JP5505203B2 - 通信システム、トランシーバ、ノード - Google Patents

通信システム、トランシーバ、ノード Download PDF

Info

Publication number
JP5505203B2
JP5505203B2 JP2010191030A JP2010191030A JP5505203B2 JP 5505203 B2 JP5505203 B2 JP 5505203B2 JP 2010191030 A JP2010191030 A JP 2010191030A JP 2010191030 A JP2010191030 A JP 2010191030A JP 5505203 B2 JP5505203 B2 JP 5505203B2
Authority
JP
Japan
Prior art keywords
edge
frame
circuit
communication path
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010191030A
Other languages
English (en)
Other versions
JP2012049886A (ja
Inventor
友久 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010191030A priority Critical patent/JP5505203B2/ja
Publication of JP2012049886A publication Critical patent/JP2012049886A/ja
Application granted granted Critical
Publication of JP5505203B2 publication Critical patent/JP5505203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Power Sources (AREA)

Description

本発明は、スリープ/ウェイクアップ機能を有するノードによって構成された通信ネットワークに関し、特に、スリープ中のノードを個別に起動する技術に関する。
従来、車両に搭載された複数のノード間の通信を実現する車載LANのプロトコルとして、CAN(Controller Area Network)が標準化されている(ISO11898−1)。
CANでは、通信路上の信号レベルとして、ドミナントとレセッシブとが定義されており、いずれか一つのノードでもドミナントの信号を出力した場合には、通信路上の信号レベルはドミナントとなるようにされている。
また、通信路を介して受信した信号からクロック誤差補正を可能とするために、同一の信号レベルが5ビット継続すると、反転した信号レベルを有するスタッフビットを挿入することも規定されている。
更に、CANでは、スリープ/ウェイクアップ機能を有する物理層も定義(ISO11898−5)されている。具体的には、省電力のために通信機能を停止させる動作モードであるスリープモードにあるノードは、通信路上でドミナントを検出するとウェイクアップして、通信機能を利用可能な動作モードである通常モードに遷移するように規定されている。
ところで、このようなウェイクアップ/スリープ機能を有する通信システムでは、スリープモードにあるノード(以下、休止ノードという)がある場合に、休止ノードをスリープ状態にしたまま、通常時の動作モードである通常モードにあるノード(以下、起動ノードという)同士でだけで通信を行ったり、必要なノードだけを選択的にウェイクアップしたりするという使い方をすることができないという問題があった。
即ち、通信を行うということは、通信路上にドミナントが現れることを意味するため、起動ノード同士が通信を行うと、全ての休止ノードが起動してしまうからである。
これに対して、休止ノードのトランシーバにバスを監視させ、バスがアイドル状態ではないことをトランシーバが検出すると、受信したフレームを解析するプロトコルコントローラを限定的に起動(電源供給を再開)し、プロトコルコントローラが、受信したフレームが自ノードをウェイクアップさせるためのフレームであるとプロトコルコントローラが判断した場合に、ECU全体を起動(ウェイクアップ)する技術が記載されている(例えば、特許文献1参照)。
特開2005−529393号公報
ところで、プロトコルコントローラでは、フレームを構成する各ビットを個別に識別しなければならないため、通常、その動作のためには、高精度なクロック源からクロックの供給を受けることが必要となる。つまり、プロトコルコントローラを起動するには、高精度なクロック源も同時に起動しなければならない。
そして、起動ノードと休止ノードとが混在する状況において、起動ノード間の通信(即ち、バスの非アイドル状態)が継続していると、その間、休止ノードでは、プロトコルコントローラや高精度なクロック源が動作し続けることになり、休止ノードである(ECUとしては機能していない)にも関わらず、無視できない電力を消費し続けてしまうことになるという問題があった。
本発明は、上記問題点を解決するために、スリープモードにあるノードを個別にウェイクアップすることが可能な通信システムにおいて、スリープモードにあるノードの消費電力を増大させることなく、自ノードに対する起動用フレームを識別できるようにすることを目的とする。
上記目的を達成するためになされた本発明の通信システムは、通信路に接続されたノード間の通信にNRZ(Non Return to Zero)符号を用い、ノードは、通信路においてレセッシブ(劣位な信号レベル)が予め設定された期間以上継続した場合をアイドル状態として、通信路の信号レベルがアイドル状態の後にドミナント(優位な信号レベル)に変化すると、これをフレームの先頭として認識すると共に、通信路を介した通信を停止して低消費電力状態にする動作モードであるスリープモードの時に、所定の起動フレームが通信路に送出されると、通信路を介した通信を実行可能な動作モードである通常モードに遷移するように構成されている。
また、本発明の通信システムで用いられる起動フレームは、レセッシブからドミナントに変化するエッジを注目エッジとして、該注目エッジがフレームの先頭を含めて少なくとも3回発生し、且つ、該注目エッジの発生間隔の比(例えば、1番目から2番目の間隔と2番目から3番目の間隔との比)が予め設定された比率である起動比となるようにビットパタンが設定される起動パタン領域と、起動対象となるノードを指定するためのビットパタンが設定される指定パタン領域とを有する。
そして、本発明の通信システムを構成するノードは、通信路に送出されたフレームの起動パタン領域で検出される注目エッジの発生間隔の比が起動比となり、且つ、該フレームの指定パタン領域で検出されるビットパタンが自ノードを指定するために予め割り当てられた割当パタンである場合に、該フレームを起動フレームとして認識する。
このように構成された本発明の通信システムでは、通信路上のフレームが特異なパタン(ここでは注目エッジの発生間隔が特異となるパタン)を有しているか否かを判定することによって、フレームを構成する個々のビットを解釈(デコード)することなく、起動フレームであるか否かを識別する。
従って、本発明の通信システムによれば、スリープモードにあるノードが起動フレームを受信したか否かを判定する際に、プロトコルコントローラや高精度なクロック源を動作させる必要がないため、スリープモードにあるノードの消費電力を大幅に削減することができる。
また、起動フレームを受信した全てのノードを無条件に起動するのではなく、指定パタン領域で検出されるビットパタンにより指定されたノードのみを起動するため、起動する必要のないノードが無駄に起動すること、ひいては当該通信システム全体としての消費電力を削減することができる。
ところで、起動パタン領域は、例えば、注目エッジの発生間隔が最短となるビットパタンと、注目エッジの発生間隔がフレーム生成規則で許容された最長となるビットパタンとを含むように設定されていてもよい。この場合、ノードは、最短の発生間隔と、最長の発生間隔との比を起動比とすればよい。
そして、フレーム生成規則の一つに、同一の信号レベルがN(Nは2以上の整数)ビット連続した場合に逆の信号レベルを有するスタッフビットを挿入するという規則がある場合、起動比は、1:NまたはN:1に設定すればよい。
即ち、レセッシブを「1」、ドミナントを「0」とした場合、注目エッジの発生間隔が最短となるビットパタンは「01」であり(但し、「01」の前はレセッシブ、後はドミナントになっているものとする)、注目エッジの発生間隔は2ビット分の間隔となる。一方、スタッフビットで、同一の信号レベルがNビットに制限されている場合、注目エッジの発生間隔が最長となるビットパタンは、規則に従って挿入されるスタッフビットも含めて、「0」がNビット連続した後に「1」がNビット連続するパタンであり、注目エッジの発生間隔は2Nビットとなる。従って、この二つのビットパタンから、起動比は1:NまたはN:1になるのである。
本発明の通信システムにおいて、指定パタン領域は、複数ビットからなる単位ブロック毎に符号化されていることが望ましい。この場合、単位ブロック単位で処理を行えばよいいため、複数ビットがMビットである場合、クロックを用いてデコードするとしても、通常のプロトコルコントローラに必要なクロックの1/Mの精度があれば処理が可能となる。
また、この場合、単位ブロックを3ビット以上で構成し、デューティ比の異なる2種類の符号パタンによって1ビットの情報を表すようにしてもよい。具体的には、単位ブロックが3ビットの場合は「001」「011」、4ビットの場合は「0001」「1110」等とすることが考えられる。
また、本発明の通信システムにおいて、通信路における通信プロトコルとして、CAN(Controller Area Network)を用いる場合、CANにおけるデータフレームのSOFおよびアービトレーションフィールドを起動パタン領域として使用し、CANのデータフレームのデータフィールドを前記指定パタン領域として使用すればよい。
次に、請求項7に記載された本発明のトランシーバは、NRZ符号を用いて通信を行う通信路に接続され、通信路を介した通信を停止して消費電力を抑制するための動作モードであるスリープモードの時に、所定の起動フレームが通信路に送出されると、通信路を介した通信を実行可能な動作モードである通常モードに遷移するように構成されたノードにおいて、通信路を介した信号を送受信するために使用される。
また、本発明のトランシーバでは、アイドル状態判定手段が、通信路において劣位な信号レベルであるレセッシブが予め設定された期間以上継続している状態をアイドル状態として、通信路がアイドル状態にあるか否かを判定すると共に、エッジ検出手段が、通信路の信号レベルがレセッシブからドミナントに変化するエッジである注目エッジを検出する。
そして、エッジ間隔判定手段が、アイドル状態判定手段での判定結果からアイドル状態から非アイドル状態への変化が検出されると、これをフレームの先頭として、エッジ検出手段で検出されるフレームの先頭を含む少なくとも3個の注目エッジに基づき、該注目エッジの発生間隔の比が、予め設定された起動比と一致するか否かを判定する。
また、復号手段が、エッジ間隔判定手段により、注目エッジの発生間隔の比が起動比と一致すると判定された場合、フレームの指定パタン領域に示された符号パタンを復号し、比較手段が、復号手段での復号結果が予め設定された割当パタンと一致する場合に、起動フレームを受信したことを示すウェイクアップ信号を出力する。
このように構成された本発明のトランシーバは、上述した本発明の通信システムにおけるノードを構成する際に好適に用いることができる。
ところで、エッジ間隔判定手段は、例えば、次のように構成することができる。
第1の充放電回路が、アイドル状態判定手段での判定結果が非アイドル状態である場合に動作し、一定の大きさの正極性の充電電流または一定の大きさの負極性の充電電流を、エッジ検出回路にて注目エッジが検出される毎に交互に切り替えて第1の容量性素子に供給することで該第1の容量性素子を充放電する。
そして、第1の判定回路が、充放電回路の動作開始後、2個目の注目エッジがエッジ検出回路によって検出されたタイミングで、第1の容量性素子の充電電圧と、起動比に相当する閾値電圧とを比較することによって、注目エッジの発生間隔の比が起動比と一致するか否かを判定する。
但し、起動比をA:Bとして、フレームの先頭から1個目の注目エッジの間(以下「前半期間」という)に前記充放電回路が供給する充電電流と1個目の注目エッジから2個目の注目エッジの間(以下「後半期間」という)に充放電回路が供給する充電電流の大きさの比がB:Aに設定されている。
つまり、一定の大きさの充電電流で容量性素子を充電した場合、容量性素子の充電電圧は、充電時間(注目エッジの発生間隔)に比例した大きさとなる。そして、起動比がA:Bということは、前半期間と後半期間との比がA:Bということであり、また、前半期間の充電電流の大きさをIA、後半期間の充電電流の大きさをIB、第1の容量性素子の容量をCとすると、前半期間における第1の容量性素子の充電電圧の変化量ΔVA、および後半期間における第1の容量性素子の充電電圧の変化量ΔVBは、次式のようになる。
VA=C×IA×A (1)
VB=C×IB×B (2)
なお、本発明では、充電電流を、IA:IB=B:Aに設定することから、充電電流IA,IBの関係は、次式で表される。
IB=(A/B)×IA (3)
この(3)式を(2)式に代入して変形すると、ΔVB=C×IA×A=ΔVAとなる。 つまり、第1容量性素子の充電開始時の電圧と、2回目の注目エッジが検出された時の電圧とが一致していれば、注目エッジの発生間隔の比と起動比とが一致していると判定することができる。
なお、ここで言う一致とは、必ずしも厳密に一致していることを指すものではなく、充放電回路や第1の容量性素子の精度から決まる許容範囲内で一致していればよい。
ところで、本発明のトランシーバの復号手段での復号の対象となる符号パタンが、注目エッジで区切られた複数ビットで構成され、且つデューティ比が異なる2種類のパタンからなる場合、復号手段は、例えば、次のように構成することができる。
即ち、第2の充放電回路が、一定の大きさの正極性の充電電流または一定の大きさの負極性の充電電流を、通信路の信号レベルが変化する毎に交互に切り替えて第2の容量性素子に供給することで該第2の容量性素子を充放電すると共に、エッジ検出回路にて注目エッジが検出される毎に、第2の容量性素子の充電電圧を初期電圧にリセットする。
そして、第2の判定回路が、エッジ検出回路が注目エッジを検出する毎に、充放電回路がリセットする前の第2の容量性素子の充電電圧が、予め設定された閾値より大きいか否かによって、符号パタンが0,1のいずれに該当するかを判定する。
つまり、正極性の充電電流と負極性の充電電流の大きさが同じである場合、注目エッジで区切られた期間(単位ブロック)での符号パタンのデューティ比が50%であれば、期間の終了時における第2の容量性素子の充電電圧は初期電圧と一致するため、デューティ比が50%以外に設定されていれば、第2の判定手段により、0,1のいずれかに判定すること、即ち、デューティ信号を復号することができるのである。
また、本発明のトランシーバにおいて、復号手段は、次のように構成されていてもよい。
即ち、クロック生成回路が、通信路上の信号に基づき、受信したフレームに同期したクロックを生成し、デコーダ回路が、クロック生成回路にて生成されたクロックを用いて、符号パタンを復号する。
つまり、符号パタンは複数ビットからなるため、デコーダ回路は、通常のプロトコルコントローラを動作させるクロックより、精度の低いクロックで動作させることができるため、クロック生成回路として、安価で消費電力の低いものを用いることができる。
次に、請求項12に記載された本発明のノードは、請求項7乃至請求項11のいずれか1項に記載のトランシーバを備えている。そして、通信制御手段が、トランシーバを介して信号を送受信し、動作モード遷移手段が、動作モードが通常モードの時に、予め設定されたスリープ条件が満たされると、動作モードをスリープモードに遷移させ、動作モードがスリープモードの時に、トランシーバからウェイクアップ信号が出力されると、動作モードを通常モードに復帰させる。
このように構成された本発明のノードは、上述した本発明の通信システムを構成するノードとして好適に用いることができる。
実施形態の通信システムの構成を示すブロック図。 通信システムにおけるデータフレームの構成を示す説明図。 トランシーバの概略構成を示す一部回路図を含んだブロック図。 アイドル検出回路の構成を示す回路図およびその動作を示すタイミング図。 エッジ検出回路の構成を示す回路図およびその動作を示すタイミング図。 エッジ間隔判定回路の構成を示す回路図。 起動フレーム受信時におけるエッジ間隔判定回路の動作を示すタイミング図。 非起動フレーム受信時におけるエッジ間隔判定回路の動作を示すタイミング図。 デューティ比デコーダの構成を示す回路図およびその動作を示すタイミング図。 データ比較回路の構成を示す回路図。 データ比較回路の動作を示すタイミング図。 起動フレーム検出部の他の構成例を示すブロック図。
以下に本発明の実施形態を図面と共に説明する。
[全体構成]
図1は、通信プロトコルとしてCAN(Controller Area Network)が用いられた車載用の通信システム1の構成を示すブロック図である。
図1に示すように、通信システム1は、車両に搭載された複数の電子制御ユニット10a,10b,10c,…を、共通の通信路LNを介して相互に通信可能となるように接続することで構成され、これら電子制御ユニット10a,10b,10c,…のそれぞれがノードとして機能するようにされている。以下では、電子制御ユニットをECUとよび、また、ECU10a,10b,10c,10d…を、特に区別しなでいずれか一つを指す場合はECU10と表記する。
このうち、通信路LNは一対のバスCANH,CANLで構成され、その両端は、図示しない終端抵抗によってそれぞれ終端されている。そして、通信路LNでは、両バスCANH,CANL間の電位差によって、通信路LNにおいて優位な信号レベルであるドミナント(例えば0)または通信路LNにおいて劣位な信号レベルであるレセッシブ(例えば1)を表現した差動信号によってNRZ符号が伝送される。
ECU10a,10b,10c,10d…としては、具体的には、エンジン制御を司るエンジンECU、ブレーキ制御を司るブレーキECU、ステアリング制御を司るステアリングECU、サスペンション制御を司るサスペンションECU、ライトのオン/オフを制御するECU等、種々の電子制御装置を挙げることができる。なお、図1では、ECU10を、4つだけ図示しているが、通信システム1を構成するECU10の数がこれに限定されないことは言うまでもない。
また、ECU10の一つ(ここではECU10b)には、通信システム1全体を起動するトリガとなる外部イベントが図示しない車載装置から入力されるように構成されている。
なお、外部イベントは、例えば、車両のドアが開閉操作された時に発生させてもよいし、通信システム1の起動のために設けられたスイッチが操作された時に発生させてもよい。
更に、ECU10は、制御対象を制御する際の通常の動作モードである通常モードと、通信を停止して消費電力を抑えるための動作モードであるスリープモードとで遷移するように構成されている。
[フレームフォーマット]
ここで、図2は、通信システム1においてデータの送受信に使用するデータフレームの構成を示す説明図である。
図2に示すように、データフレームは、1ビットのスタートオブフレーム(SOF)、11ビットのアイデンティファイア(ID)と1ビットのRTRビットで構成されたアービトレーションフィールド、各1ビットのIDEビット,予約ビット(rO)と4ビットのデータ長コード(DLC)からなるコントロールフィールド、0〜64ビット(即ち0〜8バイト)のデータからなるデータフィールド、15ビットのCRCシーケンスと1ビットのCRCデリミタからなるCRCフィールド、各1ビットのACKスロットとACKデリミタからなるACKフィールド、7ビットのエンドオブフレーム(EOF)により構成されている。
なお、標準フォーマットのデータフレームでは、図中太線で示すように、SOF,RTRビット,IDEビット,r0は常にドミナントとなり、CRCデリミタ,ACKデリミタ,EOFは常にレセッシブとなる。
そして、フレームを送信する際には、先行するフレームのEOFの後に挿入される3ビットのレセッシブで構成されたインターミッション(図示せず)の次のビットから送信を開始するように規定されている。また、フレーム中では、同一信号レベルがN(ここではN=5)ビット連続すると、反転した信号レベルを有するスタッフビットを挿入するように規定されている。
[起動フレーム]
また、通信システム1では、動作モードがスリープモードにあるECU10を起動(ウェイクアップ)する時に使用する起動フレームとして、IDを0x41Eまたは0x41Fに設定したデータフレームを使用する。つまり、これらのIDは、動作モードが通常モードにあるECU10同士の通信での使用が禁止されることになる。
なお、起動フレーム用のIDを、SOFおよびスタッフビットを含めたビットパタンで表すと、<0>100000(1)1111(0)Xとなる。なお、<0>がSOF、(0)(1)がスタッフビットを表し、‘X’は、ID=0x41Eの場合は‘0’、ID=0x41Fの場合は‘1’である。つまり、このビットパタンは、レセッシブからドミナントに変化するエッジである注目エッジが、フレームの先頭を含めて3回発生し、しかも、CANのフレーム生成規則に従った場合に、注目エッジの間隔が最短(2ビット)となるパタン(1番目の注目エッジと2番目の注目エッジとの間のパタン)と、最長(10ビット)となるパタン(2番目の注目エッジと3番目の注目エッジとの間のパタン)がいずれも含まれるように設定されている。
また、起動フレームでは、データフィールドに、起動するECU10を個別に指定するための指定パタンが設定される。この指定パタンは、4ビットを単位ブロックとして、この単位ブロック毎に所定の符号パタンを用いて1ビットの値を表す。具体的には、データ‘0’を、指定パタン「0111」で表し、データ‘1’を指定パタン「0001」で表すものとする。つまり、デューティ比が異なる2種類の符号パタンによって1ビットを表すように設定される。
なお、起動フレームのデータ長コード(DLC)は、そのDLC領域の末尾が必ずレセッシブとなり、コントロールフィールドとデータフィールドとの境界(即ち、最初の単位ブロックの先頭)で、必ずレセッシブからドミナントへの変化が検出されるように奇数に設定される。
つまり、指定コードのコード長(単位ブロックの数)は、データ長をpとして、p(バイト)×8(1バイトのビット数)/4(単位ブロックのビット数)となるため、具体的には2(p=1の場合),6(p=3の場合),10(p=5の場合)等から選択されることになる。
[ECU]
図1に戻り、ECU10は、自動車の各部を制御するための制御処理や他のECUと通信を行うための処理を実行するマイクロコンピュータ(以下「マイコン」という)11と、通信路LNに接続されて、マイコン11から与えられるデータ(送信フレーム)TxDを通信路LNに出力すると共に、通信路LN上のデータ(受信フレーム)RxDを受信してマイコン11に入力するトランシーバ12と、マイコン11やトランシーバ12に電源供給を行う電源回路13とを備えている。また、マイコン11は、トランシーバ12の動作を切り替えるスタンバイ信号STBをトランシーバ12に供給し、トランシーバ12は、通信路LNを介して起動フレームを受信したことを示すウェイクアップ信号WUまたはWAをマイコン11に供給するように構成されている。
なお、二つのウェイクアップ信号WU,WAのうち、ウェイクアップ信号WAは、通信路LNにフレームが送出された時には必ず起動する必要があるECU10(例えば、車載LANを監視する機能を有するECUや、LAN同士を接続するゲートウェイ機能を有したECU等)で使用され、以下では、無差別ウェイクアップ信号とも称する。また、ウェイクアップ信号WUは、自ECUを指定する指定パタンが設定された起動フレームを受信した場合だけウェイクアップすればよいECU10で使用され、以下では、個別ウェイクアップ信号とも称する。
なお、図1に示したECU10の構成は、いずれのECU10においても共通であり、各ECU10は、上記構成以外に、それぞれのECU10に個別に割り当てられた機能を実現するための構成を備えている。
[マイコン]
マイコン11は、CPU,ROM,RAM,IOポート等からなるマイコンにおける周知の構成の他、CANプロトコルに従って、フレームの送受信や、どのフレームを優先的に処理するかを決定する調停制御や、通信エラー処理等を実行するCANコントローラ14を備えている。
また、マイコン11は、CPUやCANコントローラ14を動作させるための動作クロックを生成するクロック回路(図示せず)を備えており、クロック回路への電源供給を遮断することで、クロック回路の動作(ひいてはCPU自身の動作)を停止させることができるように構成されている。このクロック回路が動作している時の動作モードが通常モードとなり、クロック回路が動作を停止している時の動作モードがスリープモードとなる。
更に、マイコン11は、動作モードが通常モードであれば、スタンバイ信号STBを非アクティブに設定し、スリープモードであれば、スタンバイ信号をアクティブに設定する。
そして、マイコン11は、動作モードが通常モードの時に、自身に割り当てられた各種制御を実行し、その実行中に、予め定められたスリープ条件が成立すると、スリープ処理を実行する。
このスリープ処理では、スタンバイ信号STBをアクティブに切り替えることで、トランシーバ12の通信機能を停止させ、トランシーバ12の起動フレーム監視機能を動作させた後、クロック回路への電源供給を遮断して、マイコン11自身を停止させることにより、動作モードをスリープモードに遷移させる。
また、マイコン11は、スリープモードの時に、トランシーバ12からのウェイクアップ信号WU(またはWA)がアクティブ(本実施形態ではハイレベル)になると、クロック回路が起動するように構成されている。そして、クロック回路が起動することにより、CPUが動作を開始してウェイクアップ処理を実行する。
このウェイクアップ処理では、スタンバイ信号STBを非アクティブに切り替えることで、トランシーバ12の起動フレーム監視機能を停止させ、トランシーバ12の通信機能を動作させる。これにより、ECU10の動作モードが通常モードに遷移する。
また、他のECUをウェイクアップさせる機能を有したECU10では、動作モードが通常モードの時に予め定められた起動条件が成立すると、起動対象となるECUの指定パタンを設定した起動フレームを送信することで、起動対象のECUを起動(ウェイクアップ)させる。なお、動作モードがスリープモードにあるECU10bが外部イベント(起動条件の一つ)を受け付けた場合、マイコン11では、ウェイクアップ信号WU(またはWA)がアクティブになった場合と同様に、クロック回路が起動し、上述のウェイクアップ処理を実行後に、起動フレームを送信する。
[トランシーバ]
図3は、トランシーバの概略構成を示す一部回路図を含んだブロック図である。
図3に示すようにトランシーバ12は、通信路LNを構成する一方のバスCANHと電源VCCとを接続する経路を導通/遮断するバス駆動用のトランジスタTR1と、通信路LNを構成する他方のバスCANLとグランドGNDとを接続する経路を導通/遮断するバス駆動用のトランジスタTR2と、CANコントローラから入力される送信データTxDの信号レベルに従って、トランジスタTR1,TR2を同時にオン,オフするドライバ15とを備えている。なお、各トランジスタTR1,TR2のバスCANH,CANLとの接続端には、トランジスタTR1,TR2を保護するためのダイオードD1,D2がそれぞれ接続されている。
また、トランシーバ12は、バスCANH,CANLの信号レベル(即ち、差動信号の信号レベル)を比較し、その比較結果を、CANコントローラ14に供給する受信データRxDとして出力するする第1コンパレータCP1、およびバスCANH,CANLの信号レベルを比較し、その比較結果を受信信号Rslとして出力する第2コンパレータCP2からなるレシーバ16とを備えている。ちなみにこれらコンパレータ(CP1、CP2)は、CANHとCANLの信号レベル差(電位差)が仕様で定められている値(本実施形態では、0.5V)以上有るか否かを比較してその結果を出力するものである。
更に、トランシーバ12は、第2コンパレータCP2からの受信信号Rslに基づき、予め指定された起動フレームを検出するとウェイクアップ信号WU,WAをマイコン11に出力する起動フレーム検出部17と、マイコン11からのスタンバイ信号STBに従って、ドライバ15,レシーバ16,起動フレーム検出部17への電源供給を許可または禁止することで、これら各部の動作を制御するウェイクアップ制御部18とを備えている。
なお、送信データTxDおよびスタンバイ信号STBの信号線は、それぞれ抵抗R1,R2を介して電源電圧VCCにプルアップされている。つまり、ECU10がスリープモードとなり、マイコン11の動作が停止した時に、トランシーバ12に入力される送信データTxDが「1」に、スタンバイ信号STBがアクティブレベルに固定されるように設定されている。
また、バスCANH,CANLは、それぞれ、トランジスタTR1,TR2がオフの時に、図示しない周知の終端抵抗によって信号レベル差が発生しない。すなわちレセッシブの状態となる。
そしてドライバ15は、送信データTxDが「1」の時には、トランジスタTR1,TR2をいずれもオフし、送信データTxDが「0」の時には、トランジスタTR1,TR2をいずれもオンする。つまり、通信路LN上の差動信号の信号レベルは、送信データTxDが「1」の時に0V(レセッシブ)となり、送信データTxDが「0」の時に2V(ドミナント)となるようにされている。
レシーバ16を構成する第1コンパレータCP1および第2コンパレータCP2は、ウェイクアップ制御部18からの指示に従って、いずれか一方が動作するように構成されている。また、第1コンパレータCP1は、差動信号の信号波形を正確に再現できるように、動作速度の速い(消費電力が比較的大きい)素子を用いて構成され、一方、第2コンパレータCP2は、消費電力の小さい素子を用いて構成されている。
ウェイクアップ制御部18は、スタンバイ信号STBが非アクティブレベル(動作モードが通常モード)の場合は、ドライバ15およびレシーバ16の第1コンパレータCP1に対する電源供給を許可することで、通信路LNを介して他のECU10と通信する通信機能を動作させる共に、レシーバ16の第2コンパレータCP2および起動フレーム検出部17に対する電源供給を禁止することにより、起動フレームを検出する起動フレーム監視機能を停止させる。
また、ウェイクアップ制御部18は、スタンバイ信号STBがアクティブレベル(動作モードがスリープモード)の場合は、逆に、ドライバ15およびレシーバ16の第1コンパレータCP1に対する電源供給を禁止することで、通信機能を停止させると共に、レシーバ16の第2コンパレータCP2および起動フレーム検出部17に対する電源供給を許可することで、起動フレーム監視機能を動作させる。
[起動フレーム検出部]
起動フレーム検出部17は、図3(b)に示すように、第2コンパレータCP2からの受信信号Rslに基づいて、通信路LNがアイドル状態にある場合にハイレベルとなるアイドル検出信号DTidleを生成するアイドル検出回路24と、受信信号Rslに基づいて、受信信号Rslがレセッシブからドミナントに変化するエッジ(以下「注目エッジ」と称する)が検出されたタイミングを表すエッジ検出信号EDを生成するエッジ検出回路25と、アイドル検出信号DTidleがハイレベルからロウレベルに変化した場合、即ち、通信路LNに送出されたフレームの先頭を検出した場合に、エッジ検出信号EDから特定される注目エッジの発生間隔が、予め設定された比率である起動比(本実施形態では1:5)になっている場合にアクティブレベルとなる無差別ウェイクアップ信号WAを生成するエッジ間隔判定回路26とを備えている。
また、起動フレーム検出部17は、受信信号Rsl,エッジ検出信号EDに基づき、受信したフレーム中の所定領域の信号をデューティ信号としてデコードすることで復号データDdcを生成するデューティ比デコーダ27と、エッジ間隔判定回路26にて生成された無差別ウェイクアップ信号WAがアクティブレベルの時に、エッジ検出信号EDおよび復号データDdcに基づいて、復号データDdcが当該ECUに割り当てられた起動コードと一致した場合にアクティブレベルとなる個別ウェイクアップ信号WUを生成するデータ比較回路28とを備えている。
以下、起動フレーム検出部17を構成する各部の回路構成および動作について詳述する。
[アイドル検出回路]
図4は、(a)がアイドル検出回路24の詳細な構成を示す回路図であり、(b)がアイドル検出回路24の各部の動作を示すタイミング図である。
図4(a)に示すように、アイドル検出回路24は、一端が接地されたコンデンサ31と、受信信号Rslの信号レベルに従って、コンデンサ31の非接地端を、接地レベルまたは定電流源32のいずれかに接続するスイッチ33と、電源電圧VCCを分圧する一対の抵抗からなり基準電圧Vref1を発生させる分圧回路34と、反転入力端子に基準電圧Vref1が印加され、非反転入力端子にコンデンサ31の非接地端の電圧(以下「充電電圧」という)Vcが印加されたコンパレータ35とからなり、コンパレータ35の出力をアイドル検出信号DTidleとして出力するように構成されている。
なお、スイッチ33は、受信信号Rslがドミナントの時に接地側に接続し、レセッシブの時に定電流源32側に接続するように設定されている。
また、定電流源32が供給する電流の大きさ、コンデンサ31の容量、基準電圧Vref1の大きさは、コンデンサ31を連続充電する期間が、通信路LN上の伝送符号の10ビット分以下の長さでは、充電電圧Vcが基準電圧Vref1に達することがなく、11ビット分以上の長さになると、充電電圧Vcが基準電圧Vref1を超えるような大きさとなるように設定されている。
このように構成されたアイドル検出回路24では、図4(b)に示すように、充電電圧Vcは、受信信号Rslがドミナントの時に0Vにリセットされ、受信信号Rslがレセッシブである間一定の割合で増大する。
そして、レセッシブの連続数が11ビット未満であり、充電電圧Vcが基準電圧Vref1以下の時には、アイドル検出信号DTidleは、アイドル状態ではないことを示す非アクティブレベルとなる。一方、レセッシブの連続数が11ビット以上となり、充電電圧Vcが基準電圧Vref1を超えると、その後、受信信号Rslがドミナントに変化するまでの間、アイドル検出信号DTidleは、アイドル状態であることを示すアクティブレベルとなる。
なお、アイドル状態か否かの判定基準となる11ビットは、ACKデリミタ(1ビット),EOF(7ビット),インターミッション(3ビット)を合計したビット数である。
[エッジ検出回路]
図5は、(a)がエッジ検出回路25の詳細な構成を示す回路図であり、(b)がエッジ検出回路25の各部の動作を示すタイミング図である。
図5(a)に示すように、エッジ検出回路25は、受信信号Rslの信号レベルを反転させる反転回路(NOTゲート)36と、受信信号RslおよびNOTゲート36の出力、即ち、受信信号Rslの反転信号を入力とし、その両方がロウレベルの時に出力がハイレベルとなる否定論理和回路(NORゲート)37からなり、NORゲート37の出力をエッジ検出信号EDとして出力する。
このように構成されたエッジ検出回路25は、図5(b)に示すように、エッジ検出信号EDとして、受信信号Rslがレセッシブからドミナントに変化する注目エッジのタイミング毎に、NOTゲート36の遅延時間分の幅を有するパルス信号を出力する。
[エッジ間隔判定回路]
図6は、エッジ間隔判定回路26の詳細な構成を示す回路図であり、図7,図8は、エッジ間隔判定回路26の各部の動作を示すタイミング図である。
図6に示すように、エッジ間隔判定回路26は、エッジ検出信号EDを分周することで選択信号SELを生成する分周回路41と、分周回路41からの選択信号SELの信号レベルに応じてコンデンサ51aを充放電する充放電回路42と、コンデンサ51aの充電電圧Vxが所定範囲内にある場合にハイレベルとなる判定信号DJを生成する判定回路43と、判定回路43から判定結果が出力されるタイミングに同期したラッチクロックRCKを生成するタイミング生成回路44と、判定回路43からの判定信号DJを、タイミング生成回路44にて生成されたラッチクロックRCKでラッチした結果を、無差別ウェイクアップ信号WAとして出力するラッチ回路45とからなる。
分周回路41は、反転出力端子/Qと入力端子Dを接続し、リセット端子CLRにアイドル検出信号DTidle、クロック端子CKにエッジ検出信号EDが印加されるように接続されたD型フリップフロップ回路からなり、反転出力端子/Qの出力が選択信号SELとなるようにされている。
つまり、分周回路41は、アイドル検出信号DTidleがロウレベル(非アイドル状態)の時に動作する。そして、分周回路41が生成する選択信号SELは、アイドル検出信号DTidleがロウレベルに変化した時点(動作を開始した時点)ではハイレベルとなり、以後、エッジ検出信号EDが入力される毎に信号レベルが反転する。
充放電回路42は、反転入力端子と出力端子との間にコンデンサ51aが接続されると共に、非反転端子に基準電圧Vref2が印加され、抵抗を介して反転入力端子に電流が供給されるように接続されたた演算増幅器からなる周知の積分回路51と、コンデンサ51aの両端を、アイドル検出信号DTidleがロウレベル(非アイドル状態)の時に短絡させるスイッチ52と、分周回路41からの選択信号SELの信号レベルに従って、第1の印加電圧VAまたは第2の印加電圧VBのいずれかを、積分回路51を構成する抵抗の電流供給端に印加するスイッチ53とを備えている。
なお、第1の印加電圧VA,第2の印加電圧VB,基準電圧Vref2は、次式を満たすように設定されている。但し、N=5である。
VB<Vref2<VA (4)
VA−Vref2=N×(Vref2−VB) (5)
このように構成された充放電回路42では、選択信号SELがハイレベルの時には、スイッチ53が第1の印加電圧VA側に接続され、抵抗(抵抗値R)を介して一定電流IA(=(VA−Vref2)/R)がコンデンサ51a(演算増幅器の反転入力端子端側)に流入する。その結果、コンデンサ51aの充電電圧(演算増幅器の出力端子側の電位)Vxは、一定電流IAとコンデンサ51aの容量で決まる一定の割合で低下する。
一方、選択信号SELがロウレベルの時には、スイッチ53が第2の印加電圧VB側に接続され、抵抗を介して一定電流IB(=(Vref2−VB)/R)がコンデンサ51a(演算増幅器の反転入力端子端側)から流出する。その結果、コンデンサ51aの充電電圧Vxは、一定電流IBとコンデンサ51aの容量で決まる一定の割合で増加する。つまり、スイッチ53の状態ひいては選択信号SELの状態に応じて、コンデンサ51aの充放電(正負極性の充電)が行われる。
但し、(5)式から明らかなように、充電電圧Vxが低下する割合の方が、増加する割合よりN倍速くなるように設定されている。つまり、充電終了時の充電電圧Vxは、一定電流IAで充電される期間と一定電流IBで充電される期間との比が1:Nであれば、充電開始時の初期電圧と同じ大きさとなり、一定電流IAで充電される期間の比率が大きければ初期電圧より小さく、逆に、一定電流IBで充電される期間の比率が大きければ初期電圧より大きくなる。
また、アイドル検出信号DTidleがハイレベルの時は、スイッチ52によってコンデンサ51aの両端が短絡されるため、充電電圧VxはVref2に初期化された状態となり、アイドル検出信号DTidleがロウレベルの時は、スイッチ52が開放されるため、上述の充放電動作が有効に行われることになる。
判定回路43は、直列接続された3個の抵抗からなり電源電圧VCCを分圧して、閾値電圧Vt1,Vt2を発生させる分圧回路54と、反転入力端子に閾値電圧Vt1,非反転入力端子に充電電圧Vxが印加されるコンパレータ55と、反転入力端子に充電電圧Vx,非反転入力端子に閾値電圧Vt2が印加されるコンパレータ56と、両コンパレータ55,56の出力JH,JLを入力として、両者がいずれもハイレベルの時にハイレベルとなる判定信号DJを出力する論理積回路(ANDゲート)57とからなる。
つまり、判定回路43が生成する判定信号DJは、充電電圧VxがVt1>Vx>Vt2の時にハイレベルとなり、それ以外ではロウレベルとなるようにされている。
但し、閾値Vt1は、一定電流IAで充電される期間と一定電流IBで充電される期間との比が1:Nの時の充電電圧Vx(即ち、初期電圧Vref2)より少なくとも大きく且つその比が2:2N+1の時の充電電圧Vxより僅かに小さくなるように設定される。また、閾値Vt2は、その比が1:Nの時の充電電圧Vxより少なくとも小さく且つその比が2:2N−1の時の充電電圧Vxより僅かに大きくなるように設定される。
タイミング生成回路44は、一対のD型フリップフロップ回路を直列に接続することで構成され、リセット端子CLRにはアイドル検出信号DTidleが印加され、初段の入力端子Dには常にハイレベルが印加され、シフトクロックSCKに従って動作するように接続された周知の2段シフトレジスタ58と、シフトレジスタ58の2段目(最終段)の反転出力端子/Qの出力およびエッジ検出信号EDを入力とし、両者がいずれもハイレベルの時にハイレベルとなるシフトクロックSCKを生成するANDゲート59とからなる。なお、シフトレジスタ58の2段目の非反転出力端子Qの出力がラッチクロックRCKとなる。
このように構成されたタイミング生成回路44では、シフトレジスタ58は、アイドル検出信号DTidleがロウレベルの時に、シフトレジスタ58の出力であるラッチクロックRCKがロウレベルである間、エッジ検出信号EDをシフトクロックSCKとして動作する。
つまり、ラッチクロックRCKは、初期状態ではロウレベルに保持され、アイドル検出信号DTidleがロウレベルに変化した後に入力される2個目の注目エッジのタイミングで、ハイレベルとなり、以後、アイドル検出信号DTidleがハイレベルに変化するまで、その状態が保持されたものとなる。
ラッチ回路45は、入力端子に判定信号DJが印加され、クロック端子CKにラッチクロックRCKが印加され、リセット端子CLRにアイドル検出信号DTidleが印加されるように接続されたD型フリップフロップ回路からなる。つまり、ラッチクロックRCKが立ち上がるタイミングで、判定信号DJがハイレベルであれば、無差別ウェイクアップ信号WAはアクティブレベル(ハイレベル)となるようにされている。
ここで図7は、起動フレーム用のID(=0x41F)を有するフレームが通信路LN上に出力された時のエッジ間隔判定回路26の動作を示すタイミング図である。
図7に示すように、エッジ検出信号EDは、SOFの開始タイミング(以後単に「開始タイミング」という)T0、IDの1ビット目と2ビット目の間のタイミング(以後「第1のタイミング」という)T1、IDの9ビット目(スタッフビットを除く)の後に入力されたスタッフビットとIDの10ビット目の間のタイミング(以後「第2のタイミング」という)T2、IDの11ビット目とRTRとの間のタイミングT3を注目エッジとして検出する。
そして、開始タイミングT0で、アイドル検出信号DTidleがハイレベルからロウレベルに変化することにより、分周回路41,充放電回路42,タイミング生成回路44が動作を開始する。これにより、基準電圧Vref2に初期化されていたコンデンサ51aに対して、一定電流IAでの充電が開始されることにより、充電電圧Vxは、一定の割合で降下を開始する。
その後、第1のタイミングT1で選択信号SELが反転すると、コンデンサ51aに対する充電電流がIBに切り替わることにより、コンデンサ51aの充電極性が逆転するため、充電電圧Vxは、一定の割合で上昇を開始する。
なお、この間、判定回路43では、充電電圧Vxと閾値電圧Vt1,Vt2との比較が常時行われ、その結果が判定信号DJとして出力され続けている。
そして、第2のタイミングT2でラッチクロックRCKが立ち上がると、ラッチ回路45によって判定信号DJがラッチされ、そのラッチされた結果が、無差別ウェイクアップ信号WAとして出力される。
ここでは、開始タイミングT0から第1のタイミングT1までが2ビット幅、第1のタイミングT1から第2のタイミングT2までが10ビット幅であり、即ち、注目エッジの発生間隔は1:5となっている。
また、開始タイミングT0から第1のタイミングT1までの充電速度は、第1のタイミングT1から第2のタイミングT2までの充電速度のN(=5)倍に設定されているため、第2のタイミングT2での充電電圧Vxは、初期状態の基準電圧Vref2に戻り、Vt1>Vx>Vt2となるため、判定信号DJがハイレベル、ひいては無差別ウェイクアップ信号WAがアクティブレベル(ハイレベル)となる。
また、図8は、起動フレーム用以外の通常のID(=0x41D)を有するフレームが通信路LN上に出力された時のエッジ間隔判定回路の動作を示すタイミング図である。
図8に示すように、SOFの開始タイミングが開始タイミングT0、IDの1ビット目と2ビット目の間のタイミングが第1のタイミングT1、IDの9ビット目(スタッフビットを除く)と10ビット目の間のタイミングが第2のタイミングT2となる。
この場合、開始タイミングT0から第1のタイミングT1までが2ビット幅、第1のタイミングT1から第2のタイミングT2までが9ビット幅であり、注目エッジの発生間隔は2:9となっている。
このため、第2のタイミングT2での充電電圧Vxは、初期状態の基準電圧Vref2に復帰せず、Vx>Vt2となるため、判定信号DJがロウレベル、ひいては無差別ウェイクアップ信号WAが非アクティブレベル(ロウレベル)となる。
このように、起動フレーム用のID(注目エッジの発生間隔が1:Nとなるビットパタン)が検出された場合だけ、無差別ウェイクアップ信号WAはアクティブレベルとなる。
[デューティ比デコーダ]
図9は、(a)がデューティ比デコーダ27の詳細な構成を示す回路図であり、(b)がデューティ比デコーダ27の各部の動作を示すタイミング図である。
図9(a)に示すように、デューティ比デコーダ27は、反転入力端と出力端との間にコンデンサ61aが接続されると共に、非反転入力端に基準電圧Vref3が印加され、反転入力端に抵抗を介して受信信号Rslが印加されるように接続された演算増幅器からなる周知の積分回路61と、コンデンサ61aの両端を、エッジ検出信号EDがハイレベルの時に短絡させるスイッチ62と、反転入力端に積分回路61の出力Vyが印加され、非反転入力端に基準電圧Vref3が印加されたコンパレータ63と、D型フリップフロップからなり、コンパレータ63の出力CPyをエッジ検出信号EDのタイミングでラッチするラッチ回路64とを備え、ラッチ回路64の出力を復号データDdcとして出力するように構成されている。
なお、基準電圧Vref3は、受信信号RslのハイレベルをVH、ロウレベルをVLとして、両者の中間値、即ち、Vref3=(VH+VL)/2となるように設定されている。
このように構成されたデューティ比デコーダ27では、注目エッジが検出される毎に積分回路61の出力であるコンデンサ61aの充電電圧(演算増幅器の出力端子側の電圧)Vyは基準電圧Vref3に初期化される。そして、受信信号Rslがロウレベルの間は、充電電圧Vyが一定の割合で増加し、受信信号Rslがハイレベルに変化すると、充電電圧Vyは増加時と同じ一定の割合で減少する。
つまり、連続する注目エッジの間に、受信信号Rslの信号レベルが、ロウレベルの期間よりハイレベルの期間の方が長ければ、その期間の終了時点で、充電電圧Vyは、基準電圧Vref3より小さくなり、逆に、ロウレベルの期間がハイレベルの期間より長ければ、その期間の終了時点で、充電電圧Vyは、基準電圧Vref3より大きくなる。換言すれば、連続する注目エッジの間を一つのデューティ符号とみなして、そのデューティ符号のデューティ比が50%以上であるか否かによって、デューティ符号を、2値のデジタルデータにデコードする。
そして、図9(b)に示すように、起動フレームのデータフィールドでは、4ビットの単位ブロック毎に必ず注目エッジが検出されるように設定されているため、データフィールドのビットパタンは、デューティ比デコーダ27によって、単位ブロック毎にデコードされることになる。
[データ比較回路]
図10は、データ比較回路28の詳細な構成を示す回路図である。
図10に示すように、データ比較回路28は、無差別ウェイクアップ信号WAの信号レベルを反転させる反転回路(NOTゲート)71と、複数のD型フリップフロップ回路を直列に接続することで構成され、NOTゲート71の出力を入力とし、エッジ検出信号EDをシフトクロックとして動作する周知の多段シフトレジスタからなる遅延回路72と、遅延回路72と同様に複数のD型フリップフロップ回路を直列に接続することで構成され、復号データDdcを入力とし、エッジ検出信号EDをシフトクロックとして動作する多段シフトレジスタからなるデコードデータ保持回路73とを備えている。
また、データ比較回路28は、複数のスイッチ等で構成され、当該ECU10に割り当てられた割当パタンに応じた信号レベルが設定される割当パタン設定回路74と、複数の排他的論理和回路(XORゲート)および論理和回路(ORゲート)で構成され、デコードデータ保持回路73に保持されたデコードデータと割当パタン設定回路74の設定内容とが一致した場合にハイレベルとなる一致信号を生成する比較ゲート回路75と、D型フリップフロップ回路からなり、遅延回路72の出力がリセット端子に印加され、比較ゲート回路75からの一致信号を、エッジ検出信号EDのタイミングでラッチするラッチ回路76とを備えており、ラッチ回路76にてラッチされた信号が、個別ウェイクアップ信号WUとして出力される。
なお、遅延回路72は、NOTゲート71の出力がハイレベルからロウレベルに変化するタイミングを、データフィールドの終了タイミングの注目エッジ一個分手前(即ち、最終の単位ブロックの開始タイミング)まで遅延させるものである。従って、遅延回路72を構成するシフトレジスタの段数は、無差別ウェイクアップ信号WAがアクティブレベル(ハイレベル)に変化してから、データフィールドが終了するまでの期間に発生する注目エッジの個数、ひいてはその期間のビットパタンを決定する要因となる指定コードのビット数(データフィールドに設定するブロック数)の設定に応じて適宜設定される。
また、デコードデータ保持回路73を構成するシフトレジスタの段数、および割当パタン設定回路74のスイッチの数は、指定コードのビット数と同数に設定されている(図では6)。
このように構成されたデータ比較回路28では、デューティ比デコーダ27でのデコード結果である復号データDdcが、デコードデータ保持回路73に順次保持されると共に、その保持内容と、割当パタン設定回路74の設定内容とが一致するか否かを比較した結果である比較データDcpが、比較ゲート回路75によって生成される。
この比較データDcpは、図11に示すように、データフィールドが終了するタイミング、即ち、全ての復号データDdcがデコードデータ保持回路73に保持されたタイミングでラッチ回路76にラッチされ、デコードデータ保持回路73に保持された復号データDdcと比較データDcpとが一致するとアクティブレベル(ハイレベル)となる個別ウェイクアップ信号WUとして出力される。
[効果]
以上説明したように、通信システム1では、スリープモードのECU10は、通信路LNを監視し、フレームの先頭を含む3個の注目エッジの発生間隔の比が所定の起動比となっているフレームを起動フレームとして認識し、更に、その起動フレームのデータフィールドに設定されている指定パタンをデューティ信号とみなしてデコードした復号データDdcが、予め自ECU10に割り当てられた割当パタンと一致する場合に、通常モードに遷移(ウェイクアップ)するようにされている。
従って、通信システム1によれば、起動フレームを受信したか否かの判定のために、CANコントローラ14やクロック回路を動作させる必要がないため、スリープモードにあるECU10の消費電力を大幅に削減することができる。
また、通信システム1によれば、起動フレームを受信した全てのノードが無条件に起動するのではなく、起動フレームにおいて指定したノードのみが起動するため、起動する必要のないノードが無駄に起動することがなく、当該通信システム1全体の消費電力を削減することができる。
[発明との対応]
本実施形態において、アイドル検出回路24がアイドル状態判定手段、エッジ検出回路25がエッジ検出手段、エッジ間隔判定回路26がエッジ間隔判定手段、デューティ比デコーダ27が復号手段、データ比較回路28が比較手段に相当する。
また、エッジ間隔判定回路26におけるコンデンサ51aが第1の容量性素子、分周回路41および充放電回路42が第1の充放電回路、判定回路43が第1の判定回路に相当し、デューティ比デコーダ27におけるコンデンサ61aが第2の容量性素子、積分回路61が第2の充放電回路、コンパレータ63が第2の判定回路に相当する。
更に、CANコントローラ14が通信制御手段、マイコン11が実行するウェイクアップ処理,スリープ処理およびマイコン11の一部であるクロック回路を起動停止するための構成が動作モード遷移手段に相当する。また、データフレームのSOF,IDが起動パタン領域、データフィールドが指定パタン領域に相当する。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において様々な態様にて実施することが可能である。
例えば、上記実施形態の起動フレーム検出部17では、デューティ比デコーダ27が、データフィールドに設定された単位ブロック毎のビットパタンをデューティ信号とみなして、単位ブロック内における二つの信号レベルの期間の長さを比較することで、クロックを用いることなくデコードを行っているが、例えば、図12に示す起動フレーム検出部17aのように、起動フレームを認識した(無差別ウェイクアップ信号WAがアクティブになった)場合に、受信信号Rslからクロック信号を再生するPLL回路29を動作させ、そのPLL回路29が発生させたクロックに従って、デコーダ27aがデータフィールドのビットパタンをデコードするように構成してもよい。なお、PLL回路29が本発明(請求項10)におけるクロック生成回路、デコーダ27aがデコーダ回路に相当する。
この場合、起動フレームのデータフィールドに設定するビットパタンは、複数ビットからなる単位ブロック毎に設定されたものであって、CANコントローラ14で使用するクロックより精度の低いクロックでのデコードが可能なパタンであればよい。
上記実施形態では、起動比を1:Nとしたが、N:1としてもよい。この場合、起動フレーム用のIDとしてID=0x07Cまたは0x07Dを用いればよい。即ち、このIDをSOFおよびスタッフビットを含めたビットパタンで表すと、<0>0000(1)1111(0)10Xとなる。但し、<0>はSOF、(1)(0)はスタッフビットを表し、Xは、ID=0x07Cの場合に‘0’、ID=0x07Cの場合に‘1’となる。
つまり、注目エッジは、フレームの開始タイミング、IDの8ビット目(スタッフビットを除く,以下同様)とその直後に挿入されたスタッフビットとの間のタイミング、IDの9ビット目と10ビット目の間のタイミングで計3回で発生し、その間隔の比は10:2となる。
上記実施形態では、アイドル状態か否かの判定基準が11ビットに設定されているが、これに限るものではなく、フレーム生成規則に基づき、フレーム中で発生することのない連続数、即ち、スタッフビットの挿入により許容される同一信号レベルのビット数Nに1を加えたビット数(本実施形態では6ビット)以上で、上述の11ビット以下であればよい。
1…通信システム 10(10a〜10d)…電子制御ユニット(ECU) 11…マイクロコンピュータ(マイコン) 12…トランシーバ 13…電源回路 14…CANコントローラ 15…ドライバ 16…レシーバ 17,17a…起動フレーム検出部 18…ウェイクアップ制御部 24…アイドル検出回路 25…エッジ検出回路 26…エッジ間隔判定回路 27…デューティ比デコーダ 27a…デコーダ 28…データ比較回路 29…PLL回路 31…コンデンサ 32…定電流源 33…スイッチ 34…分圧回路 35…コンパレータ 36…反転回路(NOTゲート) 37…否定論理和回路(NORゲート) 41…分周回路 42…充放電回路 43…判定回路 44…タイミング生成回路 45…ラッチ回路 51…積分回路 51a…コンデンサ 52,53…スイッチ 54…分圧回路 55,56…コンパレータ 57,59…論理積回路(ANDゲート) 58…シフトレジスタ 61…積分回路 61a…コンデンサ 62…スイッチ 63…コンパレータ 64…ラッチ回路 71…反転回路(NOTゲート) 72…遅延回路 73…デコードデータ保持回路 74…割当パタン設定回路 75…比較ゲート回路 76…ラッチ回路

Claims (11)

  1. 通信路に接続されたノード間の通信にNRZ(Non Return to Zero)符号を用い、前記ノードは、前記通信路において劣位な信号レベルであるレセッシブが予め設定された期間以上継続した場合をアイドル状態として、前記通信路の信号レベルが前記アイドル状態の後に前記通信路において優位な信号レベルであるドミナントに変化すると、これをフレームの先頭として認識すると共に、前記通信路を介した通信を停止して低消費電力状態にする動作モードであるスリープモードの時に、所定の起動フレームが前記通信路に送出されると、前記通信路を介した通信を実行可能な動作モードである通常モードに遷移するように構成された通信システムであって、
    前記起動フレームは、レセッシブからドミナントに変化するエッジを注目エッジとして、該注目エッジがフレームの先頭を含めて少なくとも3回発生し、且つ、該注目エッジの発生間隔の比が予め設定された比率である起動比となるようにビットパタンが設定される起動パタン領域と、起動対象となるノードを指定するためのビットパタンが設定される指定パタン領域とを有し、
    前記ノードは、前記通信路に送出されたフレームの起動パタン領域で検出される前記注目エッジの発生間隔の比が前記起動比となり、且つ、該フレームの指定パタン領域で検出されるビットパタンが自ノードを指定するために予め割り当てられた割当パタンである場合に、該フレームを前記起動フレームとして認識することを特徴とする通信システム。
  2. 前記起動パタン領域は、前記注目エッジの発生間隔が最短となるビットパタンと、前記注目エッジの発生間隔がフレーム生成規則で許容された最長となるビットパタンとを含むように設定され、
    前記ノードは、前記最短の発生間隔と、前記最長の発生間隔との比を前記起動比とすることを特徴とする請求項1に記載の通信システム。
  3. 前記フレーム生成規則には、同一の信号レベルがN(Nは2以上の整数)ビット連続した場合に逆の信号レベルを有するスタッフビットを挿入することが含まれ、
    前記起動比は、1:NまたはN:1であることを特徴とする請求項2に記載の通信システム。
  4. 前記指定パタン領域では、複数ビットからなる単位ブロック毎に符号化されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の通信システム。
  5. 前記単位ブロックは3ビット以上で構成され、デューティ比の異なる2種類の符号パタンによって1ビットの情報を表すことを特徴とする請求項4に記載の通信システム。
  6. 前記通信路における通信プロトコルとして、CAN(Controller Area Network)を用い、CANにおけるデータフレームのSOFおよびアービトレーションフィールドを前記起動パタン領域として使用し、CANのデータフレームのデータフィールドを前記指定パタン領域として使用することを特徴とする請求項1乃至請求項5のいずれか1項に記載の通信システム。
  7. NRZ符号を用いて通信を行う通信路に接続され、前記通信路を介した通信を停止して消費電力を抑制するための動作モードであるスリープモードの時に、所定の起動フレームが前記通信路に送出されると、前記通信路を介した通信を実行可能な動作モードである通常モードに遷移するように構成されたノードにおいて、前記通信路を介した信号を送受信するために使用されるトランシーバであって、
    前記通信路において劣位な信号レベルであるレセッシブが予め設定された期間以上継続している状態をアイドル状態として、前記通信路が前記アイドル状態にあるか否かを判定するアイドル状態判定手段と、
    前記通信路の信号レベルがレセッシブからドミナントに変化するエッジである注目エッジを検出するエッジ検出手段と、
    前記アイドル状態判定手段での判定結果からアイドル状態から非アイドル状態への変化が検出されると、これをフレームの先頭として、前記エッジ検出手段で検出される前記フレームの先頭を含む少なくとも3個の注目エッジに基づき、該注目エッジの発生間隔の比が、予め設定された起動比と一致するか否かを判定するエッジ間隔判定手段と、
    前記エッジ間隔判定手段により、前記注目エッジの発生間隔の比が起動比と一致すると判定された場合、前記フレームの指定パタン領域に示された符号パタンを復号する復号手段と、
    前記復号手段での復号結果が、予め設定された割当パタンと一致する場合に、起動フレームを受信したことを示すウェイクアップ信号を出力する比較手段と、
    を備えることを特徴とするトランシーバ。
  8. 前記エッジ間隔判定手段は、
    電荷を充放電可能な第1の容量性素子と、
    前記アイドル状態判定手段での判定結果が非アイドル状態である場合に動作し、一定の大きさの正極性の充電電流または一定の大きさの負極性の充電電流を、前記エッジ検出回路にて注目エッジが検出される毎に交互に切り替えて前記第1の容量性素子に供給することで該第1の容量性素子を充放電する第1の充放電回路と、
    前記充放電回路の動作開始後、2個目の注目エッジが前記エッジ検出回路によって検出されたタイミングで、前記第1の容量性素子の充電電圧と、前記起動比に相当する閾値電圧とを比較することによって、前記注目エッジの発生間隔の比が前記起動比と一致するか否かを判定する第1の判定回路と、
    からなり、前記起動比をA:Bとして、フレームの先頭から1個目の注目エッジの間に前記充放電回路が供給する充電電流と1個目の注目エッジから2個目の注目エッジの間に前記充放電回路が供給する充電電流の大きさの比がB:Aに設定されていることを特徴とする請求項7に記載のトランシーバ。
  9. 前記符号パタンは、前記注目エッジで区切られた複数ビットで構成され、且つデューティ比が異なる2種類のパタンからなり、
    前記復号手段は、
    電荷を充放電可能な第2の容量性素子と、
    一定の大きさの正極性の充電電流または一定の大きさの負極性の充電電流を、前記通信路の信号レベルが変化する毎に交互に切り替えて前記第2の容量性素子に供給することで該第2の容量性素子を充放電すると共に、前記エッジ検出回路にて注目エッジが検出される毎に、前記第2の容量性素子の充電電圧を初期電圧にリセットする第2の充放電回路と、
    前記エッジ検出回路が注目エッジを検出する毎に、前記充放電回路がリセットする前の前記第2の容量性素子の充電電圧が、予め設定された閾値より大きいか否かによって、前記符号パタンが0,1のいずれに該当するかを判定する第2の判定回路と、
    からなることを特徴とする請求項7又は請求項8に記載のトランシーバ。
  10. 前記復号手段は、
    前記通信路上の信号に基づき、受信したフレームに同期したクロックを生成するクロック生成回路と、
    前記クロック生成回路にて生成されたクロックを用いて、前記符号パタンを復号するデコーダ回路と、
    からなることを特徴とする請求項7又は請求項8に記載のトランシーバ。
  11. 請求項7乃至請求項10のいずれか1項に記載のトランシーバと、
    前記トランシーバを介して信号を送受信する通信制御手段と、
    前記動作モードが通常モードの時に、予め設定されたスリープ条件が満たされると、動作モードがスリープモードに遷移し、前記動作モードがスリープモードの時に、前記トランシーバからウェイクアップ信号が出力されると、前記動作モードを通常モードに復帰させる動作モード遷移手段と、
    を備えることを特徴とするノード。
JP2010191030A 2010-08-27 2010-08-27 通信システム、トランシーバ、ノード Active JP5505203B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191030A JP5505203B2 (ja) 2010-08-27 2010-08-27 通信システム、トランシーバ、ノード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191030A JP5505203B2 (ja) 2010-08-27 2010-08-27 通信システム、トランシーバ、ノード

Publications (2)

Publication Number Publication Date
JP2012049886A JP2012049886A (ja) 2012-03-08
JP5505203B2 true JP5505203B2 (ja) 2014-05-28

Family

ID=45904235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191030A Active JP5505203B2 (ja) 2010-08-27 2010-08-27 通信システム、トランシーバ、ノード

Country Status (1)

Country Link
JP (1) JP5505203B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424174A1 (de) * 2010-08-27 2012-02-29 ELMOS Semiconductor AG Verfahren zum Betreiben eines Bus-Systems
JP5662188B2 (ja) * 2011-02-08 2015-01-28 株式会社日本自動車部品総合研究所 通信システム、トランシーバ、ノード
JP5616257B2 (ja) * 2011-03-08 2014-10-29 株式会社日本自動車部品総合研究所 復号回路およびノード
JP5720707B2 (ja) 2013-02-13 2015-05-20 株式会社デンソー 通信システム及び通信ノード
JP5725058B2 (ja) 2013-02-26 2015-05-27 株式会社デンソー データ中継装置
JP5733327B2 (ja) 2013-02-27 2015-06-10 株式会社デンソー 通信ノード

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519720B1 (en) * 1998-03-10 2003-02-11 Koninklijke Philips Electronics N.V. Data transmission system
JP5057304B2 (ja) * 2007-06-08 2012-10-24 国立大学法人名古屋大学 車載通信システム及び車載通信方法

Also Published As

Publication number Publication date
JP2012049886A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
US20120051241A1 (en) Communication system with a plurality of nodes communicably connected for communication based on NRZ (non return to zero) code
JP5505203B2 (ja) 通信システム、トランシーバ、ノード
JP5134055B2 (ja) 通信システム、トランシーバ、ノード
JP5662188B2 (ja) 通信システム、トランシーバ、ノード
US9081565B2 (en) Communication network system for detect and wake up a network node that does not properly recognize a wake up frame
CN113691430B (zh) 操作通信总线的方法、对应系统、设备以及车辆
JP5379308B2 (ja) バスシステムの加入者をウェイクアップさせる方法及び装置、並びに、対応する加入者
US11520600B2 (en) Controller area network transceiver and controller
US8848767B2 (en) Transceiver for communicating signal encoded to include clock information
US8718120B2 (en) Transceiver
US20200393891A1 (en) Physical layer device with sleep mode and partial networking support and related systems, methods and devices
JP2012049885A (ja) トランシーバ及び通信装置
US8825935B2 (en) Pattern detection for partial networking
JP5616177B2 (ja) 通信システム、トランシーバ、ノード
KR20190130769A (ko) 차량 네트워크에서 통신 노드의 웨이크업 방법 및 장치
JP5678849B2 (ja) 通信システム及びトランシーバ
US8432981B1 (en) High frequency and idle communication signal state detection
WO2017208612A1 (ja) リンギング抑制回路
US8566466B2 (en) Method and system for switching between subnetwork operation and full network operation
JP5113229B2 (ja) 通信システム、トランシーバ、ノード
US20240031181A1 (en) Managing power state at a physical layer
JP5091292B2 (ja) 通信システム、トランシーバ、ノード
JP5617795B2 (ja) 通信システム及び、当該通信システムに用いられるマスタノード、スレーブノード
US8391420B1 (en) Low frequency communication signal state detection
JP5616257B2 (ja) 復号回路およびノード

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250