JP2018038184A - Evaluation method and evaluation device for solar battery and evaluation program for solar battery - Google Patents

Evaluation method and evaluation device for solar battery and evaluation program for solar battery Download PDF

Info

Publication number
JP2018038184A
JP2018038184A JP2016170095A JP2016170095A JP2018038184A JP 2018038184 A JP2018038184 A JP 2018038184A JP 2016170095 A JP2016170095 A JP 2016170095A JP 2016170095 A JP2016170095 A JP 2016170095A JP 2018038184 A JP2018038184 A JP 2018038184A
Authority
JP
Japan
Prior art keywords
solar cell
light
excitation light
wavelength
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016170095A
Other languages
Japanese (ja)
Other versions
JP6781985B2 (en
Inventor
敏光 望月
Toshimitsu Mochizuki
敏光 望月
白澤 勝彦
Katsuhiko Shirasawa
勝彦 白澤
功 坂田
Isao Sakata
功 坂田
秀尚 高遠
Hidetaka Takato
秀尚 高遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016170095A priority Critical patent/JP6781985B2/en
Publication of JP2018038184A publication Critical patent/JP2018038184A/en
Application granted granted Critical
Publication of JP6781985B2 publication Critical patent/JP6781985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the optimization of a production process by conducting evaluation to identify, without destruction, a cause at a back side of a solar battery when designed performance is not obtained or the solar battery has failed.SOLUTION: If quantum efficiency measured by radiating excitation light with a spot size of 1 mm to one point on a light-receiving surface of a solar battery is lower than that of a reference sample at a prescribed wavelength, it is determined that its reason is due to an impact of back side structure (S1-S10). Then, the back side structure can be measured nearly without an influence of surface side structure by radiating, to the solar battery, excitation light of which the spot size is made equal to or more than twice width of a surface side electrode and close to minority carrier diffusion length as much as possible (S11, S13, S15-S21).SELECTED DRAWING: Figure 3

Description

本発明は太陽電池の評価方法及び評価装置並びに太陽電池の評価用プログラムに係り、特に太陽電池の内部量子効率の測定結果に基づいて太陽電池の性能を評価する評価方法及び評価装置並びに評価用プログラムに関する。   The present invention relates to a solar cell evaluation method, an evaluation device, and a solar cell evaluation program, and in particular, an evaluation method, an evaluation device, and an evaluation program for evaluating the performance of a solar cell based on the measurement result of the internal quantum efficiency of the solar cell. About.

太陽電池には表面での光励起キャリアの再結合を抑制するためにパッシベーション膜と呼ばれる、絶縁体や半導体の薄膜が太陽光照射面側(以下、表面側とも称する)に成膜される。シリコン系の太陽電池においては、窒化シリコン、酸化ケイ素、酸化アルミニウムなどがパッシベーション膜に使われる。このような絶縁体によるパッシベーション膜を表面側に有する太陽電池には、表面側と反対側の裏面に合金層をBSF(Back Surface Field)層として有する構造のものが多い。この合金層は電界効果パッシベーション膜として振舞う。   In order to suppress recombination of photoexcited carriers on the surface of the solar cell, an insulator or semiconductor thin film called a passivation film is formed on the solar light irradiation surface side (hereinafter also referred to as the surface side). In silicon-based solar cells, silicon nitride, silicon oxide, aluminum oxide or the like is used for the passivation film. Many solar cells having a passivation film made of such an insulator on the front side have a structure having an alloy layer as a BSF (Back Surface Field) layer on the back side opposite to the front side. This alloy layer behaves as a field effect passivation film.

しかし、上記の合金層は再結合速度が絶縁体によるパッシベーション膜よりも速くなり易く、また、合金層での光の吸収が効率低下の原因となる。そこで、近年では合金層に代わり光損失も再結合も少なくし、高電圧・高電流ひいては高効率を実現するための新しいパッシベーション膜を裏面側にも作る方式の太陽電池が主流になりつつある。例としては、裏面側に絶縁膜を有する構造(PERC:Passivated Emitter and Rear Contact Cell)、拡散層を有する構造(PERT:Passivated Emitter,Rear Totally-diffused)、ヘテロ接合層を有する構造(HIT:Heterojunction with Intrinsic Thin-layer)などがある。   However, the above alloy layer is likely to have a recombination rate faster than that of a passivation film made of an insulator, and light absorption in the alloy layer causes a decrease in efficiency. Therefore, in recent years, solar cells of a type in which a new passivation film for realizing high voltage, high current, and thus high efficiency is formed on the back side instead of an alloy layer to reduce optical loss and recombination are becoming mainstream. Examples include a structure having an insulating film on the back side (PERC: Passivated Emitter and Rear Contact Cell), a structure having a diffusion layer (PERT: Passivated Emitter, Rear Totally-diffused), and a structure having a heterojunction layer (HIT: Heterojunction). with Intrinsic Thin-layer).

このような裏面側にパッシベーション膜を有する太陽電池は、以前の構造より複雑であるため、裏面プロセスの最適化が重要であり、開発段階等で裏面パッシベーション膜の評価が行えれば最適化が大きく加速される。また、裏面側パッシベーション膜の評価は、太陽電池の裏面が熱サイクル、電圧、光照射、湿気、経時変化を含む何らかの原因で劣化した際の故障原因の特定を容易にする。   Such a solar cell having a passivation film on the back side is more complicated than the previous structure, so it is important to optimize the back side process. If the back side passivation film can be evaluated at the development stage, etc., the optimization will be large. Accelerated. Further, the evaluation of the back surface side passivation film facilitates the identification of the cause of failure when the back surface of the solar cell is deteriorated for some reason including thermal cycle, voltage, light irradiation, moisture, and aging.

太陽電池の裏面側パッシベーション膜の特性は、主に長波長領域での分光感度の変化として現れる。シリコン系太陽電池において量子効率が測定できる場合は、励起波長900nm〜950nmの領域の量子効率が変化する様子で裏面側パッシベーション膜でのキャリア再結合速度を定性的に評価できる。この場合、量子効率の変化は1%程度であるから、測定位置での反射を同時に測定するタイプの、例えば特許文献1に記載の内部量子効率測定装置による高精度測定が必要である。太陽電池が両面受光可能な構造である場合は、裏面受光で量子効率測定を行い、300〜500nmの短波長領域での量子効率からパッシベーション膜でのキャリア再結合速度を定性的に評価できる。   The characteristics of the backside passivation film of the solar cell appear mainly as a change in spectral sensitivity in the long wavelength region. When the quantum efficiency can be measured in the silicon-based solar cell, the carrier recombination speed in the backside passivation film can be qualitatively evaluated as the quantum efficiency in the region of the excitation wavelength of 900 nm to 950 nm changes. In this case, since the change in quantum efficiency is about 1%, high-accuracy measurement using an internal quantum efficiency measurement device described in, for example, Patent Document 1 of the type that simultaneously measures reflection at a measurement position is necessary. When the solar cell has a structure capable of receiving light on both sides, the quantum efficiency measurement is performed by backside light reception, and the carrier recombination speed in the passivation film can be qualitatively evaluated from the quantum efficiency in a short wavelength region of 300 to 500 nm.

ここで、量子効率とは、或る波長の単色光が太陽電池に入射された際に、その光子が外部電流として取り出される確率を表す。太陽電池内部の品質を評価するにあたっては、太陽電池の反射率をRとしたとき、(1−R)で表される量で量子効率を除算して得られる内部量子効率がよく使われる(例えば、非特許文献1参照)。ある光子が太陽電池のnp接合にあたる位置で吸収されるとほぼ100%の確率で外部電流として取り出せるが、np接合から離れた位置で光子が吸収された場合、当該光子に起因する少数キャリアがnp接合まで拡散してはじめて外部電流として取り出せる。この場合、表面や半導体内部での被輻射再結合によりある確率で少数キャリアがnp接合まで到達しない。これを主因として、励起波長が短いと光子の大部分がnp接合より表面側で吸収されるため表面側での再結合の影響を主に受け、量子効率が1より小さくなる。   Here, the quantum efficiency represents the probability that a photon is extracted as an external current when monochromatic light having a certain wavelength is incident on the solar cell. In evaluating the quality inside the solar cell, when the reflectance of the solar cell is R, the internal quantum efficiency obtained by dividing the quantum efficiency by the amount represented by (1-R) is often used (for example, Non-Patent Document 1). When a photon is absorbed at a position corresponding to the np junction of the solar cell, it can be extracted as an external current with a probability of almost 100%. However, when a photon is absorbed at a position away from the np junction, minority carriers resulting from the photon are np. It can be taken out as an external current only after diffusion to the junction. In this case, minority carriers do not reach the np junction with a certain probability due to radiative recombination on the surface or inside the semiconductor. Mainly due to this, when the excitation wavelength is short, most of the photons are absorbed on the surface side from the np junction, so that it is mainly affected by recombination on the surface side, and the quantum efficiency becomes smaller than 1.

図9は、太陽電池表面の再結合速度が量子効率に及ぼす影響を示す、太陽電池の入射光波長対内部量子効率特性を示す。同図に示す特性は表面側が平坦であり、裏面側が完全導体による電極が取り付けられた結晶シリコン太陽電池で、厚みは300μm、接合深さは1μm、少数キャリアの表面再結合速度は表面側で4cm/s、裏面側で27cm/s、拡散長は表面側で1.5μm、裏面側で200μmとし、計算方法は連続の式及びドルーデモデルにより得た特性である。図9中、実線Iは表面再結合速度を表面側及び裏面側共に100cm/sとしたときの特性、破線IIは裏面側再結合速度を2000cm/sまで増やした場合の特性、点線IIIは表面側再結合速度を2000cm/sまで増やした場合の特性を示す。図9に示すように、いずれも長波長と短波長の内部量子効率が下がっている様子が分かる。従来の太陽電池の評価方法では、このような内部量子効率の変化から太陽電池の性能低下の原因を探索している。   FIG. 9 shows the incident light wavelength versus internal quantum efficiency characteristics of a solar cell, showing the effect of the recombination velocity of the solar cell surface on the quantum efficiency. The characteristic shown in the figure is a crystalline silicon solar cell having a flat surface on the front side and an electrode made of a perfect conductor on the back side. The thickness is 300 μm, the junction depth is 1 μm, and the surface recombination velocity of minority carriers is 4 cm on the surface side. / s, 27 cm / s on the back surface side, diffusion length is 1.5 μm on the front surface side, and 200 μm on the back surface side, and the calculation method is a characteristic obtained by a continuous equation and Drude model. In FIG. 9, the solid line I indicates the characteristics when the surface recombination velocity is 100 cm / s on both the front and back sides, the broken line II indicates the characteristics when the back surface recombination velocity is increased to 2000 cm / s, and the dotted line III indicates the surface. The characteristic is shown when the side recombination velocity is increased to 2000 cm / s. As shown in FIG. 9, it can be seen that the internal quantum efficiencies of both the long wavelength and the short wavelength are decreasing. In the conventional solar cell evaluation method, the cause of the performance degradation of the solar cell is searched from the change of the internal quantum efficiency.

次に、従来の太陽電池の他の評価方法について説明する。裏面での低い量子効率の理由が分かっている場合に限れば、その原因に特徴的な構造を観察しながら製造プロセスの最適化を行えばよい。例えば、両面に絶縁膜のあるPERC構造の太陽電池では、裏面側のアルミ電極に空洞ができ易く、これによって太陽電池としての特性が著しく悪化する。そこで、従来は超音波探傷機を使う方法や、単に太陽電池を切断して電子顕微鏡によって観察する方法で上記空洞などを発見している。   Next, another evaluation method for a conventional solar cell will be described. Only when the reason for the low quantum efficiency on the back surface is known, the manufacturing process may be optimized while observing the structure characteristic of the cause. For example, in a solar cell having a PERC structure having insulating films on both sides, a cavity is likely to be formed in the aluminum electrode on the back surface side, which significantly deteriorates the characteristics as a solar cell. Therefore, conventionally, the above-described cavity or the like has been discovered by a method using an ultrasonic flaw detector or a method in which a solar cell is simply cut and observed with an electron microscope.

特開2002−353474号公報JP 2002-353474 A

P.Rappaport,Solar Energy 3(4) 8-18(1959)P.Rappaport, Solar Energy 3 (4) 8-18 (1959)

しかしながら、裏面側パッシベーション膜を有する太陽電池において、発電特性が設計よりも悪い場合、内部量子効率の変化から太陽電池の性能低下の原因を探索する従来の太陽電池の評価方法(第1の従来方法)では、励起光のスポットサイズ及び励起波長で決まる空間分解能を変化させた内部量子効率の測定ができないため、裏面側のどこが悪いのかを特定できない。一方、太陽電池を破壊して超音波探傷機や電子顕微鏡で発電特性の低下の原因を特定する後者の従来の太陽電池の評価方法(第2の従来方法)では、想定した原因と異なる異常が太陽電池にある場合異常が発見されず、その太陽電池の評価方法のみで原因の究明を行おうとすると、総当たり的に各種の測定を行わなければならない。   However, in a solar cell having a backside passivation film, when the power generation characteristics are worse than the design, a conventional solar cell evaluation method (first conventional method) for searching for the cause of the performance degradation of the solar cell from the change in internal quantum efficiency ) Cannot measure the internal quantum efficiency by changing the spatial resolution determined by the spot size and excitation wavelength of the excitation light, and therefore cannot identify what is wrong on the back side. On the other hand, in the latter conventional solar cell evaluation method (second conventional method) in which the solar cell is destroyed and the cause of the decrease in power generation characteristics is determined by an ultrasonic flaw detector or an electron microscope, an abnormality different from the assumed cause is present. If there is no abnormality found in the solar cell and an attempt is made to investigate the cause only by the evaluation method of the solar cell, various measurements must be performed brute force.

そのため、現状では上記の2つの従来の太陽電池の評価方法を組み合わせた評価プロセスが採用される。例えば、表面側及び裏面側の両方にパッシベーション膜のあるp型シリコン基板を使ったPERC構造の太陽電池の場合は、第1の従来方法で複数の太陽電池を評価して比較し、裏面側に問題があるかどうかを特定する。続いて、裏面側に問題がある太陽電池のうち、裏面側の例えばアルミナによるパッシベーション膜に問題があるのか、裏面側のアルミ電極が接している部分に問題があるのかを第2の従来方法で太陽電池を破壊して特定する。すなわち、従来は太陽電池を破壊しなければ、太陽電池の裏面側の問題個所の特定が極めて困難であり、改善の目途が立たないという問題がある。   Therefore, at present, an evaluation process in which the above two conventional solar cell evaluation methods are combined is employed. For example, in the case of a solar cell having a PERC structure using a p-type silicon substrate having a passivation film on both the front surface side and the back surface side, a plurality of solar cells are evaluated and compared by the first conventional method. Determine if there is a problem. Subsequently, in the solar cell having a problem on the back surface side, the second conventional method determines whether there is a problem with the passivation film made of alumina, for example, on the back surface side, or the portion in contact with the aluminum electrode on the back surface side. Identify by destroying solar cells. That is, conventionally, unless the solar cell is destroyed, it is extremely difficult to identify a problem portion on the back side of the solar cell, and there is a problem that improvement is not promising.

本発明は以上の点に鑑みなされたもので、太陽電池の裏面側の特性を非破壊で評価することで、製造プロセスの最適化を実現し得る太陽電池の評価方法及び評価装置並びに太陽電池の評価用プログラムを提供することを目的とする。   The present invention has been made in view of the above points, and by evaluating the characteristics of the back side of the solar cell in a non-destructive manner, a solar cell evaluation method and an evaluation device capable of realizing optimization of the manufacturing process, and a solar cell The purpose is to provide an evaluation program.

上記の目的を達成するため、第1の発明の太陽電池の評価方法は、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価方法であって、少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御ステップと、前記光制御ステップによりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価ステップと、を含むことを特徴とする。   In order to achieve the above object, the solar cell evaluation method according to the first aspect of the present invention is the light receiving surface of a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed. A solar cell evaluation method for obtaining an evaluation result of the solar cell based on the photoelectric conversion signals of the reflected light from the solar cell and the excitation light and the output signal of the solar cell. A light control step for controlling the spot size of the excitation light to be not less than twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell; and the spot by the light control step The spatially distributed internal quantum efficiency of the solar cell obtained by sequentially irradiating each of the plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose size is controlled Based on , Characterized in that it comprises a, an evaluation step of evaluating the opposite side of the back structure and the light receiving surface of the solar cell.

また、上記の目的を達成するため、第2の発明の太陽電池の評価方法は、水平面を2軸方向に指定された距離だけ移動可能な試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射ステップと、前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出ステップと、前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出ステップによる前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価ステップとを含み、前記光照射ステップは、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、前記評価ステップは、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。   In order to achieve the above object, the solar cell evaluation method according to the second aspect of the invention provides a light receiving surface of a solar cell mounted on a sample stage that can move a horizontal plane by a specified distance in two axial directions. A light irradiation step of irradiating excitation light having a wavelength and a spot size controlled to desired values, reflected light obtained by reflecting the excitation light with a surface electrode formed on the light receiving surface, and the light receiving surface; Based on each photoelectric conversion signal of the excitation light before irradiation and the output signal of the surface electrode, the excitation light intensity, total reflection light intensity, and photocurrent are measured, and the internal quantum efficiency of the solar cell is determined from the measurement results. And the calculation step for calculating the reflectance, the internal quantum efficiency and the reflectance by the calculation step obtained from the measurement results of each of a plurality of measurement points on the light receiving surface of the solar cell, and the wavelength of the excitation light Based on An evaluation step of obtaining an evaluation result of the solar cell, and the light irradiation step includes at least a spot size of the excitation light that is not less than twice the electrode width of the surface electrode, and the substrate of the solar cell. The excitation light controlled to a value as close as possible to the thickness is irradiated to the light receiving surface, and the evaluation step evaluates a back surface structure opposite to the light receiving surface of the solar cell.

また、上記の目的を達成するため、第3の発明の太陽電池の評価方法は、第2の発明の光照射ステップが、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、第5の発明の評価ステップが、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする。   In order to achieve the above object, a solar cell evaluation method according to a third aspect of the invention is characterized in that, in the light irradiation step of the second aspect, the wavelength of the excitation light is lower than the internal quantum efficiency of the reference sample. The first wavelength at which efficiency is obtained or the second wavelength at which the substrate of the solar cell appears to be substantially transparent is controlled, and the evaluation step of the fifth aspect of the invention is characterized in that the plurality of the excitation light is at the first wavelength. The first internal quantum efficiency and the first reflectance calculated by the calculation step based on the measurement results of the measurement points, and the measurement of each of the plurality of measurement points when the excitation light has the second wavelength. The back surface structure of the solar cell is evaluated using the second reflectance calculated in the calculation step based on the result.

また、上記の目的を達成するため、第4の発明の太陽電池の評価装置は、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価装置であって、少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御手段と、前記光制御手段によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価手段と、を備えることを特徴とする。   In order to achieve the above object, a solar cell evaluation apparatus according to a fourth aspect of the present invention is a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed. An evaluation device for a solar cell that irradiates a light receiving surface and obtains an evaluation result of the solar cell based on each photoelectric conversion signal of reflected light from the solar cell and the excitation light and an output signal of the solar cell. A light control unit that controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and is as close as possible to the substrate thickness of the solar cell; and the light control unit The space of the internal quantum efficiency of the solar cell obtained by sequentially irradiating each of the plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose spot size is controlled by Based on distribution It characterized in that it comprises an evaluation unit for evaluating the opposite side of the back structure and the light receiving surface of the solar cell.

また、上記の目的を達成するため、第5の発明の太陽電池の評価装置は、太陽電池が載置され、その太陽電池の表面に平行な水平面を2軸方向に指定された距離だけ移動可能な試料台と、前記試料台を移動する移動機構と、波長及び前記太陽電池の受光面におけるスポットサイズがそれぞれ所望の値に制御された励起光を発生して、前記太陽電池の受光面に照射する光照射手段と、照射された前記励起光が、受光面に形成された表面電極で反射された反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出手段と、前記移動機構を駆動制御して、前記励起光のスポットが前記太陽電池の受光面における複数の測定点を順次位置するように前記試料台を移動させる駆動制御手段と、前記複数の測定点のそれぞれの測定結果から得られた前記算出手段による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価手段とを備え、
前記光照射手段は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御し、前記評価手段は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。
In order to achieve the above object, the solar cell evaluation apparatus according to the fifth aspect of the invention is mounted with a solar cell, and can move a horizontal plane parallel to the surface of the solar cell by a specified distance in two axial directions. A sample stage, a moving mechanism for moving the sample stage, an excitation light whose wavelength and spot size on the light receiving surface of the solar cell are controlled to desired values, and irradiated to the light receiving surface of the solar cell. Light irradiation means, reflected light reflected by the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before the light receiving surface irradiation, and the surface electrode Based on the output signal, excitation light intensity, total reflected light intensity and photocurrent are measured, and calculation means for calculating the internal quantum efficiency and reflectance of the solar cell from the measurement results, and driving control of the moving mechanism are performed. The excitation light spot Drive control means for moving the sample stage so as to sequentially position a plurality of measurement points on the light receiving surface of the solar cell, and the internal quantum efficiency by the calculation means obtained from the respective measurement results of the plurality of measurement points And an evaluation means for obtaining an evaluation result of the solar cell based on the reflectance and the wavelength of the excitation light,
The light irradiation means controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode and as close as possible to the substrate thickness of the solar cell, and the evaluation means The back surface structure opposite to the light receiving surface of the solar cell is evaluated.

また、上記の目的を達成するため、第6の発明の太陽電池の評価装置は、第5の発明の光照射手段が、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、第2の発明の評価手段が、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする。   In order to achieve the above object, a solar cell evaluation apparatus according to a sixth aspect of the present invention is the light emitting means according to the fifth aspect, wherein the wavelength of the excitation light is lower than the internal quantum efficiency of the reference sample. The first wavelength at which the efficiency is obtained or the second wavelength at which the substrate of the solar cell appears to be substantially transparent is controlled, and the evaluation means of the second invention is configured such that when the excitation light is at the first wavelength, The first internal quantum efficiency and the first reflectance calculated by the calculation unit based on the measurement results of the measurement points, and the measurement of the plurality of measurement points when the excitation light has the second wavelength. The back surface structure of the solar cell is evaluated using the second reflectance calculated by the calculation unit based on the result.

また、上記の目的を達成するため、第7の発明の太陽電池の評価用プログラムは、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、前記コンピュータに、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御機能と、前記光制御機能によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価機能と、を実現させることを特徴とする。
In order to achieve the above object, a solar cell evaluation program according to a seventh aspect of the invention is a solar cell in which excitation light whose wavelength and spot size can be arbitrarily changed is placed on a movable sample stage The evaluation of the solar cell is obtained on the computer based on the reflected light from the solar cell and the photoelectric conversion signals of the excitation light and the output signal of the solar cell. A program for evaluating a solar cell to be executed, wherein the computer
A light control function that controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and is as close as possible to the substrate thickness of the solar cell, and the light control function Spatial distribution of the internal quantum efficiency of the solar cell, obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose spot size is controlled And an evaluation function for evaluating the back surface structure opposite to the light receiving surface of the solar cell.

更に、上記の目的を達成するため、第8の発明の太陽電池の評価用プログラムは、波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、前記コンピュータに、
前記試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射機能と、前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて測定された、励起光強度、全反射光強度及び光電流の測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出機能と、前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出機能による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価機能とを実現させ、
前記光照射機能は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、前記評価機能は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする。
Furthermore, in order to achieve the above object, a solar cell evaluation program according to an eighth aspect of the invention is a solar cell in which excitation light whose wavelength and spot size can be arbitrarily changed is placed on a movable sample stage. The evaluation of the solar cell is obtained on the computer based on the reflected light from the solar cell and the photoelectric conversion signals of the excitation light and the output signal of the solar cell. A program for evaluating a solar cell to be executed, wherein the computer
A light irradiation function for irradiating the light receiving surface of the solar cell placed on the sample stage with excitation light whose wavelength and spot size are controlled to desired values, and a surface on which the excitation light is formed on the light receiving surface Excitation light intensity and total reflection light intensity measured on the basis of reflected light obtained by reflection on the electrode, each photoelectric conversion signal of the excitation light before irradiation of the light receiving surface, and an output signal of the surface electrode And the calculation function for calculating the internal quantum efficiency and reflectance of the solar cell from the measurement result of the photocurrent, and the internal by the calculation function obtained from the measurement results of each of a plurality of measurement points on the light receiving surface of the solar cell Based on the quantum efficiency and the reflectance, and the wavelength of the excitation light, realize an evaluation function to obtain the evaluation result of the solar cell,
In the light irradiation function, the light receiving surface is configured to control at least the excitation light spot size to a value that is at least twice the electrode width of the surface electrode and as close as possible to the substrate thickness of the solar cell. The evaluation function evaluates the back surface structure on the side opposite to the light receiving surface of the solar cell.

本発明によれば、光励起キャリアライフタイム測定などが困難な、電極形成済みの太陽電池が故障した場合や設計した性能が得られない場合における太陽電池の裏面側の原因を非破壊で特定する評価を行うことができる。これにより、本発明によれば、製造プロセスの最適化を実現できる。   According to the present invention, the non-destructive evaluation of the cause of the back side of the solar cell when the electrode-formed solar cell fails or when the designed performance is not obtained is difficult to measure the photoexcited carrier lifetime. It can be performed. Thereby, according to this invention, optimization of a manufacturing process is realizable.

本発明の太陽電池の評価装置の一実施形態の構成図である。It is a block diagram of one Embodiment of the evaluation apparatus of the solar cell of this invention. 本発明で評価される太陽電池の一例の断面図である。It is sectional drawing of an example of the solar cell evaluated by this invention. 図1の動作説明用フローチャートである。It is a flowchart for operation | movement description of FIG. 図3中の各部の詳細動作説明用フローチャートである。It is a flowchart for detailed operation | movement description of each part in FIG. PERC型太陽電池と基準試料の波長対内部量子効率特性図である。It is a wavelength vs. internal quantum efficiency characteristic figure of a PERC type solar cell and a reference sample. 太陽電池の励起光波長950nmにおける内部量子効率を濃淡プロットした図である。It is the figure which plotted the internal quantum efficiency in the excitation light wavelength of 950 nm of a solar cell with light and shade. 太陽電池の励起光波長950nmにおける反射率を濃淡プロットした図である。It is the figure which plotted the reflectance in the excitation light wavelength of 950 nm of a solar cell with a light / dark plot. 太陽電池の励起光波長1200nmにおける反射率を濃淡プロットした図である。It is the figure which plotted the light reflectivity in the excitation light wavelength of 1200 nm of a solar cell. 太陽電池の入射光波長対内部量子効率特性図である。It is an incident light wavelength vs. internal quantum efficiency characteristic view of a solar cell.

次に、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明に係る太陽電池の評価装置の一実施形態の構成図を示す。本実施形態の太陽電池の評価装置100は、励起スポットサイズが可変な内部量子効率測定系と、評価対象の試料である太陽電池の測定位置を高精度に移動制御可能な可変試料台とを組み合わせた構成である。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of a solar cell evaluation apparatus according to the present invention. The solar cell evaluation apparatus 100 of the present embodiment combines an internal quantum efficiency measurement system with a variable excitation spot size and a variable sample stage that can move and control the measurement position of a solar cell, which is a sample to be evaluated, with high accuracy. It is a configuration.

図1において、白色光源101は白色光を出射し、その白色光をレンズ102により平行光とし、AC測定のために光チョッパ103でチョッピングさせて分光器104に入射する。分光器104は、光路を変える反射鏡や回転可能なグレーティング1041等より構成されており、入射する白色光をグレーティング1041の回転により決まる一波長λの単色光に分光する。グレーティング1041の回転角度は、後述するパーソナルコンピュータ(以下、PCと記す)124からの制御信号により制御される。これにより、分光器104は、白色光からPC124により任意の波長に分光した単色光を励起光として出射し、暗箱105に入射する。   In FIG. 1, a white light source 101 emits white light, the white light is converted into parallel light by a lens 102, is chopped by an optical chopper 103 for AC measurement, and is incident on a spectroscope 104. The spectroscope 104 includes a reflecting mirror that changes an optical path, a rotatable grating 1041, and the like, and splits incident white light into monochromatic light having one wavelength λ determined by the rotation of the grating 1041. The rotation angle of the grating 1041 is controlled by a control signal from a personal computer (hereinafter referred to as PC) 124 described later. Thereby, the spectroscope 104 emits monochromatic light separated from white light into an arbitrary wavelength by the PC 124 as excitation light and enters the dark box 105.

暗箱105内には、絞り106、ビームスプリッタ107、放物面鏡108及び110、積分球109、励起光センサ111、反射光センサ112、電流電圧変換器113、114及び115からなる光学及び電気系と、ラボジャッキ116、試料台117、ステッピングモータ118及び119からなる機構系とが収納されている。ラボジャッキ116上に固定された試料台117は、ステッピングモータ118により水平面のx軸方向(太陽電池201の電極形成面と平行な平面における電極の長手方向と平行な方向)に、またステッピングモータ119により水平面のy軸方向にそれぞれ移動して高精度に位置決めされる可変試料台を構成している。ステッピングモータ118及び119は後述するPC124によりその動作が制御される。試料台117上には、評価対象の試料である太陽電池201が載置・固定される。太陽電池201の表面側の電極202は、励起光を反射して積分球109内に入射する。   In the dark box 105, an optical and electrical system including a diaphragm 106, a beam splitter 107, parabolic mirrors 108 and 110, an integrating sphere 109, an excitation light sensor 111, a reflected light sensor 112, and current-voltage converters 113, 114, and 115. And a mechanical system including a lab jack 116, a sample stage 117, and stepping motors 118 and 119 are housed. The sample table 117 fixed on the lab jack 116 is stepped by a stepping motor 118 in the horizontal x-axis direction (direction parallel to the longitudinal direction of the electrode in a plane parallel to the electrode forming surface of the solar cell 201), and the stepping motor 119. Thus, a variable sample stage that is moved with respect to the horizontal direction in the y-axis direction and positioned with high accuracy is configured. The operations of the stepping motors 118 and 119 are controlled by a PC 124 described later. On the sample stage 117, a solar cell 201 as a sample to be evaluated is placed and fixed. The electrode 202 on the surface side of the solar cell 201 reflects the excitation light and enters the integrating sphere 109.

絞り106は、分光器104からの単色励起光のスポットサイズを、例えば50μmから3mmまでの範囲内で可変可能な可変絞りであり、所望のスポットサイズとした単色励起光をビームスプリッタ107に入射する。なお、本実施形態では、絞り106は、太陽電池201に照射される励起光のスポット径が太陽電池201の電極202の電極幅の2倍以上で、かつ、基板厚みに極力近い値となるように制御する。太陽電池201の表面では放物面鏡108により絞り106からの光が等倍で結像されるようになっているため、太陽電池201の表面のスポットサイズは絞り106と同じになる。   The aperture 106 is a variable aperture capable of changing the spot size of the monochromatic excitation light from the spectroscope 104 within a range of, for example, 50 μm to 3 mm, and makes the monochromatic excitation light having a desired spot size enter the beam splitter 107. . In the present embodiment, the diaphragm 106 has a spot diameter of excitation light applied to the solar cell 201 that is at least twice the electrode width of the electrode 202 of the solar cell 201 and is as close as possible to the substrate thickness. To control. Since the light from the aperture 106 is imaged at the same magnification by the parabolic mirror 108 on the surface of the solar cell 201, the spot size on the surface of the solar cell 201 is the same as that of the aperture 106.

ビームスプリッタ107は、絞り106によりスポット径が調整された励起光の光路を2分し、一方は放物面鏡108で反射させて太陽電池201の表面側の電極202に入射し、他方は放物面鏡110で反射させて励起光センサ111に入射して光電変換させる。積分球109は、電極202で反射された励起光を開口部より内部に導入して内壁で多重反射させた後集光し、集光された反射光を別の開口部を通して反射光センサ112に入射して光電変換させる。   The beam splitter 107 bisects the optical path of the excitation light whose spot diameter is adjusted by the diaphragm 106, one of which is reflected by the parabolic mirror 108 and incident on the electrode 202 on the surface side of the solar cell 201, and the other is released. The light is reflected by the object mirror 110 and incident on the excitation light sensor 111 for photoelectric conversion. The integrating sphere 109 introduces the excitation light reflected by the electrode 202 into the inside through the opening, causes multiple reflection on the inner wall, condenses the light, and collects the reflected light through another opening to the reflected light sensor 112. Incident and photoelectrically converted.

励起光センサ111は、入射励起光の受光光量に応じたレベルの電流を出力して電流電圧変換器113に供給して電圧に変換させた後、ロックインアンプ121に供給する。一方、反射光センサ112は、電極202及び積分球109でそれぞれ反射して得られた反射光の受光光量に応じたレベルの電流を出力して電流電圧変換器114に供給して電圧に変換させた後、ロックインアンプ122に供給する。また、電流電圧変換器115は、電極202から取り出された太陽電池201の出力電流を電圧に変換してロックインアンプ123に供給する。   The excitation light sensor 111 outputs a current having a level corresponding to the amount of received excitation light, supplies the current to the current-voltage converter 113 to convert it into a voltage, and then supplies the voltage to the lock-in amplifier 121. On the other hand, the reflected light sensor 112 outputs a current at a level corresponding to the amount of received light of the reflected light reflected by the electrode 202 and the integrating sphere 109 and supplies it to the current-voltage converter 114 to convert it into a voltage. After that, it is supplied to the lock-in amplifier 122. The current-voltage converter 115 converts the output current of the solar cell 201 taken out from the electrode 202 into a voltage and supplies it to the lock-in amplifier 123.

ロックインアンプ121、122及び123は、電流電圧変換器113、114及び115から出力される交流電圧が供給され、その交流電圧中の所定の周波数参照信号と同一周波数成分のレベルに応じた直流電圧を発生してそれぞれPC124に供給する。事前の校正と併せておくことで、ロックインアンプ121は励起光強度Pを示す直流電圧を出力し、ロックインアンプ122は電極202の全反射光強度Prを示す直流電圧を出力し、ロックインアンプ123は太陽電池201が出力する光電流Iに応じた直流電圧を出力する。PC124は、ロックインアンプ121、122及び123から供給される直流電圧に基づいて、反射率R、及び内部量子効率ηIQEをそれぞれ次式に基づいて算出する。
R=Pr/P (1)
ηIQE=Ihc/[ePλ(1−R)] (2)
ただし、(2)式中、hはプランク定数、cは光速、eは素電荷、λは励起光の波長である。
The lock-in amplifiers 121, 122, and 123 are supplied with the AC voltage output from the current-voltage converters 113, 114, and 115, and the DC voltage corresponding to the level of the same frequency component as the predetermined frequency reference signal in the AC voltage. Are supplied to the PC 124, respectively. By keeping conjunction with pre-calibration, the lock-in amplifier 121 outputs a DC voltage representing the excitation light intensity P, the lock-in amplifier 122 outputs a DC voltage representing the total reflected light intensity P r of the electrode 202, the lock The in-amplifier 123 outputs a DC voltage corresponding to the photocurrent I output from the solar cell 201. The PC 124 calculates the reflectance R and the internal quantum efficiency η IQE based on the following equations based on the DC voltage supplied from the lock-in amplifiers 121, 122, and 123, respectively.
R = P r / P (1)
η IQE = Ihc / [ePλ (1-R)] (2)
In equation (2), h is the Planck constant, c is the speed of light, e is the elementary charge, and λ is the wavelength of the excitation light.

PC124は、算出した反射率R及び内部量子効率ηIQEの測定データを外部出力装置であるディスプレイ125及び印刷機126にそれぞれ出力して、ディスプレイ125により画像表示させ、印刷機126により紙に印刷させることで可視化する。可視化された測定画像及び測定データに基づいて、後述する太陽電池201の評価が行われる。また、PC124は、ステッピングモータ118及び119に駆動信号を供給し、試料台117を前述した水平面上のx軸方向及びy軸方向に移動させて太陽電池201の励起光照射位置を指定する制御も行う。 The PC 124 outputs the measurement data of the calculated reflectance R and internal quantum efficiency η IQE to the display 125 and the printing machine 126, which are external output devices, respectively, displays an image on the display 125, and prints it on paper by the printing machine 126. Visualize. Based on the visualized measurement image and measurement data, evaluation of the solar cell 201 described later is performed. The PC 124 also supplies control signals to the stepping motors 118 and 119 and moves the sample stage 117 in the x-axis direction and the y-axis direction on the horizontal plane to specify the excitation light irradiation position of the solar cell 201. Do.

本実施形態の太陽電池の評価装置100は、ラボジャッキ116、試料台117、ステッピングモータ118及び119からなる可動試料台機構と、それ以外の光学系及び電気系からなる励起スポットサイズが可変な内部量子効率測定系とを連携させることで、光電流Iを測定した条件での全反射光強度Prの測定、試料台117の移動と連動した測定、及び励起光スポットサイズの選択を行うことに特徴がある。 The solar cell evaluation apparatus 100 according to the present embodiment includes a movable sample stage mechanism including a lab jack 116, a sample stage 117, stepping motors 118 and 119, and an internal excitation variable size including other optical systems and electrical systems. by linking the quantum efficiency measurement system, the measurement of the total reflected light intensity P r of the conditions of measurement of the photocurrent I, measured in conjunction with the movement of the sample stage 117, and to perform the selection of the excitation spot size There are features.

本実施形態の被評価太陽電池の一例であるシリコン太陽電池においては、表面側の電極は多くの場合、銀(Ag)製の電極が採用される。本実施形態の太陽電池の評価装置100において、このAg電極の幅の2倍のスポットサイズを採用し、励起光がスポットサイズと同じ円状の領域内のみを一様に照らすと仮定した場合、電極はスポットの最大61%を覆う。このとき、例えば波長950nmでの内部量子効率が0.75で空間的に一様であり、電極が無い領域の反射を無視し、電極の反射率に銀電極の反射率97.5%を採用して、反射がすべて積分球109に捕捉されるとした場合、測定される内部量子効率は0.721となり、0.029下がる。この下がり幅は、後述する図6に示す太陽電池の裏面構造に起因する、波長950nmの励起光に対する内部量子効率の0.02程度の変化とほぼ同じであり、裏面構造による影響を隠すに至らない。より大きなスポットサイズでは、励起光スポットに示す電極の面積の割合の上限が下がるため、表面電極の影響をより小さくすることができ、太陽電池の裏面構造の影響を特別な画像処理を行わずに可視化することができる。   In a silicon solar cell which is an example of the solar cell to be evaluated according to the present embodiment, an electrode made of silver (Ag) is often used as the electrode on the surface side. In the solar cell evaluation apparatus 100 of the present embodiment, when a spot size that is twice the width of the Ag electrode is adopted, and it is assumed that the excitation light uniformly illuminates only within the same circular area as the spot size, The electrode covers up to 61% of the spot. At this time, for example, the internal quantum efficiency at a wavelength of 950 nm is 0.75 spatially uniform, the reflection in the region where no electrode is present is ignored, and the reflectivity of the silver electrode is 97.5% as the reflectivity of the electrode. If all the reflections are captured by the integrating sphere 109, the measured internal quantum efficiency is 0.721, which is 0.029 lower. This decrease width is substantially the same as the change of about 0.02 in internal quantum efficiency with respect to excitation light having a wavelength of 950 nm, which is caused by the back surface structure of the solar cell shown in FIG. Absent. At a larger spot size, the upper limit of the ratio of the electrode area shown in the excitation light spot is lowered, so that the influence of the front electrode can be reduced, and the influence of the back surface structure of the solar cell can be performed without performing special image processing. Can be visualized.

また、太陽電池の評価装置100の空間分解能は、励起光スポットサイズ、主たる励起領域における少数キャリア拡散長、及び主たる励起領域に達するまでにスポットが受光面のテクスチャなどで散乱される大きさの、計三つの二乗平均平方根で決定されると考えられる。少数キャリア拡散長は、np接合面の深さやキャリアのドープ濃度、基板の種類によって全く違う値となり、太陽電池を評価するにあたって、その基板の少数キャリア拡散長はほとんどの場合不明であり、本実施形態における励起光スポットサイズの選択においては0とみなす。テクスチャはランハート則でよく近似される散乱を生じさせるため、スポットが拡散される大きさは太陽電池の厚みと同程度である。   The spatial resolution of the solar cell evaluation apparatus 100 is such that the excitation light spot size, the minority carrier diffusion length in the main excitation region, and the size at which the spot is scattered by the texture of the light receiving surface until reaching the main excitation region, It is considered to be determined by a total of three root mean squares. The minority carrier diffusion length is completely different depending on the depth of the np junction surface, the carrier doping concentration, and the type of the substrate. When evaluating solar cells, the minority carrier diffusion length of the substrate is unknown in most cases. In selection of the excitation light spot size in the form, it is regarded as 0. Since the texture causes scattering that is well approximated by the Runhart's law, the size of the diffused spot is about the same as the thickness of the solar cell.

図2は、本発明で評価される太陽電池の一例の断面図を示す。同図中、図1と同一構成部分には同一符号を付してある。図2において、太陽電池201は裏面パッシベーション(PERC)型シリコン結晶太陽電池で、p型にドープされた結晶シリコンウェハであるp型シリコン基板203の表面側を受光面とし、表面側がテクスチャ構造とされ、そこにはn+拡散層204の表面に窒化シリコン(SiN)膜205が被覆形成されている。絶縁膜であるSiN膜205は、パッシベーション膜及び反射防止膜として機能する。また、n+拡散層204及びSiN膜205のテクスチャ構造には、複数の電極202が焼成貫通により互いに平行に形成されている。電極202は、平面が長方形状の銀(Ag)製の電極で、その長手方向(図2の紙面と直交する方向)と直交する電極幅が一例として0.1mmで、隣接する2つの電極の幅方向の間隔(電極間距離)は1.8mmである。 FIG. 2 shows a cross-sectional view of an example of a solar cell evaluated in the present invention. In the figure, the same components as those in FIG. In FIG. 2, a solar cell 201 is a back surface passivation (PERC) type silicon crystal solar cell, and a surface side of a p-type silicon substrate 203 which is a p-type doped crystalline silicon wafer is used as a light-receiving surface, and the surface side has a textured structure. In this case, a silicon nitride (SiN) film 205 is formed on the surface of the n + diffusion layer 204. The SiN film 205, which is an insulating film, functions as a passivation film and an antireflection film. In addition, in the texture structure of the n + diffusion layer 204 and the SiN film 205, a plurality of electrodes 202 are formed in parallel to each other by firing penetration. The electrode 202 is a silver (Ag) electrode having a rectangular plane, and the electrode width orthogonal to the longitudinal direction (direction perpendicular to the paper surface of FIG. 2) is 0.1 mm as an example. The interval in the width direction (distance between electrodes) is 1.8 mm.

p型シリコン基板203の裏面側には絶縁膜として例えば酸化アルミ膜206がパッシベーション膜として形成されている。酸化アルミ膜206は、例えば1mm間隔で0.1mm幅の溝が掘られ、その上からアルミニウム(Al)ペーストを塗布後熱処理することで、この溝部分でAlとSiとが合金化されたBSF型の電極207が形成されている。一方、溝以外の酸化アルミ膜206上にはAl製の電極208が形成される。したがって、BSF型の電極207とAl電極208とは1mm間隔で接合されている。また、表面側の電極202及び裏面側のBSF型の電極207は、いずれも電極幅が0.1mmと同じであるが、隣接する2つの電極の幅方向の間隔(電極間距離)は、電極202が1.8mm、電極207が1.0mmと異なる。この太陽電池201の大きさは、幅156mm×奥行156mm×厚み0.2mmである。   On the back side of the p-type silicon substrate 203, for example, an aluminum oxide film 206 is formed as a passivation film as an insulating film. For example, a 0.1 mm wide groove is formed at an interval of 1 mm in the aluminum oxide film 206, and an aluminum (Al) paste is applied on the groove and then heat-treated, whereby Al and Si are alloyed in this groove portion. A mold electrode 207 is formed. On the other hand, an Al electrode 208 is formed on the aluminum oxide film 206 other than the trench. Therefore, the BSF type electrode 207 and the Al electrode 208 are joined at an interval of 1 mm. The front electrode 202 and the BSF electrode 207 on the rear surface have the same electrode width of 0.1 mm, but the distance between the two adjacent electrodes in the width direction (distance between the electrodes) 202 is different from 1.8 mm, and the electrode 207 is different from 1.0 mm. The size of this solar cell 201 is 156 mm width × 156 mm depth × 0.2 mm thickness.

次に、図1の太陽電池の評価装置100による図2の断面構造のPERC型太陽電池201を評価対象とする評価方法について、図3及び図4のフローチャート並びに図5の波長対内部量子効率特性を併せ参照して詳細に説明する。本実施形態は、図3のステップS11以降の処理に特徴があるが、それ以前のステップS1〜S10で量子効率スペクトル測定による性能低下要因の切り分けを行う。そのため、まず、評価装置100は、試料台117の上に太陽電池201を載置した状態で太陽電池201の量子効率スペクトル測定を行う(図3のステップS1)。また、ステップS1では事前に基準試料についても同様にして量子効率スペクトルの測定を行う。   Next, regarding the evaluation method for evaluating the PERC type solar cell 201 having the cross-sectional structure of FIG. 2 by the solar cell evaluation apparatus 100 of FIG. 1, the flow charts of FIGS. 3 and 4 and the wavelength vs. internal quantum efficiency characteristics of FIG. Will be described in detail. The present embodiment is characterized in the processing after step S11 in FIG. 3, but the performance degradation factor is determined by quantum efficiency spectrum measurement in steps S1 to S10 before that. Therefore, first, the evaluation apparatus 100 performs the quantum efficiency spectrum measurement of the solar cell 201 in a state where the solar cell 201 is placed on the sample stage 117 (step S1 in FIG. 3). In step S1, the quantum efficiency spectrum is similarly measured in advance for the reference sample.

ここで、図1の例えばハロゲンランプ及びキセノンランプの2灯式光源である白色光源101から出射した白色光は、レンズ102により平行光とされ、チョッビング周波数81Hzの光学チョッパ103を経て分光器104に入射し、ここでPC124からの制御により所望の波長λの単色励起光とされ、続いて絞り106により所望のスポットサイズに整形される。絞り106を出射した単色励起光は、ビームスプリッタ107により光路が2分され、一方は放射面鏡110で反射されて励起光センサ111に入射し、他方は放射面鏡108で反射されて太陽電池201の表面側の電極202に入射する。電極202に入射した単色波長光は電極202で反射されて積分球109の開口部から積分球109の内部に導入されて、積分球109の内壁面で再び反射された後集光されて、積分球109の別の開口部から導出されて反射光センサ112に入射する。   Here, the white light emitted from the white light source 101 which is a two-lamp type light source of, for example, a halogen lamp and a xenon lamp in FIG. Incident light is made monochromatic excitation light having a desired wavelength λ under the control of the PC 124, and then shaped into a desired spot size by the stop 106. The monochromatic excitation light emitted from the diaphragm 106 is divided into two optical paths by the beam splitter 107, one of which is reflected by the radiation mirror 110 and incident on the excitation light sensor 111, and the other is reflected by the radiation mirror 108 and is solar cell. The light enters the electrode 202 on the surface side of 201. The monochromatic wavelength light incident on the electrode 202 is reflected by the electrode 202, introduced into the integrating sphere 109 from the opening of the integrating sphere 109, reflected again by the inner wall surface of the integrating sphere 109, and then condensed and integrated. The light is derived from another opening of the sphere 109 and enters the reflected light sensor 112.

ロックインアンプ121は、励起光センサ111及び電流電圧変換器113により得られた単色励起光の光電変換信号に基づき、励起光強度Pを示す直流電圧を出力する。また、ロックインアンプ122は、反射光センサ112及び電流電圧変換器114により得られた電極202の全反射光強度Prを示す直流電圧を出力する。また、ロックインアンプ123は、電流電圧変換器115を介して得られた電極202からの出力信号に応じて太陽電池201が出力する光電流Iに応じた直流電圧を出力する。PC124は、ロックインアンプ121、122及び123から供給される直流電圧に基づいて量子効率スペクトルを測定し、また前述した(2)式により内部量子効率を算出する。 The lock-in amplifier 121 outputs a DC voltage indicating the excitation light intensity P based on the photoelectric conversion signal of monochromatic excitation light obtained by the excitation light sensor 111 and the current-voltage converter 113. The lock-in amplifier 122 outputs a DC voltage representing the total reflected light intensity P r of the electrode 202 obtained by the reflected light sensor 112 and the current-voltage converter 114. The lock-in amplifier 123 outputs a DC voltage corresponding to the photocurrent I output from the solar cell 201 in response to an output signal from the electrode 202 obtained via the current-voltage converter 115. The PC 124 measures the quantum efficiency spectrum based on the DC voltage supplied from the lock-in amplifiers 121, 122, and 123, and calculates the internal quantum efficiency by the above-described equation (2).

ステップS1では、太陽電池201の受光面側のある一点にスポットサイズ1mmの励起光を、波長300nmから1250nmまでの範囲で可変しながら照射して、太陽電池201の量子効率スペクトルを測定する。ステップS1では基準試料についても上記と同様にしてその量子効率スペクトルを測定する。ここで、基準試料はPERC型太陽電池201と比較して、裏面構造がパッシベーション膜を有しない構造だけでそれ以外はPERC型と同じである、BSF層の上にAl電極が形成されたBSF型太陽電池である。基準試料として用いられるBSF型太陽電池は、エネルギー変換効率が設計で期待できる値に近い19.3%を示す高品質試料である。   In step S1, the quantum efficiency spectrum of the solar cell 201 is measured by irradiating one point on the light receiving surface side of the solar cell 201 with excitation light having a spot size of 1 mm while changing the wavelength in the range from 300 nm to 1250 nm. In step S1, the quantum efficiency spectrum of the reference sample is measured in the same manner as described above. Here, as compared with the PERC type solar cell 201, the reference sample is the same as the PERC type except that the back surface structure has no passivation film. The BSF type in which an Al electrode is formed on the BSF layer. It is a solar cell. A BSF type solar cell used as a reference sample is a high quality sample showing 19.3% of energy conversion efficiency close to a value expected by design.

図5は、PERC型太陽電池と基準試料の波長対内部量子効率特性を示す。図5において、実線の特性aはPERC型太陽電池201の波長対内部量子効率特性、破線の特性bは上記基準試料の波長対内部量子効率特性を示す。内部量子効率は測定した量子効率スペクトルから計算により求められる。両特性a、bを比較すると、800nmから1050nmまでの波長範囲で特性aが特性bより劣っているが、他の波長範囲では特性aは特性bと同等かそれより良好な特性を示している。このことから特性aのPERC型太陽電池201は裏面側での少数キャリアの再結合速度が速いことが推定できる。この測定結果に基づく空間的に平均した特性の評価から以下に示すイメージング測定の際の波長選択を行う。   FIG. 5 shows the wavelength versus internal quantum efficiency characteristics of a PERC type solar cell and a reference sample. In FIG. 5, the solid line characteristic a indicates the wavelength versus internal quantum efficiency characteristic of the PERC type solar cell 201, and the broken line characteristic b indicates the wavelength versus internal quantum efficiency characteristic of the reference sample. The internal quantum efficiency is obtained by calculation from the measured quantum efficiency spectrum. Comparing both characteristics a and b, the characteristic a is inferior to the characteristic b in the wavelength range from 800 nm to 1050 nm, but the characteristic a is equal to or better than the characteristic b in other wavelength ranges. . From this, it can be estimated that the PERC type solar cell 201 having the characteristic a has a high recombination rate of minority carriers on the back surface side. From the evaluation of the spatially averaged characteristics based on this measurement result, wavelength selection in the following imaging measurement is performed.

次に、評価装置100のPC124は、ステップS1で測定された太陽電池201の量子効率が300nmから1250nmまでの全測定波長範囲において基準試料の量子効率あるいは設定値以上であるか否かを判定する(図3のステップS2)。量子効率が全測定波長範囲において基準試料あるいは設計値と等しいかそれより高い場合、太陽電池201の開放電圧や短絡電流は基準通りの値になっているはずであり、抵抗が性能低下の要因になっている。よって、この場合は、電極不良あるいはp型シリコン基板203での高抵抗がその要因であると推定できる(図3のステップS3)。   Next, the PC 124 of the evaluation apparatus 100 determines whether or not the quantum efficiency of the solar cell 201 measured in step S1 is equal to or higher than the quantum efficiency of the reference sample or a set value in the entire measurement wavelength range from 300 nm to 1250 nm. (Step S2 in FIG. 3). When the quantum efficiency is equal to or higher than the reference sample or the design value in the entire measurement wavelength range, the open-circuit voltage and the short-circuit current of the solar cell 201 should be the values according to the reference, and the resistance causes the performance degradation. It has become. Therefore, in this case, it can be presumed that the cause is electrode failure or high resistance in the p-type silicon substrate 203 (step S3 in FIG. 3).

一方、太陽電池201の量子効率が基準試料の量子効率あるいは設定値よりも低い場合は、全測定波長範囲にわたって低いか否かを判定する(図3のステップS4)。太陽電池201のようなSi系太陽電池では、一般に励起波長が500nm〜750nmで98±2%程度となり、波長依存性が殆どない。これは励起光のシリコン基板への侵入長が太陽電池のnp接合の深さと近しいため、光励起キャリアがほぼすべてnp接合に到達するためである。このときの内部量子効率は電極によるキャリアの回収効率にほぼ等しい。500nm〜750nmの励起光の波長範囲で量子効率が基準試料あるいは設計値よりも低い場合は、np接合の形成不良による再結合や、np接合の短絡によるキャリア回収率の低下が起こっているため、量子効率は全測定波長範囲にわたって低い値となる。結晶品質の不良によりp型シリコン基板203中の再結合が位置にかかわらず極めて速い場合にも似たような全測定波長範囲で低い量子効率スペクトルが観測される。そのため、評価装置100のPC124は、全測定波長範囲のすべてにおいて太陽電池201の量子効率が基準試料あるいは設計値より低い場合はn+拡散層204とp型シリコン基板203とのnp接合での再結合か、短絡あるいはSi結晶中の低品質と評価し、その対策のための処理を行う(図3のステップS5)。 On the other hand, when the quantum efficiency of the solar cell 201 is lower than the quantum efficiency of the reference sample or the set value, it is determined whether or not it is low over the entire measurement wavelength range (step S4 in FIG. 3). In a Si solar cell such as the solar cell 201, the excitation wavelength is generally about 98 ± 2% when the excitation wavelength is 500 nm to 750 nm, and there is almost no wavelength dependency. This is because almost all of the photoexcited carriers reach the np junction because the penetration length of the excitation light into the silicon substrate is close to the depth of the np junction of the solar cell. The internal quantum efficiency at this time is almost equal to the carrier recovery efficiency by the electrode. When the quantum efficiency is lower than the reference sample or the design value in the wavelength range of the excitation light of 500 nm to 750 nm, recombination due to formation failure of the np junction or reduction in carrier recovery due to short circuit of the np junction occurs. The quantum efficiency is low over the entire measurement wavelength range. A low quantum efficiency spectrum is observed in a similar entire measurement wavelength range even when recombination in the p-type silicon substrate 203 is extremely fast regardless of position due to poor crystal quality. Therefore, when the quantum efficiency of the solar cell 201 is lower than the reference sample or the design value in the entire measurement wavelength range, the PC 124 of the evaluation apparatus 100 performs re-measurement at the np junction between the n + diffusion layer 204 and the p-type silicon substrate 203. A combination, short circuit, or low quality in the Si crystal is evaluated, and a countermeasure is taken (step S5 in FIG. 3).

ステップS5の処理について更に図4(C)のフローチャートとともに説明する。np接合は太陽電池表面のテクスチャ構造を作った後、イオン拡散やイオン打ち込みによってn+拡散層204を形成することで得られるが、特にイオン打ち込みにおいてはテクスチャ形状の陰で打ち込み量不足や熱処理不足により接合形成不良となり、量子効率の低下が起きやすくなっている。 The process of step S5 will be further described with reference to the flowchart of FIG. The np junction can be obtained by forming the texture structure on the surface of the solar cell and then forming the n + diffusion layer 204 by ion diffusion or ion implantation. In particular, in ion implantation, the amount of implantation or heat treatment is insufficient due to the shadow of the texture shape. As a result, junction formation is poor, and the quantum efficiency is likely to decrease.

そこで、波長500nm以上750nm以下、及びスポットサイズ10μm以下、望ましくは1μm以下とした励起光を太陽電池201上に照射するとともに、太陽電池201の表面の横4mm×縦7mmの範囲について、横方向に10μm以下、縦方向に10μm以下のピッチで設定した測定点上に励起光スポットが順次に来るように、PC124はステッピングモータ118及び119を制御して試料台117をx軸方向及びy軸方向に間欠的に移動させながら、ロックインアンプ121〜123からの信号に基づいて、内部量子効率及び反射率を測定する(ステップS51)。以下、この試料台117及び太陽電池201の間欠移動による測定をマッピング測定というものとする。   Therefore, the solar cell 201 is irradiated with excitation light having a wavelength of 500 nm or more and 750 nm or less and a spot size of 10 μm or less, preferably 1 μm or less. The PC 124 controls the stepping motors 118 and 119 so that the sample stage 117 is moved in the x-axis direction and the y-axis direction so that the excitation light spots sequentially come to the measurement points set at a pitch of 10 μm or less and 10 μm or less in the vertical direction. While moving intermittently, the internal quantum efficiency and reflectance are measured based on the signals from the lock-in amplifiers 121 to 123 (step S51). Hereinafter, the measurement by intermittent movement of the sample stage 117 and the solar cell 201 is referred to as mapping measurement.

続いて、PC124は、ステップS51の測定結果に基づき、各測定点の前記照射光波長での内部量子効率を計算し(ステップS52)、その計算結果から内部量子効率が低い領域を判定する(ステップS53)。そして、内部量子効率が低い領域がテクスチャ構造と対応している場合は、テクスチャによる陰影の影響を低減するための対策を行う(ステップS54)。例えば、イオン打ち込み時の角度や回転条件を変更し、np接合のxy平面、つまり受光面に沿った空間一様性を高める工夫を行う。一方、内部量子効率が低い領域が一様である場合は、イオンの注入量や熱処理の変更により深さ方向、すなわち受光面と垂直な方向にドープされた物質がどう分布するかを左右するプロセスの条件を改善する、イオン注入量や熱処理の最適化を行う(ステップS55)。   Subsequently, the PC 124 calculates the internal quantum efficiency at the irradiation light wavelength at each measurement point based on the measurement result of Step S51 (Step S52), and determines a region where the internal quantum efficiency is low from the calculation result (Step S52). S53). If the region with low internal quantum efficiency corresponds to the texture structure, a measure is taken to reduce the influence of the shadow caused by the texture (step S54). For example, the angle and rotation conditions at the time of ion implantation are changed, and a device for improving the spatial uniformity along the xy plane of the np junction, that is, the light receiving surface is performed. On the other hand, when the region where the internal quantum efficiency is low is uniform, the process that affects the distribution of the doped material in the depth direction, that is, the direction perpendicular to the light receiving surface, by changing the amount of ion implantation or heat treatment The ion implantation amount and heat treatment are optimized to improve the conditions (step S55).

図3に戻って説明する。PC124はステップS4で太陽電池201の量子効率が測定した全波長範囲で基準試料のそれより低くない(高い波長もある)と判定したときは、低い波長領域がどの領域であるかを検出する(ステップS6)。これは評価対象の太陽電池の量子効率スペクトルを基準試料のそれや設計値と比較した場合、際立って低い波長領域がある場合はその波長から性能低下要因を推定できるからである。すなわち、励起波長500nm以下の量子効率が低い場合は、光励起キャリアはnp接合面より更に受光面である表面側近くに集中するため、表面側のパッシベーション膜(すなわち、SiN膜205)の不良による表面再結合が速く、np接合面へキャリアが到達していないと評価する(ステップS7)。   Returning to FIG. If the PC 124 determines in step S4 that the quantum efficiency of the solar cell 201 is not lower than that of the reference sample in the entire wavelength range (there is also a higher wavelength), it detects which region the lower wavelength region is ( Step S6). This is because, when the quantum efficiency spectrum of the solar cell to be evaluated is compared with that of the reference sample and the design value, if there is a markedly low wavelength region, the performance degradation factor can be estimated from the wavelength. That is, when the quantum efficiency at an excitation wavelength of 500 nm or less is low, photoexcited carriers are concentrated closer to the surface side that is the light receiving surface than the np junction surface, and thus the surface due to the defect of the surface side passivation film (ie, SiN film 205). It is evaluated that recombination is fast and carriers have not reached the np junction surface (step S7).

また、ステップS6で太陽電池201の量子効率が基準試料のそれよりも低い波長領域が800nm付近(700nm〜900nm)であると検出したときは、基板での再結合と評価する(ステップS8)。すなわち、この場合、殆どの光励起キャリアはp型シリコン基板203に吸収され、受光面側への拡散の末に接合面に到達しているので、この領域での量子効率が低い場合はp型シリコン基板203でのキャリア再結合が速いことが性能の決定要因となっている。   If it is detected in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is around 800 nm (700 nm to 900 nm), it is evaluated as recombination on the substrate (step S8). That is, in this case, most of the photoexcited carriers are absorbed by the p-type silicon substrate 203 and reach the junction surface after diffusion toward the light-receiving surface side. Therefore, if the quantum efficiency in this region is low, the p-type silicon The fast carrier recombination on the substrate 203 is a determinant of performance.

ステップS8の処理について、更に図4(A)のフローチャートとともに説明する。まず、波長500nm以上750nm以下の励起光を1mm以上、望ましくは1cm程度の大きなスポットサイズで太陽電池201上に照射し、横方向に1cm以下、縦方向に1cm以下のピッチで設定した測定点の量子効率及び反射率のマッピング測定を行う(ステップS81)。続いて、PC124は、ステップS81の測定結果に基づき、各測定点の前記照射光波長での内部量子効率を計算し(ステップS82)、その計算結果から量子効率が低い領域を判定する(ステップS83)。   The process of step S8 will be further described with reference to the flowchart of FIG. First, excitation light having a wavelength of 500 nm or more and 750 nm or less is irradiated onto the solar cell 201 with a large spot size of 1 mm or more, preferably about 1 cm, and the measurement points set at a pitch of 1 cm or less in the horizontal direction and 1 cm or less in the vertical direction are set. Mapping measurement of quantum efficiency and reflectance is performed (step S81). Subsequently, the PC 124 calculates the internal quantum efficiency at the irradiation light wavelength at each measurement point based on the measurement result in step S81 (step S82), and determines a region having a low quantum efficiency from the calculation result (step S83). ).

ここで、単結晶シリコンでは結晶の中心に対して回転対称な構造が、また多結晶シリコンの場合は結晶粒の大きさに対応した斑模様が観測されるような場合、p型シリコン基板203中のキャリア再結合が太陽電池の性能を下げている。そこで、ステップS83において、内部量子効率が低い領域が、太陽電池の中心に対して同心円状の領域等、シリコン結晶特有の構造を示している場合は、シリコン結晶の低品質による再結合であると評価する(ステップS84)。一方、内部量子効率が低い領域が上記のシリコン結晶特有の構造を示していないときは、評価対象の太陽電池の性能を下げている原因はnp接合での再結合や短絡であると評価する(ステップS85)。   Here, when a single crystal silicon has a rotationally symmetric structure with respect to the center of the crystal, and in the case of polycrystalline silicon, a spot pattern corresponding to the size of a crystal grain is observed, the p-type silicon substrate 203 contains The carrier recombination of the solar cell decreases the performance of the solar cell. Therefore, in step S83, when the region having a low internal quantum efficiency shows a structure specific to a silicon crystal such as a concentric region with respect to the center of the solar cell, the recombination is due to the low quality of the silicon crystal. Evaluate (step S84). On the other hand, when the region where the internal quantum efficiency is low does not show the structure peculiar to the silicon crystal, it is evaluated that the cause of lowering the performance of the solar cell to be evaluated is recombination or short circuit at the np junction ( Step S85).

ところで、電極未形成の太陽電池や半導体ウェハに対してはμPCD法などでキャリア寿命の空間分布図が得られるが、電極が既に形成された太陽電池では同様の評価を行うためには電極領域を光励起しないような工夫が必要であり、非常に難しい。これに対し、本実施形態ではマッピング測定する量として内部量子効率を選び、1cm程度に空間解像度を落とすことで大面積の太陽電池における品質の空間的な不均一を可視化することができる。   By the way, for solar cells and semiconductor wafers where electrodes are not formed, a spatial distribution map of carrier lifetime can be obtained by the μPCD method, etc. It is necessary to devise a method that does not cause photoexcitation, which is very difficult. On the other hand, in the present embodiment, the internal quantum efficiency is selected as the amount of mapping measurement, and the spatial resolution is reduced to about 1 cm, thereby making it possible to visualize the spatial nonuniformity of quality in a large area solar cell.

再び図3に戻って説明する。PC124はステップS6で太陽電池201の量子効率が基準試料のそれより低い波長領域が1000nm以上1250nm以下であると検出したときは、光閉じ込め不良が試料の太陽電池201に生じていると評価する(ステップS9)。例えば、1050nm以上の波長領域では励起光の侵入長が1mm以上となり、励起光が太陽電池中で何度も反射したうえで吸収されるため、光励起キャリアの深さ方向の非一様性はなくなり、その波長依存性もない。この波長領域では光閉じ込めによる励起光の多重反射が行われる回数が多いほど、量子効率スペクトルの長波長へのテールが伸びる。この波長領域の量子効率が低い場合は、光閉じ込め構造の不良が考えられる。   Returning to FIG. 3, the description will be continued. When the PC 124 detects in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is 1000 nm or more and 1250 nm or less, the PC 124 evaluates that a light confinement defect occurs in the sample solar cell 201 ( Step S9). For example, in the wavelength region of 1050 nm or more, the penetration length of the excitation light is 1 mm or more, and the excitation light is absorbed after being reflected many times in the solar cell, so the non-uniformity of the photoexcited carrier in the depth direction is eliminated. There is no wavelength dependency. In this wavelength region, the higher the number of multiple reflections of excitation light due to light confinement, the longer the tail of the quantum efficiency spectrum to longer wavelengths. If the quantum efficiency in this wavelength region is low, the optical confinement structure may be defective.

ステップS9の評価について更に図4(B)に示すフローチャートとともに説明する。まず、波長500nm以上750nm以下、及びスポットサイズ10μm以下、望ましくは1μm以下とした励起光を太陽電池201上に照射するとともに、太陽電池201の表面の横10μm×縦10μm以上の範囲について、横方向に10μm以下、縦方向に10μm以下のピッチで設定した測定点の反射率のマッピング測定を行う(ステップS91)。続いて、PC124は、ステップS91の各測定点の測定結果が示す反射率の構造が、結晶粒界と対応しているか一様であるかを判定し(ステップS92)、反射率の変化が結晶粒界と対応していると判定したときは、太陽電池の性能低下が結晶方位による異方性の影響によるものと評価する(ステップS93)。こうした変化は水酸化カリウム系溶液による化学プロセスで起きやすいため、弗酸・硝酸混合液やプラズマエッチングといった、より面方位の影響を受けにくいプロセスの採用を検討する。一方、反射率が一様であると判定したときは、テクスチャの設計・条件を見直す(ステップS94)。   The evaluation in step S9 will be further described with reference to the flowchart shown in FIG. First, the solar cell 201 is irradiated with excitation light having a wavelength of 500 nm or more and 750 nm or less and a spot size of 10 μm or less, preferably 1 μm or less, and the surface of the solar cell 201 has a lateral direction of 10 μm × longitudinal 10 μm or more. The reflectance mapping of the measurement points set at a pitch of 10 μm or less and 10 μm or less in the vertical direction is performed (step S91). Subsequently, the PC 124 determines whether the reflectance structure indicated by the measurement result at each measurement point in step S91 corresponds to the crystal grain boundary or is uniform (step S92), and the change in reflectance is a crystal. When it is determined that it corresponds to the grain boundary, it is evaluated that the performance degradation of the solar cell is due to the anisotropy due to the crystal orientation (step S93). Since such changes are likely to occur in a chemical process using a potassium hydroxide solution, the use of a process that is less susceptible to surface orientation, such as a hydrofluoric acid / nitric acid mixture or plasma etching, will be considered. On the other hand, when it is determined that the reflectance is uniform, the texture design / conditions are reviewed (step S94).

再び図3に戻って説明する。PC124はステップS6で太陽電池201の量子効率が基準試料のそれより低い波長領域が900nm付近、すなわち750nm以上1100nm以下であると検出したときは、図5に示したように太陽電池201は裏面側での少数キャリアの再結合が生じていると判定し(ステップS10)、以下本発明特有の処理を行う。励起波長900nm〜1000nmでは光励起キャリアが太陽電池裏面付近でも生成し始めるため、この波長領域の量子効率が低い場合、裏面側のパッシベーション膜不良などによる速い少数キャリア再結合が疑われる。   Returning to FIG. 3, the description will be continued. When the PC 124 detects in step S6 that the wavelength region where the quantum efficiency of the solar cell 201 is lower than that of the reference sample is near 900 nm, that is, not less than 750 nm and not more than 1100 nm, as shown in FIG. It is determined that minority carrier recombination has occurred (step S10), and processing specific to the present invention is performed. At the excitation wavelength of 900 nm to 1000 nm, photoexcited carriers begin to be generated even near the back surface of the solar cell. Therefore, when the quantum efficiency in this wavelength region is low, fast minority carrier recombination due to a defective passivation film on the back surface side is suspected.

ステップS10に続いて評価対象の太陽電池に裏面側構造があるか否かを判定し(ステップS11)、Al-BSF型などの裏面が一様な太陽電池の場合は裏面プロセスの改良を行う(ステップS12)。一方、PERC型太陽電池のような裏面側構造がある場合は表面電極があるか否かを判定し(ステップS13)、表面電極が無い場合は絞り106により励起光のスポットサイズを基板厚み程度とし(ステップS14)、表面電極が有る場合は絞り106により励起光のスポットサイズを電極幅の2倍以上、かつ、基板厚みに極力近いスポットサイズとする(ステップS15)。ここで、マッピング測定する場合の励起光のスポットサイズは小さいほど空間分解能が良くなるが、裏面構造を評価する場合の空間分解能は基板の表面に平行な方向の少数キャリア拡散及び表面側のテクスチャ構造による基板厚み程度の励起光スポットの滲みの影響により、ある程度以上は良くならない。   Following step S10, it is determined whether or not the solar cell to be evaluated has a back side structure (step S11). In the case of a solar cell with a uniform back side such as an Al-BSF type, the back side process is improved ( Step S12). On the other hand, if there is a back side structure such as a PERC type solar cell, it is determined whether or not there is a surface electrode (step S13). If there is no surface electrode, the aperture size is set to about the substrate thickness by the aperture 106. (Step S14) If there is a surface electrode, the aperture size of the excitation light is set to at least twice the electrode width and as close as possible to the substrate thickness by the aperture 106 (Step S15). Here, the smaller the spot size of the excitation light for mapping measurement, the better the spatial resolution, but the spatial resolution for evaluating the back surface structure is minority carrier diffusion in the direction parallel to the surface of the substrate and the texture structure on the surface side. Due to the influence of bleeding of the excitation light spot of about the thickness of the substrate due to the above, it is not improved to some extent.

小さなスポットサイズでは励起パワーを大きくしずらいため、また、必要以上にスポットサイズを小さくするとS/N比の低下が起きるため、本実施形態では太陽電池に裏面構造があるが表面電極が無い場合は、ステップS14にてスポットサイズを基板の厚み程度に選ぶ。一方、図2に示した太陽電池201のように裏面構造のある太陽電池の表面側に電極202がある場合、スポットサイズが大きいほど表面側の電極202による影響を平均化して抑制することができるため、本実施形態では上記のステップS15において、励起光のスポットサイズを電極202による影響を抑制するために電極幅の2倍以上とし、この条件を満たしたうえで基板厚みに極力近いスポットサイズとする。このようにステップS15により決定されるスポットサイズは、評価対象の太陽電池の表面側から入射する励起光により、その太陽電池の表面側構造の影響を殆ど受けることなく裏面側構造を実用上十分に観測できるサイズである。   If the spot size is small, it is difficult to increase the excitation power, and if the spot size is reduced more than necessary, the S / N ratio is lowered. Therefore, in this embodiment, the solar cell has a back surface structure but there is no surface electrode. In step S14, the spot size is selected to be about the thickness of the substrate. On the other hand, when the electrode 202 is on the surface side of the solar cell having the back surface structure like the solar cell 201 shown in FIG. 2, the influence of the electrode 202 on the front surface side can be averaged and suppressed as the spot size is larger. Therefore, in this embodiment, in step S15 described above, the spot size of the excitation light is set to at least twice the electrode width in order to suppress the influence of the electrode 202, and the spot size as close as possible to the substrate thickness is satisfied after satisfying this condition. To do. As described above, the spot size determined in step S15 is practically sufficient for the back side structure without being substantially affected by the surface side structure of the solar cell by the excitation light incident from the surface side of the solar cell to be evaluated. The size is observable.

ここでは、太陽電池201は図2に示したPERC型であり表面側には電極202が、裏面側には電極207がそれぞれ存在するので、励起光のスポットサイズは、ステップS15により電極幅の2倍以上、かつ、基板厚みに極力近い値とされる。一例として、太陽電池201が基板厚さ0.12mm、選択可能なスポットサイズは0.8mm、0.4mm、0.2mm、0.1mmであり、その中から電極202の電極幅0.1mmの2倍以上、かつ、基板厚みに最も近い0.2mmを使用するスポットサイズとして決定した。   Here, the solar cell 201 is of the PERC type shown in FIG. 2, and the electrode 202 exists on the front surface side and the electrode 207 exists on the back surface side. Therefore, the spot size of the excitation light is set to 2 of the electrode width in step S15. The value is more than double and is as close as possible to the substrate thickness. As an example, the solar cell 201 has a substrate thickness of 0.12 mm, and selectable spot sizes are 0.8 mm, 0.4 mm, 0.2 mm, and 0.1 mm, and the electrode width of the electrode 202 is 0.1 mm. The spot size was determined to be 0.2 mm or more and the closest 0.2 mm to the substrate thickness.

続いて、PC124はステップS14又はステップS15により決定されたスポットサイズの励起光の波長λを、分光器104を制御して750nm以上1100nm以下、実施例においては950nmとし、太陽電池201の表面の横1mm×縦1mm以上の範囲について、横方向に0.2mm以下、縦方向に0.2mm以下のピッチで設定した測定点、実施例においては横4mm×縦7mmの範囲について、横方向に0.2mm、縦方向に0.1mmのピッチで設定した20×70点の測定点上で量子効率のマッピング測定及び反射率のマッピング測定を行う(ステップS16)。そして、PC124は量子効率のマッピング測定値に基づいて前記(2)式により内部量子効率を計算し、反射率のマッピング測定値に基づいて前記(1)式により反射率を計算する(ステップS17)。ステップS17で計算された内部量子効率及び反射率の一例を図6及び図7に示す。   Subsequently, the PC 124 controls the spectroscope 104 to set the wavelength λ of the excitation light having the spot size determined in step S14 or step S15 to 750 nm or more and 1100 nm or less, and in the embodiment, 950 nm. With respect to the range of 1 mm × 1 mm or more, measurement points set at a pitch of 0.2 mm or less in the horizontal direction and 0.2 mm or less in the vertical direction, and in the example, the range of 4 mm × 7 mm in the horizontal direction is set to 0.5 mm in the horizontal direction. Quantum efficiency mapping measurement and reflectance mapping measurement are performed on 20 × 70 measurement points set at a pitch of 2 mm and 0.1 mm in the vertical direction (step S <b> 16). Then, the PC 124 calculates the internal quantum efficiency according to the equation (2) based on the mapping measurement value of the quantum efficiency, and calculates the reflectance according to the equation (1) based on the mapping measurement value of the reflectance (step S17). . An example of the internal quantum efficiency and the reflectance calculated in step S17 is shown in FIGS.

図6は、太陽電池201の励起光波長950nmにおける内部量子効率を濃淡プロットした図を示す。同図において、x軸方向は電極202及び207の長手方向であり、y軸方向は電極202及び207の幅方向である(後述の図7及び図8も同様)。同図において黒色領域は内部量子効率の低い電極間の領域を示しており、励起光波長950nmにおける内部量子効率は、x軸方向にほぼ一様で、y軸方向では裏面側の電極207の電極間距離である1mm間隔で内部量子効率の高い領域と低い領域とが交互に現れている。すなわち、図6は表面側(受光面)からの内部量子効率の図ではあるが、表面側の電極202の特徴を排して裏面側の構造による内部量子効率の変化がディスプレイ125及び印刷機126により可視化されている。このように、図6は太陽電池201の励起光波長950nmにおける内部量子効率は裏面側の電極207の影響があることを示している。   FIG. 6 shows a density plot of the internal quantum efficiency of the solar cell 201 at an excitation light wavelength of 950 nm. In the figure, the x-axis direction is the longitudinal direction of the electrodes 202 and 207, and the y-axis direction is the width direction of the electrodes 202 and 207 (the same applies to FIGS. 7 and 8 described later). In the figure, the black region shows the region between the electrodes having a low internal quantum efficiency, and the internal quantum efficiency at the excitation light wavelength of 950 nm is substantially uniform in the x-axis direction, and the electrode of the back-side electrode 207 in the y-axis direction. Regions having a high internal quantum efficiency and regions having a low internal quantum efficiency appear alternately at intervals of 1 mm, which is the distance between them. That is, FIG. 6 is a diagram of the internal quantum efficiency from the front surface side (light receiving surface), but the characteristics of the electrode 202 on the front surface side are excluded, and the change in the internal quantum efficiency due to the structure on the back surface side is the display 125 and the printer 126. It is visualized by. Thus, FIG. 6 shows that the internal quantum efficiency of the solar cell 201 at the excitation light wavelength of 950 nm is affected by the electrode 207 on the back surface side.

図7は、太陽電池201の励起光波長950nmにおける反射率を濃淡プロットした図を示す。同図において、黒色領域は反射率の低い電極間の領域を示しており、励起光波長950nmにおける反射率は、x軸方向にほぼ一様で、y軸方向では表面側の電極202の電極間距離である1.8mm間隔で反射率の高い領域と低い領域とが交互に現れている。このように、図7は太陽電池201の励起光波長950nmにおける反射率は表面側の電極202の反射率のみを示している。   FIG. 7 shows a density plot of the reflectance of the solar cell 201 at an excitation light wavelength of 950 nm. In the figure, the black region shows the region between the electrodes with low reflectance, and the reflectance at the excitation light wavelength of 950 nm is substantially uniform in the x-axis direction, and between the electrodes of the surface side electrode 202 in the y-axis direction. Regions with high reflectivity and regions with low reflectivity appear alternately at intervals of 1.8 mm. Thus, FIG. 7 shows only the reflectance of the electrode 202 on the surface side as the reflectance of the solar cell 201 at the excitation light wavelength of 950 nm.

PC124はステップS17に続いて、分光器104を制御して励起光の波長λを1200nm以上(実施例においては1200nm)に切り替えて前述した20×70点の各測定点の反射率のマッピング測定を行う(ステップS18)。そして、ステップS17で計算した内部量子効率が所定値より低い領域において、ステップS18で測定した反射率が設定値よりも高いか否かを判定する(ステップS19)。   Following step S17, the PC 124 controls the spectroscope 104 to switch the wavelength λ of the excitation light to 1200 nm or more (in the embodiment, 1200 nm), and performs the mapping measurement of the reflectance at each of the 20 × 70 measurement points described above. This is performed (step S18). Then, in the region where the internal quantum efficiency calculated in step S17 is lower than the predetermined value, it is determined whether or not the reflectance measured in step S18 is higher than the set value (step S19).

図8は、太陽電池201の励起光波長1200nmにおける反射率を濃淡プロットした図を示す。図8は、表面側の電極202による反射率の上昇が無い領域で、非一様な反射率が観測されている。これは、この波長1200nmでは入射光がp型シリコン基板203に吸収されないため、裏面側の構造が透けて見えたものである。裏面側の合金層である電極207による吸収がある領域が、全反射による高い反射率を示す絶縁膜領域よりも暗く見えることによるものである。すなわち、図8は、波長1200nmの励起光を用いて測定される反射率により、電極207等の裏面側の構造が観測できることを示している。   FIG. 8 shows a density plot of the reflectance of the solar cell 201 at an excitation light wavelength of 1200 nm. In FIG. 8, non-uniform reflectance is observed in a region where there is no increase in reflectance due to the electrode 202 on the surface side. This is because the incident light is not absorbed by the p-type silicon substrate 203 at the wavelength of 1200 nm, and the structure on the back surface side is seen through. This is because the region absorbed by the electrode 207, which is the alloy layer on the back side, appears darker than the insulating film region that exhibits high reflectivity due to total reflection. That is, FIG. 8 shows that the structure on the back side of the electrode 207 and the like can be observed by the reflectance measured using excitation light having a wavelength of 1200 nm.

PC124は、ステップS19で反射率が設定値よりも高いと判定したときは、裏面側のパッシベーション膜として機能する酸化アルミ膜206の導電率が設計値よりも高いと判断し、成膜条件を見直す(ステップS20)。一方、PC124は、ステップS19で反射率が設定値以下と判定したときは、裏面側の合金層である電極207の導電率が設計値より低く、電極207の形成不良であると判断し、合金層の焼成条件を見直す(ステップS21)。なお、ステップS20及びS21の判定時には、1100nm以下の波長(実施例では950nm)の励起光で測定される反射率により見えた表面の電極202の影響は排除する必要がある。   When the PC 124 determines that the reflectance is higher than the set value in step S19, the PC 124 determines that the conductivity of the aluminum oxide film 206 functioning as a passivation film on the back surface side is higher than the design value, and reviews the film formation conditions. (Step S20). On the other hand, when it is determined in step S19 that the reflectance is equal to or lower than the set value, the PC 124 determines that the conductivity of the electrode 207, which is the alloy layer on the back surface side, is lower than the design value, and that the electrode 207 is poorly formed. Review the firing conditions of the layer (step S21). When determining in steps S20 and S21, it is necessary to eliminate the influence of the surface electrode 202 that is seen by the reflectance measured with excitation light having a wavelength of 1100 nm or less (950 nm in the embodiment).

このように、本実施形態の太陽電池の評価装置100によれば、高精度で内部量子効率が測定できる測定系に、高精度で評価対象の太陽電池201を水平面の2軸方向に移動できる試料台117を組み合わせ、太陽電池201の受光面側のある一点にスポットサイズ1mmの励起光を照射して測定した量子効率が、或る波長の時に基準試料のそれよりも低い場合は、その理由が裏面側構造の影響によるものと判断し、その波長でスポットサイズを表面側電極202の幅の2倍以上でかつ基板厚みに極力近い値とした励起光を太陽電池に照射することで表面側構造の影響を殆ど受けることなく裏面側構造の測定及び評価ができる。このため、光励起キャリアライフタイム測定などが困難である、既に電極が形成された太陽電池の裏面側構造の非破壊評価ができ、製造プロセスの最適化を促進することができる。   Thus, according to the solar cell evaluation apparatus 100 of the present embodiment, the sample that can move the solar cell 201 to be evaluated with high accuracy in the biaxial direction of the horizontal plane in a measurement system that can measure the internal quantum efficiency with high accuracy. If the quantum efficiency measured by combining the stage 117 and irradiating excitation light with a spot size of 1 mm to a certain point on the light receiving surface side of the solar cell 201 is lower than that of the reference sample at a certain wavelength, the reason is The surface-side structure is determined by irradiating the solar cell with excitation light that is determined to be due to the influence of the back-side structure and has a spot size at least twice the width of the surface-side electrode 202 and as close as possible to the substrate thickness at that wavelength. The back side structure can be measured and evaluated almost without being affected by the above. For this reason, non-destructive evaluation of the back side structure of the solar cell on which electrodes are already formed, which makes it difficult to measure photoexcited carrier lifetime, etc., can be promoted, and optimization of the manufacturing process can be promoted.

また、本実施形態の太陽電池の評価装置100によれば、上記スポットサイズの励起光の波長を950nmとしてシリコン系太陽電池に照射してマッピング測定して得た内部量子効率と、シリコン基板に吸収されない波長1200nmの励起光をシリコン系太陽電池に照射してマッピング測定して得た反射率とに基づいて裏面構造の酸化アルミ膜206及び合金層である電極207が設計通りの効率が得られているかを評価することができる。   Moreover, according to the solar cell evaluation apparatus 100 of the present embodiment, the internal quantum efficiency obtained by irradiating the silicon-based solar cell with the wavelength of the excitation light having the spot size set to 950 nm and mapping measurement, and the absorption to the silicon substrate Based on the reflectance obtained by irradiating the silicon-based solar cell with excitation light having a wavelength of 1200 nm and mapping measurement, the back surface structure aluminum oxide film 206 and the alloy layer electrode 207 have the efficiency as designed. Can be evaluated.

なお、本発明は以上の実施形態に限定されるものではなく、例えば基準試料の量子効率スペクトルは評価対象の太陽電池のうち故障していないものの量子効率スペクトルで代用してもよく、また設計上理論的に得られる量子効率スペクトルで代用してもよい。また、図6−図8で内部量子効率や反射率を濃淡プロットとして可視化しているが、等高線を用いて可視化することもできる。   The present invention is not limited to the above embodiment. For example, the quantum efficiency spectrum of the reference sample may be replaced with the quantum efficiency spectrum of the solar cell to be evaluated that has not failed. A quantum efficiency spectrum obtained theoretically may be substituted. Moreover, although the internal quantum efficiency and the reflectance are visualized as a density plot in FIGS. 6 to 8, they can be visualized using contour lines.

また、本発明は、図3及び図4に示したフローチャートの動作をPC124により実行させる太陽電池の評価用プログラムも包含するものである。この太陽電池の評価用プログラムは、通信ネットワークを介して配信されてPC124の実行プログラム格納メモリ(図1ではPC124のブロック内にあるものとしている)にダウンロードしたものでもよいし、記録媒体から再生されて上記メモリにダウンロードされたものでもよく、ダウンロードの方法は問わない。   The present invention also includes a solar cell evaluation program that causes the PC 124 to execute the operations of the flowcharts shown in FIGS. 3 and 4. The solar battery evaluation program may be distributed via the communication network and downloaded to the execution program storage memory of the PC 124 (assumed to be in the block of the PC 124 in FIG. 1) or reproduced from the recording medium. It may be downloaded to the above memory, and the downloading method is not limited.

本発明は、単結晶シリコン、多結晶シリコン、アモルファスシリコン、ガリウム砒素単結晶、インジウムガリウム砒素単結晶、ガリウムリン単結晶、インジウムガリウムリン単結晶、ゲルマニウム単結晶、カルコパイライト系I-III-VI族化合物、ペロブスカイト化合物、カドミウムテルル、酸化亜鉛、酸化チタン、酸化スズ、及びシリコンゲルマニウム単結晶の少なくともいずれかの材料で構成された太陽電池セルを評価対象の太陽電池とすることができ、評価対象が極めて広範囲で有用である。   The present invention includes single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide single crystal, indium gallium arsenide single crystal, gallium phosphide single crystal, indium gallium phosphide single crystal, germanium single crystal, chalcopyrite group I-III-VI A solar cell composed of at least one of a compound, a perovskite compound, cadmium tellurium, zinc oxide, titanium oxide, tin oxide, and silicon germanium single crystal can be used as an evaluation target solar cell. Very useful in a wide range.

100 太陽電池の評価装置
101 白色光源
102 レンズ
103 光学チョッパ
104 分光器
105 暗箱
106 絞り
107 ビームスプリッタ
108、110 放物面鏡
109 積分球
111 励起光センサ
112 反射光センサ
113、114、115 電流電圧変換器
116 ラボジャッキ
117 試料台
118、119 ステッピングモータ
121、122、123 ロックインアンプ
124 パーソナルコンピュータ(PC)
125 ディスプレイ
126 印刷機
201 太陽電池
202 Ag電極
203 p型シリコン基板
204 n+拡散層
205 SiN膜
206 酸化アルミ膜
207 BSF型の電極
208 Al電極
DESCRIPTION OF SYMBOLS 100 Solar cell evaluation apparatus 101 White light source 102 Lens 103 Optical chopper 104 Spectrometer 105 Dark box 106 Diaphragm 107 Beam splitter 108, 110 Parabolic mirror 109 Integrating sphere 111 Excitation light sensor 112 Reflection light sensor 113, 114, 115 Current voltage conversion Instrument 116 Lab jack 117 Sample stage 118, 119 Stepping motor 121, 122, 123 Lock-in amplifier 124 Personal computer (PC)
125 display 126 printing machine 201 solar cell 202 Ag electrode 203 p-type silicon substrate 204 n + diffusion layer 205 SiN film 206 aluminum oxide film 207 BSF type electrode 208 Al electrode

Claims (8)

波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価方法であって、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御ステップと、
前記光制御ステップによりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価ステップと、
を含むことを特徴とする太陽電池の評価方法。
Irradiate the light receiving surface of a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed, and each photoelectric conversion signal of reflected light from the solar cell and the excitation light And a solar cell evaluation method for obtaining an evaluation result of the solar cell based on the output signal of the solar cell,
A light control step of controlling at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell;
The inside of the solar cell obtained by sequentially irradiating each of a plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose spot size is controlled by the light control step Based on the spatial distribution of quantum efficiency, an evaluation step for evaluating the back surface structure opposite to the light receiving surface of the solar cell;
The evaluation method of the solar cell characterized by including.
水平面を2軸方向に指定された距離だけ移動可能な試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射ステップと、
前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出ステップと、
前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出ステップによる前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価ステップとを含み、
前記光照射ステップは、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、
前記評価ステップは、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価方法。
A light irradiation step of irradiating a light receiving surface of a solar cell mounted on a sample stage that can move a horizontal plane by a specified distance in two axial directions with excitation light having a wavelength and a spot size controlled to desired values,
Based on the reflected light obtained by reflecting the excitation light on the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before irradiation of the light receiving surface, and the output signal of the surface electrode Measuring the excitation light intensity, total reflected light intensity and photocurrent, and calculating the internal quantum efficiency and reflectance of the solar cell from the measurement results;
Evaluation result of the solar cell based on the internal quantum efficiency and the reflectance by the calculation step obtained from the respective measurement results of the plurality of measurement points on the light receiving surface of the solar cell, and the wavelength of the excitation light An evaluation step to obtain
In the light irradiation step, at least the spot size of the excitation light is controlled to a value that is at least twice the electrode width of the surface electrode and close to the substrate thickness of the solar cell as much as possible. Irradiate
The evaluation step includes evaluating a back surface structure opposite to the light receiving surface of the solar cell.
前記光照射ステップは、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、
前記評価ステップは、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出ステップにより算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする請求項2記載の太陽電池の評価方法。
In the light irradiation step, the wavelength of the excitation light is controlled to a first wavelength at which an internal quantum efficiency lower than an internal quantum efficiency of a reference sample is obtained or a second wavelength at which the substrate of the solar cell appears to be substantially transparent. ,
The evaluation step includes the first internal quantum efficiency and the first reflectance calculated by the calculation step based on the measurement results of the plurality of measurement points when the excitation light has the first wavelength, The back surface structure of the solar cell is evaluated using the second reflectance calculated by the calculation step based on the measurement results of the plurality of measurement points when the excitation light has the second wavelength. The method for evaluating a solar cell according to claim 2.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価装置であって、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御手段と、
前記光制御手段によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価手段と、
を備えることを特徴とする太陽電池の評価装置。
Irradiate the light receiving surface of a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed, and each photoelectric conversion signal of reflected light from the solar cell and the excitation light And a solar cell evaluation device for obtaining an evaluation result of the solar cell based on the output signal of the solar cell,
Light control means for controlling at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell;
The inside of the solar cell obtained by sequentially irradiating each of the plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose spot size is controlled by the light control means Based on the spatial distribution of quantum efficiency, an evaluation means for evaluating the back surface structure opposite to the light receiving surface of the solar cell;
A solar cell evaluation apparatus comprising:
太陽電池が載置され、その太陽電池の表面に平行な水平面を2軸方向に指定された距離だけ移動可能な試料台と、
前記試料台を移動する移動機構と、
波長及び前記太陽電池の受光面におけるスポットサイズがそれぞれ所望の値に制御された励起光を発生して、前記太陽電池の受光面に照射する光照射手段と、
照射された前記励起光が、受光面に形成された表面電極で反射された反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて、励起光強度、全反射光強度及び光電流を測定し、その測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出手段と、
前記移動機構を駆動制御して、前記励起光のスポットが前記太陽電池の受光面における複数の測定点を順次位置するように前記試料台を移動させる駆動制御手段と、
前記複数の測定点のそれぞれの測定結果から得られた前記算出手段による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価手段と、
を備え、
前記光照射手段は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御し、
前記評価手段は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価装置。
A sample stage on which a solar cell is mounted and movable in a biaxial direction on a horizontal plane parallel to the surface of the solar cell;
A moving mechanism for moving the sample stage;
A light irradiating means for generating excitation light in which the wavelength and the spot size on the light receiving surface of the solar cell are each controlled to a desired value and irradiating the light receiving surface of the solar cell;
Based on the reflected light reflected by the surface electrode formed on the light receiving surface, the photoelectric conversion signals of the excitation light before the light receiving surface irradiation, and the output signal of the surface electrode Measuring means for measuring the excitation light intensity, the total reflection light intensity and the photocurrent, and calculating the internal quantum efficiency and reflectance of the solar cell from the measurement results;
Drive control means for driving and controlling the moving mechanism to move the sample stage so that the spot of the excitation light sequentially positions a plurality of measurement points on the light receiving surface of the solar cell;
Evaluation means for obtaining an evaluation result of the solar cell based on the internal quantum efficiency and the reflectance by the calculation means obtained from the measurement results of the plurality of measurement points, and the wavelength of the excitation light,
With
The light irradiation means controls at least the spot size of the excitation light to a value that is at least twice the electrode width of the surface electrode and as close as possible to the substrate thickness of the solar cell,
The evaluation means evaluates a back surface structure opposite to the light receiving surface of the solar cell, and evaluates the solar cell.
前記光照射手段は、前記励起光の波長を、基準試料の内部量子効率よりも低い内部量子効率が得られる第1の波長又は前記太陽電池の基板が略透明に見える第2の波長に制御し、
前記評価手段は、前記励起光が前記第1の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第1の内部量子効率及び第1の反射率と、前記励起光が前記第2の波長の時に前記複数の測定点のそれぞれの測定結果に基づき前記算出手段により算出された第2の反射率とを用いて、前記太陽電池の裏面構造の評価を行うことを特徴とする請求項5記載の太陽電池の評価装置。
The light irradiation means controls the wavelength of the excitation light to a first wavelength at which an internal quantum efficiency lower than an internal quantum efficiency of a reference sample is obtained or a second wavelength at which the substrate of the solar cell appears to be substantially transparent. ,
The evaluation means includes a first internal quantum efficiency and a first reflectance calculated by the calculation means based on the measurement results of the plurality of measurement points when the excitation light has the first wavelength, The back surface structure of the solar cell is evaluated using the second reflectance calculated by the calculation means based on the measurement results of the plurality of measurement points when the excitation light has the second wavelength. The solar cell evaluation apparatus according to claim 5.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、
前記コンピュータに、
少なくとも前記励起光のスポットサイズを、前記太陽電池の表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御する光制御機能と、
前記光制御機能によりスポットサイズが制御された前記励起光を、前記試料台に載置された前記太陽電池の受光面の複数の測定点のそれぞれに順次照射して得た、前記太陽電池の内部量子効率の空間分布に基づいて、前記太陽電池の前記受光面と反対側の裏面構造の評価を行う評価機能と、
を実現させることを特徴とする太陽電池の評価用プログラム。
Irradiate the light receiving surface of a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed, and each photoelectric conversion signal of reflected light from the solar cell and the excitation light And a solar cell evaluation program for causing a computer to execute evaluation of the solar cell to obtain an evaluation result of the solar cell based on the output signal of the solar cell,
In the computer,
A light control function for controlling at least the spot size of the excitation light to be not less than twice the electrode width of the surface electrode of the solar cell and as close as possible to the substrate thickness of the solar cell;
The inside of the solar cell obtained by sequentially irradiating each of the plurality of measurement points on the light receiving surface of the solar cell placed on the sample stage with the excitation light whose spot size is controlled by the light control function Based on the spatial distribution of quantum efficiency, an evaluation function for evaluating the back surface structure opposite to the light receiving surface of the solar cell;
A program for evaluating a solar cell characterized by realizing the above.
波長及びスポットサイズをそれぞれ任意に可変可能な励起光を、移動可能な試料台に載置された太陽電池の受光面に照射し、前記太陽電池からの反射光及び前記励起光の各光電変換信号と前記太陽電池の出力信号とに基づいて、前記太陽電池の評価結果を得る太陽電池の評価をコンピュータに実行させる太陽電池の評価用プログラムであって、
前記コンピュータに、
前記試料台に載置された太陽電池の受光面に、波長及びスポットサイズをそれぞれ所望の値に制御した励起光を照射する光照射機能と、
前記励起光が、前記受光面に形成された表面電極で反射して得られた反射光、及び前記受光面照射前の前記励起光の各光電変換信号と、前記表面電極の出力信号とに基づいて測定された、励起光強度、全反射光強度及び光電流の測定結果から前記太陽電池の内部量子効率及び反射率を算出する算出機能と、
前記太陽電池の受光面における複数の測定点のそれぞれの測定結果から得られた前記算出機能による前記内部量子効率及び前記反射率と、前記励起光の波長とに基づいて、前記太陽電池の評価結果を得る評価機能とを実現させ、
前記光照射機能は、少なくとも前記励起光のスポットサイズを、前記表面電極の電極幅の2倍以上で、かつ、前記太陽電池の基板厚さに極力近い値に制御した前記励起光を前記受光面に照射し、
前記評価機能は、前記太陽電池の前記受光面と反対側の裏面構造の評価を行うことを特徴とする太陽電池の評価用プログラム。
Irradiate the light receiving surface of a solar cell mounted on a movable sample stage with excitation light whose wavelength and spot size can be arbitrarily changed, and each photoelectric conversion signal of reflected light from the solar cell and the excitation light And a solar cell evaluation program for causing a computer to execute evaluation of the solar cell to obtain an evaluation result of the solar cell based on the output signal of the solar cell,
In the computer,
A light irradiation function for irradiating the light receiving surface of the solar cell placed on the sample stage with excitation light in which the wavelength and the spot size are controlled to desired values, and
Based on the reflected light obtained by reflecting the excitation light on the surface electrode formed on the light receiving surface, each photoelectric conversion signal of the excitation light before irradiation of the light receiving surface, and the output signal of the surface electrode A calculation function for calculating the internal quantum efficiency and the reflectance of the solar cell from the measurement results of the excitation light intensity, total reflection light intensity and photocurrent,
Evaluation result of the solar cell based on the internal quantum efficiency and the reflectance by the calculation function obtained from the measurement results of the plurality of measurement points on the light receiving surface of the solar cell, and the wavelength of the excitation light To achieve the evaluation function
In the light irradiation function, the light receiving surface is configured to control at least the excitation light spot size to a value that is at least twice the electrode width of the surface electrode and as close as possible to the substrate thickness of the solar cell. Irradiate
The evaluation function evaluates a back surface structure opposite to the light receiving surface of the solar cell.
JP2016170095A 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program Active JP6781985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016170095A JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170095A JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Publications (2)

Publication Number Publication Date
JP2018038184A true JP2018038184A (en) 2018-03-08
JP6781985B2 JP6781985B2 (en) 2020-11-11

Family

ID=61567881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170095A Active JP6781985B2 (en) 2016-08-31 2016-08-31 Solar cell evaluation method and evaluation device and solar cell evaluation program

Country Status (1)

Country Link
JP (1) JP6781985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038972A (en) * 2019-09-02 2021-03-11 株式会社日立ハイテクサイエンス Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorometer and display device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251537A (en) * 1992-03-06 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Wafer photoluminescence mapping apparatus
JPH08220008A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Infrared ray inspecting apparatus
JP2000252338A (en) * 1999-03-04 2000-09-14 Nec Corp Method and system for evaluating semiconductor
JP2001284425A (en) * 2000-04-03 2001-10-12 Mitsubishi Electric Corp Failure analysis method and failure analysis appliance
JP2002353474A (en) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp Apparatus and method for measuring internal quantum efficiency of solar battery
JP2010212351A (en) * 2009-03-09 2010-09-24 Sharp Corp Inspection device and inspection method
JP2011049474A (en) * 2009-08-28 2011-03-10 Sharp Corp Solar battery evaluation apparatus
JP2011119629A (en) * 2009-10-28 2011-06-16 Finesensing Corp Device and method of evaluating multijunction solar cell
JP2011155225A (en) * 2010-01-28 2011-08-11 Dainippon Screen Mfg Co Ltd Solar cell evaluation device and solar cell evaluation method
JP2012527779A (en) * 2009-05-19 2012-11-08 ニューポート コーポレーション Quantum efficiency measurement system and method of use
JP2013053973A (en) * 2011-09-06 2013-03-21 Shimadzu Corp Solar battery cell test equipment
WO2013084441A1 (en) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 Solar cell spectral response measurement device
US20130314118A1 (en) * 2012-05-27 2013-11-28 Sae Magnetics (H.K.) Ltd. Testing method of a solar cell panel, and testing apparatus thereof
JP2014169878A (en) * 2013-03-01 2014-09-18 Shimadzu Corp Apparatus for inspecting substrate
JP2016029345A (en) * 2014-07-25 2016-03-03 株式会社Screenホールディングス Inspection device and inspection method
JP2016144253A (en) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 Spectral sensitivity measurement device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251537A (en) * 1992-03-06 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Wafer photoluminescence mapping apparatus
JPH08220008A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Infrared ray inspecting apparatus
JP2000252338A (en) * 1999-03-04 2000-09-14 Nec Corp Method and system for evaluating semiconductor
JP2001284425A (en) * 2000-04-03 2001-10-12 Mitsubishi Electric Corp Failure analysis method and failure analysis appliance
JP2002353474A (en) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp Apparatus and method for measuring internal quantum efficiency of solar battery
JP2010212351A (en) * 2009-03-09 2010-09-24 Sharp Corp Inspection device and inspection method
JP2012527779A (en) * 2009-05-19 2012-11-08 ニューポート コーポレーション Quantum efficiency measurement system and method of use
JP2011049474A (en) * 2009-08-28 2011-03-10 Sharp Corp Solar battery evaluation apparatus
JP2011119629A (en) * 2009-10-28 2011-06-16 Finesensing Corp Device and method of evaluating multijunction solar cell
JP2011155225A (en) * 2010-01-28 2011-08-11 Dainippon Screen Mfg Co Ltd Solar cell evaluation device and solar cell evaluation method
JP2013053973A (en) * 2011-09-06 2013-03-21 Shimadzu Corp Solar battery cell test equipment
WO2013084441A1 (en) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 Solar cell spectral response measurement device
US20130314118A1 (en) * 2012-05-27 2013-11-28 Sae Magnetics (H.K.) Ltd. Testing method of a solar cell panel, and testing apparatus thereof
JP2014169878A (en) * 2013-03-01 2014-09-18 Shimadzu Corp Apparatus for inspecting substrate
JP2016029345A (en) * 2014-07-25 2016-03-03 株式会社Screenホールディングス Inspection device and inspection method
JP2016144253A (en) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 Spectral sensitivity measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, WEIWEI ET AL.: "20.8% Efficient PERC Solar Cell on 156 mm×156 mm p-Type Multi-Crystalline Silicon Substrate", 2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), JPN6020036219, 17 December 2015 (2015-12-17), pages 1 - 6, ISSN: 0004355210 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038972A (en) * 2019-09-02 2021-03-11 株式会社日立ハイテクサイエンス Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorometer and display device
JP7284457B2 (en) 2019-09-02 2023-05-31 株式会社日立ハイテクサイエンス Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorophotometer and display device

Also Published As

Publication number Publication date
JP6781985B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
US7847237B2 (en) Method and apparatus for testing and evaluating performance of a solar cell
US7601941B2 (en) Method and apparatus for evaluating solar cell and use thereof
Phang et al. A review of near infrared photon emission microscopy and spectroscopy
Ebner et al. Non-destructive techniques for quality control of PV modules: Infrared thermography, electro-and photoluminescence imaging
US10158325B2 (en) Inspection apparatus and inspection method
US10302574B2 (en) Method for analysing the crystal structure of a polycrystalline semiconductor
US20130057862A1 (en) Electroluminescence sample analysis apparatus
JP5509414B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
Alonso-Álvarez et al. Photoluminescence-based current–voltage characterization of individual subcells in multijunction devices
Barrigon et al. Unravelling processing issues of nanowire-based solar cell arrays by use of electron beam induced current measurements
US11581849B2 (en) Measurement method of subcell photocurrents and their matching degree of a multi-junction photovoltaic cell
JP6781985B2 (en) Solar cell evaluation method and evaluation device and solar cell evaluation program
Hossain et al. Detailed performance loss analysis of silicon solar cells using high-throughput metrology methods
RU2599905C2 (en) Method of producing diodes of medium-wave infrared spectrum
WO2022138941A1 (en) Solar battery unit, device for determining quality of solar battery unit, etching device for solar battery unit, and method for manufacturing solar battery unit
JP2001059816A (en) Evaluation method of membrane
JP2010278192A (en) Solar cell evaluation device
Ahmed et al. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells
RU2384838C1 (en) TESTING METHOD OF CHIPS OF CASCADE PHOTOCONVERTERS BASED ON Al-Ga-In-As-P CONNECTIONS AND DEVICE FOR IMPLEMENTATION THEREOF
JP6466604B1 (en) Solar cell sample inspection apparatus and solar cell sample inspection method
CN109727885B (en) Method for testing void ratio of aluminum back surface field of battery piece
CN117739875B (en) Photoelectric effect-based cutter coating uniformity detection system and method
JP2012043870A (en) Method for manufacturing photovoltaic module
CN116490982A (en) Solar cell, device for determining whether solar cell is good or bad, device for etching solar cell, and method for manufacturing solar cell
Thantasha Spatially Resolved Opto-Electric Measurement of Photovoltaic materials and devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6781985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250