JP5508668B2 - 熱媒供給システム - Google Patents

熱媒供給システム Download PDF

Info

Publication number
JP5508668B2
JP5508668B2 JP2007229843A JP2007229843A JP5508668B2 JP 5508668 B2 JP5508668 B2 JP 5508668B2 JP 2007229843 A JP2007229843 A JP 2007229843A JP 2007229843 A JP2007229843 A JP 2007229843A JP 5508668 B2 JP5508668 B2 JP 5508668B2
Authority
JP
Japan
Prior art keywords
temperature control
heat
control unit
temperature
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007229843A
Other languages
English (en)
Other versions
JP2009063190A (ja
Inventor
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2007229843A priority Critical patent/JP5508668B2/ja
Publication of JP2009063190A publication Critical patent/JP2009063190A/ja
Application granted granted Critical
Publication of JP5508668B2 publication Critical patent/JP5508668B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、温度制御された熱媒を熱負荷へ供給する熱媒供給システムに関する。
従来、省エネルギーのための技術として、蓄熱やフリークーリングの技術がある(特許文献1〜3を参照)。このような技術を採用した熱媒供給システムでは、空調機等の空調負荷その他の負荷に対して、上記蓄熱やフリークーリングと、冷凍機とによって温度制御された熱媒が供給される。より具体的には、冷却塔、蓄熱槽、冷凍機等の熱源、または熱源からの冷却水/冷水が循環する熱交換器によって温度制御された熱媒が、前記負荷に供給される。
ここで、従来、前記複数種類の熱源は、配管系統ごとに独立して、或いは切り替えて運転されることが多かった。これは、各熱源によって温度制御される熱媒の温度が異なっているためである(特許文献4〜6を参照)。
なお、負荷が必要とする冷却能力を複数台の冷凍機に分割して台数制御する技術がある(特許文献7および8を参照)。
特開昭61−128042号公報 特開平11−304384号公報 特許第3260894号公報 特開2003−121024号公報 特許第3579821号公報 特許第3856568号公報 特開2006−207855号公報 特許第3405426号公報
上記のように熱源の種類ごとに配管系統が独立している方式では、夫々の系統に接続された負荷の状況に基づいて熱媒の流量が制御され、あるいは熱媒の温度制御の目標温度が熱源ごとに個別に設定される。すると、ある系では熱源機が最大負荷で稼動する一方、他の熱源機では余裕があるという運転状態が常態となる。このようなシステムで能力不足を招かぬようにしようとすると、設備容量の大きい熱源機や蓄熱槽を採用せざるを得ない。
本発明は、上記した問題に鑑み、異なる温度制御方式を用いる複数の熱源をあたかも1台の熱源機のように扱い、高効率で運転することを課題とする。
本発明は、上記した課題を解決するために、還流した熱媒を、夫々異なる温度制御方式の複数の温度制御部に対して分配し、分配後に温度制御された熱媒を合流させることで、異なる温度制御方式を用いる複数の熱源をあたかも1台の熱源機のように扱い、高効率で運転することを可能にした。
詳細には、本発明は、温度制御された熱媒を、熱負荷との間で還流させながら供給する熱媒供給システムであって、前記熱負荷より還流した熱媒を分配する分配部と、前記分配部によって分配された熱媒の温度を制御する複数の温度制御部と、前記複数の温度制御部によって温度制御された熱媒を合流させる合流部と、前記合流部において合流した熱媒を
前記熱負荷へ供給するための供給部と、を備え、前記複数の温度制御部は、夫々異なる温度制御方式を用いて前記熱媒の温度を制御する、熱媒供給システムである。
ここで、熱負荷とは、熱媒供給システムから水その他の液体等の熱媒を供給される対象をいい、施設に備えられた空調設備等がこれにあたる。本発明における熱媒供給システムは、熱負荷より還流した熱媒を、夫々異なる温度制御方式を用いて熱媒の温度制御を行う複数の温度制御部に対して分配し、更に、夫々異なる温度制御方式を用いて温度制御された熱媒を、熱負荷へ供給する前に一旦合流させる。このようにすることで、本発明は、異なる温度制御方式を用いる複数の熱源をあたかも1台の熱源機のように扱うことを可能としている。また、異なる温度制御方式を用いる複数の熱源を1台の熱源機のように扱うことで、負荷側に合わせて設備容量の大きな温度制御部(熱源機、蓄熱槽等)を採用する必要がなく、高効率で運転することが可能となる。ここで、温度制御部とは、熱媒を加熱または冷却することで熱媒の温度を上下させる(制御する)装置であり、またこの装置には、加熱または冷却の能力を調節する機能が含まれてもよい。
また、ここでいう異なる温度制御方式としては、例えば、冷凍機による温度制御方式や、冷凍機による温度制御と冷却塔による温度制御とを選択的に切り換え可能な温度制御方式、蓄熱槽からの冷水による温度制御方式、等がある。また、前記供給部は、例えば、合流部によって合流した熱媒を、複数の熱負荷系統に対して分配して供給するための複数の配管を有する。
また、前記複数の温度制御部は、夫々の温度制御部によって温度制御された前記熱媒が、前記合流部によって合流する手前で、共通の所定の範囲内の温度となるように、前記熱媒の温度を制御してもよい。
即ち、異なる温度制御方式を用いる温度制御部の負荷能力を一定にすることで、異なる温度制御方式を用いる温度制御部を共存させることが可能となる。また、負荷側設備には常に一定の温度の熱媒が供給されることとなるため、負荷側設備において変動する熱媒温度に対応する制御を行う必要性が低減し、負荷側設備における制御がシンプル且つ容易となる。
ここで、前記複数の温度制御部は、前記熱負荷より還流した熱媒の温度を、予め設定された共通の目標温度に従って制御することで、夫々の温度制御部によって温度制御された前記熱媒が、前記合流部によって合流する手前で、前記所定の範囲内の温度となるように前記熱媒の温度を制御してもよい。
また、前記複数の温度制御部は、夫々に予め設定された優先順位が高い順に、温度制御を開始してもよい。ここで、優先順位は、例えば、時刻、外気条件、前記熱負荷の状況、夫々の温度制御部の運転効率、等に基づいて設定されることが好ましい。
優先順位に従って運転開始を制御することで、負荷に応じて稼動する温度制御部を限定することが出来、熱媒供給システム全体の運転効率を向上させることが可能となる。特に、優先順位を温度制御部の運転効率に基づいて設定することで、熱媒供給システム全体の運転を省エネルギーとすることが出来る。
また、本発明は、前記熱負荷より還流した熱媒および前記熱負荷へ供給される熱媒を貯める蓄熱槽を有する、既設熱媒供給システムを、本発明に係る熱媒供給システムへ改修する改修方法であって、前記熱負荷より熱媒を還流させるための還流部から前記蓄熱槽への熱媒の流れ、および前記蓄熱槽から前記供給部への熱媒の流れを止めるステップと、前記還流部と前記温度制御部との間に、閉状態の弁付き枝管を用いて前記分配部を接続し、前
記供給部と前記温度制御部との間に、閉状態の弁付き枝管を用いて前記合流部を接続するステップと、前記分配部および合流部の接続後に、前記分配部および合流部を接続する前記枝管の弁を開弁することで、前記還流部から前記温度制御部への熱媒の流れ、および前記温度制御部から前記供給部への熱媒の流れを開始させるステップと、を備える、熱媒供給システムの改修方法である。
本発明に拠れば、既設の熱媒供給システムを、管路等、既設の設備を極力残したまま、より省エネルギーな熱媒供給システムへ改修することが可能となる。
本発明によって、異なる温度制御方式を用いる複数の熱源をあたかも1台の熱源機のように扱い、高効率で運転することが可能となる。
本発明に係る熱媒供給システムおよび熱媒供給システムの改修方法の実施の形態について、図面に基づいて説明する。
<既設熱媒供給システムの構成>
図1は、本実施形態における、改修対象の既設熱媒供給システム1bの概略構成を示す図である。図1に示す既設熱媒供給システム1bは、冷却塔11からの冷却水を用いた冷凍機12による温度制御と冷却塔11によるフリークーリングとを切替可能な切替式温度制御部10、および冷却塔21、31からの冷却水を用いた冷凍機22、32bによる温度制御を行う冷凍機式温度制御部20、30bを有する。なお、図中では夫々の温度制御部について冷凍機と冷却塔との組み合わせが一組ずつ示されているが、各温度制御部は、冷凍機と冷却塔との組み合わせを二組以上有してもよい。
また、既設熱媒供給システム1bは、負荷より還流した熱媒を通す還流配管50と、還流配管50を通って還流した熱媒が貯められる水蓄熱槽40と、蓄熱槽40から熱媒を負荷の各系統へ供給する供給配管60と、を備える。既設熱媒供給システム1bにおいて温度制御された熱媒は、全て水蓄熱槽40に蓄えられ、負荷には常に水蓄熱槽40からの熱媒が供給される。なお、各管路の水蓄熱槽40への出入口近傍には開閉弁41、42が取り付けられている。また、既設熱媒供給システム1bは、既設熱媒供給システム1bが備える冷却塔や冷凍機、ポンプ、弁、等を制御する制御装置90を備える。
本実施形態に係る既設熱媒供給システム1bが設置されている施設(図示は省略する)は、負荷側系統として常時稼動する電子機器や通信機器が設置されるA棟と、事務棟であるB棟とを有する。負荷側系統は5系統あり、このうち3系統はA棟へ熱媒を供給する系統である。A棟においては、空調の停止は電子機器や通信機器の故障につながるため24時間の空調が必要となる。なお残りの2系統によって熱媒が供給されるB棟にも24時間系統があるが、これは保安施設や警備員の滞在のための系統であるため、1日程度の停止は設備にとって許容可能な範囲内である。
<熱媒供給システムの構成>
図2は、本実施形態に係る熱媒供給システム1の概略構成を示す図である。図2に示す熱媒供給システム1は、図1に示した既設熱媒供給システム1bを改修したものであり、切替式温度制御部10、冷凍機式温度制御部20、および蓄熱式温度制御部30を備える。なお、図2において図1と同一の符号が付された構成は、改修前の既設熱媒供給システム1bと共通する構成である。
切替式温度制御部10は、冷却塔11からの冷却水を用いた冷凍機12による温度制御
と冷却塔によるフリークーリングとを切替可能な温度制御部であり、冷凍機式温度制御部20は、冷却塔21との間で循環する冷却水を排熱の放熱のために用いた冷凍機22による温度制御を行う温度制御部である。なお、冷却塔21は、冷却塔11と異なり、熱負荷に対して冷熱を供給する管路を備えない。また、蓄熱式温度制御部30は、冷却塔31と冷凍機32を用いて氷蓄熱槽33に蓄熱を行い(蓄熱運転)、氷蓄熱槽33から取水した冷水と熱媒とを熱交換器34で熱交換する(放熱運転)温度制御部であり、本実施形態では、冷凍機32として製氷用のブライン冷凍機32を採用している。なお、各温度制御部は、冷凍機と冷却塔との組み合わせを二組以上有してもよい。二組以上の冷凍機と冷却塔との組み合わせを有することで、各温度制御部は、冷凍機または冷却塔の稼動台数を制御することによって、温度制御部の能力を制御することが出来る。
本実施形態では、切替式温度制御部10、冷凍機式温度制御部20および蓄熱式温度制御部30を備えることで、放熱運転+冷凍機運転、放熱運転+フリークーリング、放熱運転+フリークーリング+冷凍機運転、冷凍機運転のみ、冷凍機運転+フリークーリング、等の様々な運転モードを実現することが出来、負荷に応じて柔軟に運用することが可能である。
また、熱媒供給システム1は、負荷より還流した熱媒を通す還流配管50と、還流配管50を通って還流した熱媒を合流させた上で上記各温度制御部10、20、30へ分配する第一ヘッダ装置51と、を備える。第一ヘッダ装置51で合流した負荷からの還水は、対応する弁を介して3系統に分流し、上記の切替式温度制御部10、冷凍機式温度制御部20、蓄熱式温度制御部30に送られる。
仮に、全ての冷却塔を統合してしまうと、冷却水が低温になりすぎ冷凍機が停止するおそれがある。また、フリークーリングを利用する際には、冷凍機12周りの弁を閉じて冷凍機12を停止する一方、冷却塔11周りの弁を開いて冷却塔11の運転を開始した後冷却水温度が定常状態になるまで時間がかかることから、切替式温度制御部10からの熱媒供給が中断されることになる。そこで本実施形態では、還流した熱媒を3系統に分流し、且つ蓄熱式温度制御部30をベースに運転することで、間欠運転に陥ることを排して連続的に蓄熱することを可能としている。なお、フリークーリング可能な時期であっても蓄熱設備をバッファとして活用する構成とすることで、年間を通して蓄熱運転を行うことが条件となる電力会社との蓄熱契約を可能としている。
更に、熱媒供給システム1は、各温度制御部によって温度制御された熱媒を合流させる第二ヘッダ装置61および第三ヘッダ装置62と、合流した熱媒を負荷の各系統へ分配して供給する供給配管60と、を備える。上述の通り、負荷側は大きく通信機械系統(A棟)と事務棟系統(B棟)に分かれ計5系統あるが、各温度制御部によって温度制御された熱媒は、負荷側の各系統へ供給される前に、第二ヘッダ装置61および第三ヘッダ装置62において一旦合流する。
一般に、建物で使用されるエネルギーの大部分は空調設備の動力費であるが、圧縮機等の消費エネルギー面での高性能化から、今日ではポンプの省エネルギー化が注目されるようになってきている。このため、本実施形態では、水蓄熱槽40を有する既設熱媒供給システム1bを改修する際に、蓄熱式温度制御部30において、ポンプの揚程の低減のために密閉式の配管系統への改修を行うこととした。
本実施形態では、冷却塔31として、密閉管路を形成する目的で密閉型冷却塔を採用している。但し、開放式冷却塔に熱交換器を介装させ、冷却塔と熱交換器間に冷却水を循環させ、その熱交換器の一方の流路を負荷との熱媒の循環に使用することで、密閉管路を形成してもよい。これにより、温度制御部の熱源装置(冷却または加熱を行う装置)と熱負
荷との間で熱媒を循環させる流路は、熱媒を大気と直接接触させない管路となる。なお、本実施形態において、蓄熱方式としてはソリッド式氷蓄熱が採用されているが、シャーベット状の氷によるリキッド式や、潜熱蓄熱材を用いる方式あるいは水蓄熱方式が採用されてもよい。熱交換器についても、本実施形態ではプレート式のものが採用されているが、任意の種類のものが採用されてよい。
また、熱媒供給システム1は、熱媒供給システム1が備える冷却塔11、21、31や冷凍機12、22、32、ポンプ、弁、等を制御する制御装置90を備える。制御装置90は、図示しないセンサ類より、冷却塔や冷凍機等の運転状態、熱媒の温度、負荷側の状態、外気条件、現在の時刻等を取得し、取得された情報から把握される時刻、外気条件、熱媒が供給される負荷側の状況、各温度制御部10、20、30の運転効率、等に基づいて、熱媒供給システム1が備える冷却塔11、21、31のファンや冷凍機12、22、32のインバータ等の駆動部、冷却塔や冷凍機に連なる管路に設けられたポンプ、弁、等を制御する。なお、本実施形態では、熱媒供給システム1は制御装置90によって集中管理されることとなっているが、各温度制御部10、20、30ごとに制御装置が設けられ、これらの制御装置が条件設定に従って連係することで全体を制御することとしてもよい。
<熱媒供給システムの運転>
次に、本実施形態に係る熱媒供給システム1の運転について説明する。なお、本施設では前述のように24時間運転系統を有し、施設全体の所要冷熱量は、夏季で概ね昼に13.2MJ程度、夜に8.8MJ程度であり、冬季で概ね昼に9MJ程度、夜に7MJ程度である。そして、フリークーリング開始の外気湿球温度は摂氏4度、停止の外気湿球温度は摂氏7.2度に設定される。
まず、夏季の運転について説明する。本設備は氷蓄熱槽33を有しているため、蓄熱を最優先の熱源とする。制御装置90は、夜間にブライン冷凍機32を稼動させ、設計容量の冷熱(ここでは氷)を製氷する。より具体的には、蓄熱式温度制御部30は、午後10時から翌日の午前8時まで蓄熱運転を行い、午前8時から午後10時の間に放熱運転を行う。蓄熱運転の間、ブライン冷凍機32の凝縮器にはセットとして組み合わされた冷却塔31が運転される。前述のように24時間系統(A棟)が存在するため、夜間に蓄熱式温度制御部30が放熱モードから蓄熱モードに切り替わると、負荷系統には冷凍機式温度制御部20の冷凍機によって温度制御された熱媒が供給される。
蓄熱運転が終了した午前8時(24時間系統以外では空調開始時に近い)になると、制御装置90は、ブライン冷凍機32の蒸発器と氷蓄熱槽33内の製氷コイルを連通する管路を閉止し、放熱運転をすべく氷蓄熱槽33と熱交換器34を連通する管路を開放する。熱交換器34を出た熱媒は第二ヘッダ装置61で他の温度制御部によって温度制御された熱媒と合流する。更に、制御装置90は、冷凍機を運転する。蓄熱放熱の不足分は残りの冷凍機の台数制御によりまかなう。具体的には、制御装置90は、外気温度や、生産工程および通信機器等の内部発熱負荷に応じて、まず冷凍機式温度制御部20を順次稼動させ、負荷の増大に応じて切替式温度制御部10の冷凍機を稼動させて熱媒を供給する。
即ち、夏季の運転においては、蓄熱式温度制御部30による放熱運転、冷凍機式温度制御部20による冷凍機運転、切替式温度制御部10によるフリークーリング運転、の順に高い優先順位が設定され、制御装置90は、この優先順位が高い温度制御部を優先的に運転させる。
次に冬季の運転について説明する。冬季においても、やはりブライン冷凍機32を夜間に稼動させて蓄熱運転を行う。前述の蓄熱運転終了時になると放熱運転で氷蓄熱槽33か
ら冷熱をくみ上げるとともにフリークーリング運転が開始され、還り熱媒は冷凍機12を迂回して冷却塔11で冷却され合流して負荷側に送られる。具体的には、冷凍機12の上流の弁を閉止し、冷却塔11の散水管に連通する弁を開放し、且つ冷却水ポンプ54を停止してポンプ周りの弁54を閉止する。そして、冷却塔11の下部水槽とヘッダ61とを連通するバイパス管の弁を開放する。
一方、冷凍機式温度制御部20の冷凍機22は冬季は負荷の冷熱の不足時にのみ稼動される。例えば、蓄熱式温度制御部30の氷蓄熱槽33による冷熱量と切替式温度制御部10のフリークーリング(冷却塔11)による冷熱量が1:1になるように運転し、冷凍機式温度制御部20の冷凍機(直進冷凍機)は停止される。
即ち、冬季の運転においては、蓄熱式温度制御部30による放熱運転、切替式温度制御部10によるフリークーリング運転、冷凍機式温度制御部20による冷凍機運転、の順に高い優先順位が設定され、制御装置90は、この優先順位が高い温度制御部を優先的に運転させる。但し、電力会社の夜間蓄熱契約が年間を通じて蓄熱を利用しなければならない条件ではない場合、冬季は蓄熱運転を省略してもよい。
最後に中間期の運転について説明する。中間期においては、制御装置90は、フリークーリング(10月から3月まで可能)と冷凍機と蓄冷熱の放熱を併用する。中間期の運転においては、蓄熱式温度制御部30による放熱運転、切替式温度制御部10によるフリークーリング運転、冷凍機式温度制御部20による冷凍機運転、の順に高い優先順位が設定され、制御装置90は、この優先順位が高い温度制御部を優先的に運転させる。但し、制御装置90は、日中の熱負荷がピークとなる時間帯に氷蓄熱槽33の冷熱を割りあてるよう運用してもよい。
ここで、温度制御部10、20、30は、熱媒が共通かつ一定の目標温度(例えば摂氏7度)となるように熱媒を温度制御する。このように制御することで、各温度制御部10、20、30で温度制御された熱媒が第二ヘッダ装置61において合流する手前で、ほぼ同一の温度(所定の温度の範囲内)となり、負荷へ供給される熱媒の温度が一定に保たれる。このため、変動する熱媒温度に対応する制御を負荷側において行う必要性が低減し、負荷側に設けられた空調設備等の制御がシンプル且つ容易になる。より具体的には、負荷側(即ち、A棟およびB棟)に設けられた空調設備は、要求された室温へ空調を行うために、供給を受ける熱媒の温度が一定であるとの前提の下に、温度制御を行うことが可能となる。例えば、要求室温がある程度の範囲内であれば、負荷側では圧縮機の能力制御を行うことなく、ファン回転数の制御のみ、またはファン回転数の制御と制御系による熱媒流量の増減制御との組み合わせによって空調の能力を制御すること等が可能となる。
また、制御装置90は、熱媒を設定された共通かつ一定の目標温度へ制御可能な温度制御部のみを運転させ、設定された目標温度へ制御できない温度制御部を停止することで、各温度制御部10、20、30からバラバラの温度に制御された熱媒が供給されることを防止し、エネルギー消費の効率を向上させることが可能となる。以下、各温度制御部10、20、30が熱媒の温度を共通かつ一定の目標温度となるように制御する方法を説明する。
フリークーリングを行っている切替式温度制御部10は、温度センサ(図示は省略する)を用いて冷却塔11からの熱媒の温度および/または冷却塔11に入る熱媒の温度を検知し、検知された熱媒の温度に応じて冷却塔における散水量(ポンプ回転数)と冷却塔のファンを制御することで、冷却水を目標温度に保つことが出来る。外気が低温であるために冷却水の温度が下がりすぎてしまう虞がある場合には、戻り冷却水の一部を図示しないバイパス流路へ流すことで冷却塔をバイパスし、冷却塔によって目標温度未満まで低温化
された冷却水と混合することで、冷却水の温度を目標温度へ制御する。
冷凍機運転を行っている切替式温度制御部10および冷凍機式温度制御部20は、温度センサ(図示は省略する)を用いて冷凍機からの熱媒の温度および/または冷凍機に入る熱媒の温度を検知し、検知された熱媒の温度に応じて圧縮機等の駆動部を制御することで、冷凍機自身の能力を制御し、熱媒の温度を目標温度へ制御することが出来る。なお、誤差調整のために、熱媒の一部を図示しないバイパス流路へ流すことで冷凍機をバイパスし、冷凍機によって温度制御された熱媒と混合することで温度制御を行ってもよい。この他、変流量方式では、ポンプの流量制御が採用されてもよい。
蓄熱式温度制御部30は、温度センサ(図示は省略する)を用いて熱交換器34からの熱媒の温度および/または熱交換器34に入る熱媒の温度を検知し、検知された熱媒の温度に応じて氷蓄熱槽33のポンプによる汲み上げ量を制御することで、熱媒の温度を目標温度へ制御することが出来る。熱交換器34において放熱した冷水が氷蓄熱槽33に戻されて昇温するため、例えば、負荷が小さい時間帯(朝など)には汲み上げ量を少量とし、負荷がピークとなる時間帯(2時頃など)には汲み上げ量を最大とし、蓄熱(氷)を使い切ると(夕刻など)氷蓄熱槽33からの汲み上げを取りやめて蓄熱運転へ移行する。なお、熱媒の一部を図示しないバイパス流路へ流すことで熱交換器34をバイパスし、熱交換器34によって温度制御された熱媒と混合することで温度制御を行ってもよい。
<熱媒供給システムの改修>
次に、改修手順について説明する。図3は、図1の関係部位を模式的に示したものであり、本実施形態における改修前のシステムの概略を示す図である。図3、図5および図6には、図1の既設熱媒供給システム1bの構成のうち、改修において直接の変更や作業の対象とならない構成を省略したシステムの概略を示す。なお、図1および図2に示すとおり、本実施形態に係る施設では、負荷側の配管系等を5系統有するが、図3、図5および図6においては、図面の記載の簡略のため、3系統のみ示す。
改修前の既設熱媒供給システム1bは、温度制御部10、20、30bで温度制御された熱媒を全て水蓄熱槽40に蓄え、水蓄熱槽40からの熱媒を負荷側へ送り冷熱消費後の還水を水蓄熱槽40の高温側に戻す。本実施形態では、この既設水蓄熱槽40を氷蓄熱槽33へ改修して、一台の冷凍機32b(改修前の既設熱媒供給システム1bを示す図1を参照)を蓄熱用の冷凍機32(改修後の熱媒供給システム1を示す図2を参照)とし、フリークーリング用と直進用の温度制御部10、20は温度制御された熱媒を負荷側に直接送る方式の熱媒供給システム1へ改修する。
図4は、本実施形態における、既設熱媒供給システム1bを改修する流れを示すフローチャートである。なお、以下に示す処理の順序は一例であり、本発明の効果を奏することが可能な範囲で、処理順序を一部前後させてもよい。
ステップS101では、負荷側の循環管路のうち水蓄熱槽40に近い側の位置に供給配管60用の第二ヘッダ装置61および第三ヘッダ装置62、還流配管50用の第一ヘッダ装置51が設置される。図5は、本実施形態における、既設熱媒供給システム1bにヘッダ装置51、61、62を設置した状態の概略構成を示す図である。
ステップS102では、負荷側への熱媒の供給が停止される。具体的には、次のステップS103で還流配管50および供給配管60(以下、「主管50、60」と称する)へ枝管50b、60bを接続するために、既設ポンプが停止され、水蓄熱槽40の出入口近傍の開閉弁41、42が閉弁されることで、熱媒の供給が停止される。なお、枝管50b、60bを接続するために熱媒の供給を停止する方法としては、凍結工法等、公知のその
他の手段を採用することとしてもよい。
ステップS103では、弁付き枝管50b、60bを介してヘッダ装置51、61、62が接続される。具体的には、主管50、60、切替式温度制御部10、冷凍機式温度制御部20、および蓄熱式温度制御部30に対して、閉状態の弁付き枝管50b、60bが取り付けられることで、ヘッダ装置が接続される。
更に、ヘッダ装置周りの新設管路にポンプ63が取り付けられる。ポンプ63は、図示の例では供給配管60側のヘッダ装置61、62の間に設けられる。なお、流量制御のためにヘッダ装置61、62の間にポンプを複数台設け、それらポンプを台数制御および流量制御することとしてもよい。還流配管50側ヘッダ装置51と冷凍機の間にも冷凍機1台ごとにポンプ53が1台設けられ、冷凍機が運転できる流量が確保される。図6は、本実施形態における、熱媒供給システム1に弁付き枝管50b、60bを介してヘッダ装置が接続された状態の概略構成を示す図である。
ステップS104では、枝管50b、60bの弁が開放される。枝管50b、60bの接続が完了した後、枝管50b、60bの弁が開放されることで負荷側とヘッダ装置との間の流路が開通し、冷凍機からの熱媒が負荷側に循環する。同様に1系統ずつ熱媒を循環させる。
なお、上記改修の流れにおいて、負荷側への熱媒の供給の停止、および枝管50b、60bの接続は既設主管50、60の系統ごとに行われる。はじめに、B棟向け系統の既設ポンプが停止され、B棟向け系統の主管50、60とヘッダ装置の間に枝管50b、60bが接続される。ここで、B棟の空調機は停止される。
次に、A棟向け系統の既設ポンプが停止され、主管50、60とヘッダ装置の間に枝管50b、60bと弁が接続される。但し、A棟は通信機器等が稼動している関係で空調を停止することが出来ないため、他の2系統の管から分岐をとってA棟向け系統の配管に接続し、その熱源側の流路を弁等で閉止したうえで他系統の熱媒を導いてもよい。このとき、他系統では水蓄熱槽40から負荷側に向け熱媒をポンプでくみ上げる運転を行う。なお、残業者等が多い等の理由で、B棟でも空調を停止したくない場合には、B棟向け系統の接続作業においても、他の2系統の管から分岐をとってB棟向け系統の配管に枝管50b、60bを接続し、その熱源側の流路を弁等で閉止したうえで他系統の熱媒を導いてもよい。
また、本実施形態では水蓄熱槽40を水蓄熱から製氷コイルによる氷蓄熱槽33への改修を想定しているため、施工性および作業性の観点から水蓄熱槽40に出入りする管とポンプは撤去される(図6を参照)。但し、作業や設置のスペースが許せば蓄熱槽への弁を閉じた状態でそのまま管とポンプ(図6の破線部分)を残すこととしてもよい。このようにすることで、管路にはヘッダ装置側と蓄熱槽側にそれぞれ弁およびポンプが取り付けられているため、試運転の際に枝管接続不良等の障害が見つかった場合や運転後に管腐食等の障害が起きた場合に、密閉系から開放系に管路を戻すことができる。
なお、改修に伴って冷凍機が更新される場合、ヘッダ装置と主管50、60を接続した後に冷凍機が取り替えられ、その後冷凍機とヘッダ装置とが配管接続(およびポンプ53取付)される。そして、それらの作業が完了した後に開放系の配管が遮断され、密閉系を開通させる熱媒循環を系統ごとに行うことが出来る。この際、最初に更新された1系統の冷凍機の能力では全系統の負荷を賄うことが出来ないため、既設冷凍機の部分運転(流量を制御)、または蓄熱放熱の一方またはこれらを併用した運転が行われる。
最後に、熱交換器34と蓄熱用冷凍機32が設置される(図2を参照)。但し、これらの設置はヘッダ装置が設置される前でもかまわない。熱交換器34とヘッダ装置51、61とを、枝管50b、60bを用いて接続し、ポンプ53を設置する手順は前述のとおりである。ここでは更に熱交換器34と冷凍機32との間の配管接続とポンプ設置とが行われる。最後に製氷用コイルが氷蓄熱槽33内に設置され、蓄熱用冷凍機32の出入り口管に前記コイル出入口管が配管接続される。
本実施形態に拠れば、既設熱媒供給システム1bがある建物等の設備を、既設の管路を極力活かしたまま、より省エネルギーな熱媒供給システム1へ改修することが可能である。また、枝管50b、60bが接続されようとしている系統が、通信機器を多数収納した通信施設、電算センター、クリーンルーム等の生産施設等、24時間運転を必要とする系統である場合に、この系統への熱媒の供給を停止させずに改修を行うことが可能である。
実施形態における、改修対象の既設熱媒供給システムの概略構成を示す図である。 実施形態に係る熱媒供給システムの概略構成を示す図である。 実施形態における改修前のシステムの概略を示す図である。 実施形態における、既設熱媒供給システムを改修する流れを示すフローチャートである。 実施形態における、既設熱媒供給システムにヘッダ装置を設置した状態の概略構成を示す図である。 実施形態における、熱媒供給システムに弁付き枝管を介してヘッダ装置が接続された状態の概略構成を示す図である。
符号の説明
1b 既設熱媒供給システム
1 熱媒供給システム
10 切替式温度制御部
20 冷凍機式温度制御部
30 蓄熱式温度制御部
33 氷蓄熱槽
40 水蓄熱槽
50 還流配管(主管)
50b 枝管
51 第一ヘッダ装置
60 供給配管(主管)
60b 枝管
61 第二ヘッダ装置
62 第三ヘッダ装置
90 制御装置

Claims (8)

  1. 温度制御された熱媒を、熱負荷との間で還流させながら供給する熱媒供給システムであって、
    前記熱負荷より還流した熱媒を分配する分配部と、
    前記分配部によって分配された熱媒の温度を制御する複数の温度制御部と、
    前記複数の温度制御部によって温度制御された熱媒を合流させる合流部と、
    前記合流部において合流した熱媒を前記熱負荷へ供給するための供給部と、
    前記複数の温度制御部を制御する制御部と、
    を備え、
    前記複数の温度制御部は、夫々異なる温度制御方式を用いて前記熱媒の温度を制御する温度制御部であって、冷凍機による温度制御と冷却塔による温度制御であるフリークーリングとを選択的に切り換え可能な温度制御方式を用いる切替式温度制御部と、冷凍機による温度制御方式を用いる冷凍機式温度制御部と、蓄熱槽からの冷水による温度制御方式を用いる蓄熱式温度制御部と、を含み、
    前記分配部は、前記熱負荷より還流した熱媒を、前記複数の温度制御部に夫々分配し、
    前記制御部は、前記切替式温度制御部によるフリークーリング運転を行う際、前記冷凍機式温度制御部による運転、及び当該切替式温度制御部によるフリークーリング運転より優先的に、前記蓄熱式温度制御部による運転を行う
    熱媒供給システム。
  2. 前記複数の温度制御部は、夫々の温度制御部によって温度制御された前記熱媒が、前記合流部によって合流する手前で、共通の所定の範囲内の温度となるように、前記熱媒の温度を制御する、
    請求項1に記載の熱媒供給システム。
  3. 前記複数の温度制御部は、前記熱負荷より還流した熱媒の温度を、予め設定された共通の目標温度に従って制御することで、夫々の温度制御部によって温度制御された前記熱媒が、前記合流部によって合流する手前で、前記所定の範囲内の温度となるように前記熱媒の温度を制御する、
    請求項2に記載の熱媒供給システム。
  4. 前記複数の温度制御部は、夫々に予め設定された優先順位が高い順に、温度制御を行い
    夏季には、前記蓄熱式温度制御部、前記冷凍機式温度制御部、冷却塔による温度制御を行う前記切替式温度制御部、の順に高い優先順位が設定さ
    前記制御部は、夜間に前記蓄熱式温度制御部を運転し、当該蓄熱式温度制御部が前記蓄熱槽から取得した冷水と熱媒とを熱交換する放熱運転から前記蓄熱槽に蓄熱を行う蓄熱運転へ切り替わると、前記冷凍機式温度制御部を運転し、当該冷凍機式温度制御部の冷凍機によって温度制御された熱媒を前記熱負荷へ供給する
    請求項1から3の何れか一項に記載の熱媒供給システム。
  5. 前記複数の温度制御部は、夫々に予め設定された優先順位が高い順に、温度制御を行い
    冬季には、前記蓄熱式温度制御部、冷却塔による温度制御を行う前記切替式温度制御部、前記冷凍機式温度制御部、の順に高い優先順位が設定される、
    請求項1から3の何れか一項に記載の熱媒供給システム。
  6. 前記複数の温度制御部は、夫々に予め設定された優先順位が高い順に、温度制御を行い
    中間期には、前記蓄熱式温度制御部、冷却塔による温度制御を行う前記切替式温度制御部、前記冷凍機式温度制御部、の順に高い優先順位が設定される、
    請求項1から3の何れか一項に記載の熱媒供給システム。
  7. 前記供給部は、前記合流部によって合流した熱媒を、複数の熱負荷系統に対して分配して供給するための複数の配管を有する、
    請求項1から6の何れか一項に記載の熱媒供給システム。
  8. 前記複数の熱負荷系統は、熱媒の供給停止が許容される系統と、熱媒の供給停止が許容されない系統とを含む、
    請求項1から7の何れか一項に記載の熱媒供給システム。
JP2007229843A 2007-09-05 2007-09-05 熱媒供給システム Active JP5508668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229843A JP5508668B2 (ja) 2007-09-05 2007-09-05 熱媒供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229843A JP5508668B2 (ja) 2007-09-05 2007-09-05 熱媒供給システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013025571A Division JP5404945B2 (ja) 2013-02-13 2013-02-13 熱媒供給システムの改修方法

Publications (2)

Publication Number Publication Date
JP2009063190A JP2009063190A (ja) 2009-03-26
JP5508668B2 true JP5508668B2 (ja) 2014-06-04

Family

ID=40557922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229843A Active JP5508668B2 (ja) 2007-09-05 2007-09-05 熱媒供給システム

Country Status (1)

Country Link
JP (1) JP5508668B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363212B2 (ja) * 2008-09-30 2013-12-11 株式会社日立製作所 空調システム
JP5234435B2 (ja) * 2009-07-02 2013-07-10 株式会社日立プラントテクノロジー フリークーリング用の冷熱源装置並びに冷却システム及び冷却方法
US11506432B2 (en) * 2018-08-17 2022-11-22 Mitsubishi Electric Corporation Cold water supply system
JP2020115062A (ja) * 2019-01-18 2020-07-30 清水建設株式会社 管理システム及びプログラム
KR102299013B1 (ko) * 2021-03-05 2021-09-08 (주)유천써모텍 냉각탑을 이용한 지중열원 히트펌프 냉방 응축열 과열 및 과냉각 제어 시스템

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128042A (ja) * 1984-11-28 1986-06-16 Shinryo Air Conditioning Co Ltd 冷水製造回路を有する空気調和装置
JPH0876858A (ja) * 1994-09-08 1996-03-22 Toshiba Corp 熱源制御システム
JP2997867B2 (ja) * 1995-12-19 2000-01-11 矢崎総業株式会社 冷温水発生機の制御方法
JP2901918B2 (ja) * 1996-04-23 1999-06-07 川崎重工業株式会社 氷蓄熱システムの解氷運転制御方法
JP3551284B2 (ja) * 1996-08-28 2004-08-04 日立プラント建設株式会社 配管凍結工法
JPH11304278A (ja) * 1998-04-23 1999-11-05 Hitachi Ltd 吸収冷温水機の台数制御方法
JP3211188B2 (ja) * 1998-06-24 2001-09-25 株式会社山武 熱源機器制御装置
JP4420506B2 (ja) * 2000-01-19 2010-02-24 三菱電機株式会社 冷媒配管の凍結工法および冷凍サイクル装置
JP3856279B2 (ja) * 2000-02-08 2006-12-13 荏原冷熱システム株式会社 連結型冷温水機
JP3851285B2 (ja) * 2003-03-14 2006-11-29 株式会社三菱地所設計 制御装置
JP4523461B2 (ja) * 2005-03-10 2010-08-11 新日本空調株式会社 1ポンプ方式熱源設備における運転制御方法

Also Published As

Publication number Publication date
JP2009063190A (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
US5727396A (en) Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US20100077776A1 (en) Air-conditioning method and air-conditioning system
JP5508668B2 (ja) 熱媒供給システム
JP2007218463A (ja) ヒートポンプ給湯冷暖房装置
JP2009192088A (ja) 冷却システム
WO2013151105A1 (ja) 蓄熱システムおよび蓄熱システムの蓄熱方法
JP5286479B2 (ja) 冷水循環システム
JP2901918B2 (ja) 氷蓄熱システムの解氷運転制御方法
KR101952627B1 (ko) 복합 일체형 냉동기 시스템 및 그 제어방법
JP5404945B2 (ja) 熱媒供給システムの改修方法
KR101131187B1 (ko) 지하공기열원을 이용한 냉난방 시스템 및 그 냉난방 시스템의 제어방법
JP2008224155A (ja) 氷蓄熱式熱源機装置及びその制御方法
JP5455338B2 (ja) 冷却塔及び熱源機システム
JP5830563B2 (ja) 電着塗装装置
JP2015180778A (ja) 電着塗装装置の起動装置及び起動停止装置
JP2011153342A (ja) 電着塗装装置
JP5062555B2 (ja) 省エネ空調制御システム
WO2015001976A1 (ja) 熱源システム
JP6257993B2 (ja) 冷凍システムおよび冷凍システムの台数制御方法
KR101544014B1 (ko) 모듈화를 이용한 지능형 변유량 자동제어 수축열시스템
JP4369841B2 (ja) 熱媒体配管システム
KR200395419Y1 (ko) 개선된 냉난방 시스템
JPH0828944A (ja) 外気潜熱回収型空調システム
JP2015169367A (ja) 空調システム及び空調システムの制御方法
CN219550721U (zh) 复合型空调热水集成应用系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130220

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5508668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150