JP4617141B2 - Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element - Google Patents

Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element Download PDF

Info

Publication number
JP4617141B2
JP4617141B2 JP2004335133A JP2004335133A JP4617141B2 JP 4617141 B2 JP4617141 B2 JP 4617141B2 JP 2004335133 A JP2004335133 A JP 2004335133A JP 2004335133 A JP2004335133 A JP 2004335133A JP 4617141 B2 JP4617141 B2 JP 4617141B2
Authority
JP
Japan
Prior art keywords
cell
spectral
current
cells
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004335133A
Other languages
Japanese (ja)
Other versions
JP2006147806A (en
Inventor
昭彦 中島
雅博 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004335133A priority Critical patent/JP4617141B2/en
Publication of JP2006147806A publication Critical patent/JP2006147806A/en
Application granted granted Critical
Publication of JP4617141B2 publication Critical patent/JP4617141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、対象となる特定スペクトル条件下において、複数の要素セルからなる光電変換素子の内で、特性例えば電流が最も小さくなる要素セルを判定する方法に関するものである。   The present invention relates to a method for determining an element cell having the smallest characteristic, for example, current among photoelectric conversion elements composed of a plurality of element cells under a specific spectrum condition of interest.

近年では薄膜太陽電池も多様化し、従来の非晶質薄膜太陽電池に加えて結晶質薄膜太陽電池も開発されている。薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニット(以下要素セルと呼ぶ)を積層して多接合型(またはタンデム型とも呼ぶ)にする方法がある。この方法においては、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方要素セルを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方要素セルを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって太陽電池全体としての変換効率の向上が図られる。   In recent years, thin film solar cells have also diversified, and crystalline thin film solar cells have been developed in addition to conventional amorphous thin film solar cells. As a method for improving the conversion efficiency of a thin film solar cell, there is a method in which two or more photoelectric conversion units (hereinafter referred to as element cells) are stacked to form a multi-junction type (or also called a tandem type). In this method, a front element cell including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear element cell including a photoelectric conversion layer having a small band gap is sequentially disposed behind the cell. This enables photoelectric conversion over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire solar cell.

このような多接合型光電変換素子は、複数の半導体接合からなる要素セルが積層した構造を有するものである。積層した要素セルは、直列接続あるいは並列接続を形成してなる。多接合型光電変換素子としては、太陽電池、フォトダイオード、センサー等が挙げられる。半導体接合の種類としては、pn接合、pin接合、MIS接合等が挙げられる。半導体材料としては、結晶質、多結晶質、微結晶質、非晶質のものが挙げられる。また、半導体物質としては、Si、SiGe、Ge、SiC、Cなどの4族あるいは化合物、GaAs、GaAlAs、InP、などの3−5族化合物、CdTe、CdS、Cu2S(正確にはCu2S 硫化銅)、Cu2O(正確にはCu2O 酸化銅)、ZnO、ZnSeなどの2−6族化合物、CuIn(S,Se)2(正確にはCuIn(S,Se)2 )、Cu(Ga,In)(S,Se)2(正確にはCu(Ga,In)(S,Se) 2 )、InGaNなどの化合物、有機半導体など、あるいは上記の化合物が挙げられる。 Such a multi-junction photoelectric conversion element has a structure in which element cells composed of a plurality of semiconductor junctions are stacked. The stacked element cells are formed in series connection or parallel connection. Examples of the multi-junction photoelectric conversion element include a solar cell, a photodiode, and a sensor. Examples of the semiconductor junction include a pn junction, a pin junction, and a MIS junction. Examples of semiconductor materials include crystalline, polycrystalline, microcrystalline, and amorphous materials. Further, examples of semiconductor materials include group 4 compounds such as Si, SiGe, Ge, SiC, and C, group 3-5 compounds such as GaAs, GaAlAs, and InP, CdTe, CdS, and Cu2S (precisely Cu 2 S sulfide). copper), Cu2 O (exactly Cu 2 O copper oxide), ZnO, 2-6 group compound such as ZnSe, CuIn (S, Se) 2 ( to be precise CuIn (S, Se) 2) , Cu (Ga, In) (S, Se) 2 (precisely Cu (Ga, In) (S, Se) 2 ), a compound such as InGaN, an organic semiconductor, or the above compound.

しかしながら、多接合型の光電変換素子の出力特性を正確に測定することには技術的な困難性が伴う。多接合太陽電池の出力電流及び最大出力電力は、出力電流が最も小さくなる光電変換ユニット(以下単に要素セルと記す)で制限される事が、最も大きな理由である。例えば、二つの要素セルを積層し直列に接続したタンデム型の太陽電池では、各要素セルの波長感度帯域が異なるため、光源の分光放射スペクトルの変化により、電流制限を受ける要素セルがいずれかに変化する。   However, it is technically difficult to accurately measure the output characteristics of a multi-junction photoelectric conversion element. The main reason is that the output current and the maximum output power of the multi-junction solar cell are limited by a photoelectric conversion unit (hereinafter simply referred to as an element cell) in which the output current is the smallest. For example, in a tandem solar cell in which two element cells are stacked and connected in series, the wavelength sensitivity band of each element cell is different. Change.

電流制限の程度によって、太陽電池の出力特性は変化する。電流制限の程度は、光源の分光放射スペクトルの変化の影響を直接受けるので、これが多接合太陽電池の出力特性のスペクトル依存性として現れる。対象となるスペクトル条件下において、各要素セルから得られるはずの出力電流と、それに基づくタンデム型太陽電池の出力特性を、従来の単接合型太陽電池で用いられるスペクトルミスマッチ補正で検証することは困難である。これは、同時に対象となるスペクトル条件下において、いずれの要素セルによって電流制限を受けるかを確認することが困難であることと同義である。   The output characteristics of the solar cell vary depending on the degree of current limitation. Since the degree of current limitation is directly affected by the change in the spectral emission spectrum of the light source, this appears as the spectral dependence of the output characteristics of the multijunction solar cell. It is difficult to verify the output current that should be obtained from each element cell under the spectral conditions of interest and the output characteristics of the tandem solar cell based on the output current using the spectral mismatch correction used in conventional single-junction solar cells. It is. This is synonymous with the difficulty in confirming which element cell is subject to current limitation under the spectral conditions of interest simultaneously.

一方で、多接合型の光電変換素子の電流制限を受ける要素セルを判定することは以下の理由から非常に重要である。   On the other hand, it is very important to determine the element cell that receives the current limitation of the multi-junction photoelectric conversion element for the following reason.

例えば、多接合太陽電池の要素セルの電流制限の程度の差異により、光源スペクトルの変化に対する出力特性の依存性には相違が生じる。屋外太陽光の分光放射スペクトルはエアマス及び大気混濁度、可降水量の影響を受けて変化するので、一日あるいは1年の間で周期的にスペクトル条件が変化することが知られている。多接合太陽電池の要素セルの電流制限の程度は、屋外太陽光下で高い出力が得られるように設計されるはずである。製造条件の変動により要素セル間の電流制限の程度は変移するので多接合太陽電池の出荷時の検査の際に、電流制限の程度が出荷規格の範囲にない場合、規格外品とされなければならない。しかし、電流制限の程度が正確に判定されなければ、屋外での規格出力を保障することが困難となる。また、製造工程の変化が電流制限の程度に与える影響が不明確であると、製品の品質を一定に保つための製造工程の安定化が困難となる。   For example, depending on the difference in the degree of current limitation of the element cells of the multi-junction solar cell, a difference occurs in the dependence of the output characteristics on the change of the light source spectrum. Since the spectral emission spectrum of outdoor sunlight changes under the influence of air mass, atmospheric turbidity, and precipitable water, it is known that the spectral conditions change periodically during one day or one year. The degree of current limiting of the element cell of the multi-junction solar cell should be designed to obtain a high output under outdoor sunlight. Since the degree of current limit between element cells changes due to fluctuations in manufacturing conditions, when the multi-junction solar cell is inspected at the time of shipment, if the current limit is not within the range of the shipping standard, it must be regarded as a non-standard product. Don't be. However, if the degree of current limitation is not accurately determined, it will be difficult to ensure outdoor standard output. In addition, if the influence of changes in the manufacturing process on the degree of current limitation is unclear, it becomes difficult to stabilize the manufacturing process in order to keep the product quality constant.

(基準状態)
光電変換装置においては、上述したような規格のための太陽光照射条件として、基準状態の特性を用いることが一般に行われている。基準状態とは、以下の条件で規定される状態である。
(1)セル温度 摂氏25度(℃)
(2)分光分布 AM1.5全天日射基準太陽光
(3)放射照度 100mW/cm2(ミリワットパー平方センチメートル)
ところが、測定光源として、屋外太陽光や近似太陽光光源を用いても基準スペクトルに合致する分光放射スペクトルを得ることは非常に困難である。基準スペクトルは、エアマス、大気混濁度、及び可降水量等が一定の大気条件の場合のスペクトルとして定義されており、屋外太陽光から基準スペクトルを得る機会は非常に限定されている。まして、近似太陽光光源のスペクトルは、入手可能なランプの分光放射スペクトルに光学フィルタによる修正を行って基準スペクトルに近似させているに過ぎないので、基準スペクトルそのものを得ることは不可能である。
(Standard condition)
In the photoelectric conversion device, it is common to use the characteristics of the reference state as the sunlight irradiation condition for the standard as described above. The reference state is a state defined by the following conditions.
(1) Cell temperature 25 degrees Celsius (° C)
(2) Spectral distribution AM1.5 global solar radiation standard sunlight (3) Irradiance 100mW / cm2 (milliwatt per square centimeter)
However, it is very difficult to obtain a spectral radiation spectrum that matches the reference spectrum even when outdoor sunlight or approximate solar light source is used as the measurement light source. The reference spectrum is defined as a spectrum in the case where the air mass, atmospheric turbidity, precipitable water amount, etc. are constant, and the opportunity to obtain the reference spectrum from outdoor sunlight is very limited. Furthermore, since the spectrum of the approximate solar light source is merely approximated to the reference spectrum by correcting the spectral radiation spectrum of an available lamp with an optical filter, it is impossible to obtain the reference spectrum itself.

以上は、基準スペクトルのみならず、対象となる定められた特定の分光放射スペクトル下での出力特性を得る事が困難であり、また、各要素セルの出力電流並びに要素セル間の電流制限の状態の程度を正確に予測する事が難しい事と同義である。   As described above, it is difficult to obtain not only the reference spectrum but also the output characteristics under a specific spectral emission spectrum that is a target, and the output current of each element cell and the current limiting state between element cells. It is synonymous with the difficulty of accurately predicting the degree of the above.

さらに、近似太陽光光源下で特定の要素セルの電流を増加するように光源の分光放射スペクトルを変化させて電流制限を受ける要素セルを判定しようとした場合においても、近似太陽光光源のスペクトル条件が特定されていなければ、電流制限を受ける要素セルを決定する際の光源の条件が曖昧なものとなってしまう。すなわち、電流制限を受ける要素セルを正確に判定するには、光源のスペクトル条件の定量化と、かかるスペクトル条件下での各要素セルの出力電流の正確な評価技術を要し、多接合太陽電池の基準状態下での出力測定と実質的に同等の技術課題を解決しなければならない。   Furthermore, even when trying to determine the element cell subject to current limitation by changing the spectral emission spectrum of the light source so as to increase the current of a specific element cell under an approximate solar light source, the spectral conditions of the approximate solar light source If is not specified, the condition of the light source when determining the element cell subject to current limitation becomes ambiguous. That is, in order to accurately determine the element cell subject to current limitation, it is necessary to quantify the spectral conditions of the light source and to accurately evaluate the output current of each element cell under such spectral conditions. The technical problem that is substantially equivalent to the output measurement under the standard condition must be solved.

非特許文献1には、多接合太陽電池の要素セルの出力電流を推定する方法としては、要素セルと相対分光感度が一致した単接合型光電変換素子を擬似要素セルとして用いる方法が提案されている。擬似要素セルは、相対分光感度を模擬するために複数の光学フィルタと光電変換素子の組み合わせしたものが用いられる。近似太陽光光源下で擬似要素セルの短絡電流値を測定し、擬似要素セルの校正値で補正する事により光源の放射照度が求められ、結果として試料の要素セルの電流値を推定できるはずである。
R. Shimokawa, F. Nagamine, M. Nakata, K. Fujisawa and Y. Hamakawa: Jpn. J. Appl. Phys. 28 (1989) L845
Non-Patent Document 1 proposes a method of using, as a pseudo-element cell, a single-junction photoelectric conversion element whose relative spectral sensitivity matches that of an element cell as a method for estimating the output current of the element cell of a multi-junction solar cell. Yes. As the pseudo element cell, a combination of a plurality of optical filters and photoelectric conversion elements is used in order to simulate relative spectral sensitivity. By measuring the short-circuit current value of the pseudo-element cell under an approximate solar light source and correcting it with the calibration value of the pseudo-element cell, the irradiance of the light source is obtained, and as a result, the current value of the sample element cell should be estimated. is there.
R. Shimokawa, F. Nagamine, M. Nakata, K. Fujisawa and Y. Hamakawa: Jpn. J. Appl. Phys. 28 (1989) L845

本発明は、上述の問題を個々にあるいは包括的に解決するためのもので、測定対象である多接合太陽電池の種類や接合数、及び光電変換素子の受光面積に関わらず、対象となる特定スペクトル条件下での大面積太陽電池モジュールなどの例えば電流などの特性を制限する要素セルを正確に決定できるようにすることを目的とする。   The present invention is intended to solve the above-mentioned problems individually or comprehensively, regardless of the type and number of junctions of the multi-junction solar cell to be measured and the light receiving area of the photoelectric conversion element. An object of the present invention is to make it possible to accurately determine element cells that limit characteristics such as current, such as large-area solar cell modules under spectral conditions.

請求項1に記載の発明は、複数の要素セルを積層した多接合型光電変換素子からなる試験セルの特定スペクトル状態での出力電流が最小の要素セルたる特性制限要素セルを判定する方法であって、該特定スペクトル条件に近い2点のスペクトル状態の試験光源下で、該試験セルの出力特性たる電流を取得し、スペクトル条件を微小に変化させ、得られた電流から試験セルの出力特性の変化の勾配を計算し、当該勾配の正負によって電変換素子試験セルの特性制限要素セルを判定することを特徴とする電変換素子試験セルの特性制限要素セルの判定方法である。
また請求項2に記載の発明は、試験セルの各要素セルと同等の分光感度を有する疑似要素セルを使用し、2点のスペクトル状態において擬似要素セルから得られる短絡電流の要素セル間の比の変化を、試験セルの要素セル間の電流比とし、前記2点のスペクトル状態間での試験セルの要素セル間の電流比の変化と、試験セルの出力特性たる電流の変化から試験セルの出力特性の変化の勾配を計算することを特徴とする請求項1に記載の特性制限要素セルの判定方法である。
The invention according to claim 1 is a method of determining a characteristic limiting element cell that is an element cell having a minimum output current in a specific spectrum state of a test cell including a multi-junction photoelectric conversion element in which a plurality of element cells are stacked. Then, under a test light source having two spectral states close to the specific spectral condition, the current as the output characteristic of the test cell is obtained, the spectral condition is changed slightly, and the output characteristic of the test cell is determined from the obtained current . the gradient of the change is calculated, and a method of determining characteristics limiting element cell of the photoelectric conversion element test cells and judging a characteristic limiting element cell of the photoelectric conversion element test cells by positive and negative of the gradient.
The invention according to claim 2 uses a pseudo element cell having a spectral sensitivity equivalent to each element cell of the test cell, and a ratio between the element cells of the short-circuit current obtained from the pseudo element cell in two spectral states. Is the current ratio between the element cells of the test cell, and the test cell is determined from the change in the current ratio between the element cells of the test cell between the two spectral states and the change in current as the output characteristics of the test cell. The characteristic limiting element cell determination method according to claim 1, wherein a gradient of a change in the output characteristic is calculated .

請求項3に記載の発明は、2点のスペクトル状態における出力特性たる電流をP1,P2とし、2点のスペクトル状態における疑似要素セル間の電流比を(Ib/It)1と(Ib/It)2とし、下記(式1)から勾配Bを計算することを特徴とすることを特徴とする請求項1または2に記載の電変換素子試験セルの特性制限要素セルの判定方法である。
つまり、2点のスペクトル状態間での特性の変化率である勾配を計算する工程、前記勾配の値により特性制限要素セルを判定する工程を含むことを特徴とする多接合光電変換素子試験セルの特性制限要素セルの判定方法である。
According to the third aspect of the present invention, the currents that are output characteristics in the two spectral states are P1 and P2, and the current ratio between the pseudo element cells in the two spectral states is (Ib / It) 1 and (Ib / It). ) 2, and a method of determining characteristics limiting element cell below (photoelectric conversion element testing cell according to claim 1 or 2, characterized in that said calculating the slope B from equation 1).
In other words, a multijunction photoelectric conversion element test cell comprising: a step of calculating a gradient that is a rate of change of characteristics between two spectral states; and a step of determining a characteristic limiting element cell based on the value of the gradient. This is a method of determining a characteristic limiting element cell.

Figure 0004617141
前記特性としては電流であることが好ましい。
Figure 0004617141
The characteristic is preferably a current.

また、前記特定スペクトル条件に近い2点のスペクトル状態が、試験光源と前記試験セルとの間に光学的フィルターを挟むか、挟まないかにより得られる2点のスペクトル状態であると、簡便な多接合光電変換素子試験セルの特性制限要素セルの判定方法となる。   Further, if the two spectral states close to the specific spectral condition are two spectral states obtained depending on whether or not an optical filter is sandwiched between the test light source and the test cell, a simple multi-spectrum state is obtained. This is a method for determining the characteristic limiting element cell of the junction photoelectric conversion element test cell.

さらに、スペクトル条件の変更は、試験光源として近似太陽光光源を用いて、エアマスフィルタ、光学フィルタ、補助光源、複数光源、及び光源パルス幅から選ばれる少なくとも1つを調整する事により実現することもできる。   Furthermore, the change of the spectrum condition can be realized by adjusting at least one selected from an air mass filter, an optical filter, an auxiliary light source, a plurality of light sources, and a light source pulse width using an approximate solar light source as a test light source. it can.

本発明の判定方法では、正確かつ簡便に、複数の要素セルを積層した多接合型光電変換素子からなる試験セルの特定スペクトル状態での特性制限要素セルを判定することができる。   According to the determination method of the present invention, it is possible to accurately and easily determine the characteristic limiting element cell in a specific spectrum state of a test cell including a multi-junction photoelectric conversion element in which a plurality of element cells are stacked.

また、本発明の判定方法は、試料と同一の光学構造を有する多接合太陽電池の出力特性のスペクトル依存性を用いて、広がり角の相違する光源の実効的なスペクトル条件を見積もるものであり、対象となるスペクトル条件下での電流が最も小さくなる要素セルを正確に決定する事が出来る。   Further, the determination method of the present invention is to estimate the effective spectral conditions of light sources having different divergence angles, using the spectral dependence of the output characteristics of a multi-junction solar cell having the same optical structure as the sample, It is possible to accurately determine the element cell having the smallest current under the spectral conditions of interest.

本発明者は、上述した従来技術を多接合光電変換素子の電流制限要素セルの判定に適用しようとした結果、以下に述べる問題があることを発見し、本発明を考案するに到った。   As a result of trying to apply the above-described prior art to the determination of the current limiting element cell of the multi-junction photoelectric conversion element, the present inventor discovered that there is a problem described below and came to devise the present invention.

つまり、非特許文献1の要素セルと相対分光感度が一致した単接合型光電変換素子を擬似要素セルとして用い、その校正値で補正する事により基準状態に近いスペクトル条件を得ようとしても、実際には光源の広がり角や擬似要素セルと試料構造の差異により試料が受ける放射照度に差異が生じてしまう。特に試料として1m2(平方メートル)程度の有効面積を有する太陽電池モジュールは機械強度を確保するために4mm厚程度のガラス基板が太陽電池前面に配置されるので、光源が厳密に並行光で無い場合には各波長の光の屈折の差異によりモジュールが受ける実効的な分光放射スペクトルは擬似要素セルが受光するものと異なってくるということを見出した。   That is, even when trying to obtain a spectral condition close to the reference state by using a single-junction photoelectric conversion element whose relative spectral sensitivity matches that of the element cell of Non-Patent Document 1 as a pseudo-element cell and correcting with the calibration value, In this case, the irradiance received by the sample differs depending on the spread angle of the light source and the difference between the pseudo element cell and the sample structure. In particular, a solar cell module having an effective area of about 1 m 2 (square meter) as a sample is provided with a glass substrate of about 4 mm thickness in front of the solar cell in order to ensure mechanical strength, so that the light source is not strictly parallel light Found that the effective spectral radiation spectrum received by the module differs from that received by the pseudo-element cell due to the difference in refraction of light of each wavelength.

以下、本発明の判定方法の例として、実施の最良の形態を示して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail by showing the best mode as an example of the determination method of the present invention.

(測定方法)
本発明の多接合光電変換素子の電流制限要素セルの判定方法においては、対象となる特定のスペクトル条件近傍での2点の照射光源スペクトルの状態を表す電流比の変化に対する出力特性の変化率を用いて、多接合太陽電池を構成する要素セルのうち最も出力電流が小さくなるものを判定する。
(Measuring method)
In the determination method of the current limiting element cell of the multijunction photoelectric conversion element of the present invention, the rate of change of the output characteristic with respect to the change of the current ratio indicating the state of the two irradiation light source spectra in the vicinity of the target specific spectral condition is calculated. It is used to determine the element cell constituting the multi-junction solar cell that has the smallest output current.

具体的には、対象となるスペクトル条件近傍で、スペクトル条件を微小に変化させて異なる条件2点の下で測定した多接合太陽電池の出力特性について、同時に測定した擬似要素セルから得られる短絡電流の要素セル間の比の変化に対する比率を求める。その方法について説明するために以下に多接合光電変換素子のスペクトル依存性について説明する。   Specifically, the short-circuit current obtained from the pseudo-element cell measured at the same time for the output characteristics of the multi-junction solar cell measured under two different conditions by changing the spectral condition slightly in the vicinity of the target spectral condition. The ratio to the change in the ratio between the element cells is obtained. In order to explain the method, the spectral dependence of the multijunction photoelectric conversion element will be described below.

(スペクトル依存性)
ここでまず、具体的に、多接合太陽電池のスペクトル依存性について実際の例に基づいて説明する。要素セルが直列に接続された場合、多接合太陽電池の出力特性は電流を制限する要素セルにより制限される。図2は図1で示した相対分光感度を有するタンデム型太陽電池のスペクトル依存性の一例である。
(Spectral dependence)
Here, first, the spectral dependence of the multijunction solar cell will be specifically described based on an actual example. When the element cells are connected in series, the output characteristics of the multi-junction solar cell are limited by the element cell that limits the current. FIG. 2 is an example of the spectral dependence of the tandem solar cell having the relative spectral sensitivity shown in FIG.

この図2はキセノンランプ、ハロゲンランプ、及び光学フィルタ等からなる近似太陽光光源下においてランプ光量等の調整により放射スペクトルを変化させたときの太陽電池の各出力の測定結果(縦軸)である。そして横軸は、タンデム型太陽電池の各要素セルであるトップ層、及びボトム層の分光感度と相対的に一致した分光感度を有する各擬似要素セルの各々の放射スペクトル条件下での短絡電流から求まる値である。   FIG. 2 is a measurement result (vertical axis) of each output of the solar cell when the radiation spectrum is changed by adjusting the lamp light quantity under an approximate solar light source including a xenon lamp, a halogen lamp, an optical filter, and the like. . The horizontal axis shows the short-circuit current under each radiation spectrum condition of each pseudo-element cell having a spectral sensitivity relatively matched to the spectral sensitivity of the top layer and the bottom layer, which are each element cell of the tandem solar cell. This is the value to be obtained.

ここで、トップ用の擬似要素セルとしては単接合型アモルファスシリコン太陽電池に、複数の色ガラスフィルターを付与したものを用い、タンデム型太陽電池のトップ層の相対分光感度と実質的に一致させている。また、ボトム用の擬似要素セルとしては単接合型微結晶シリコン太陽電池に色ガラスフィルターを付与し、タンデム型太陽電池のボトム層の相対分光感度と実質的に一致させている。   Here, as a pseudo-element cell for the top, a single-junction amorphous silicon solar cell provided with a plurality of colored glass filters is used, and substantially matched with the relative spectral sensitivity of the top layer of the tandem solar cell. Yes. In addition, as a pseudo element cell for the bottom, a colored glass filter is applied to a single-junction microcrystalline silicon solar cell, which substantially matches the relative spectral sensitivity of the bottom layer of the tandem solar cell.

そして、図2の横軸のIb/Itはここでは特定のスペクトル状態として基準状態を例としており各要素セルの光電流がバランスしているタンデム型太陽電池の電流ミスマッチ比に該当し、光源の基準状態からのズレを表し、1の時には基準状態である。つまり、基準状態において各要素セルの光電流がバランスしているタンデム型太陽電池に対しては、光源スペクトルの基準状態からの差異により、1より小さいときにはスペクトルによるトップ層電流過多、1より大きいときはスペクトルによるボトム電流過多の状態を反映している状態である。   In addition, Ib / It on the horizontal axis in FIG. 2 corresponds to the current mismatch ratio of a tandem solar cell in which the photocurrent of each element cell is balanced as an example of a reference state as a specific spectral state, It represents a deviation from the reference state, and when it is 1, it is the reference state. That is, for a tandem solar cell in which the photocurrents of the respective element cells are balanced in the reference state, the top layer current is excessive due to the spectrum when it is smaller than 1, due to the difference from the reference state of the light source spectrum. Is a state reflecting a state of excessive bottom current due to the spectrum.

ここで、It、及びIbの具体的な値としてはそれぞれ、近似太陽光光源下で各擬似要素セルが出力する短絡電流値を、基準状態下での各擬似要素セルの短絡電流地(校正値)で除算したものであり、具体的な短絡電流値としてItm、及びIbmが以下の(式2)が成り立つように近似太陽光光源のスペクトルはランプ照度が調整される。   Here, as specific values of It and Ib, the short-circuit current value output by each pseudo-element cell under the approximate solar light source is the short-circuit current value (calibration value) of each pseudo-element cell under the reference state. ), And the lamp illuminance is adjusted in the spectrum of the approximate solar light source so that the following (Equation 2) holds for Itm and Ibm as specific short-circuit current values.

Figure 0004617141
つまり、ItmとIbmは基準状態に近い但し青赤比があっていない状態の近似太陽光光源下でのトップ擬似要素セルとボトム擬似要素セルの短絡電流値。It0とIb0は基準状態に近く青赤比があっている状態のトップ擬似要素セルとボトム擬似要素セルの短絡電流値であって一般に校正値と呼ばれる。δ(デルタ)は基準状態からの変化率を表す。
Figure 0004617141
That is, Itm and Ibm are short circuit current values of the top pseudo element cell and the bottom pseudo element cell under an approximate solar light source that is close to the reference state but does not have a blue-red ratio. It0 and Ib0 are short-circuit current values of the top pseudo-element cell and the bottom pseudo-element cell in a state where the blue-red ratio is close to the reference state and are generally called calibration values. δ (delta) represents the rate of change from the reference state.

上式に基づくスペクトル依存性の評価方法は、多接合太陽電池の基準状態からの変化率として出力特性のスペクトル依存性を評価する手法であるため、高精度で再現良くスペクトル依存性を提供する手法である。   The spectral dependency evaluation method based on the above equation is a method for evaluating the spectral dependency of output characteristics as the rate of change from the reference state of a multi-junction solar cell. It is.

(電流制限要素セルの判定方法)
さて、多接合型光電変換素子の1例であるトップセル、及びボトムセルからなる2段タンデム太陽電池においては、短絡電流はトップセルとボトムセルの電流が一致するスペクトル条件下で最大となる。要素セル間の電流が異なる場合、多接合太陽電池の電流は出力電流が小さい方で制限される。より具体的には、最大出力Pmaxは最大出力点電圧Vmaxで得られる要素セルの出力電流の最小値で制限されることになる。Pmaxのスペクトル依存性も短絡電流のスペクトル依存性と同様に要素セル間の電流が一致するときに最大値となる。例えば、図2で例示したタンデム型太陽電池の短絡電流及び最大出力は、要素セル間の電流比(Ib/It)が1.05より大きい範囲においてはトップセルの電流(It)で制限され、以下(式1)で示される勾配率Bは負となる。
(Judgment method of current limiting element cell)
Now, in a two-stage tandem solar cell composed of a top cell and a bottom cell, which is an example of a multi-junction photoelectric conversion element, the short-circuit current is maximized under spectral conditions where the currents of the top cell and the bottom cell match. When the current between the element cells is different, the current of the multijunction solar cell is limited by the smaller output current. More specifically, the maximum output Pmax is limited by the minimum value of the output current of the element cell obtained at the maximum output point voltage Vmax. The spectrum dependence of Pmax becomes the maximum value when the currents between the element cells coincide with each other, similarly to the spectrum dependence of the short circuit current. For example, the short circuit current and the maximum output of the tandem solar cell illustrated in FIG. 2 are limited by the top cell current (It) in the range where the current ratio (Ib / It) between the element cells is greater than 1.05. Hereinafter, the gradient rate B expressed by (Equation 1) is negative.

Figure 0004617141
ここで、P1とP2は、それぞれ対象となるスペクトル条件近傍での異なる2つのスペクトル条件で測定した出力特性を表す。(Ib/It)1と(Ib/It)2はそれぞれ異なる2つのスペクトル条件に相当する擬似要素セル間の電流比を表す。
Figure 0004617141
Here, P1 and P2 represent output characteristics measured under two different spectral conditions in the vicinity of the target spectral condition. (Ib / It) 1 and (Ib / It) 2 represent current ratios between pseudo-element cells corresponding to two different spectral conditions.

一方、電流比(Ib/It)が0.95より小さい範囲においてはボトムセルの電流(Ib)で制限され上式で求められる勾配率Bは正となる。短絡電流や最大出力がピークとなる電流比は異なるが、ピークが得られる条件下では勾配率Bは実質的にゼロに漸近する。従って、電流制限に寄与する2組の要素セルの電流比に対する出力特性の勾配率を求めて、符号を判定する事によって、対象となるスペクトル条件下で電流制限を受ける要素セルを決定する事が出来る。   On the other hand, in the range where the current ratio (Ib / It) is smaller than 0.95, the gradient rate B obtained by the above equation is limited by the current (Ib) of the bottom cell and becomes positive. Although the short-circuit current and the current ratio at which the maximum output reaches a peak are different, the gradient rate B substantially approaches zero under conditions where a peak is obtained. Therefore, it is possible to determine the element cell subject to the current limitation under the target spectrum condition by determining the sign by obtaining the gradient rate of the output characteristic with respect to the current ratio of the two sets of element cells contributing to the current limitation. I can do it.

ここで照射光源のスペクトル状態を表す電流It及びIbは、要素セルと相対的に分光感度が一致する擬似要素セルを用いて測定される値である。   Here, the currents It and Ib representing the spectral state of the irradiation light source are values measured using a pseudo-element cell having a spectral sensitivity that matches the element cell relatively.

(擬似要素セル)
次に擬似要素セルについて説明する。本発明における、擬似要素セルは、多接合太陽電池を構成する要素セルと実質的に同等の相対分光感度を有するものである。単接合太陽電池に光学フィルタ等を重積する事により、擬似的に分光感度を模擬して作製した基準セルの一つである。さらに好ましくは、要素セルの放射照度に対する非線形性の影響を抑制するために、擬似要素セルを構成する単接合太陽電池の材料は要素セルと同じものであっても良い。
(Pseudo element cell)
Next, the pseudo element cell will be described. The pseudo element cell in the present invention has a relative spectral sensitivity substantially equivalent to that of the element cell constituting the multi-junction solar cell. This is one of the reference cells fabricated by simulating spectral sensitivity by stacking an optical filter or the like on a single junction solar cell. More preferably, in order to suppress the influence of non-linearity on the irradiance of the element cell, the material of the single junction solar cell constituting the pseudo element cell may be the same as that of the element cell.

擬似要素セルの基準状態下の校正値は、前記の基準状態が確認された条件下で測定されて得られたものでなければならない。前記校正値を再現するように光源の放射照度を調整する事により、要素セルの基準スペクトル条件を確認する事が可能となる。さらに、対象となる任意のスペクトル条件における電流値は、基準スペクトルに対するスペクトルミスマッチ因子を用いて補正する事が可能であり、各擬似要素セルに対して補正を実施し、擬似要素セル間の電流比を求める事により、対象となるスペクトル条件に対応する電流比を、擬似要素セルを用いる事で決定する事が可能となる。   The calibration value under the reference state of the pseudo-element cell must be obtained by measurement under the condition in which the reference state is confirmed. By adjusting the irradiance of the light source so as to reproduce the calibration value, it is possible to check the reference spectrum condition of the element cell. Furthermore, the current value under any spectral condition of interest can be corrected using a spectral mismatch factor with respect to the reference spectrum, and correction is performed for each pseudo-element cell, and the current ratio between the pseudo-element cells is corrected. It is possible to determine the current ratio corresponding to the target spectral condition by using the pseudo element cell.

多接合太陽電池において電流制限している要素セルを決定する方法について、図3を用いて説明する。本発明の方法においては必要となるのは、試験セル、校正値付けされた擬似要素セル、及びスペクトル状態が可変な試験光源等である。まず、擬似要素セルについて説明する。   A method for determining an element cell that is current-limited in a multi-junction solar cell will be described with reference to FIG. What is needed in the method of the present invention is a test cell, a quasi-element cell calibrated and a test light source having a variable spectral state. First, the pseudo element cell will be described.

(擬似要素セルの作製)
ガラス基板上にトップ層(アモルファスシリコンセル)とボトム層(薄膜微結晶シリコンセル)の積層構造を有するタンデム型太陽電池を作製した。得られたタンデム型太陽電池について、カラーバイアス光を重責しながら単色光を照射することで、図1の実線に示したトップ層とボトム層の相対分光感度特性を得た。
(Production of pseudo element cell)
A tandem solar cell having a laminated structure of a top layer (amorphous silicon cell) and a bottom layer (thin film microcrystalline silicon cell) on a glass substrate was produced. The obtained tandem solar cell was irradiated with monochromatic light while taking responsibility for color bias light, thereby obtaining the relative spectral sensitivity characteristics of the top layer and the bottom layer shown by the solid line in FIG.

トップ層の分光感度と相対的に一致する擬似要素セルを作製するために、ガラス基板上に単接合アモルファスシリコン太陽電池を作製し、CAW500(HOYA製)のガラスフィルターをセル上面に取り付けた。相対分光感度の合致度を向上させるために、アモルファスシリコンi層の膜厚について3000Aを中心に変化させた。   In order to produce a pseudo-element cell that relatively matches the spectral sensitivity of the top layer, a single-junction amorphous silicon solar battery was produced on a glass substrate, and a glass filter of CAW500 (made by HOYA) was attached to the upper surface of the cell. In order to improve the degree of coincidence of the relative spectral sensitivities, the film thickness of the amorphous silicon i layer was changed around 3000A.

また、ボトム層の分光感度と相対的に一致する擬似要素セルを作製するために、ガラス基板上に単接合型薄膜微結晶シリコン太陽電池を作製し、A71(ATG製)とM30(HOYA製)のガラスフィルターをセル上面に取り付けた。相対分光感度の合致度を向上させるために、薄膜微結晶シリコンi層の膜厚について2μm(マイクロメートル)を中心に変化させた。   In addition, in order to produce a pseudo element cell that relatively matches the spectral sensitivity of the bottom layer, a single-junction thin-film microcrystalline silicon solar cell is produced on a glass substrate, and A71 (manufactured by ATG) and M30 (manufactured by HOYA). A glass filter was attached to the upper surface of the cell. In order to improve the degree of coincidence of the relative spectral sensitivity, the film thickness of the thin film microcrystalline silicon i layer was changed around 2 μm (micrometer).

(擬似要素セルの値付け)
トップ層とボトム層の擬似要素セルは、光照射により安定化させた後に(財)日本品質機構(JQA)にて、基準状態における校正値としての短絡電流の値付けを行った。
(Pseudo element cell pricing)
The pseudo-element cells of the top layer and the bottom layer were stabilized by light irradiation, and then the short-circuit current was calibrated as a calibration value in the reference state by the Japan Quality Organization (JQA).

(試験セルのスペクトル依存性の測定)
次に、本発明の測定方法により電流律速要素セルが判定可能であることを確認するために、3個の試験セル(タンデム型太陽電池1、2、及び3)について、そのスペクトル依存性を予め測定し、スペクトル条件と電流律速要素セルとの正しい状況を把握した。
(Measurement of spectrum dependence of test cell)
Next, in order to confirm that the current-limiting element cell can be determined by the measurement method of the present invention, the spectrum dependence of the three test cells (tandem solar cells 1, 2, and 3) is previously determined. Measurements were made to ascertain the correct conditions of the spectral conditions and the current limiting element cell.

具体的には、トップ層及びボトム層の膜厚がそれぞれ異なる3種類のタンデム型太陽電池のスペクトル依存性を調べた。タンデム型太陽電池のIV特性のスペクトル依存性を評価するために、2灯式光源のキセノンランプとハロゲンランプの照度を変化させた。   Specifically, the spectral dependence of three types of tandem solar cells having different top layer and bottom layer thicknesses was examined. In order to evaluate the spectral dependence of the IV characteristics of the tandem solar cell, the illuminance of the xenon lamp and the halogen lamp of the two-lamp light source was changed.

電流比が0.818となる放射照度条件となるように、トップ層用擬似要素セルから校正値の1.1倍の短絡電流が、ボトム層用擬似要素セルから校正値の0.9倍の短絡電流が同時に得られるように調整し、タンデム型太陽電池のIV特性を測定した。   The short-circuit current 1.1 times the calibration value from the top layer pseudo-element cell is 0.9 times the calibration value from the bottom layer pseudo-element cell so that the irradiance condition is such that the current ratio is 0.818. It adjusted so that a short circuit current might be obtained simultaneously, and measured the IV characteristic of the tandem solar cell.

同様にして、電流比が0.8から1.2の範囲で2灯式光源のスペクトル条件を変化させる事により、図3の実線で示した短絡電流Iscに関するスペクトル依存性がえられた。ここで、電流比の範囲は、各要素セルの電流値の変化の範囲が約±10%(プラスマイナス10パーセント)である事を前提としている。これは、電流比が0.8より小さいか、または1.2より大きい範囲では要素セルの出力電流が基準状態で得られる電流値に対して10%(パーセント)以上変化するため、要素セルの放射照度に対する線形性が保証されなくなる事が理由である。   Similarly, by changing the spectral condition of the two-lamp light source in the current ratio range of 0.8 to 1.2, the spectral dependence on the short-circuit current Isc indicated by the solid line in FIG. 3 was obtained. Here, the range of the current ratio is based on the premise that the range of change in the current value of each element cell is about ± 10% (plus or minus 10 percent). This is because when the current ratio is less than 0.8 or greater than 1.2, the output current of the element cell changes by more than 10% (percent) with respect to the current value obtained in the reference state. This is because linearity with respect to irradiance is not guaranteed.

各要素セルのIscのピークが得られる電流比は異なっていた。トップ層とボトム層の電流が一致する擬似要素セルの電流比の相違は、3種のタンデム型太陽電池のトップ層とボトム層の電流比の差異に起因する。   The current ratio at which the Isc peak of each element cell was obtained was different. The difference in the current ratio of the pseudo element cell in which the currents of the top layer and the bottom layer coincide with each other is due to the difference in the current ratio of the top layer and the bottom layer of the three types of tandem solar cells.

(実施例)
前述した1、2及び3の3種のタンデム型太陽電池について、基準スペクトル条件下で電流制限を受ける要素セルを決定するために、短絡電流の電流比に対する勾配率を求めた。
(Example)
For the above-described three types of tandem solar cells 1, 2, and 3, the slope ratio with respect to the current ratio of the short-circuit current was determined in order to determine the element cells that are subject to current limitation under the reference spectral conditions.

まず、図2のスペクトル依存性を有するタンデム型太陽電池を用いて、製造ラインで用いられる1灯式のショートパルス型のキセノン拡散光源を用いてIV測定を行った。
その際、照射面に校正値が44.9mAのトップ用擬似要素セルと、校正値が24.4mAのボトム用擬似要素セルを配置して短絡電流を測るとそれぞれ37.5mAと18.9mAが得られた。またタンデム型太陽電池1、2、及び3について短絡電流を測定すると、それぞれ0.499A、0.503A、及び0.478Aであった。
First, using the tandem solar cell having the spectrum dependency shown in FIG. 2, IV measurement was performed using a single-lamp short pulse type xenon diffusion light source used in the production line.
At that time, when the top pseudo-element cell with the calibration value of 44.9 mA and the bottom pseudo-element cell with the calibration value of 24.4 mA are arranged on the irradiated surface and the short-circuit current is measured, 37.5 mA and 18.9 mA are obtained, respectively. Obtained. Moreover, when the short circuit current was measured about the tandem solar cells 1, 2, and 3, they were 0.499 A, 0.503 A, and 0.478 A, respectively.

次に、多接合太陽電池と光源の間に、光学的フィルターとして屈折率分散の大きいフィルムを配置し太陽電池が受光する光源の放射照度分布を変化させた結果、照射面に配置したトップ用擬似要素セルとボトム用擬似要素セルの短絡電流はそれぞれ34.4mAと17.8mAに変化した。その状態で、タンデム型太陽電池1、2、及び3について短絡電流を測定すると、それぞれ0.475A及び0.449A、0.454Aであった。   Next, as a result of changing the irradiance distribution of the light source received by the solar cell by placing a film having a large refractive index dispersion between the multi-junction solar cell and the light source as an optical filter, The short circuit currents of the element cell and the bottom pseudo element cell were changed to 34.4 mA and 17.8 mA, respectively. In that state, the short-circuit currents of the tandem solar cells 1, 2, and 3 were measured to be 0.475A, 0.449A, and 0.454A, respectively.

ここで、フィルム設置後にはフィルムの透過率分だけ全ての要素セルの出力電流は低下するので、実質的に図3のスペクトル依存性と同等の電流値を得るために、フィルム導入前後の各擬似要素セルの短絡電流の比の相乗平均である照度補正値Gを以下の(式3)によって求め、さらにGを用いてフィルム設置後の短絡電流を求める必要がある。   Here, since the output currents of all the element cells are reduced by the film transmittance after the film is installed, in order to obtain a current value substantially equivalent to the spectrum dependence of FIG. It is necessary to obtain an illuminance correction value G, which is a geometric mean of the ratios of the short-circuit currents of the element cells, by the following (Equation 3), and further to obtain a short-circuit current after film installation using G.

Figure 0004617141
この場合には、照度補正値Gとして1.092の値が得られた。
Figure 0004617141
In this case, a value of 1.092 was obtained as the illuminance correction value G.

最後に、以下(式4)を用いて勾配率Bを求めた。この(式4)は前述した(式1)において異なる2つのスペクトル条件で測定した出力特性であるP1とP2が、短絡電流であるときに相当する。   Finally, the gradient rate B was determined using (Equation 4) below. This (Formula 4) corresponds to the case where P1 and P2, which are output characteristics measured under two different spectral conditions in the above (Formula 1), are short-circuit currents.

Figure 0004617141
ここで、I0とIfはそれぞれフィルム設置前とフィルム設置後のタンデム型太陽電池の短絡電流を表す。また、(Ib/It)0と(Ib/It)fは、それぞれフィルム設置前後のトップ用擬似要素セルの短絡電流に対するボトム用擬似要素セルの短絡電流の電流比を表す。また、ItcalとIbcalはそれぞれトップ用擬似要素セルとボトム用擬似要素セルの校正値を表す。タンデム型太陽電池1及び2、3について、フィルムを配置する前後での短絡電流の変化から、前記電流比の変化を用いて勾配率を計算するとそれぞれ、0.00(接線6の勾配)及び−0.22(マイナス0.22)(接線7の勾配)、0.31(接線8の勾配)が得られた。
Figure 0004617141
Here, I0 and If represent short-circuit currents of the tandem solar cell before and after the film installation, respectively. Further, (Ib / It) 0 and (Ib / It) f represent current ratios of the short-circuit current of the bottom pseudo-element cell to the short-circuit current of the top pseudo-element cell before and after the film installation, respectively. Itcal and Ibcal represent calibration values of the top pseudo element cell and the bottom pseudo element cell, respectively. For the tandem solar cells 1, 2, and 3, when the gradient rate is calculated using the change in the current ratio from the change in the short-circuit current before and after placing the film, 0.00 (gradient of the tangent line 6) and − 0.22 (minus 0.22) (gradient of tangent line 7) and 0.31 (gradient of tangent line 8) were obtained.

勾配率から判定される基準スペクトル条件で電流制限を受ける要素セルは、タンデム型太陽電池1は勾配率がゼロに近いので実質的に電流が同等、タンデム型太陽電池2は勾配率が負であるためトップ層で制限、タンデム型太陽電池3は勾配率が正であるためボトム層で制限されることが分かった。以上の結果は図3で示した各モジュールに対するスペクトル依存性の結果と一致した。   The element cells that are subjected to current limitation under the reference spectrum condition determined from the gradient rate are substantially equal in current because the gradient rate of the tandem solar cell 1 is close to zero, and the gradient rate of the tandem solar cell 2 is negative. Therefore, it was found that the top layer was restricted, and the tandem solar cell 3 was restricted by the bottom layer because the gradient rate was positive. The above results were consistent with the spectral dependence results for each module shown in FIG.

本発明による判定方法により、対象となるスペクトル条件下での出力特性に対する勾配率を用いて、電流制限を受ける要素セルを正確に決定する事が出来た。   With the determination method according to the present invention, it is possible to accurately determine the element cell subject to the current limitation using the gradient rate with respect to the output characteristics under the target spectral condition.

タンデム型太陽電池の相対分光感度の一例である。It is an example of the relative spectral sensitivity of a tandem type solar cell. タンデム型太陽電池のスペクトル依存性の一例である。It is an example of the spectrum dependence of a tandem type solar cell. 本発明の律則判定法を説明する概略図である。It is the schematic explaining the rule determination method of this invention.

1 タンデム型太陽電池のトップセルの相対分光感度
2 タンデム型太陽電池のボトムセルの相対分光感度
3 基準スペクトル条件下で短絡電流が電流マッチングとなるタンデム型太陽電池1のスペクトル依存性
4 基準スペクトル条件下で短絡電流がトップセルで制限されるタンデム型太陽電池2のスペクトル依存性
5 基準スペクトル条件下で短絡電流がボトムセルで制限されるタンデム型太陽電池3のスペクトル依存性
6 タンデム型太陽電池1の基準スペクトル条件での電流比に対する接線
7 タンデム型太陽電池2の基準スペクトル条件での電流比に対する接線
8 タンデム型太陽電池3の基準スペクトル条件での電流比に対する接線
1 Relative spectral sensitivity of the top cell of a tandem solar cell 2 Relative spectral sensitivity of the bottom cell of a tandem solar cell 3 Spectral dependence of the tandem solar cell 1 in which the short-circuit current is current matching under the standard spectral condition 4 Reference spectral condition The spectral dependence of the tandem solar cell 2 in which the short-circuit current is restricted by the top cell 5 The spectral dependence of the tandem solar cell 3 in which the short-circuit current is restricted by the bottom cell under the standard spectral conditions 6 The standard of the tandem solar cell 1 Tangent to current ratio in spectral condition 7 Tangent to current ratio in standard spectral condition of tandem solar cell 2 8 Tangent to current ratio in standard spectral condition of tandem solar cell 3

Claims (4)

複数の要素セルを積層した多接合型光電変換素子からなる試験セルの特定スペクトル状態での出力電流が最小の要素セルたる特性制限要素セルを判定する方法であって、
該特定スペクトル条件に近い2点のスペクトル状態の試験光源下で、該試験セルの出力特性たる電流を取得し、スペクトル条件を微小に変化させ、得られた電流から試験セルの出力特性の変化の勾配を計算し、
当該勾配の正負によって電変換素子試験セルの特性制限要素セルを判定することを特徴とする電変換素子試験セルの特性制限要素セルの判定方法。
A method of determining a characteristic limiting element cell that is an element cell having a minimum output current in a specific spectrum state of a test cell composed of a multi-junction photoelectric conversion element in which a plurality of element cells are stacked,
Under a test light source with two spectral states close to the specific spectral condition, the current as the output characteristic of the test cell is obtained, the spectral condition is changed slightly, and the change in the output characteristic of the test cell is determined from the obtained current . Calculate the slope,
Method of determining characteristics limiting element cell of the photoelectric conversion element test cells and judging a characteristic limiting element cell of the photoelectric conversion element test cells by positive and negative of the gradient.
試験セルの各要素セルと同等の分光感度を有する疑似要素セルを使用し、2点のスペクトル状態において擬似要素セルから得られる短絡電流の要素セル間の比の変化を、試験セルの要素セル間の電流比とし、前記2点のスペクトル状態間での試験セルの要素セル間の電流比の変化と、試験セルの出力特性たる電流の変化から試験セルの出力特性の変化の勾配を計算することを特徴とする請求項1に記載の特性制限要素セルの判定方法。 Using a pseudo-element cell having the same spectral sensitivity as each element cell of the test cell, the change in the ratio between the element cells of the short-circuit current obtained from the pseudo-element cell in the two-point spectral state is changed between the element cells of the test cell. The gradient of the change in the output characteristics of the test cell is calculated from the change in the current ratio between the element cells of the test cell between the two spectral states and the change in the current as the output characteristic of the test cell. The method of determining a characteristic limiting element cell according to claim 1. 2点のスペクトル状態における出力特性たる電流をP1,P2とし、2点のスペクトル状態における疑似要素セル間の電流比を(Ib/It)1と(Ib/It)2とし、下記(式1)から勾配Bを計算することを特徴とすることを特徴とする請求項1または2に記載の電変換素子試験セルの特性制限要素セルの判定方法。
Figure 0004617141
The currents that are output characteristics in the two-point spectral state are P1 and P2, and the current ratio between the pseudo-element cells in the two-point spectral state is (Ib / It) 1 and (Ib / It) 2, and the following (formula 1) method of determining characteristics limiting element cell of the photoelectric conversion element testing cell according to claim 1 or 2, characterized in that said calculating the slope B from.
Figure 0004617141
前記特定スペクトル条件に近い2点のスペクトル状態が、試験光源と前記試験セルとの間に光学的フィルターを挟むか、挟まないかにより得られる2点のスペクトル状態であることを特徴とする請求項1乃至のいずれかに記載の多接合光電変換素子試験セルの特性制限要素セルの判定方法。 The two spectral states near the specific spectral condition are two spectral states obtained depending on whether or not an optical filter is sandwiched between a test light source and the test cell. 4. A method for determining a characteristic limiting element cell of a multi-junction photoelectric conversion element test cell according to any one of 1 to 3 .
JP2004335133A 2004-11-18 2004-11-18 Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element Active JP4617141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335133A JP4617141B2 (en) 2004-11-18 2004-11-18 Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335133A JP4617141B2 (en) 2004-11-18 2004-11-18 Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2006147806A JP2006147806A (en) 2006-06-08
JP4617141B2 true JP4617141B2 (en) 2011-01-19

Family

ID=36627149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335133A Active JP4617141B2 (en) 2004-11-18 2004-11-18 Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4617141B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509414B2 (en) * 2010-01-28 2014-06-04 大日本スクリーン製造株式会社 Solar cell evaluation apparatus and solar cell evaluation method
JP5561378B2 (en) * 2010-12-28 2014-07-30 コニカミノルタ株式会社 Pseudo reference cell and pseudo reference cell system
JP2012186415A (en) * 2011-03-08 2012-09-27 Kanazawa Inst Of Technology Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254376A (en) * 1989-03-28 1990-10-15 Sharp Corp Measurement of characteristic for laminate type solar cell
JP2002111030A (en) * 2000-07-05 2002-04-12 Canon Inc Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254376A (en) * 1989-03-28 1990-10-15 Sharp Corp Measurement of characteristic for laminate type solar cell
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
JP2002111030A (en) * 2000-07-05 2002-04-12 Canon Inc Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency

Also Published As

Publication number Publication date
JP2006147806A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
Domínguez et al. Current‐matching estimation for multijunction cells within a CPV module by means of component cells
Meusel et al. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi‐junction solar cells
Emery Measurement and characterization of solar cells and modules
US6541754B2 (en) Method and apparatus for measuring photoelectric conversion characteristics of photoelectric conversion device
EP1170596A2 (en) Method and apparatus for measuring photoelectric conversion characteristics
JP2004134748A (en) Measuring method and apparatus for photoelectric conversion device, and manufacturing method and apparatus for the photoelectric conversion device
Steiner et al. YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules
JP2006229063A (en) Method for correcting and predicting measured result of current/voltage characteristic of photoelectric conversion element, method and device for measuring and for manufacturing photoelectric conversion element
Hishikawa et al. Translation of solar cell performance for irradiance and temperature from a single IV curve without advance information of translation parameters
Schweiger et al. Comparison of energy yield data of fifteen PV module technologies operating in four different climates
Emery Uncertainty analysis of certified photovoltaic measurements at the national renewable energy laboratory
Sellner et al. Advanced PV module performance characterization and validation using the novel Loss Factors Model
JP4613053B2 (en) Method for measuring characteristics of multi-junction photoelectric conversion element test cell and spectrum adjustment method for approximate solar light source
Emery Photovoltaic calibrations at the National Renewable Energy Laboratory and uncertainty analysis following the ISO 17025 guidelines
Bliss et al. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating
JP5013637B2 (en) Method and apparatus for measuring photoelectric conversion characteristics
Liu et al. Indoor and outdoor comparison of CPV III–V multijunction solar cells
US20120068729A1 (en) Method for determining the parameters of a photovoltaic device
JP4617141B2 (en) Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element
Osterwald et al. Effects of spectral error in efficiency measurements of GaInAs-based concentrator solar cells
Domínguez et al. Characterization of CPV modules and receivers
Sutterlueti et al. Characterising PV modules under outdoor conditions: what’s most important for energy yield
Hohl-Ebinger et al. Non-linearity of solar cells in spectral response measurements
García-Linares et al. Effect of the encapsulant temperature on the angular and spectral response of multi-junction solar cells
JP4617137B2 (en) Multijunction photoelectric conversion element test cell output measurement method and reference cell selection method used in the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Ref document number: 4617141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250