JPH0739247Y2 - Photocurrent distribution analyzer for light receiving element - Google Patents

Photocurrent distribution analyzer for light receiving element

Info

Publication number
JPH0739247Y2
JPH0739247Y2 JP2249286U JP2249286U JPH0739247Y2 JP H0739247 Y2 JPH0739247 Y2 JP H0739247Y2 JP 2249286 U JP2249286 U JP 2249286U JP 2249286 U JP2249286 U JP 2249286U JP H0739247 Y2 JPH0739247 Y2 JP H0739247Y2
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
scanning
photocurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2249286U
Other languages
Japanese (ja)
Other versions
JPS62134263U (en
Inventor
良雄 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2249286U priority Critical patent/JPH0739247Y2/en
Publication of JPS62134263U publication Critical patent/JPS62134263U/ja
Application granted granted Critical
Publication of JPH0739247Y2 publication Critical patent/JPH0739247Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はアモルファスシリコン太陽電池等の受光素子に
おける二次元的又は三次元的な光電流分布を解析する装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an apparatus for analyzing a two-dimensional or three-dimensional photocurrent distribution in a light receiving element such as an amorphous silicon solar cell.

〔従来技術〕[Prior art]

アモルファスシリコン等の受光素子におけるピンホール
その他の局部的劣化、或いは膜質のばらつき等を解析す
る場合、従来にあってはレーザビーム或いは擬似太陽光
をスポット状に集光して受光素子表面を二次元的に走査
し、受光素子からの出力電流を測定して二次元特性分布
像を求め、受光素子の均一性、欠陥の有無等を評価、解
析する装置(第45回応用物理学会予稿集第399頁)が提
案されている。
When analyzing pinholes or other local deterioration in a photodetector such as amorphous silicon, or variations in film quality, in the past, a laser beam or pseudo-sunlight was condensed in a spot shape to form a two-dimensional surface of the photodetector. Scanning, measuring the output current from the light receiving element to obtain a two-dimensional characteristic distribution image, and evaluating and analyzing the uniformity of the light receiving element, the presence or absence of defects, etc. Page) is proposed.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

ところがこのような解析装置にあっては走査光にスポッ
ト状光源を用いているため出力電流が微弱であって検出
感度が低く解析精度も悪いという問題があった。
However, in such an analyzing apparatus, since the spot-like light source is used for the scanning light, the output current is weak, the detection sensitivity is low, and the analysis accuracy is poor.

本考案はかかる事情に鑑みなされたものであって、その
目的とするところは大きい光電流出力が得られて感度が
高く、また光源の変化,ノイズの影響も少ない受光素子
の光電流分布解析装置を提供するにある。
The present invention has been made in view of such circumstances, and an object thereof is to obtain a large photocurrent output, high sensitivity, and a photocurrent distribution analysis device for a light receiving element that is less affected by changes in a light source and noise. To provide.

〔問題点を解決するための手段〕[Means for solving problems]

本考案にあっては走査用の光としてスポット光に代えて
線状光を用いる。
In the present invention, linear light is used as scanning light instead of spot light.

本考案に係る受光素子の光電流分布解析装置は、光の入
射によって電気信号を発する受光素子の受光面を横切る
長さの線状光を投射する光源部と、この線状光にて前記
受光面を複数方向から夫々一次元的に走査すべく受光素
子と光源部とを相対移動させる手段と、各走査時に得た
一次元光電流分布に基づき、CT法の画像再生アルゴリズ
ムに従い二次元特性分布像を得る画像構成部とを具備す
ることを特徴とする。
The photocurrent distribution analyzer for a light receiving element according to the present invention includes a light source unit for projecting a linear light beam having a length that crosses the light receiving surface of the light receiving element that emits an electric signal when light is incident, and the light receiving unit for receiving the linear light beam. Two-dimensional characteristic distribution according to the image reproduction algorithm of CT method based on the means for relatively moving the light receiving element and the light source unit to scan the surface one-dimensionally from each direction and the one-dimensional photocurrent distribution obtained at each scanning. And an image forming section for obtaining an image.

〔作用〕[Action]

本考案にあってはこれによってスポット光を用いる場合
に比較して大きな光電流出力が得られて感度が高く、光
源の変化,ノイズによる影響の低減が図れる。
According to the present invention, a larger photocurrent output is obtained and sensitivity is higher than in the case where spot light is used, and it is possible to reduce the influence of changes in the light source and noise.

〔実施例〕〔Example〕

以下本考案をその実施例を示す図面に基づき具体的に説
明する。第1図は本考案に係る受光素子の光電流出力分
布解析装置(以下本案装置という)の斜視図であり、図
中1は機枠、2は試料台、3は光源部、4は試料を示し
ている。機枠1は基台1a及びこれと所要の間隔を隔てて
平行に配した上盤1bとを連結部1cにて一体に連結して側
面視でコ字形をなすよう構成されている。基台1aの上面
には支柱1dが立設され、この支柱1d上に円盤形の試料台
2が回転自在に水平に枢支され、図示しない駆動部にて
中心回りに所要角度ずつ回動せしめられ、この上面に試
料4が載置されるようになっている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing an embodiment thereof. FIG. 1 is a perspective view of a photocurrent output distribution analysis device for a light receiving element according to the present invention (hereinafter referred to as a device of the present invention). In the figure, 1 is a machine frame, 2 is a sample stage, 3 is a light source, and 4 is a sample. Shows. The machine frame 1 is configured to integrally connect a base 1a and an upper board 1b arranged in parallel at a required distance with a connecting portion 1c to form a U-shape in a side view. A column 1d is erected on the upper surface of the base 1a, and a disc-shaped sample table 2 is rotatably and horizontally pivoted on the column 1d, and is rotated by a required angle around a center by a driving unit (not shown). The sample 4 is placed on this upper surface.

試料4は例えばアモルファス太陽電池等の如き光の投射
によって光起電力を生ずる受光素子であって、その略中
心部を試料台1cの回転中心に一致せしめた状態で載置さ
れている。4a,4bは試料4に連結された光起電力の取出
用リード線であり、後述する画像構成部10に接続されて
いる。
The sample 4 is, for example, an amorphous solar cell or the like, which is a light receiving element that generates a photoelectromotive force by projecting light, and is placed with its substantially central portion aligned with the rotation center of the sample table 1c. Reference numerals 4a and 4b are lead wires for extracting the photovoltaic power, which are connected to the sample 4, and are connected to an image forming unit 10 described later.

一方、上盤1bの下面には光源部3が上盤1bにおける連結
部1cとの連結端と自由端となっている他端との間を図示
しないガイドに案内されて前後に往復移動可能に配設さ
れている。
On the other hand, on the lower surface of the upper board 1b, the light source section 3 is reciprocally movable back and forth by being guided by a guide (not shown) between the connecting end of the upper board 1b with the connecting section 1c and the other end which is a free end. It is arranged.

第2図は光源部3の模式的断面図であり、中空直方体形
の暗筐3aの下部中央にスリット状の開口部3bを設けると
共に、該開口部に面して半円柱形をなすレンズ(シリン
ドリカルレンズ)3cを固定する一方、暗筐3a内の上部に
は前記開口部3bと平行な向きに光源(例えばキセノンラ
ンプ等)3dを配設し、またこの光源3dとレンズ3cとの間
に遮光板3e,3eの一端縁を前記開口部3bの幅寸法に等し
い寸法を隔てて対向配置してスリット3fを構成してあ
り、光源3dの光をスリット3f,開口部3bを通し、レンズ3
cにて集光し、試料4上に線状光として投射せしめ、光
源部3を移動させることにより、試料4を第3図(イ)
に示す如く走査するようになっている。
FIG. 2 is a schematic cross-sectional view of the light source unit 3, in which a slit-shaped opening 3b is provided in the lower center of a hollow rectangular parallelepiped dark casing 3a, and a lens having a semicylindrical shape facing the opening ( Cylindrical lens) 3c is fixed, while a light source (such as a xenon lamp) 3d is arranged in the upper part of the dark casing 3a in a direction parallel to the opening 3b, and between the light source 3d and the lens 3c. The slits 3f are formed by arranging the one edges of the light shielding plates 3e, 3e so as to face each other with a dimension equal to the width dimension of the opening 3b, and the light from the light source 3d passes through the slit 3f and the opening 3b, and the lens 3
The light is condensed at c and projected as a linear light on the sample 4, and the light source unit 3 is moved, so that the sample 4 is moved as shown in FIG.
The scanning is performed as shown in FIG.

第3図(イ)は試料4たる受光素子に対する線状光の走
査例を示す説明図であり、図面には異なる2方向A,Bに
走査した場合を示している。なお図面中の平行線は夫々
一定時間毎の走査位置を示したものであり、走査は試料
4たる受光素子の応答速度を考慮して連続的に行われ
る。
FIG. 3A is an explanatory view showing an example of scanning the light receiving element as the sample 4 with linear light, and shows the case where scanning is performed in two different directions A and B. The parallel lines in the drawing indicate the scanning positions at regular time intervals, and scanning is continuously performed in consideration of the response speed of the light receiving element as the sample 4.

このようなA方向への走査によって第3図(ロ)に示す
如き、またB方向への走査によって第3図(ハ)に示す
如き受光素子からの出力が得られ、これらの出力はリー
ド線4a,4bを通じて画像構成部10における演算部11に取
り込まれる。
Such scanning in the A direction gives outputs from the light receiving element as shown in FIG. 3B, and scanning in the B direction gives outputs from the light receiving element as shown in FIG. 3C. It is taken into the calculation unit 11 in the image construction unit 10 through 4a and 4b.

第3図(ロ),(ハ)は各走査時における受光素子から
の出力を横軸に時間を、また縦軸に光電流をとって示し
てある。
3 (b) and 3 (c) show the output from the light receiving element during each scanning, with the horizontal axis representing time and the vertical axis representing photocurrent.

通常受光素子に対する走査は受光素子の回りに1°ずつ
方向を変えて180°の範囲にわたり、180回程度行われ
る。
Normally, the scanning of the light receiving element is performed about 180 times over the range of 180 ° by changing the direction around the light receiving element by 1 °.

収集されたデータは画像構成部10に取り込まれ第3図
(ニ)に示す如くに合成され、従来公知のCT(Computed
Tomography)法のアリゴリズムに依る画像構成を行
い、表示部12に表示する。
The collected data is taken into the image forming unit 10 and synthesized as shown in FIG.
The image is constructed according to the algorithm of the Tomography method and displayed on the display unit 12.

以下一例として代数的再構成法(ART法:Algebraic Reco
n struction Technique)についてその概略を説明す
る。いま光電流分布f(x,y)の太陽電池を走査してそ
のデータP(X,θ)、但し、0≦θπ,θ=θ,θ
…θ)を得たとする。これを画像表示部に表示すると
して、その初期値をf0(x,y)とし、そのθ方向への
データを先ず計算によって求め、これをR0(X,θ)と
し、次いでこのR0(X,θ)を実際のθ方向の走査時
のデータP(X,θ)と比較してその差が小さくなるよ
う補正する。この操作をθ,θ…θ方向からも施
し、得られた各画素の値を第1近時値f1(x,y)とす
る。更に同様の操作により、f1(x,y)から仮のデータR
1(X,θ)を求め、これが真の走査時データP(x,θ)
に近くなるように第2近時値f2(x,y)を求める。以降
同様の操作を繰り返してR1(X,θ)とP(X,θ)との差
が充分小さくなるまで続け、そのときの画素値f1(x,
y)を再構成結果とする。
As an example, the algebraic reconstruction method (ART method: Algebraic Reco
n struction Technique) will be outlined. Now, the solar cell having the photocurrent distribution f (x, y) is scanned and its data P (X, θ), where 0 ≦ θπ, θ = θ 1 , θ 2
... is that we have obtained a θ m). Assuming that this is displayed on the image display unit, its initial value is f 0 (x, y), its data in the θ 1 direction is first obtained by calculation, and this is set as R 0 (X, θ 1 ). R 0 (X, θ 1 ) is compared with the actual scanning data P (X, θ 1 ) in the θ 1 direction, and the difference is corrected so as to be smaller. This operation is also performed from the θ 2 , θ 3 ... θ m direction, and the obtained value of each pixel is set as the first recent value f 1 (x, y). Further, by the same operation, f 1 (x, y) is changed to temporary data R
1 (X, θ) is calculated, and this is the true scanning data P (x, θ)
The second recent value f 2 (x, y) is calculated so as to be close to. After that, the same operation is repeated until the difference between R 1 (X, θ) and P (X, θ) becomes sufficiently small, and the pixel value f 1 (x,
Let y) be the reconstruction result.

以後はfi(x,y)からfi+1(x,y)…を求めてゆくがこれ
は例えば下式で表される如き加法的ART法により行われ
る。
Thereafter f i (x, y) from the f i + 1 (x, y ) is ... the Yuku seeking This is done by such additive ART method represented by the following formula, for example.

但しC(X,θ)は画素数 第4図は本考案の光源部3の他の構成を示す説明図であ
り、レーザビーム発生器3hからの光を反射鏡3iで反射さ
せて試料4たる受光素子上に投射するよう相互に位置決
めすると共に、反射鏡3iを軸3j回りに所要角度θの範囲
内で反復移動させ、レーザビームを受光素子上に線状に
形成しつつ光源部3又は受光素子を移動させて受光素子
全体を走査するよう構成してある。
However, C (X, θ) is the number of pixels. FIG. 4 is an explanatory view showing another configuration of the light source unit 3 of the present invention, in which the light from the laser beam generator 3h is reflected by the reflecting mirror 3i to be the sample 4. While mutually positioning so as to project on the light receiving element, the reflecting mirror 3i is repeatedly moved around the axis 3j within the range of the required angle θ to linearly form the laser beam on the light receiving element while receiving light from the light source section 3 or the light receiving section. The element is moved to scan the entire light receiving element.

他の構成は前記第1〜3図に示した構成と実質的に同じ
であり、説明を省略する。
The other structure is substantially the same as the structure shown in FIGS.

このような構成にあっては前記1〜3図に示した実施例
と同様の線状光を用いて走査することが可能となり、し
かも構成が簡略化される利点がある。
With such a configuration, it is possible to perform scanning using the linear light similar to that of the embodiment shown in FIGS. 1 to 3, and there is an advantage that the configuration is simplified.

第5図は本考案の他の実施例を示す光源部の模式的断面
図であり、暗筐3a内にはシリンドリカルレンズ3cと遮光
板3e,3eとの間に、スリット3fに面してフィルタ3gが着
脱可能に配設されている。
FIG. 5 is a schematic cross-sectional view of a light source section showing another embodiment of the present invention, in which a filter is provided in the dark casing 3a between the cylindrical lens 3c and the light shielding plates 3e, 3e, facing the slit 3f. 3g is detachably installed.

フィルタ3gは透過波長の異なる複数のフィルタを予め用
意しておき、夫々異なる波長の光にて試料4たる受光素
子の受光面を走査するようにしてある。これによって線
状光には夫々の波長に受光素子における受光面から達す
る深さが異なる結果、異なる深さ部分についての夫々一
次元光電流分布データが得られる。
As the filter 3g, a plurality of filters having different transmission wavelengths are prepared in advance, and the light receiving surface of the light receiving element serving as the sample 4 is scanned with light having different wavelengths. As a result, the linear light reaches different wavelengths at different depths from the light receiving surface of the light receiving element, and as a result, one-dimensional photocurrent distribution data is obtained for different depth portions.

そこでこのデータを前記第1〜3図に示した実施例と同
様にCT法のアルゴリズムに依る処理を施して夫々の深さ
毎の二次元光電流分布像を得る。
Therefore, this data is processed by the algorithm of the CT method similarly to the embodiment shown in FIGS. 1 to 3 to obtain a two-dimensional photocurrent distribution image for each depth.

このような二次元光電流分布は受光素子の受光面からの
深さの異なる部分毎について得られるから、結局受光素
子の厚さ方向の各部についての二次元光電流分布像が得
られて、三次元的な光電流分布を知ることが出来ること
となる。
Since such a two-dimensional photocurrent distribution is obtained for each portion having a different depth from the light receiving surface of the light receiving element, a two-dimensional photocurrent distribution image is finally obtained for each portion in the thickness direction of the light receiving element, and the three-dimensional photocurrent distribution is obtained. It is possible to know the original photocurrent distribution.

〔効果〕〔effect〕

以上の如く本考案にあっては受光素子の受光面に対する
走査を従来のスポット光に代えて受光面を横切る長さの
線状光としたから受光素子に対する投光量が増大し、そ
れだけ光電流量が大きくなって検出感度が向上し、より
高精度の二次元的、更には三次元的な光電流分布の解析
が可能となるなど、本考案は優れた効果を奏するもので
ある。
As described above, in the present invention, the scanning of the light-receiving surface of the light-receiving element is replaced with the conventional spot light, and linear light having a length that traverses the light-receiving surface is used. The present invention has excellent effects such as an increase in detection sensitivity and an increase in detection accuracy, and a more accurate two-dimensional or three-dimensional analysis of photocurrent distribution.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す斜視図、第2図は同じく
光源部の模式的拡大断面図、第3図は受光素子に対する
走査例及び夫々の一次元光電流分の例を示す説明図、第
4図は光源部の他の例を示す原理図、第5図は本考案の
他の実施例を示す模式的断面図である。 1……機枠、2……試料台、3……光源部、3a……暗
筐、3b……開口部、3c……レンズ、3d……光源、3e……
遮光板、3f……スリット、3g……フィルタ、4……受光
素子、10……画像再構成部、11……演算部、12……表示
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a schematic enlarged sectional view of a light source section, and FIG. 3 is a scanning example for a light receiving element and an explanation of respective one-dimensional photocurrents. 4 and 5 are principle views showing another example of the light source section, and FIG. 5 is a schematic sectional view showing another example of the present invention. 1 ... Machine frame, 2 ... Sample stand, 3 ... Light source part, 3a ... Dark casing, 3b ... Opening part, 3c ... Lens, 3d ... Light source, 3e ...
Light-shielding plate, 3f ... Slit, 3g ... Filter, 4 ... Light receiving element, 10 ... Image reconstruction unit, 11 ... Calculation unit, 12 ... Display unit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】光の入射によって電気信号を発する受光素
子の受光面を横切る長さの線状光を投射する光源部と、
この線状光にて前記受光面を複数方向から夫々一次元的
に走査すべく受光素子と光源部とを相対移動させる手段
と、各走査時に得た一次元光電流分布に基づき、CT法の
画像再生アルゴリズムに従い二次元特性分布像を得る画
像構成部とを具備することを特徴とする受光素子の光電
流分布解析装置。
1. A light source unit for projecting linear light having a length that traverses a light receiving surface of a light receiving element that emits an electric signal when light is incident thereon,
Based on the one-dimensional photocurrent distribution obtained during each scanning, and means for relatively moving the light-receiving element and the light source section so that the light-receiving surface is one-dimensionally scanned from a plurality of directions with this linear light, the CT method An image forming unit for obtaining a two-dimensional characteristic distribution image according to an image reproduction algorithm, and a photocurrent distribution analyzing apparatus for a light receiving element.
【請求項2】前記走査用線状光には波長の異なる光を用
いる実用新案登録請求の範囲第1項記載の光電流分布解
析装置。
2. A photocurrent distribution analyzing apparatus according to claim 1, wherein the scanning linear light beams having different wavelengths are used.
JP2249286U 1986-02-18 1986-02-18 Photocurrent distribution analyzer for light receiving element Expired - Lifetime JPH0739247Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249286U JPH0739247Y2 (en) 1986-02-18 1986-02-18 Photocurrent distribution analyzer for light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249286U JPH0739247Y2 (en) 1986-02-18 1986-02-18 Photocurrent distribution analyzer for light receiving element

Publications (2)

Publication Number Publication Date
JPS62134263U JPS62134263U (en) 1987-08-24
JPH0739247Y2 true JPH0739247Y2 (en) 1995-09-06

Family

ID=30819928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249286U Expired - Lifetime JPH0739247Y2 (en) 1986-02-18 1986-02-18 Photocurrent distribution analyzer for light receiving element

Country Status (1)

Country Link
JP (1) JPH0739247Y2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581241B2 (en) * 2000-12-12 2010-11-17 ソニー株式会社 Light-receiving element inspection apparatus and inspection method
JP2002261315A (en) * 2001-03-05 2002-09-13 Kanegafuchi Chem Ind Co Ltd Method of manufacturing thin-film photoelectric conversion module
JP4765052B2 (en) * 2002-12-19 2011-09-07 独立行政法人産業技術総合研究所 Integrated thin film solar cell evaluation apparatus and evaluation method
JP2007127499A (en) * 2005-11-02 2007-05-24 Nec Electronics Corp Nondestructive inspection apparatus and method
JP2010073800A (en) * 2008-09-17 2010-04-02 Lasertec Corp Evaluating device and evaluating method for solar cell, and method of manufacturing solar cell
JP5344595B2 (en) * 2009-04-09 2013-11-20 レーザーテック株式会社 Solar cell evaluation apparatus, evaluation method, and solar cell manufacturing method
JP2010278123A (en) * 2009-05-27 2010-12-09 Lasertec Corp Solar cell efficiency-measuring device and solar cell evaluating device
JP5470541B2 (en) * 2009-10-29 2014-04-16 レーザーテック株式会社 Solar cell evaluation system
JP5509414B2 (en) * 2010-01-28 2014-06-04 大日本スクリーン製造株式会社 Solar cell evaluation apparatus and solar cell evaluation method

Also Published As

Publication number Publication date
JPS62134263U (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US6229913B1 (en) Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
US4842411A (en) Method of automatically measuring the shape of a continuous surface
Rioux Laser range finder based on synchronized scanners
EP1062478B8 (en) Apparatus and method for optically measuring an object surface contour
EP0074877B1 (en) System for the non-destructive testing of the internal structure of objects
JPH0739247Y2 (en) Photocurrent distribution analyzer for light receiving element
EP0319345A2 (en) High power laser beam intensity mapping apparatus
CN107466366B (en) The system and method that runing time for spot scan wafer inspection systems is aligned
CN108344751A (en) Plate of material shape defect detecting system and method based on multichannel light source
CN106461572A (en) Non-imaging coherent line scanner systems and methods for optical inspection
KR880007998A (en) Apparatus and method for measuring flatness deviation of product edge
CN105444993B (en) A kind of optical system general performance test
JPS593685B2 (en) photographic image scanning device
JPS6249562B2 (en)
US5255069A (en) Electro-optical interferometric microdensitometer system
CN113566733A (en) Line laser vision three-dimensional scanning device and method
CN110618138B (en) Method for detecting defects in display screen by using equal-thickness interference principle
CN207923419U (en) A kind of parallel optical detection device and system
CN111751837A (en) Holographic visual multifunctional measurement data display system and operation method thereof
JPH0233089B2 (en)
US3829222A (en) Device to introduce an optic measuring index at photoelectric detection of photographic plates
RU2448324C2 (en) Method of determining angle of inclination and wave height on water surface relative equilibrium state thereof
CN109470145A (en) Polarization Modulation high resolution Stereo Vision Measurement System and method
CN212515026U (en) Holographic visual multifunctional measurement data display device
RU2565331C2 (en) Method of investigation spatial distribution of receptivity of characteristics of photoelectric converters in solar panels to optical radiation