the change in the internal quantum efficiency. In), it is not possible to measure the internal quantum efficiency by changing the spatial resolution determined by the spot size of the excitation light and the excitation wavelength, so it is not possible to specify what is wrong with the back surface side. On the other hand, in the latter conventional solar cell evaluation method (second conventional method) in which the solar cell is destroyed and the cause of the deterioration of the power generation characteristics is identified by an ultrasonic flaw detector or an electron microscope, an abnormality different from the assumed cause occurs. In the case of a solar cell, no abnormality is found, and if the cause is to be investigated only by the evaluation method of the solar cell, various measurements must be performed on a round-robin basis.

そのため、現状では上記の2つの従来の太陽電池の評価方法を組み合わせた評価プロセスが採用される。例えば、表面側及び裏面側の両方にパッシベーション膜のあるp型シリコン基板を使ったPERC構造の太陽電池の場合は、第1の従来方法で複数の太陽電池を評価して比較し、裏面側に問題があるかどうかを特定する。続いて、裏面側に問題がある太陽電池のうち、裏面側の例えばアルミナによるパッシベーション膜に問題があるのか、裏面側のアルミ電極が接している部分に問題があるのかを第2の従来方法で太陽電池を破壊して特定する。すなわち、従来は太陽電池を破壊しなければ、太陽電池の裏面側の問題個所の特定が極めて困難であり、改善の目途が立たないという問題がある。 Therefore, at present, an evaluation process that combines the above two conventional evaluation methods for solar cells is adopted. For example, in the case of a solar cell having a PERC structure using a p-type silicon substrate having passivation films on both the front side and the back side, a plurality of solar cells are evaluated and compared by the first conventional method, and the back side is used. Identify if there is a problem. Next, among the solar cells having a problem on the back surface side, whether there is a problem on the passivation film made of, for example, alumina on the back surface side or the part in contact with the aluminum electrode on the back surface side is determined by the second conventional method. Destroy and identify solar cells. That is, conventionally, if the solar cell is not destroyed, it is extremely difficult to identify the problematic part on the back surface side of the solar cell, and there is a problem that there is no prospect of improvement.

本発明は以上の点に鑑みなされたもので、太陽電池の裏面側の特性を非破壊で評価することで、製造プロセスの最適化を実現し得る太陽電池の評価方法及び評価装置並びに太陽電池の評価用プログラムを提供することを目的とする。 The present invention has been made in view of the above points, and an evaluation method and an evaluation device for a solar cell and a solar cell that can realize optimization of a manufacturing process by non-destructively evaluating the characteristics of the back surface side of the solar cell. The purpose is to provide an evaluation program.

上記の目的を達成するため、第1の発明の太陽電池の評価方法は、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価方法であって、少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御ステップと、前記光制御ステップによりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価ステップと、を含むことを特徴とする。 In order to achieve the above object, the evaluation method of the solar cell of the first invention is to apply excitation light whose wavelength and spot size can be arbitrarily changed to a light receiving surface of the solar cell placed on a movable sample table. A method for evaluating a solar cell, which obtains an evaluation result of the solar cell based on each photoelectric conversion signal of the reflected light from the solar cell and the excitation light and an output signal of the solar cell. The spot size of the excitation light is controlled by an optical control step of controlling the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell, and a spot by the optical control step. The spatial distribution of the internal quantum efficiency of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light whose size is controlled. Based on this, it is characterized by including an evaluation step of evaluating the back surface structure of the solar cell on the side opposite to the light receiving surface.

また、上記の目的を達成するため、第2の発明の太陽電池の評価方法は、水平面を2軸方向に指定された距離だけ移動可能な試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射ステップと、前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出ステップと、前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出ステップによる前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価ステップとを含み、前記光照射ステップは、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、前記評価ステップは、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。 Further, in order to achieve the above object, the evaluation method of the solar cell of the second invention is performed on the light receiving surface of the solar cell placed on the sample table which can move the horizontal plane by a specified distance in the biaxial direction. A light irradiation step of irradiating an excitation light whose wavelength and spot size are controlled to desired values, a reflected light obtained by reflecting the excitation light by a surface electrode formed on the light receiving surface, and the light receiving surface. Based on each photoelectric conversion signal of the excitation light before irradiation and the output signal of the surface electrode, the excitation light intensity, the total reflected light intensity and the photocurrent are measured, and the internal quantum efficiency of the solar cell is obtained from the measurement results. And the calculation step for calculating the reflectance, the internal quantum efficiency and the reflectance by the calculation step obtained from the measurement results of each of the plurality of measurement points on the light receiving surface of the solar cell, and the wavelength of the excitation light. Including the evaluation step of obtaining the evaluation result of the solar cell based on the above, the light irradiation step has at least the spot size of the excitation light at least twice the electrode width of the surface electrode and the solar cell. The light receiving surface is irradiated with the excitation light controlled to a value as close as possible to the substrate thickness of the solar cell, and the evaluation step is characterized in that the back surface structure of the solar cell opposite to the light receiving surface is evaluated.

また、上記の目的を達成するため、第3の発明の太陽電池の評価方法は、第2の発明の光照射ステップが、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、第5の発明の評価ステップが、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする。 Further, in order to achieve the above object, in the evaluation method of the solar cell of the third invention, the light irradiation step of the second invention sets the wavelength of the excitation light to the internal quantum lower than the internal quantum efficiency of the reference sample. Controlled to a first wavelength at which efficiency is obtained or a second wavelength at which the substrate of the solar cell looks substantially transparent, the evaluation step of the fifth invention is the plurality of said when the excitation light is at the first wavelength. The first internal quantum efficiency and the first reflectance calculated by the calculation step based on the measurement results of the respective measurement points, and the respective measurements of the plurality of measurement points when the excitation light has the second wavelength. It is characterized in that the back surface structure of the solar cell is evaluated by using the second reflectance calculated by the calculation step based on the result.

また、上記の目的を達成するため、第4の発明の太陽電池の評価装置は、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価装置であって、少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御手段と、前記光制御手段によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価手段と、を備えることを特徴とする。 Further, in order to achieve the above object, the evaluation device for the solar cell of the fourth invention is a solar cell on which an excitation light whose wavelength and spot size can be arbitrarily changed is placed on a movable sample table. An evaluation device for a solar cell that irradiates a light receiving surface and obtains an evaluation result of the solar cell based on each photoelectric conversion signal of the reflected light from the solar cell and the excitation light and an output signal of the solar cell. An optical control means for controlling at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell, and the optical control means. A space of internal quantum efficiency of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light whose spot size is controlled by It is characterized by comprising an evaluation means for evaluating the back surface structure of the solar cell on the side opposite to the light receiving surface of the solar cell based on the distribution.

また、上記の目的を達成するため、第5の発明の太陽電池の評価装置は、太陽電池が載置され、その太陽電池の表面に平行な水平面を2軸方向に指定された距離だけ移動可能な試料台と、前記試料台を移動する移動機構と、波長及び前記太陽電池の受光面におけるスポットサイズがそれぞれ所望の値に制御された励起光を発生して、前記太陽電池の受光面に照射する光照射手段と、照射された前記励起光が、受光面に形成された表面電極で反射された反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出手段と、前記移動機構を駆動制御して、前記励起光のスポットが前記太陽電池の受光面における複数の測定点を順次位置するように前記試料台を移動させる駆動制御手段と、前記複数の測定点のそれぞれの測定結果から得られた前記算出手段による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価手段とを備え、
前記光照射手段は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御し、前記評価手段は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。
Further, in order to achieve the above object, in the solar cell evaluation device of the fifth invention, the solar cell is mounted and the horizontal plane parallel to the surface of the solar cell can be moved by a specified distance in the biaxial direction. The sample table, the moving mechanism for moving the sample table, and the excitation light whose wavelength and spot size on the light receiving surface of the solar cell are controlled to desired values are generated and irradiated to the light receiving surface of the solar cell. The light irradiating means, the reflected light reflected by the surface electrode formed on the light receiving surface, the photoelectric conversion signal of the excitation light before the light receiving surface irradiation, and the surface electrode. Based on the output signal, the excitation light intensity, the total reflected light intensity, and the light current are measured, and the calculation means for calculating the internal quantum efficiency and the reflectance of the solar cell from the measurement results and the moving mechanism are driven and controlled. The drive control means for moving the sample table so that the spots of the excitation light sequentially position the plurality of measurement points on the light receiving surface of the solar cell, and the measurement results of the plurality of measurement points were obtained. An evaluation means for obtaining an evaluation result of the solar cell based on the internal quantum efficiency and the reflectance by the calculation means and the wavelength of the excitation light is provided.
The light irradiation means controls the spot size of the excitation light to at least twice the electrode width of the surface electrode and a value as close as possible to the substrate thickness of the solar cell, and the evaluation means said. It is characterized in that the back surface structure on the side opposite to the light receiving surface of the solar cell is evaluated.

また、上記の目的を達成するため、第6の発明の太陽電池の評価装置は、第5の発明の光照射手段が、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、第2の発明の評価手段が、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする。 Further, in order to achieve the above object, in the solar cell evaluation apparatus of the sixth invention, the light irradiation means of the fifth invention sets the wavelength of the excitation light to an internal quantum lower than the internal quantum efficiency of the reference sample. Controlled to a first wavelength at which efficiency is obtained or a second wavelength at which the substrate of the solar cell looks substantially transparent, the evaluation means of the second invention is the plurality of said when the excitation light is at the first wavelength. The first internal quantum efficiency and the first reflectance calculated by the calculation means based on the measurement results of the respective measurement points, and the respective measurements of the plurality of measurement points when the excitation light has the second wavelength. It is characterized in that the back surface structure of the solar cell is evaluated by using the second reflectance calculated by the calculation means based on the result.

また、上記の目的を達成するため、第7の発明の太陽電池の評価用プログラムは、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、前記コンピュータに、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御機能と、前記光制御機能によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価機能と、を実現させることを特徴とする。
Further, in order to achieve the above object, the solar cell evaluation program of the seventh invention is a solar cell in which excitation light whose wavelength and spot size can be arbitrarily changed is placed on a movable sample table. The evaluation result of the solar cell is obtained by irradiating the light receiving surface of the solar cell based on the photoelectric conversion signals of the reflected light from the solar cell and the excitation light and the output signal of the solar cell. This is a solar cell evaluation program to be executed by the computer.
By the optical control function that controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell, and the optical control function. Spatial distribution of the internal quantum efficiency of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light having a controlled spot size. Based on the above, it is characterized by realizing an evaluation function for evaluating the back surface structure of the solar cell on the side opposite to the light receiving surface.

更に、上記の目的を達成するため、第8の発明の太陽電池の評価用プログラムは、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、前記コンピュータに、
前記試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射機能と、前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて測定された、励起光強度、全反射光強度及び光電流の測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出機能と、前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出機能による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価機能とを実現させ、
前記光照射機能は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、前記評価機能は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。
Further, in order to achieve the above object, the evaluation program of the solar cell of the eighth invention is a solar cell in which excitation light whose wavelength and spot size can be arbitrarily changed is placed on a movable sample table. The evaluation result of the solar cell is obtained by irradiating the light receiving surface of the solar cell based on the photoelectric conversion signals of the reflected light from the solar cell and the excitation light and the output signal of the solar cell. This is a solar cell evaluation program to be executed by the computer.
A light irradiation function that irradiates a light receiving surface of a solar cell placed on the sample table with excitation light in which the wavelength and spot size are controlled to desired values, and a surface formed by the excitation light on the light receiving surface. The excitation light intensity and the total reflected light intensity measured based on the photoelectric conversion signals of the reflected light obtained by being reflected by the electrodes and the excitation light before the light receiving surface irradiation, and the output signal of the surface electrode. And the inside by the calculation function to calculate the internal quantum efficiency and reflectance of the solar cell from the measurement result of the light current and the calculation function obtained from the measurement result of each of the plurality of measurement points on the light receiving surface of the solar cell. An evaluation function for obtaining an evaluation result of the solar cell is realized based on the quantum efficiency, the reflectance, and the wavelength of the excitation light.
The light irradiation function controls the spot size of the excitation light to be at least twice the electrode width of the surface electrode and a value as close as possible to the substrate thickness of the solar cell. The evaluation function is characterized in that the back surface structure of the solar cell opposite to the light receiving surface is evaluated.

本発明によれば、光励起キャリアライフタイム測定などが困難な、電極形成済みの太陽電池が故障した場合や設計した性能が得られない場合における太陽電池の裏面側の原因を非破壊で特定する評価を行うことができる。これにより、本発明によれば、製造プロセスの最適化を実現できる。 According to the present invention, an evaluation for non-destructively identifying the cause on the back surface side of a solar cell when the electrode-formed solar cell fails or the designed performance cannot be obtained, which is difficult to measure the photoexcited carrier lifetime. It can be performed. Thereby, according to the present invention, the optimization of the manufacturing process can be realized.

本発明の太陽電池の評価装置の一実施形態の構成図である。It is a block diagram of one Embodiment of the evaluation apparatus of the solar cell of this invention. 本発明で評価される太陽電池の一例の断面図である。It is sectional drawing of an example of the solar cell evaluated in this invention. 図1の動作説明用フローチャートである。It is a flowchart for operation explanation of FIG. 図3中の各部の詳細動作説明用フローチャートである。It is a flowchart for detailed operation explanation of each part in FIG. PERC型太陽電池と基準試料の波長対内部量子効率特性図である。It is a wavelength vs. internal quantum efficiency characteristic diagram of a PERC type solar cell and a reference sample. 太陽電池の励起光波長950nmにおける内部量子効率を濃淡プロットした図である。It is a figure which the internal quantum efficiency at the excitation light wavelength of 950 nm of a solar cell is a shading plot. 太陽電池の励起光波長950nmにおける反射率を濃淡プロットした図である。It is a figure which the reflectance at the excitation light wavelength of 950 nm of a solar cell is plotted by shading. 太陽電池の励起光波長1200nmにおける反射率を濃淡プロットした図である。It is a figure which the reflectance at the excitation light wavelength of 1200 nm of a solar cell is plotted by shading. 太陽電池の入射光波長対内部量子効率特性図である。It is an incident light wavelength vs. internal quantum efficiency characteristic diagram of a solar cell.

次に、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明に係る太陽電池の評価装置の一実施形態の構成図を示す。本実施形態の太陽電池の評価装置100は、励起スポットサイズが可変な内部量子効率測定系と、評価対象の試料である太陽電池の測定位置を高精度に移動制御可能な可変試料台とを組み合わせた構成である。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of an embodiment of an evaluation device for a solar cell according to the present invention. The solar cell evaluation device 100 of the present embodiment combines an internal quantum efficiency measurement system with a variable excitation spot size and a variable sample table capable of highly accurate movement control of the measurement position of the solar cell as the sample to be evaluated. It is a configuration.

図1において、白色光源101は白色光を出射し、その白色光をレンズ102により平行光とし、AC測定のために光チョッパ103でチョッピングさせて分光器104に入射する。分光器104は、光路を変える反射鏡や回転可能なグレーティング1041等より構成されており、入射する白色光をグレーティング1041の回転により決まる一波長λの単色光に分光する。グレーティング1041の回転角度は、後述するパーソナルコンピュータ(以下、PCと記す)124からの制御信号により制御される。これにより、分光器104は、白色光からPC124により任意の波長に分光した単色光を励起光として出射し、暗箱105に入射する。 In FIG. 1, the white light source 101 emits white light, the white light is made into parallel light by the lens 102, chopped by an optical chopper 103 for AC measurement, and incident on the spectroscope 104. The spectroscope 104 is composed of a reflector that changes an optical path, a rotatable grating 1041 and the like, and disperses incident white light into monochromatic light having a wavelength of λ determined by the rotation of the grating 1041. The rotation angle of the grating 1041 is controlled by a control signal from a personal computer (hereinafter referred to as a PC) 124, which will be described later. As a result, the spectroscope 104 emits monochromatic light dispersed from white light to an arbitrary wavelength by the PC 124 as excitation light, and enters the dark box 105.

暗箱105内には、絞り106、ビームスプリッタ107、放物面鏡108及び110、積分球109、励起光センサ111、反射光センサ112、電流電圧変換器113、114及び115からなる光学及び電気系と、ラボジャッキ116、試料台117、ステッピングモータ118及び119からなる機構系とが収納されている。ラボジャッキ116上に固定された試料台117は、ステッピングモータ118により水平面のx軸方向(太陽電池201の電極形成面と平行な平面における電極の長手方向と平行な方向)に、またステッピングモータ119により水平面のy軸方向にそれぞれ移動して高精度に位置決めされる可変試料台を構成している。ステッピングモータ118及び119は後述するPC124によりその動作が制御される。試料台117上には、評価対象の試料である太陽電池201が載置・固定される。太陽電池201の表面側の電極202は、励起光を反射して積分球109内に入射する。 Inside the dark box 105 is an optical and electrical system consisting of a diaphragm 106, a beam splitter 107, a parabolic mirror 108 and 110, an integrating sphere 109, an excitation light sensor 111, a reflected light sensor 112, and current-voltage converters 113, 114 and 115. And a mechanical system including a lab jack 116, a sample table 117, a stepping motor 118 and 119 are housed. The sample table 117 fixed on the lab jack 116 is moved by the stepping motor 118 in the x-axis direction of the horizontal plane (the direction parallel to the longitudinal direction of the electrodes in the plane parallel to the electrode forming surface of the solar cell 201) and the stepping motor 119. It constitutes a variable sample table that moves in the y-axis direction of the horizontal plane and is positioned with high accuracy. The operation of the stepping motors 118 and 119 is controlled by the PC 124 described later. The solar cell 201, which is the sample to be evaluated, is placed and fixed on the sample table 117. The electrode 202 on the front surface side of the solar cell 201 reflects the excitation light and enters the integrating sphere 109.

絞り106は、分光器104からの単色励起光のスポットサイズを、例えば50μmから3mmまでの範囲内で可変可能な可変絞りであり、所望のスポットサイズとした単色励起光をビームスプリッタ107に入射する。なお、本実施形態では、絞り106は、太陽電池201に照射される励起光のスポット径が太陽電池201の電極202の電極幅の2倍以上で、かつ、基板厚みに極力近い値となるように制御する。太陽電池201の表面では放物面鏡108により絞り106からの光が等倍で結像されるようになっているため、太陽電池201の表面のスポットサイズは絞り106と同じになる。 The diaphragm 106 is a variable diaphragm in which the spot size of the monochromatic excitation light from the spectroscope 104 can be changed within a range of, for example, 50 μm to 3 mm, and the monochromatic excitation light having a desired spot size is incident on the beam splitter 107. .. In the present embodiment, the aperture 106 has a spot diameter of excitation light applied to the solar cell 201 that is at least twice the electrode width of the electrode 202 of the solar cell 201 and as close as possible to the substrate thickness. To control. On the surface of the solar cell 201, the light from the diaphragm 106 is imaged at the same magnification by the parabolic mirror 108, so that the spot size on the surface of the solar cell 201 is the same as that of the diaphragm 106.

ビームスプリッタ107は、絞り106によりスポット径が調整された励起光の光路を2分し、一方は放物面鏡108で反射させて太陽電池201の表面側の電極202に入射し、他方は放物面鏡110で反射させて励起光センサ111に入射して光電変換させる。積分球109は、電極202で反射された励起光を開口部より内部に導入して内壁で多重反射させた後集光し、集光された反射光を別の開口部を通して反射光センサ112に入射して光電変換させる。 The beam splitter 107 divides the optical path of the excitation light whose spot diameter is adjusted by the aperture 106 into two, one of which is reflected by the parabolic mirror 108 and incidents on the electrode 202 on the surface side of the solar cell 201, and the other is emitted. It is reflected by the parabolic mirror 110 and incident on the excitation light sensor 111 for photoelectric conversion. The integrating sphere 109 introduces the excitation light reflected by the electrode 202 into the inside through the opening, multi-reflects it on the inner wall, and then condenses the collected reflected light to the reflected light sensor 112 through another opening. It is incident and photoelectrically converted.

励起光センサ111は、入射励起光の受光光量に応じたレベルの電流を出力して電流電圧変換器113に供給して電圧に変換させた後、ロックインアンプ121に供給する。一方、反射光センサ112は、電極202及び積分球109でそれぞれ反射して得られた反射光の受光光量に応じたレベルの電流を出力して電流電圧変換器114に供給して電圧に変換させた後、ロックインアンプ122に供給する。また、電流電圧変換器115は、電極202から取り出された太陽電池201の出力電流を電圧に変換してロックインアンプ123に供給する。 The excitation light sensor 111 outputs a current at a level corresponding to the amount of received light of the incident excitation light, supplies it to the current-voltage converter 113 to convert it into a voltage, and then supplies it to the lock-in amplifier 121. On the other hand, the reflected light sensor 112 outputs a current of a level corresponding to the amount of received light of the reflected light obtained by being reflected by the electrode 202 and the integrating sphere 109, and supplies the current to the current-voltage converter 114 to convert it into a voltage. After that, it is supplied to the lock-in amplifier 122. Further, the current-voltage converter 115 converts the output current of the solar cell 201 taken out from the electrode 202 into a voltage and supplies it to the lock-in amplifier 123.

ロックインアンプ121、122及び123は、電流電圧変換器113、114及び115から出力される交流電圧が供給され、その交流電圧中の所定の周波数参照信号と同一周波数成分のレベルに応じた直流電圧を発生してそれぞれPC124に供給する。事前の校正と併せておくことで、ロックインアンプ121は励起光強度Pを示す直流電圧を出力し、ロックインアンプ122は電極202の全反射光強度Prを示す直流電圧を出力し、ロックインアンプ123は太陽電池201が出力する光電流Iに応じた直流電圧を出力する。PC124は、ロックインアンプ121、122及び123から供給される直流電圧に基づいて、反射率R、及び内部量子効率ηIQEをそれぞれ次式に基づいて算出する。
R=Pr/P (1)
ηIQE=Ihc/[ePλ(1−R)] (2)
ただし、(2)式中、hはプランク定数、cは光速、eは素電荷、λは励起光の波長である。
The lock-in amplifiers 121, 122, and 123 are supplied with an AC voltage output from the current-voltage converters 113, 114, and 115, and have a DC voltage corresponding to the level of the same frequency component as a predetermined frequency reference signal in the AC voltage. Are generated and supplied to the PC 124 respectively. By keeping conjunction with pre-calibration, the lock-in amplifier 121 outputs a DC voltage representing the excitation light intensity P, the lock-in amplifier 122 outputs a DC voltage representing the total reflected light intensity P r of the electrode 202, the lock The in-amplifier 123 outputs a DC voltage corresponding to the optical current I output by the solar cell 201. The PC 124 calculates the reflectance R and the internal quantum efficiency η IQE based on the following equations based on the DC voltages supplied from the lock-in amplifiers 121, 122 and 123, respectively.
R = Pr / P (1)
η IQE = Ihc / [ePλ (1-R)] (2)
However, in Eq. (2), h is Planck's constant, c is the speed of light, e is the elementary charge, and λ is the wavelength of the excitation light.

PC124は、算出した反射率R及び内部量子効率ηIQEの測定データを外部出力装置であるディスプレイ125及び印刷機126にそれぞれ出力して、ディスプレイ125により画像表示させ、印刷機126により紙に印刷させることで可視化する。可視化された測定画像及び測定データに基づいて、後述する太陽電池201の評価が行われる。また、PC124は、ステッピングモータ118及び119に駆動信号を供給し、試料台117を前述した水平面上のx軸方向及びy軸方向に移動させて太陽電池201の励起光照射位置を指定する制御も行う。 The PC 124 outputs the calculated reflectance R and the measurement data of the internal quantum efficiency η IQE to the display 125 and the printing machine 126, which are external output devices, respectively, displays an image on the display 125, and prints on paper by the printing machine 126. Visualize it. The solar cell 201, which will be described later, is evaluated based on the visualized measurement image and measurement data. In addition, the PC 124 also supplies drive signals to the stepping motors 118 and 119 and moves the sample table 117 in the x-axis direction and the y-axis direction on the horizontal plane to specify the excitation light irradiation position of the solar cell 201. Do.

本実施形態の太陽電池の評価装置100は、ラボジャッキ116、試料台117、ステッピングモータ118及び119からなる可動試料台機構と、それ以外の光学系及び電気系からなる励起スポットサイズが可変な内部量子効率測定系とを連携させることで、光電流Iを測定した条件での全反射光強度Prの測定、試料台117の移動と連動した測定、及び励起光スポットサイズの選択を行うことに特徴がある。 The solar cell evaluation device 100 of the present embodiment has a movable sample table mechanism including a lab jack 116, a sample table 117, a stepping motor 118 and 119, and an internal structure having a variable excitation spot size composed of other optical and electrical systems. by linking the quantum efficiency measurement system, the measurement of the total reflected light intensity P r of the conditions of measurement of the photocurrent I, measured in conjunction with the movement of the sample stage 117, and to perform the selection of the excitation spot size There is a feature.

本実施形態の被評価太陽電池の一例であるシリコン太陽電池においては、表面側の電極は多くの場合、銀(Ag)製の電極が採用される。本実施形態の太陽電池の評価装置100において、このAg電極の幅の2倍のスポットサイズを採用し、励起光がスポットサイズと同じ円状の領域内のみを一様に照らすと仮定した場合、電極はスポットの最大61%を覆う。このとき、例えば波長950nmでの内部量子効率が0.75で空間的に一様であり、電極が無い領域の反射を無視し、電極の反射率に銀電極の反射率97.5%を採用して、反射がすべて積分球109に捕捉されるとした場合、測定される内部量子効率は0.721となり、0.029下がる。この下がり幅は、後述する図6に示す太陽電池の裏面構造に起因する、波長950nmの励起光に対する内部量子効率の0.02程度の変化とほぼ同じであり、裏面構造による影響を隠すに至らない。より大きなスポットサイズでは、励起光スポットに示す電極の面積の割合の上限が下がるため、表面電極の影響をより小さくすることができ、太陽電池の裏面構造の影響を特別な画像処理を行わずに可視化することができる。 In the silicon solar cell, which is an example of the solar cell to be evaluated in the present embodiment, an electrode made of silver (Ag) is often adopted as the electrode on the surface side. In the solar cell evaluation device 100 of the present embodiment, when a spot size twice the width of the Ag electrode is adopted and it is assumed that the excitation light uniformly illuminates only the circular region having the same spot size. The electrodes cover up to 61% of the spot. At this time, for example, the internal quantum efficiency at a wavelength of 950 nm is 0.75, which is spatially uniform, ignoring the reflection in the region without the electrode, and adopting the reflectance of the silver electrode of 97.5% as the reflectance of the electrode. Then, assuming that all the reflections are captured by the integrating sphere 109, the measured internal quantum efficiency is 0.721, which is 0.029 lower. This amount of decrease is almost the same as the change of about 0.02 in the internal quantum efficiency with respect to the excitation light having a wavelength of 950 nm due to the back surface structure of the solar cell shown in FIG. 6, which will be described later, and the influence of the back surface structure is hidden. Absent. With a larger spot size, the upper limit of the proportion of the electrode area shown in the excitation light spot is lowered, so that the influence of the front electrode can be made smaller, and the influence of the back surface structure of the solar cell can be affected without any special image processing. It can be visualized.

また、太陽電池の評価装置100の空間分解能は、励起光スポットサイズ、主たる励起領域における少数キャリア拡散長、及び主たる励起領域に達するまでにスポットが受光面のテクスチャなどで散乱される大きさの、計三つの二乗平均平方根で決定されると考えられる。少数キャリア拡散長は、np接合面の深さやキャリアのドープ濃度、基板の種類によって全く違う値となり、太陽電池を評価するにあたって、その基板の少数キャリア拡散長はほとんどの場合不明であり、本実施形態における励起光スポットサイズの選択においては0とみなす。テクスチャはランハート則でよく近似される散乱を生じさせるため、スポットが拡散される大きさは太陽電池の厚みと同程度である。 Further, the spatial resolution of the evaluation device 100 of the solar cell is such that the excitation light spot size, the minority carrier diffusion length in the main excitation region, and the size that the spots are scattered by the texture of the light receiving surface before reaching the main excitation region. It is considered to be determined by a total of three root mean squares. The minority carrier diffusion length has completely different values depending on the depth of the pn junction surface, the carrier doping concentration, and the type of substrate. In evaluating a solar cell, the minority carrier diffusion length of the substrate is unknown in most cases. It is regarded as 0 in the selection of the excitation light spot size in the form. Since the texture produces scattering that is well approximated by Lanhart's law, the size at which the spots are diffused is comparable to the thickness of the solar cell.

図2は、本発明で評価される太陽電池の一例の断面図を示す。同図中、図1と同一構成部分には同一符号を付してある。図2において、太陽電池201は裏面パッシベーション(PERC)型シリコン結晶太陽電池で、p型にドープされた結晶シリコンウェハであるp型シリコン基板203の表面側を受光面とし、表面側がテクスチャ構造とされ、そこにはn+拡散層204の表面に窒化シリコン(SiN)膜205が被覆形成されている。絶縁膜であるSiN膜205は、パッシベーション膜及び反射防止膜として機能する。また、n+拡散層204及びSiN膜205のテクスチャ構造には、複数の電極202が焼成貫通により互いに平行に形成されている。電極202は、平面が長方形状の銀(Ag)製の電極で、その長手方向(図2の紙面と直交する方向)と直交する電極幅が一例として0.1mmで、隣接する2つの電極の幅方向の間隔(電極間距離)は1.8mmである。 FIG. 2 shows a cross-sectional view of an example of a solar cell evaluated in the present invention. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals. In FIG. 2, the solar cell 201 is a backside passivation (PERC) type silicon crystalline solar cell, in which the front surface side of a p-type silicon substrate 203, which is a p-type doped crystalline silicon wafer, is a light receiving surface, and the front surface side is a textured structure. A silicon nitride (SiN) film 205 is coated on the surface of the n + diffusion layer 204. The SiN film 205, which is an insulating film, functions as a passivation film and an antireflection film. Further, in the texture structure of the n + diffusion layer 204 and the SiN film 205, a plurality of electrodes 202 are formed in parallel with each other by firing penetration. The electrode 202 is an electrode made of silver (Ag) having a rectangular flat surface, and has an electrode width orthogonal to the longitudinal direction (direction orthogonal to the paper surface of FIG. 2) of 0.1 mm as an example, and two adjacent electrodes. The distance in the width direction (distance between electrodes) is 1.8 mm.

p型シリコン基板203の裏面側には絶縁膜として例えば酸化アルミ膜206がパッシベーション膜として形成されている。酸化アルミ膜206は、例えば1mm間隔で0.1mm幅の溝が掘られ、その上からアルミニウム(Al)ペーストを塗布後熱処理することで、この溝部分でAlとSiとが合金化されたBSF型の電極207が形成されている。一方、溝以外の酸化アルミ膜206上にはAl製の電極208が形成される。したがって、BSF型の電極207とAl電極208とは1mm間隔で接合されている。また、表面側の電極202及び裏面側のBSF型の電極207は、いずれも電極幅が0.1mmと同じであるが、隣接する2つの電極の幅方向の間隔(電極間距離)は、電極202が1.8mm、電極207が1.0mmと異なる。この太陽電池201の大きさは、幅156mm×奥行156mm×厚み0.2mmである。 For example, an aluminum oxide film 206 is formed as an insulating film on the back surface side of the p-type silicon substrate 203 as a passivation film. In the aluminum oxide film 206, for example, a groove having a width of 0.1 mm is dug at 1 mm intervals, and an aluminum (Al) paste is applied from the groove and then heat-treated to form a BSF in which Al and Si are alloyed in this groove portion. A mold electrode 207 is formed. On the other hand, an electrode 208 made of Al is formed on the aluminum oxide film 206 other than the groove. Therefore, the BSF type electrode 207 and the Al electrode 208 are joined at an interval of 1 mm. Further, the electrodes 202 on the front surface side and the BSF type electrode 207 on the back surface side both have the same electrode width as 0.1 mm, but the distance between the two adjacent electrodes in the width direction (distance between the electrodes) is the electrode. 202 is different from 1.8 mm and electrode 207 is different from 1.0 mm. The size of the solar cell 201 is 156 mm in width × 156 mm in depth × 0.2 mm in thickness.

次に、図1の太陽電池の評価装置100による図2の断面構造のPERC型太陽電池201を評価対象とする評価方法について、図3及び図4のフローチャート並びに図5の波長対内部量子効率特性を併せ参照して詳細に説明する。本実施形態は、図3のステップS11以降の処理に特徴があるが、それ以前のステップS1〜S10で量子効率スペクトル測定による性能低下要因の切り分けを行う。そのため、まず、評価装置100は、試料台117の上に太陽電池201を載置した状態で太陽電池201の量子効率スペクトル測定を行う(図3のステップS1)。また、ステップS1では事前に基準試料についても同様にして量子効率スペクトルの測定を行う。 Next, regarding the evaluation method for evaluating the PERC type solar cell 201 having the cross-sectional structure of FIG. 2 by the solar cell evaluation device 100 of FIG. 1, the flowcharts of FIGS. 3 and 4 and the wavelength vs. internal quantum efficiency characteristics of FIG. Will be described in detail with reference to. This embodiment is characterized by the processing after step S11 in FIG. 3, but in steps S1 to S10 before that, the factors of performance deterioration are isolated by the quantum efficiency spectrum measurement. Therefore, first, the evaluation device 100 measures the quantum efficiency spectrum of the solar cell 201 with the solar cell 201 placed on the sample table 117 (step S1 in FIG. 3). Further, in step S1, the quantum efficiency spectrum is measured in the same manner for the reference sample in advance.

ここで、図1の例えばハロゲンランプ及びキセノンランプの2灯式光源である白色光源101から出射した白色光は、レンズ102により平行光とされ、チョッビング周波数81Hzの光学チョッパ103を経て分光器104に入射し、ここでPC124からの制御により所望の波長λの単色励起光とされ、続いて絞り106により所望のスポットサイズに整形される。絞り106を出射した単色励起光は、ビームスプリッタ107により光路が2分され、一方は放射面鏡110で反射されて励起光センサ111に入射し、他方は放射面鏡108で反射されて太陽電池201の表面側の電極202に入射する。電極202に入射した単色波長光は電極202で反射されて積分球109の開口部から積分球109の内部に導入されて、積分球109の内壁面で再び反射された後集光されて、積分球109の別の開口部から導出されて反射光センサ112に入射する。 Here, the white light emitted from the white light source 101, which is a two-lamp type light source of, for example, a halogen lamp and a xenon lamp in FIG. 1, is made parallel light by the lens 102, passes through an optical chopper 103 having a chopping frequency of 81 Hz, and is sent to the spectroscope 104. The incident light is incident, and is produced as monochromatic excitation light having a desired wavelength λ by control from the PC 124, and subsequently shaped into a desired spot size by the aperture 106. The optical path of the monochromatic excitation light emitted from the aperture 106 is split into two by the beam splitter 107, one is reflected by the radiation mirror 110 and incident on the excitation light sensor 111, and the other is reflected by the radiation mirror 108 and is reflected by the solar cell. It is incident on the electrode 202 on the surface side of 201. The monochromatic wavelength light incident on the electrode 202 is reflected by the electrode 202, introduced into the integrating sphere 109 through the opening of the integrating sphere 109, reflected again on the inner wall surface of the integrating sphere 109, and then condensed and integrated. It is derived from another opening of the sphere 109 and incident on the reflected light sensor 112.

ロックインアンプ121は、励起光センサ111及び電流電圧変換器113により得られた単色励起光の光電変換信号に基づき、励起光強度Pを示す直流電圧を出力する。また、ロックインアンプ122は、反射光センサ112及び電流電圧変換器114により得られた電極202の全反射光強度Prを示す直流電圧を出力する。また、ロックインアンプ123は、電流電圧変換器115を介して得られた電極202からの出力信号に応じて太陽電池201が出力する光電流Iに応じた直流電圧を出力する。PC124は、ロックインアンプ121、122及び123から供給される直流電圧に基づいて量子効率スペクトルを測定し、また前述した(2)式により内部量子効率を算出する。 The lock-in amplifier 121 outputs a DC voltage indicating the excitation light intensity P based on the photoelectric conversion signal of the monochromatic excitation light obtained by the excitation light sensor 111 and the current-voltage converter 113. The lock-in amplifier 122 outputs a DC voltage representing the total reflected light intensity P r of the electrode 202 obtained by the reflected light sensor 112 and the current-voltage converter 114. Further, the lock-in amplifier 123 outputs a DC voltage corresponding to the optical current I output by the solar cell 201 according to the output signal from the electrode 202 obtained via the current-voltage converter 115. The PC 124 measures the quantum efficiency spectrum based on the DC voltage supplied from the lock-in amplifiers 121, 122 and 123, and calculates the internal quantum efficiency by the above-mentioned equation (2).

ステップS1では、太陽電池201の受光面側のある一点にスポットサイズ1mmの励起光を、波長300nmから1250nmまでの範囲で可変しながら照射して、太陽電池201の量子効率スペクトルを測定する。ステップS1では基準試料についても上記と同様にしてその量子効率スペクトルを測定する。ここで、基準試料はPERC型太陽電池201と比較して、裏面構造がパッシベーション膜を有しない構造だけでそれ以外はPERC型と同じである、BSF層の上にAl電極が形成されたBSF型太陽電池である。基準試料として用いられるBSF型太陽電池は、エネルギー変換効率が設計で期待できる値に近い19.3%を示す高品質試料である。 In step S1, the quantum efficiency spectrum of the solar cell 201 is measured by irradiating a certain point on the light receiving surface side of the solar cell 201 with excitation light having a spot size of 1 mm while varying the wavelength in the range of 300 nm to 1250 nm. In step S1, the quantum efficiency spectrum of the reference sample is measured in the same manner as described above. Here, the reference sample is the BSF type in which the All electrode is formed on the BSF layer, which is the same as the PERC type except that the back surface structure does not have a passivation film as compared with the PERC type solar cell 201. It is a solar cell. The BSF type solar cell used as a reference sample is a high quality sample showing an energy conversion efficiency of 19.3%, which is close to the value expected in the design.

図5は、PERC型太陽電池と基準試料の波長対内部量子効率特性を示す。図5において、実線の特性aはPERC型太陽電池201の波長対内部量子効率特性、破線の特性bは上記基準試料の波長対内部量子効率特性を示す。内部量子効率は測定した量子効率スペクトルから計算により求められる。両特性a、bを比較すると、800nmから1050nmまでの波長範囲で特性aが特性bより劣っているが、他の波長範囲では特性aは特性bと同等かそれより良好な特性を示している。このことから特性aのPERC型太陽電池201は裏面側での少数キャリアの再結合速度が速いことが推定できる。この測定結果に基づく空間的に平均した特性の評価から以下に示すイメージング測定の際の波長選択を行う。 FIG. 5 shows the wavelength vs. internal quantum efficiency characteristics of the PERC type solar cell and the reference sample. In FIG. 5, the solid line characteristic a shows the wavelength vs. internal quantum efficiency characteristic of the PERC type solar cell 201, and the broken line characteristic b shows the wavelength vs. internal quantum efficiency characteristic of the reference sample. The internal quantum efficiency is calculated from the measured quantum efficiency spectrum. Comparing both characteristics a and b, the characteristic a is inferior to the characteristic b in the wavelength range from 800 nm to 1050 nm, but the characteristic a shows the same or better characteristics as the characteristic b in the other wavelength range. .. From this, it can be estimated that the PERC type solar cell 201 having the characteristic a has a high recombination speed of a minority carrier on the back surface side. From the evaluation of the spatially averaged characteristics based on this measurement result, the wavelength selection at the time of the imaging measurement shown below is performed.

次に、評価装置100のPC124は、ステップS1で測定された太陽電池201の量子効率が300nmから1250nmまでの全測定波長範囲において基準試料の量子効率あるいは設定値以上であるか否かを判定する(図3のステップS2)。量子効率が全測定波長範囲において基準試料あるいは設計値と等しいかそれより高い場合、太陽電池201の開放電圧や短絡電流は基準通りの値になっているはずであり、抵抗が性能低下の要因になっている。よって、この場合は、電極不良あるいはp型シリコン基板203での高抵抗がその要因であると推定できる(図3のステップS3)。 Next, the PC 124 of the evaluation device 100 determines whether or not the quantum efficiency of the solar cell 201 measured in step S1 is equal to or higher than the quantum efficiency of the reference sample or the set value in the entire measurement wavelength range from 300 nm to 1250 nm. (Step S2 in FIG. 3). If the quantum efficiency is equal to or higher than the reference sample or design value in the entire measurement wavelength range, the open circuit voltage and short-circuit current of the solar cell 201 should be at the reference values, and the resistance is a factor of performance deterioration. It has become. Therefore, in this case, it can be estimated that the cause is defective electrodes or high resistance of the p-type silicon substrate 203 (step S3 in FIG. 3).

一方、太陽電池201の量子効率が基準試料の量子効率あるいは設定値よりも低い場合は、全測定波長範囲にわたって低いか否かを判定する(図3のステップS4)。太陽電池201のようなSi系太陽電池では、一般に励起波長が500nm〜750nmで98±2%程度となり、波長依存性が殆どない。これは励起光のシリコン基板への侵入長が太陽電池のnp接合の深さと近しいため、光励起キャリアがほぼすべてnp接合に到達するためである。このときの内部量子効率は電極によるキャリアの回収効率にほぼ等しい。500nm〜750nmの励起光の波長範囲で量子効率が基準試料あるいは設計値よりも低い場合は、np接合の形成不良による再結合や、np接合の短絡によるキャリア回収率の低下が起こっているため、量子効率は全測定波長範囲にわたって低い値となる。結晶品質の不良によりp型シリコン基板203中の再結合が位置にかかわらず極めて速い場合にも似たような全測定波長範囲で低い量子効率スペクトルが観測される。そのため、評価装置100のPC124は、全測定波長範囲のすべてにおいて太陽電池201の量子効率が基準試料あるいは設計値より低い場合はn+拡散層204とp型シリコン基板203とのnp接合での再結合か、短絡あるいはSi結晶中の低品質と評価し、その対策のための処理を行う(図3のステップS5)。 On the other hand, when the quantum efficiency of the solar cell 201 is lower than the quantum efficiency of the reference sample or the set value, it is determined whether or not the quantum efficiency is low over the entire measurement wavelength range (step S4 in FIG. 3). In a Si-based solar cell such as the solar cell 201, the excitation wavelength is generally about 98 ± 2% at 500 nm to 750 nm, and there is almost no wavelength dependence. This is because the penetration depth of the excitation light into the silicon substrate is close to the depth of the pn junction of the solar cell, so that almost all the photoexcited carriers reach the pn junction. The internal quantum efficiency at this time is almost equal to the carrier recovery efficiency by the electrode. If the quantum efficiency is lower than the reference sample or the design value in the wavelength range of the excitation light of 500 nm to 750 nm, recombination due to poor formation of the np junction and a decrease in the carrier recovery rate due to the short circuit of the np junction occur. Quantum efficiency is low over the entire measurement wavelength range. A similar low quantum efficiency spectrum is observed in the entire measurement wavelength range even when the recombination in the p-type silicon substrate 203 is extremely fast regardless of the position due to poor crystal quality. Therefore, when the quantum efficiency of the solar cell 201 is lower than the reference sample or the design value in the entire measurement wavelength range, the PC 124 of the evaluation device 100 re-junctions the n + diffusion layer 204 and the p-type silicon substrate 203 at the pn junction. It is evaluated as a bond, a short circuit, or low quality in the Si crystal, and a treatment for the countermeasure is performed (step S5 in FIG. 3).

ステップS5の処理について更に図4(C)のフローチャートとともに説明する。np接合は太陽電池表面のテクスチャ構造を作った後、イオン拡散やイオン打ち込みによってn+拡散層204を形成することで得られるが、特にイオン打ち込みにおいてはテクスチャ形状の陰で打ち込み量不足や熱処理不足により接合形成不良となり、量子効率の低下が起きやすくなっている。 The process of step S5 will be further described together with the flowchart of FIG. 4C. The pn junction can be obtained by forming the n + diffusion layer 204 by ion diffusion or ion implantation after creating the texture structure of the solar cell surface, but especially in the ion implantation, the amount of implantation is insufficient or the heat treatment is insufficient due to the shadow of the texture shape. As a result, the junction is poorly formed, and the quantum efficiency is likely to decrease.

そこで、波長500nm以上750nm以下、及びスポットサイズ10μm以下、望ましくは1μm以下とした励起光を太陽電池201上に照射するとともに、太陽電池201の表面の横4mm×縦7mmの範囲について、横方向に10μm以下、縦方向に10μm以下のピッチで設定した測定点上に励起光スポットが順次に来るように、PC124はステッピングモータ118及び119を制御して試料台117をx軸方向及びy軸方向に間欠的に移動させながら、ロックインアンプ121〜123からの信号に基づいて、内部量子効率及び反射率を測定する(ステップS51)。以下、この試料台117及び太陽電池201の間欠移動による測定をマッピング測定というものとする。 Therefore, the solar cell 201 is irradiated with excitation light having a wavelength of 500 nm or more and 750 nm or less, and a spot size of 10 μm or less, preferably 1 μm or less, and the surface of the solar cell 201 is laterally 4 mm × 7 mm in width. The PC 124 controls the stepping motors 118 and 119 to move the sample table 117 in the x-axis direction and the y-axis direction so that the excitation light spots sequentially come on the measurement points set at a pitch of 10 μm or less and 10 μm or less in the vertical direction. The internal quantum efficiency and reflectance are measured based on the signals from the lock-in amplifiers 121 to 123 while moving intermittently (step S51). Hereinafter, the measurement by the intermittent movement of the sample table 117 and the solar cell 201 will be referred to as a mapping measurement.

続いて、PC124は、ステップS51の測定結果に基づき、各測定点の前記照射光波長での内部量子効率を計算し(ステップS52)、その計算結果から内部量子効率が低い領域を判定する(ステップS53)。そして、内部量子効率が低い領域がテクスチャ構造と対応している場合は、テクスチャによる陰影の影響を低減するための対策を行う(ステップS54)。例えば、イオン打ち込み時の角度や回転条件を変更し、np接合のxy平面、つまり受光面に沿った空間一様性を高める工夫を行う。一方、内部量子効率が低い領域が一様である場合は、イオンの注入量や熱処理の変更により深さ方向、すなわち受光面と垂直な方向にドープされた物質がどう分布するかを左右するプロセスの条件を改善する、イオン注入量や熱処理の最適化を行う(ステップS55)。 Subsequently, the PC 124 calculates the internal quantum efficiency of each measurement point at the irradiation light wavelength based on the measurement result in step S51 (step S52), and determines a region where the internal quantum efficiency is low from the calculation result (step). S53). Then, when the region having low internal quantum efficiency corresponds to the texture structure, measures are taken to reduce the influence of the shadow due to the texture (step S54). For example, the angle and rotation conditions at the time of ion injection are changed to improve the spatial uniformity along the xy plane of the pn junction, that is, the light receiving surface. On the other hand, when the region where the internal quantum efficiency is low is uniform, the process that affects how the doped substance is distributed in the depth direction, that is, in the direction perpendicular to the light receiving surface, due to changes in the ion implantation amount and heat treatment. The ion implantation amount and the heat treatment are optimized to improve the above conditions (step S55).

図3に戻って説明する。PC124はステップS4で太陽電池201の量子効率が測定した全波長範囲で基準試料のそれより低くない(高い波長もある)と判定したときは、低い波長領域がどの領域であるかを検出する(ステップS6)。これは評価対象の太陽電池の量子効率スペクトルを基準試料のそれや設計値と比較した場合、際立って低い波長領域がある場合はその波長から性能低下要因を推定できるからである。すなわち、励起波長500nm以下の量子効率が低い場合は、光励起キャリアはnp接合面より更に受光面である表面側近くに集中するため、表面側のパッシベーション膜(すなわち、SiN膜205)の不良による表面再結合が速く、np接合面へキャリアが到達していないと評価する(ステップS7)。 It will be described back to FIG. When the PC124 determines in step S4 that the quantum efficiency of the solar cell 201 is not lower than that of the reference sample (there is also a higher wavelength) in the entire wavelength range measured, it detects which region the lower wavelength region is (). Step S6). This is because when the quantum efficiency spectrum of the solar cell to be evaluated is compared with that of the reference sample or the design value, if there is a significantly low wavelength region, the factor of performance deterioration can be estimated from that wavelength. That is, when the quantum efficiency of the excitation wavelength of 500 nm or less is low, the photoexcited carriers are concentrated closer to the surface side, which is the light receiving surface, than the pn junction surface, so that the surface due to the defect of the passivation film (that is, SiN film 205) on the surface side. It is evaluated that the recombination is fast and the carrier has not reached the pn junction surface (step S7).

また、ステップS6で太陽電池201の量子効率が基準試料のそれよりも低い波長領域が800nm付近(700nm〜900nm)であると検出したときは、基板での再結合と評価する(ステップS8)。すなわち、この場合、殆どの光励起キャリアはp型シリコン基板203に吸収され、受光面側への拡散の末に接合面に到達しているので、この領域での量子効率が低い場合はp型シリコン基板203でのキャリア再結合が速いことが性能の決定要因となっている。 Further, when it is detected in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is around 800 nm (700 nm to 900 nm), it is evaluated as recombination on the substrate (step S8). That is, in this case, most of the photoexcited carriers are absorbed by the p-type silicon substrate 203 and reach the junction surface after diffusion to the light receiving surface side. Therefore, if the quantum efficiency in this region is low, the p-type silicon The rapid carrier recombination on the substrate 203 is a determinant of performance.

ステップS8の処理について、更に図4(A)のフローチャートとともに説明する。まず、波長500nm以上750nm以下の励起光を1mm以上、望ましくは1cm程度の大きなスポットサイズで太陽電池201上に照射し、横方向に1cm以下、縦方向に1cm以下のピッチで設定した測定点の量子効率及び反射率のマッピング測定を行う(ステップS81)。続いて、PC124は、ステップS81の測定結果に基づき、各測定点の前記照射光波長での内部量子効率を計算し(ステップS82)、その計算結果から量子効率が低い領域を判定する(ステップS83)。 The process of step S8 will be further described with reference to the flowchart of FIG. 4 (A). First, the excitation light having a wavelength of 500 nm or more and 750 nm or less is irradiated onto the solar cell 201 with a large spot size of 1 mm or more, preferably about 1 cm, and the measurement points are set at a pitch of 1 cm or less in the horizontal direction and 1 cm or less in the vertical direction. Mapping measurement of quantum efficiency and reflectance is performed (step S81). Subsequently, the PC 124 calculates the internal quantum efficiency of each measurement point at the irradiation light wavelength based on the measurement result in step S81 (step S82), and determines a region having low quantum efficiency from the calculation result (step S83). ).

ここで、単結晶シリコンでは結晶の中心に対して回転対称な構造が、また多結晶シリコンの場合は結晶粒の大きさに対応した斑模様が観測されるような場合、p型シリコン基板203中のキャリア再結合が太陽電池の性能を下げている。そこで、ステップS83において、内部量子効率が低い領域が、太陽電池の中心に対して同心円状の領域等、シリコン結晶特有の構造を示している場合は、シリコン結晶の低品質による再結合であると評価する(ステップS84)。一方、内部量子効率が低い領域が上記のシリコン結晶特有の構造を示していないときは、評価対象の太陽電池の性能を下げている原因はnp接合での再結合や短絡であると評価する(ステップS85)。 Here, in the case of single crystal silicon, when a structure rotationally symmetric with respect to the center of the crystal is observed, and in the case of polycrystalline silicon, a mottled pattern corresponding to the size of crystal grains is observed, in the p-type silicon substrate 203. Carrier recombination reduces the performance of solar cells. Therefore, in step S83, when the region having low internal quantum efficiency shows a structure peculiar to the silicon crystal such as a region concentric with respect to the center of the solar cell, it is considered to be a recombination due to low quality of the silicon crystal. Evaluate (step S84). On the other hand, when the region with low internal quantum efficiency does not show the above-mentioned structure peculiar to the silicon crystal, it is evaluated that the cause of the deterioration of the performance of the solar cell to be evaluated is recombination or short circuit at the np junction (). Step S85).

ところで、電極未形成の太陽電池や半導体ウェハに対してはμPCD法などでキャリア寿命の空間分布図が得られるが、電極が既に形成された太陽電池では同様の評価を行うためには電極領域を光励起しないような工夫が必要であり、非常に難しい。これに対し、本実施形態ではマッピング測定する量として内部量子効率を選び、1cm程度に空間解像度を落とすことで大面積の太陽電池における品質の空間的な不均一を可視化することができる。 By the way, for solar cells and semiconductor wafers in which electrodes are not formed, a spatial distribution map of carrier life can be obtained by the μPCD method or the like, but in solar cells in which electrodes are already formed, the electrode region is used for the same evaluation. It is very difficult because it is necessary to devise a way to prevent photoexcitation. On the other hand, in the present embodiment, the internal quantum efficiency is selected as the amount to be measured by mapping, and the spatial resolution is reduced to about 1 cm to visualize the spatial non-uniformity of quality in a large-area solar cell.

再び図3に戻って説明する。PC124はステップS6で太陽電池201の量子効率が基準試料のそれより低い波長領域が1000nm以上1250nm以下であると検出したときは、光閉じ込め不良が試料の太陽電池201に生じていると評価する(ステップS9)。例えば、1050nm以上の波長領域では励起光の侵入長が1mm以上となり、励起光が太陽電池中で何度も反射したうえで吸収されるため、光励起キャリアの深さ方向の非一様性はなくなり、その波長依存性もない。この波長領域では光閉じ込めによる励起光の多重反射が行われる回数が多いほど、量子効率スペクトルの長波長へのテールが伸びる。この波長領域の量子効率が低い場合は、光閉じ込め構造の不良が考えられる。 This will be described by returning to FIG. When the PC124 detects in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is 1000 nm or more and 1250 nm or less, it is evaluated that the solar cell 201 of the sample has a light confinement defect ( Step S9). For example, in the wavelength region of 1050 nm or more, the penetration length of the excitation light is 1 mm or more, and the excitation light is reflected and absorbed many times in the solar cell, so that the non-uniformity in the depth direction of the photoexcited carriers disappears. , There is no wavelength dependence. In this wavelength region, the more times multiple reflections of excitation light are performed by light confinement, the longer the tail of the quantum efficiency spectrum to the longer wavelength. If the quantum efficiency in this wavelength region is low, the optical confinement structure may be defective.

ステップS9の評価について更に図4(B)に示すフローチャートとともに説明する。まず、波長500nm以上750nm以下、及びスポットサイズ10μm以下、望ましくは1μm以下とした励起光を太陽電池201上に照射するとともに、太陽電池201の表面の横10μm×縦10μm以上の範囲について、横方向に10μm以下、縦方向に10μm以下のピッチで設定した測定点の反射率のマッピング測定を行う(ステップS91)。続いて、PC124は、ステップS91の各測定点の測定結果が示す反射率の構造が、結晶粒界と対応しているか一様であるかを判定し(ステップS92)、反射率の変化が結晶粒界と対応していると判定したときは、太陽電池の性能低下が結晶方位による異方性の影響によるものと評価する(ステップS93)。こうした変化は水酸化カリウム系溶液による化学プロセスで起きやすいため、弗酸・硝酸混合液やプラズマエッチングといった、より面方位の影響を受けにくいプロセスの採用を検討する。一方、反射率が一様であると判定したときは、テクスチャの設計・条件を見直す(ステップS94)。 The evaluation of step S9 will be further described with reference to the flowchart shown in FIG. 4 (B). First, the solar cell 201 is irradiated with excitation light having a wavelength of 500 nm or more and 750 nm or less, and a spot size of 10 μm or less, preferably 1 μm or less, and the surface of the solar cell 201 is 10 μm wide × 10 μm long or more in the horizontal direction. The reflectance mapping measurement of the measurement points set at a pitch of 10 μm or less in the vertical direction and 10 μm or less in the vertical direction is performed (step S91). Subsequently, the PC 124 determines whether the reflectance structure indicated by the measurement result of each measurement point in step S91 corresponds to or is uniform with the grain boundary (step S92), and the change in reflectance is crystallized. When it is determined that it corresponds to the grain boundary, it is evaluated that the deterioration in the performance of the solar cell is due to the influence of anisotropy due to the crystal orientation (step S93). Since such changes are likely to occur in the chemical process using potassium hydroxide solution, we will consider adopting a process that is less affected by the plane orientation, such as a mixture of phosphoric acid and nitric acid and plasma etching. On the other hand, when it is determined that the reflectance is uniform, the texture design / conditions are reviewed (step S94).

再び図3に戻って説明する。PC124はステップS6で太陽電池201の量子効率が基準試料のそれより低い波長領域が900nm付近、すなわち750nm以上1100nm以下であると検出したときは、図5に示したように太陽電池201は裏面側での少数キャリアの再結合が生じていると判定し(ステップS10)、以下本発明特有の処理を行う。励起波長900nm〜1000nmでは光励起キャリアが太陽電池裏面付近でも生成し始めるため、この波長領域の量子効率が低い場合、裏面側のパッシベーション膜不良などによる速い少数キャリア再結合が疑われる。 This will be described by returning to FIG. When the PC 124 detects in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is around 900 nm, that is, 750 nm or more and 1100 nm or less, the solar cell 201 is on the back surface side as shown in FIG. It is determined that recombination of the minority carriers has occurred in (step S10), and the following processing specific to the present invention is performed. Since photoexcited carriers begin to be generated near the back surface of the solar cell at an excitation wavelength of 900 nm to 1000 nm, if the quantum efficiency in this wavelength region is low, rapid minority carrier recombination due to a passivation film defect on the back surface side is suspected.

ステップS10に続いて評価対象の太陽電池に裏面側構造があるか否かを判定し(ステップS11)、Al-BSF型などの裏面が一様な太陽電池の場合は裏面プロセスの改良を行う(ステップS12)。一方、PERC型太陽電池のような裏面側構造がある場合は表面電極があるか否かを判定し(ステップS13)、表面電極が無い場合は絞り106により励起光のスポットサイズを基板厚み程度とし(ステップS14)、表面電極が有る場合は絞り106により励起光のスポットサイズを電極幅の2倍以上、かつ、基板厚みに極力近いスポットサイズとする(ステップS15)。ここで、マッピング測定する場合の励起光のスポットサイズは小さいほど空間分解能が良くなるが、裏面構造を評価する場合の空間分解能は基板の表面に平行な方向の少数キャリア拡散及び表面側のテクスチャ構造による基板厚み程度の励起光スポットの滲みの影響により、ある程度以上は良くならない。 Following step S10, it is determined whether or not the solar cell to be evaluated has a back surface structure (step S11), and in the case of a solar cell having a uniform back surface such as the All-BSF type, the back surface process is improved (step S11). Step S12). On the other hand, if there is a back surface side structure such as a PERC type solar cell, it is determined whether or not there is a front surface electrode (step S13), and if there is no front surface electrode, the spot size of the excitation light is set to about the substrate thickness by the throttle 106. (Step S14) If there is a surface electrode, the spot size of the excitation light is set to twice or more the electrode width and as close as possible to the substrate thickness by the throttle 106 (step S15). Here, the smaller the spot size of the excitation light in the mapping measurement, the better the spatial resolution, but the spatial resolution in the evaluation of the back surface structure is the minority carrier diffusion in the direction parallel to the surface of the substrate and the texture structure on the front surface side. Due to the influence of the bleeding of the excitation light spots, which is about the thickness of the substrate, it does not improve more than a certain level.

小さなスポットサイズでは励起パワーを大きくしずらいため、また、必要以上にスポットサイズを小さくするとS/N比の低下が起きるため、本実施形態では太陽電池に裏面構造があるが表面電極が無い場合は、ステップS14にてスポットサイズを基板の厚み程度に選ぶ。一方、図2に示した太陽電池201のように裏面構造のある太陽電池の表面側に電極202がある場合、スポットサイズが大きいほど表面側の電極202による影響を平均化して抑制することができるため、本実施形態では上記のステップS15において、励起光のスポットサイズを電極202による影響を抑制するために電極幅の2倍以上とし、この条件を満たしたうえで基板厚みに極力近いスポットサイズとする。このようにステップS15により決定されるスポットサイズは、評価対象の太陽電池の表面側から入射する励起光により、その太陽電池の表面側構造の影響を殆ど受けることなく裏面側構造を実用上十分に観測できるサイズである。 Since it is difficult to increase the excitation power with a small spot size, and because the S / N ratio decreases when the spot size is made smaller than necessary, in the present embodiment, when the solar cell has a back surface structure but no front electrode. In step S14, the spot size is selected to be about the thickness of the substrate. On the other hand, when the electrode 202 is located on the front surface side of the solar cell having a back surface structure like the solar cell 201 shown in FIG. 2, the larger the spot size, the more the influence of the electrode 202 on the front surface side can be averaged and suppressed. Therefore, in the present embodiment, in step S15 above, the spot size of the excitation light is set to be at least twice the electrode width in order to suppress the influence of the electrode 202, and after satisfying this condition, the spot size is set as close as possible to the substrate thickness. To do. As described above, the spot size determined in step S15 is sufficiently affected by the excitation light incident from the front surface side of the solar cell to be evaluated, and the back surface side structure is practically sufficient without being affected by the front surface side structure of the solar cell. It is an observable size.

ここでは、太陽電池201は図2に示したPERC型であり表面側には電極202が、裏面側には電極207がそれぞれ存在するので、励起光のスポットサイズは、ステップS15により電極幅の2倍以上、かつ、基板厚みに極力近い値とされる。一例として、太陽電池201が基板厚さ0.12mm、選択可能なスポットサイズは0.8mm、0.4mm、0.2mm、0.1mmであり、その中から電極202の電極幅0.1mmの2倍以上、かつ、基板厚みに最も近い0.2mmを使用するスポットサイズとして決定した。 Here, since the solar cell 201 is of the PERC type shown in FIG. 2 and has an electrode 202 on the front surface side and an electrode 207 on the back surface side, the spot size of the excitation light is set to 2 of the electrode width by step S15. The value is more than doubled and is as close as possible to the substrate thickness. As an example, the solar cell 201 has a substrate thickness of 0.12 mm, selectable spot sizes are 0.8 mm, 0.4 mm, 0.2 mm, and 0.1 mm, and the electrode width of the electrode 202 is 0.1 mm. The spot size was determined to be 0.2 mm, which is more than twice as large and is the closest to the substrate thickness.

続いて、PC124はステップS14又はステップS15により決定されたスポットサイズの励起光の波長λを、分光器104を制御して750nm以上1100nm以下、実施例においては950nmとし、太陽電池201の表面の横1mm×縦1mm以上の範囲について、横方向に0.2mm以下、縦方向に0.2mm以下のピッチで設定した測定点、実施例においては横4mm×縦7mmの範囲について、横方向に0.2mm、縦方向に0.1mmのピッチで設定した20×70点の測定点上で量子効率のマッピング測定及び反射率のマッピング測定を行う(ステップS16)。そして、PC124は量子効率のマッピング測定値に基づいて前記(2)式により内部量子効率を計算し、反射率のマッピング測定値に基づいて前記(1)式により反射率を計算する(ステップS17)。ステップS17で計算された内部量子効率及び反射率の一例を図6及び図7に示す。 Subsequently, the PC 124 sets the wavelength λ of the excitation light of the spot size determined in step S14 or step S15 to 750 nm or more and 1100 nm or less by controlling the spectroscope 104, and in the example, 950 nm, and is lateral to the surface of the solar cell 201. Measurement points set at a pitch of 0.2 mm or less in the horizontal direction and 0.2 mm or less in the vertical direction for a range of 1 mm x 1 mm or more in the vertical direction. In the embodiment, the range of 4 mm in the horizontal direction x 7 mm in the vertical direction is 0. Quantum efficiency mapping measurement and reflectance mapping measurement are performed on 20 × 70 measurement points set at a pitch of 2 mm and 0.1 mm in the vertical direction (step S16). Then, the PC 124 calculates the internal quantum efficiency by the above equation (2) based on the quantum efficiency mapping measurement value, and calculates the reflectance by the above equation (1) based on the reflectance mapping measurement value (step S17). .. 6 and 7 show an example of the internal quantum efficiency and reflectance calculated in step S17.

図6は、太陽電池201の励起光波長950nmにおける内部量子効率を濃淡プロットした図を示す。同図において、x軸方向は電極202及び207の長手方向であり、y軸方向は電極202及び207の幅方向である(後述の図7及び図8も同様)。同図において黒色領域は内部量子効率の低い電極間の領域を示しており、励起光波長950nmにおける内部量子効率は、x軸方向にほぼ一様で、y軸方向では裏面側の電極207の電極間距離である1mm間隔で内部量子効率の高い領域と低い領域とが交互に現れている。すなわち、図6は表面側(受光面)からの内部量子効率の図ではあるが、表面側の電極202の特徴を排して裏面側の構造による内部量子効率の変化がディスプレイ125及び印刷機126により可視化されている。このように、図6は太陽電池201の励起光波長950nmにおける内部量子効率は裏面側の電極207の影響があることを示している。 FIG. 6 shows a scale plot of the internal quantum efficiency of the solar cell 201 at an excitation light wavelength of 950 nm. In the figure, the x-axis direction is the longitudinal direction of the electrodes 202 and 207, and the y-axis direction is the width direction of the electrodes 202 and 207 (the same applies to FIGS. 7 and 8 described later). In the figure, the black region shows a region between electrodes having low internal quantum efficiency, and the internal quantum efficiency at the excitation light wavelength of 950 nm is almost uniform in the x-axis direction, and the electrodes of the electrode 207 on the back surface side in the y-axis direction. Regions with high internal quantum efficiency and regions with low internal quantum efficiency appear alternately at intervals of 1 mm, which is an interval. That is, although FIG. 6 is a diagram of the internal quantum efficiency from the front surface side (light receiving surface), the change in the internal quantum efficiency due to the structure on the back surface side excluding the feature of the electrode 202 on the front surface side is the display 125 and the printing press 126. Is visualized by. As described above, FIG. 6 shows that the internal quantum efficiency of the solar cell 201 at the excitation light wavelength of 950 nm is influenced by the electrode 207 on the back surface side.

図7は、太陽電池201の励起光波長950nmにおける反射率を濃淡プロットした図を示す。同図において、黒色領域は反射率の低い電極間の領域を示しており、励起光波長950nmにおける反射率は、x軸方向にほぼ一様で、y軸方向では表面側の電極202の電極間距離である1.8mm間隔で反射率の高い領域と低い領域とが交互に現れている。このように、図7は太陽電池201の励起光波長950nmにおける反射率は表面側の電極202の反射率のみを示している。 FIG. 7 shows a shade plot of the reflectance of the solar cell 201 at an excitation light wavelength of 950 nm. In the figure, the black region shows the region between the electrodes having low reflectance, the reflectance at the excitation light wavelength of 950 nm is almost uniform in the x-axis direction, and between the electrodes of the electrodes 202 on the surface side in the y-axis direction. Areas with high reflectance and areas with low reflectance appear alternately at intervals of 1.8 mm, which is a distance. As described above, FIG. 7 shows only the reflectance of the electrode 202 on the surface side as the reflectance of the solar cell 201 at the excitation light wavelength of 950 nm.

PC124はステップS17に続いて、分光器104を制御して励起光の波長λを1200nm以上(実施例においては1200nm)に切り替えて前述した20×70点の各測定点の反射率のマッピング測定を行う(ステップS18)。そして、ステップS17で計算した内部量子効率が所定値より低い領域において、ステップS18で測定した反射率が設定値よりも高いか否かを判定する(ステップS19)。 Following step S17, the PC 124 controls the spectroscope 104 to switch the wavelength λ of the excitation light to 1200 nm or more (1200 nm in the example) to perform the reflectance mapping measurement of each of the 20 × 70 measurement points described above. (Step S18). Then, in a region where the internal quantum efficiency calculated in step S17 is lower than a predetermined value, it is determined whether or not the reflectance measured in step S18 is higher than the set value (step S19).

図8は、太陽電池201の励起光波長1200nmにおける反射率を濃淡プロットした図を示す。図8は、表面側の電極202による反射率の上昇が無い領域で、非一様な反射率が観測されている。これは、この波長1200nmでは入射光がp型シリコン基板203に吸収されないため、裏面側の構造が透けて見えたものである。裏面側の合金層である電極207による吸収がある領域が、全反射による高い反射率を示す絶縁膜領域よりも暗く見えることによるものである。すなわち、図8は、波長1200nmの励起光を用いて測定される反射率により、電極207等の裏面側の構造が観測できることを示している。 FIG. 8 shows a shade plot of the reflectance of the solar cell 201 at an excitation light wavelength of 1200 nm. In FIG. 8, non-uniform reflectance is observed in a region where the reflectance is not increased by the electrode 202 on the surface side. This is because the incident light is not absorbed by the p-type silicon substrate 203 at this wavelength of 1200 nm, so that the structure on the back surface side can be seen through. This is because the region where the electrode 207, which is the alloy layer on the back surface side, absorbs, looks darker than the insulating film region which shows high reflectance due to total reflection. That is, FIG. 8 shows that the structure on the back surface side of the electrode 207 and the like can be observed by the reflectance measured using the excitation light having a wavelength of 1200 nm.

PC124は、ステップS19で反射率が設定値よりも高いと判定したときは、裏面側のパッシベーション膜として機能する酸化アルミ膜206の導電率が設計値よりも高いと判断し、成膜条件を見直す(ステップS20)。一方、PC124は、ステップS19で反射率が設定値以下と判定したときは、裏面側の合金層である電極207の導電率が設計値より低く、電極207の形成不良であると判断し、合金層の焼成条件を見直す(ステップS21)。なお、ステップS20及びS21の判定時には、1100nm以下の波長(実施例では950nm)の励起光で測定される反射率により見えた表面の電極202の影響は排除する必要がある。 When the PC124 determines in step S19 that the reflectance is higher than the set value, it determines that the conductivity of the aluminum oxide film 206 that functions as the passivation film on the back surface side is higher than the design value, and reviews the film forming conditions. (Step S20). On the other hand, when the PC124 determines in step S19 that the reflectance is equal to or less than the set value, it determines that the conductivity of the electrode 207, which is the alloy layer on the back surface side, is lower than the design value, and the electrode 207 is poorly formed. The firing conditions of the layer are reviewed (step S21). At the time of determination in steps S20 and S21, it is necessary to eliminate the influence of the electrode 202 on the surface as seen by the reflectance measured by the excitation light having a wavelength of 1100 nm or less (950 nm in the example).

このように、本実施形態の太陽電池の評価装置100によれば、高精度で内部量子効率が測定できる測定系に、高精度で評価対象の太陽電池201を水平面の2軸方向に移動できる試料台117を組み合わせ、太陽電池201の受光面側のある一点にスポットサイズ1mmの励起光を照射して測定した量子効率が、或る波長の時に基準試料のそれよりも低い場合は、その理由が裏面側構造の影響によるものと判断し、その波長でスポットサイズを表面側電極202の幅の2倍以上でかつ基板厚みに極力近い値とした励起光を太陽電池に照射することで表面側構造の影響を殆ど受けることなく裏面側構造の測定及び評価ができる。このため、光励起キャリアライフタイム測定などが困難である、既に電極が形成された太陽電池の裏面側構造の非破壊評価ができ、製造プロセスの最適化を促進することができる。 As described above, according to the solar cell evaluation device 100 of the present embodiment, the solar cell 201 to be evaluated can be moved in the biaxial direction of the horizontal plane with high accuracy in the measurement system capable of measuring the internal quantum efficiency with high accuracy. If the quantum efficiency measured by combining the stand 117 and irradiating a point on the light receiving surface side of the solar cell 201 with excitation light having a spot size of 1 mm is lower than that of the reference sample at a certain wavelength, the reason is that. It is judged that this is due to the influence of the back surface side structure, and the solar cell is irradiated with excitation light whose spot size is at least twice the width of the front side electrode 202 and as close as possible to the substrate thickness at that wavelength. The back side structure can be measured and evaluated almost without being affected by. Therefore, it is possible to perform non-destructive evaluation of the back surface side structure of the solar cell on which the electrodes are already formed, which is difficult to measure the photoexcited carrier lifetime, and to promote the optimization of the manufacturing process.

また、本実施形態の太陽電池の評価装置100によれば、上記スポットサイズの励起光の波長を950nmとしてシリコン系太陽電池に照射してマッピング測定して得た内部量子効率と、シリコン基板に吸収されない波長1200nmの励起光をシリコン系太陽電池に照射してマッピング測定して得た反射率とに基づいて裏面構造の酸化アルミ膜206及び合金層である電極207が設計通りの効率が得られているかを評価することができる。 Further, according to the solar cell evaluation device 100 of the present embodiment, the internal quantum efficiency obtained by irradiating the silicon-based solar cell with the wavelength of the excitation light having the spot size of 950 nm and performing mapping measurement, and absorption into the silicon substrate. Based on the reflectance obtained by irradiating a silicon-based solar cell with excitation light having a wavelength of 1200 nm and measuring the mapping, the aluminum oxide film 206 having a back surface structure and the electrode 207 which is an alloy layer can obtain the efficiency as designed. Can be evaluated.

なお、本発明は以上の実施形態に限定されるものではなく、例えば基準試料の量子効率スペクトルは評価対象の太陽電池のうち故障していないものの量子効率スペクトルで代用してもよく、また設計上理論的に得られる量子効率スペクトルで代用してもよい。また、図6−図8で内部量子効率や反射率を濃淡プロットとして可視化しているが、等高線を用いて可視化することもできる。 The present invention is not limited to the above embodiments. For example, the quantum efficiency spectrum of the reference sample may be substituted with the quantum efficiency spectrum of the solar cell to be evaluated that has not failed, or in design. A theoretically obtained quantum efficiency spectrum may be used instead. Further, although the internal quantum efficiency and the reflectance are visualized as a shading plot in FIGS. 6 to 8, they can also be visualized by using contour lines.

また、本発明は、図3及び図4に示したフローチャートの動作をPC124により実行させる太陽電池の評価用プログラムも包含するものである。この太陽電池の評価用プログラムは、通信ネットワークを介して配信されてPC124の実行プログラム格納メモリ(図1ではPC124のブロック内にあるものとしている)にダウンロードしたものでもよいし、記録媒体から再生されて上記メモリにダウンロードされたものでもよく、ダウンロードの方法は問わない。 The present invention also includes a program for evaluating a solar cell in which the operation of the flowchart shown in FIGS. 3 and 4 is executed by the PC 124. The solar cell evaluation program may be distributed via a communication network and downloaded to the execution program storage memory of PC124 (assumed to be in the block of PC124 in FIG. 1), or may be reproduced from a recording medium. It may be downloaded to the above memory, and the download method does not matter.

本発明は、単結晶シリコン、多結晶シリコン、アモルファスシリコン、ガリウム砒素単結晶、インジウムガリウム砒素単結晶、ガリウムリン単結晶、インジウムガリウムリン単結晶、ゲルマニウム単結晶、カルコパイライト系I-III-VI族化合物、ペロブスカイト化合物、カドミウムテルル、酸化亜鉛、酸化チタン、酸化スズ、及びシリコンゲルマニウム単結晶の少なくともいずれかの材料で構成された太陽電池セルを評価対象の太陽電池とすることができ、評価対象が極めて広範囲で有用である。 The present invention relates to single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenic single crystal, indium gallium arsenic single crystal, gallium phosphorus single crystal, indium gallium phosphorus single crystal, germanium single crystal, chalcopyrite-based I-III-VI group. A solar cell composed of at least one of a compound, a perovskite compound, cadmium tellurium, zinc oxide, titanium oxide, tin oxide, and a silicon germanium single crystal can be evaluated as a solar cell to be evaluated. Very widespread and useful.

100 太陽電池の評価装置
101 白色光源
102 レンズ
103 光学チョッパ
104 分光器
105 暗箱
106 絞り
107 ビームスプリッタ
108、110 放物面鏡
109 積分球
111 励起光センサ
112 反射光センサ
113、114、115 電流電圧変換器
116 ラボジャッキ
117 試料台
118、119 ステッピングモータ
121、122、123 ロックインアンプ
124 パーソナルコンピュータ(PC)
125 ディスプレイ
126 印刷機
201 太陽電池
202 Ag電極
203 p型シリコン基板
204 n+拡散層
205 SiN膜
206 酸化アルミ膜
207 BSF型の電極
208 Al電極
100 Solar cell evaluation device 101 White light source 102 Lens 103 Optical chopper 104 Spectrometer 105 Dark box 106 Aperture 107 Beam splitter 108, 110 Parabolic mirror 109 Integrating sphere 111 Excitation light sensor 112 Reflected light sensor 113, 114, 115 Current-voltage conversion Instrument 116 Lab Jack 117 Sample Base 118, 119 Stepping Motors 121, 122, 123 Lock-in Amplifier 124 Personal Computer (PC)
125 Display 126 Printing machine 201 Solar cell 202 Ag electrode 203 p-type silicon substrate 204 n + diffusion layer 205 SiN film 206 Aluminum oxide film 207 BSF type electrode 208 Al electrode

Claims (8)

波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価方法であって、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御ステップと、
前記光制御ステップによりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価ステップと、
を含むことを特徴とする太陽電池の評価方法。
The light receiving surface of the solar cell placed on the movable sample table is irradiated with excitation light whose wavelength and spot size can be arbitrarily changed, and the photoelectric conversion signals of the reflected light from the solar cell and the excitation light are obtained. A method for evaluating a solar cell, which obtains an evaluation result of the solar cell based on the light and the output signal of the solar cell.
An optical control step that controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell.
The inside of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light whose spot size is controlled by the light control step. An evaluation step for evaluating the back surface structure of the solar cell opposite to the light receiving surface based on the spatial distribution of quantum efficiency, and
A method for evaluating a solar cell, which comprises.
水平面を2軸方向に指定された距離だけ移動可能な試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射ステップと、
前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出ステップと、
前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出ステップによる前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価ステップとを含み、
前記光照射ステップは、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、
前記評価ステップは、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価方法。
A light irradiation step of irradiating a light receiving surface of a solar cell placed on a sample table that can move a horizontal plane by a specified distance in a biaxial direction with excitation light having a wavelength and a spot size controlled to desired values.
The excitation light is based on the reflected light obtained by being reflected by the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before the light receiving surface irradiation, and the output signal of the surface electrode. Then, the excitation light intensity, the total reflected light intensity, and the light current are measured, and the internal quantum efficiency and the reflectance of the solar cell are calculated from the measurement results.
Evaluation result of the solar cell based on the internal quantum efficiency and reflectance by the calculation step obtained from the measurement results of each of the plurality of measurement points on the light receiving surface of the solar cell and the wavelength of the excitation light. Including evaluation steps to get
In the light irradiation step, the excitation light is subjected to the light receiving surface in which the spot size of the excitation light is controlled to be at least twice the electrode width of the surface electrode and a value as close as possible to the substrate thickness of the solar cell. Irradiate to
The evaluation step is a method for evaluating a solar cell, characterized in that the back surface structure of the solar cell opposite to the light receiving surface is evaluated.
前記光照射ステップは、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、
前記評価ステップは、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする請求項2記載の太陽電池の評価方法。
The light irradiation step controls the wavelength of the excitation light to a first wavelength at which an internal quantum efficiency lower than the internal quantum efficiency of the reference sample can be obtained or a second wavelength at which the substrate of the solar cell looks substantially transparent. ,
The evaluation step includes the first internal quantum efficiency and the first reflectance calculated by the calculation step based on the measurement results of the plurality of measurement points when the excitation light is at the first wavelength, and the said. When the excitation light is at the second wavelength, the back surface structure of the solar cell is evaluated by using the second reflectance calculated by the calculation step based on the measurement results of the plurality of measurement points. 2. The method for evaluating a solar cell according to claim 2.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価装置であって、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御手段と、
前記光制御手段によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価手段と、
を備えることを特徴とする太陽電池の評価装置。
The light receiving surface of the solar cell placed on the movable sample table is irradiated with excitation light whose wavelength and spot size can be arbitrarily changed, and the photoelectric conversion signals of the reflected light from the solar cell and the excitation light are obtained. An evaluation device for a solar cell that obtains an evaluation result of the solar cell based on the light and the output signal of the solar cell.
An optical control means for controlling at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell.
The inside of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light whose spot size is controlled by the light control means. An evaluation means for evaluating the back surface structure of the solar cell opposite to the light receiving surface based on the spatial distribution of quantum efficiency, and
An evaluation device for a solar cell, which comprises.
太陽電池が載置され、その太陽電池の表面に平行な水平面を2軸方向に指定された距離だけ移動可能な試料台と、
前記試料台を移動する移動機構と、
波長及び前記太陽電池の受光面におけるスポットサイズがそれぞれ所望の値に制御された励起光を発生して、前記太陽電池の受光面に照射する光照射手段と、
照射された前記励起光が、受光面に形成された表面電極で反射された反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出手段と、
前記移動機構を駆動制御して、前記励起光のスポットが前記太陽電池の受光面における複数の測定点を順次位置するように前記試料台を移動させる駆動制御手段と、
前記複数の測定点のそれぞれの測定結果から得られた前記算出手段による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価手段と、
を備え、
前記光照射手段は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御し、
前記評価手段は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価装置。
A sample table on which a solar cell is placed and which can move a horizontal plane parallel to the surface of the solar cell by a specified distance in the biaxial direction,
A moving mechanism for moving the sample table and
A light irradiation means for generating excitation light in which the wavelength and the spot size on the light receiving surface of the solar cell are controlled to desired values and irradiating the light receiving surface of the solar cell.
The irradiated excitation light is based on the reflected light reflected by the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before the light receiving surface irradiation, and the output signal of the surface electrode. , A calculation means for measuring the excitation light intensity, the total reflected light intensity, and the light current, and calculating the internal quantum efficiency and the reflectance of the solar cell from the measurement results.
A drive control means for driving and controlling the movement mechanism to move the sample table so that the spot of the excitation light sequentially positions a plurality of measurement points on the light receiving surface of the solar cell.
An evaluation means for obtaining an evaluation result of the solar cell based on the internal quantum efficiency and the reflectance by the calculation means obtained from the measurement results of the plurality of measurement points and the wavelength of the excitation light.
With
The light irradiation means controls the spot size of the excitation light to be at least twice the electrode width of the surface electrode and a value as close as possible to the substrate thickness of the solar cell.
The evaluation means is a solar cell evaluation device for evaluating the back surface structure of the solar cell on the side opposite to the light receiving surface.
前記光照射手段は、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、
前記評価手段は、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする請求項5記載の太陽電池の評価装置。
The light irradiation means controls the wavelength of the excitation light to a first wavelength at which an internal quantum efficiency lower than the internal quantum efficiency of the reference sample can be obtained or a second wavelength at which the substrate of the solar cell looks substantially transparent. ,
The evaluation means includes the first internal quantum efficiency and the first reflectance calculated by the calculation means based on the measurement results of the plurality of measurement points when the excitation light is at the first wavelength, and the said. When the excitation light is at the second wavelength, the back surface structure of the solar cell is evaluated using the second reflectance calculated by the calculation means based on the measurement results of the plurality of measurement points. 5. The solar cell evaluation device according to claim 5.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、
前記コンピュータに、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御機能と、
前記光制御機能によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価機能と、
を実現させることを特徴とする太陽電池の評価用プログラム。
The light receiving surface of the solar cell placed on the movable sample table is irradiated with excitation light whose wavelength and spot size can be arbitrarily changed, and the photoelectric conversion signals of the reflected light from the solar cell and the excitation light are obtained. This is a solar cell evaluation program that causes a computer to evaluate a solar cell that obtains the evaluation result of the solar cell based on the output signal of the solar cell and the output signal of the solar cell.
On the computer
An optical control function that controls the spot size of the excitation light to be at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell.
The inside of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample table with the excitation light whose spot size is controlled by the light control function. An evaluation function that evaluates the back surface structure of the solar cell on the side opposite to the light receiving surface based on the spatial distribution of quantum efficiency.
A program for evaluating solar cells, which is characterized by the realization of.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、
前記コンピュータに、
前記試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射機能と、
前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて測定された、励起光強度、全反射光強度及び光電流の測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出機能と、
前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出機能による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価機能とを実現させ、
前記光照射機能は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、
前記評価機能は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価用プログラム。
The light receiving surface of the solar cell placed on the movable sample table is irradiated with excitation light whose wavelength and spot size can be arbitrarily changed, and the photoelectric conversion signals of the reflected light from the solar cell and the excitation light are obtained. This is a solar cell evaluation program that causes a computer to evaluate a solar cell that obtains the evaluation result of the solar cell based on the output signal of the solar cell and the output signal of the solar cell.
On the computer
A light irradiation function that irradiates the light receiving surface of the solar cell placed on the sample table with excitation light whose wavelength and spot size are controlled to desired values, respectively.
The excitation light is based on the reflected light obtained by being reflected by the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before the light receiving surface irradiation, and the output signal of the surface electrode. A calculation function for calculating the internal quantum efficiency and reflectance of the solar cell from the measurement results of the excitation light intensity, the total reflected light intensity, and the light current measured in
Evaluation result of the solar cell based on the internal quantum efficiency and reflectance by the calculation function obtained from the measurement results of each of the plurality of measurement points on the light receiving surface of the solar cell and the wavelength of the excitation light. Realize the evaluation function and obtain
The light irradiation function controls the spot size of the excitation light to be at least twice the electrode width of the surface electrode and a value as close as possible to the substrate thickness of the solar cell. Irradiate to
The evaluation function is a solar cell evaluation program characterized in that the back surface structure of the solar cell opposite to the light receiving surface is evaluated.
JP2016170095A 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program Active JP6781985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016170095A JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170095A JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Publications (2)

Publication Number Publication Date
JP2018038184A JP2018038184A (en) 2018-03-08
JP6781985B2 true JP6781985B2 (en) 2020-11-11

Family

ID=61567881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170095A Active JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Country Status (1)

Country Link
JP (1) JP6781985B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284457B2 (en) * 2019-09-02 2023-05-31 株式会社日立ハイテクサイエンス Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorophotometer and display device
CN111756326A (en) * 2020-06-10 2020-10-09 帝尔激光科技(无锡)有限公司 Solar cell rapid light attenuation method and device
CN112305555A (en) * 2020-11-26 2021-02-02 福建巨电新能源股份有限公司 Lithium battery pole piece rebound rate measuring device and working method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628816B2 (en) * 1992-03-06 1997-07-09 日本電信電話株式会社 Wafer photoluminescence sense mapping system
JPH08220008A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Infrared ray inspecting apparatus
JP2000252338A (en) * 1999-03-04 2000-09-14 Nec Corp Method and system for evaluating semiconductor
JP2001284425A (en) * 2000-04-03 2001-10-12 Mitsubishi Electric Corp Failure analysis method and failure analysis appliance
JP4663155B2 (en) * 2001-05-29 2011-03-30 三菱電機株式会社 Apparatus and method for measuring internal quantum efficiency of solar cell
JP2010212351A (en) * 2009-03-09 2010-09-24 Sharp Corp Inspection device and inspection method
CN102439737B (en) * 2009-05-19 2015-04-22 纽波特公司 Quantum efficiency measurement system and methods of use
JP2011049474A (en) * 2009-08-28 2011-03-10 Sharp Corp Solar battery evaluation apparatus
JP2011119629A (en) * 2009-10-28 2011-06-16 Finesensing Corp Device and method of evaluating multijunction solar cell
JP5509414B2 (en) * 2010-01-28 2014-06-04 大日本スクリーン製造株式会社 Solar cell evaluation apparatus and solar cell evaluation method
JP5824984B2 (en) * 2011-09-06 2015-12-02 株式会社島津製作所 Solar cell inspection equipment
EP2790228B1 (en) * 2011-12-05 2017-07-05 Konica Minolta, Inc. Solar cell spectral response measurement device
JP2014169878A (en) * 2013-03-01 2014-09-18 Shimadzu Corp Apparatus for inspecting substrate
CN104184413A (en) * 2013-05-27 2014-12-03 新科实业有限公司 Test method and test device of solar cell panel
JP6436672B2 (en) * 2014-07-25 2018-12-12 株式会社Screenホールディングス Inspection apparatus and inspection method
JP6447184B2 (en) * 2015-01-30 2019-01-09 コニカミノルタ株式会社 Spectral sensitivity measuring device

Also Published As

Publication number Publication date
JP2018038184A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP5051854B2 (en) Solar cell evaluation method, evaluation apparatus and use thereof
US7601941B2 (en) Method and apparatus for evaluating solar cell and use thereof
US9863890B2 (en) Solar cell testing apparatus and method
US8301409B2 (en) Photon imaging system for detecting defects in photovoltaic devices, and method thereof
JP2012519276A (en) High-speed quantum efficiency measurement system using solid-state light source
JP6781985B2 (en) Solar cell evaluation method and evaluation device and solar cell evaluation program
US10158325B2 (en) Inspection apparatus and inspection method
US10302574B2 (en) Method for analysing the crystal structure of a polycrystalline semiconductor
JP5509414B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
US20130057862A1 (en) Electroluminescence sample analysis apparatus
Barrigon et al. Unravelling processing issues of nanowire-based solar cell arrays by use of electron beam induced current measurements
KR20160125760A (en) Integrated measuring apparatus for solar cell
Hossain et al. Detailed performance loss analysis of silicon solar cells using high-throughput metrology methods
Dumbrell et al. Metal induced contact recombination measured by quasi-steady-state photoluminescence
Kunz et al. Advances in evaporated solid-phase-crystallized poly-Si thin-film solar cells on glass (EVA)
Fischer et al. Scanning IQE-measurement for accurate current determination on very large area solar cells
Brooks et al. High-resolution laser beam induced current measurements on Cd0. 9Zn0. 1S/CdTe solar cells
WO2022138941A1 (en) Solar battery unit, device for determining quality of solar battery unit, etching device for solar battery unit, and method for manufacturing solar battery unit
US20230282526A1 (en) Method and device for measuring the thickness of thin films even on rough substrates
JP6466604B1 (en) Solar cell sample inspection apparatus and solar cell sample inspection method
RU2384838C1 (en) TESTING METHOD OF CHIPS OF CASCADE PHOTOCONVERTERS BASED ON Al-Ga-In-As-P CONNECTIONS AND DEVICE FOR IMPLEMENTATION THEREOF
Fischer et al. Versatile implied open‐circuit voltage imaging method and its application in monolithic tandem solar cells
EP3394979B1 (en) Method and device for the determination of a measure of band gaps at optoelectronic components
CN113871317B (en) Method and device for testing performance of photovoltaic cell
Thantasha Spatially Resolved Opto-Electric Measurement of Photovoltaic materials and devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6781985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250