JP5502714B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5502714B2
JP5502714B2 JP2010278727A JP2010278727A JP5502714B2 JP 5502714 B2 JP5502714 B2 JP 5502714B2 JP 2010278727 A JP2010278727 A JP 2010278727A JP 2010278727 A JP2010278727 A JP 2010278727A JP 5502714 B2 JP5502714 B2 JP 5502714B2
Authority
JP
Japan
Prior art keywords
fuel gas
gas supply
fuel
fuel cell
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010278727A
Other languages
English (en)
Other versions
JP2012129037A (ja
Inventor
尚史 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010278727A priority Critical patent/JP5502714B2/ja
Priority to PCT/JP2011/075230 priority patent/WO2012081321A1/en
Priority to US13/824,225 priority patent/US8951692B2/en
Priority to EP11785797.9A priority patent/EP2652828B1/en
Publication of JP2012129037A publication Critical patent/JP2012129037A/ja
Application granted granted Critical
Publication of JP5502714B2 publication Critical patent/JP5502714B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体が、セパレータ間に積層される燃料電池に関する。
通常、固体電解質形燃料電池(SOFC)は、電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この電解質の両側にアノード電極及びカソード電極を配設した電解質・電極接合体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定数だけ積層された燃料電池スタックとして使用されている。
上記の燃料電池では、電解質・電極接合体を構成するアノード電極及びカソード電極に、それぞれ燃料ガス(例えば、水素ガス)及び酸化剤ガス(例えば、空気)を供給するために、セパレータの面方向に沿って燃料ガス通路及び酸化剤ガス通路が形成されている。
例えば、特許文献1に開示されている平板積層型燃料電池は、図9に示すように、発電セルに積層されるセパレータ1aを備えている。セパレータ1aは、左右のマニホールド部分2a、2aと、発電セルを配置する中央の部分3aとが、連絡部分4a、4aにより連結されており、この連絡部分4aが可撓性を有している。
また、特許文献2に開示されている燃料電池セルスタックは、図10に示すように、セル1bと、カソード板状部材2b及びアノード板状部材3bにより構成されるセパレータとを交互に積層している。
セパレータは、燃料ガスを燃料極に供給する燃料極供給マニホールド4b、酸化剤ガスを空気極に供給する空気極供給マニホールド5b及び燃料ガスの排ガスと未反応の燃料ガスを燃料極から排出する燃料ガス排出マニホールド6bとを有する内部マニホールドを構成している。
セパレータには、2枚のセル1bを収容するためのセルホルダ7b、7bが、燃料極供給マニホールド4b、空気極供給マニホールド5b及び燃料ガス排出マニホールド6bを挟んで形成されている。
さらに、特許文献3に開示されているセパレータは、図11に示すように、外部から燃料ガスを供給する燃料供給マニホールド1cと、外部に燃料ガスを排出する燃料排出マニホールド2cと、外部から酸化剤ガスを供給する酸化剤ガス供給マニホールド3cとが、それぞれパイプ4c、5c及び6cによってセンタプレート7cに接続されている。セパレータは、これらパイプ4c、5c及び6cによって、燃料ガスの給排気及び酸化剤ガスの供給を行っている。
特開2006−120589号公報 特開2007−317594号公報 特開2007−329063号公報
ところで、上記の特許文献1では、左右にマニホールド部分2a、2aが設けられているため、燃料電池の発電による発生熱を介して使用前の燃料ガス及び酸化剤ガスを良好に加熱することができない。従って、電解質・電極接合体に供給される前の燃料ガス及び酸化剤ガスの温度差を低減することができず、前記電解質・電極接合体の安定した発電が遂行されないという問題がある。
しかも、高荷重を要する複数のマニホールド部分2a、2aが離間しているため、熱応力が低荷重部分であるMEA積層部(中央の部分3a)に作用し易く、セパレータ1aに歪みが惹起されるという問題がある。
また、上記の特許文献2では、セパレータの面内にセル1bが配置されるセルホルダ7b、7bと、燃料極供給マニホールド4b、空気極供給マニホールド5b及び燃料ガス排出マニホールド6bとが一体に形成されている。このため、比較的低荷重であるセル1bと比較的高荷重である各マニホールドとの間で、それぞれ所望の荷重を独立して付与することができないという問題がある。
さらに、上記の特許文献3では、燃料供給マニホールド1c、燃料排出マニホールド2c及び酸化剤ガス供給マニホールド3cが、互いに離間して個別に設けられている。これにより、熱応力が低荷重部分であるMEA積層部(センタプレート7c)に作用し易く、セパレータに歪みが惹起されるという問題がある。
本発明はこの種の問題を解決するものであり、簡単な構成で、熱に起因するセパレータの歪みを可及的に抑制することができ、しかも発電性能、熱効率及び耐久性の向上を図ることが可能な燃料電池を提供することを目的とする。
本発明は、電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体が、セパレータ間に積層される燃料電池に関するものである。
この燃料電池では、セパレータは、電解質・電極接合体を挟持するとともに、アノード電極に接する一方の面側に形成され、前記アノード電極の電極面に沿って燃料ガスを供給する燃料ガス通路、及びカソード電極に接する他方の面側に形成され、前記カソード電極の電極面に沿って酸化剤ガスを供給する酸化剤ガス通路が個別に設けられる挟持部と、前記挟持部に連結される橋架部と、前記橋架部に連結される反応ガス供給部とを備えている。橋架部には、燃料ガスを積層方向に形成される燃料ガス供給孔を介して燃料ガス通路に供給するための燃料ガス供給通路、燃料ガス通路を流通した前記燃料ガスを前記積層方向に形成される燃料ガス戻し孔を介して戻すための燃料ガス戻し通路、及び酸化剤ガスを前記積層方向に形成される酸化剤ガス供給孔を介して酸化剤ガス通路に供給するための酸化剤ガス供給通路が、それぞれ前記積層方向に交差する方向に形成され、反応ガス供給部には、前記燃料ガスを前記燃料ガス供給通路に供給するための燃料ガス供給連通孔、前記燃料ガス戻し通路を流通した前記燃料ガスを導出するための燃料ガス導出連通孔、及び前記酸化剤ガスを前記酸化剤ガス供給通路に供給するための酸化剤ガス供給連通孔が、それぞれ前記積層方向に形成されている。
また、この燃料電池では、反応ガス供給部は、燃料ガス供給連通孔と酸化剤ガス供給連通孔との間に、燃料ガス導出連通孔が設けられるとともに、前記燃料ガス供給連通孔、前記燃料ガス導出連通孔及び前記酸化剤ガス供給連通孔は、挟持部の中央と橋架部とを結ぶ仮想直線に交差する方向に配列されることが好ましい。
このため、供給ガスである燃料ガス及び酸化剤ガスは、燃料ガス通路を流通して燃料ガス導出連通孔を移動する高温の燃料ガスにより加熱される。従って、熱自立(外部から熱を加えることなく自ら発生する熱のみで燃料電池の動作温度を維持すること)が促進され、熱効率の向上が図られる。
さらに、この燃料電池では、反応ガス供給部は、橋架部の電極面に沿う短尺側の幅寸法の内方に燃料ガス導出連通孔を設けるとともに、前記橋架部の前記幅寸法の外方に前記燃料ガス供給連通孔及び酸化剤ガス供給連通孔を設けることが好ましい。
これにより、橋架部の幅寸法が良好に短尺化され、挟持部と反応ガス供給部との間で、それぞれ所望の荷重を独立して確実に付与することができる。
さらにまた、この燃料電池では、橋架部は、燃料ガス供給通路と酸化剤ガス供給通路との間に、燃料ガス戻し通路が設けられることが好ましい。このため、供給ガスである燃料ガス及び酸化剤ガスは、燃料ガス通路を流通した高温の燃料ガスにより加熱される。従って、熱自立が促進され、熱効率の向上が図られる。
また、この燃料電池では、挟持部には、燃料ガス通路と燃料ガス供給通路とを連通させる少なくとも1つ以上の燃料ガス供給孔が積層方向に設けられることが好ましい。燃料ガス供給孔の数は、電解質・電極接合体の面積に応じて設定可能であるため、前記電解質・電極接合体の電極面内における燃料ガス濃度を均等化して燃料枯渇を抑制することが可能になる。
さらに、この燃料電池では、挟持部には、化剤ガス通路と酸化剤ガス供給通路とを連通させる少なくとも1つ以上の酸化剤ガス供給孔が積層方向に設けられることが好ましい。酸化剤ガス供給孔の数は、電解質・電極接合体の面積に応じて設定されるため、前記電解質・電極接合体の電極面内における酸化剤ガス濃度が均等化されて空気枯渇を抑制することができる。
さらにまた、この燃料電池では、挟持部には、燃料ガス通路と燃料ガス戻し通路とを連通させる少なくとも1つ以上の燃料ガス戻し孔が積層方向に設けられることが好ましい。燃料ガス通路から燃料ガス戻し通路に燃料ガスを円滑且つ確実に戻すことが可能になり、電解質・電極接合体の電極面内における燃料ガス濃度の均等化を図ることができる。
また、この燃料電池では、挟持部の周縁部には、燃料ガス通路に供給された燃料ガスを、燃料ガス戻し孔に案内するための燃料ガス戻し溝が設けられることが好ましい。これにより、燃料ガス通路を流通した燃料ガスは、燃料ガス戻し溝から燃料ガス戻し孔に円滑且つ確実に案内され、効率的な燃料ガス戻し処理が遂行される。
さらに、この燃料電池では、燃料ガス戻し溝には、挟持部の厚さ方向に燃料ガス供給通路及び酸化剤ガス供給通路を跨いで、燃料ガスを燃料ガス戻し孔に流通させる跨路部が設けられることが好ましい。このため、セパレータには、コンパクトな構成で、燃料ガス、酸化剤ガス及び戻し燃料ガスの流路を容易且つ確実に設けることができる。
さらにまた、この燃料電池では、セパレータ及び電解質・電極接合体の周縁部に密着するとともに、前記セパレータと前記電解質・電極接合体のアノード電極との間に形成される空間を封止する封止部が設けられることが好ましい。従って、電解質・電極接合体の外方に燃料ガスが漏れることがなく、前記電解質・電極接合体の外方からカソード電極に前記燃料ガスが進入することを阻止することが可能になる。これにより、カソードの還元による発電性能の低下を防止するとともに、セパレータや電解質・電極接合体の耐久性の向上を図ることができる。
しかも、電解質・電極接合体の外方からアノード電極に酸化剤ガスが進入することを阻止することが可能になる。従って、アノードの酸化による発電性能の低下を防止するとともに、セパレータや電解質・電極接合体の耐久性の向上を図ることができる。
また、この燃料電池は、固体酸化物形燃料電池であることが好ましい。高温型燃料電池に適用することにより、特に懸念される熱応力による挟持部や電解質・電極接合体の熱歪等を良好に抑制することが可能になる。
さらに、この燃料電池は、平板積層型固体酸化物形燃料電池であることが好ましい。このため、特に、平板型SOFC(固体酸化物形燃料電池)のような高温型燃料電池に好適に適用することが可能になる。
本発明によれば、各マニホールドである燃料ガス供給連通孔、燃料ガス導出連通孔及び酸化剤ガス供給連通孔が、単一の反応ガス供給部に集中して設けられている。従って、ガスシールのために高荷重が必要な各マニホールドは、互いに分散されることがなく、熱に起因する膨張や収縮によってセパレータに歪みが発生することを可及的に抑制することができる。
しかも、歪みによるセパレータと電解質・電極接合体との密着不良が抑制され、発電性能の向上が図られる。さらに、歪みによる電解質・電極接合体の損傷が抑制されるため、前記電解質・電極接合体の耐久性が良好に向上する。
さらにまた、反応ガスマニホールドである反応ガス供給部には、燃料ガス供給連通孔、燃料ガス導出連通孔及び酸化剤ガス供給連通孔が設けられるとともに、橋架部には、燃料ガス供給通路、燃料ガス戻し通路及び酸化剤ガス供給通路が形成されている。これにより、供給ガスである燃料ガス及び酸化剤ガスは、高温の燃料ガスによって加熱され易く、熱自立が促進されて熱効率の向上が図られる。
本発明の第1の実施形態に係る燃料電池が複数積層された燃料電池スタックの概略斜視説明図である。 前記燃料電池スタックの分解斜視説明図である。 前記燃料電池のガス流れ状態を示す一部分解斜視説明図である。 前記燃料電池の、図2中、IV−IV線断面図である。 前記燃料電池を構成するセパレータの平面説明図である。 本発明の第2の実施形態に係る燃料電池の分解斜視図である。 本発明の第3の実施形態に係る燃料電池の分解斜視図である。 前記燃料電池を構成するセパレータの平面説明図である。 特許文献1に開示されている燃料電池の説明図である。 特許文献2に開示されている燃料電池セルスタックの分解斜視説明図である。 特許文献3に開示されているセパレータの斜視説明図である。
図1に示すように、本発明の第1の実施形態に係る燃料電池10は、固体酸化物形燃料電池であり、矢印A方向に複数積層されて燃料電池スタック12を構成する。この燃料電池スタック12は、定置用の他、車載用等の種々の用途に用いられている。燃料電池10は、後述するように、平板積層型固体酸化物形燃料電池である。
図2〜図4に示すように、燃料電池10は、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質(電解質板)20の両面に、カソード電極22及びアノード電極24が設けられた電解質・電極接合体(MEA)26を備える。電解質・電極接合体26は、円板状に形成されるとともに、カソード電極22の外形寸法は、電解質20及びアノード電極24の外形寸法よりも小径に設定される。
電解質・電極接合体26には、カソード電極22に接して円板状カソード集電体22aと、アノード電極24に接して円板状アノード集電体24aが配設される。カソード集電体22a及びアノード集電体24aは、例えば、発泡金属により構成されるとともに、前記カソード集電体22aは、前記アノード集電体24aよりも小径に形成される。
燃料電池10は、一組のセパレータ30間に2個の電解質・電極接合体26を挟んで構成される。セパレータ30は、2個の電解質・電極接合体26を挟持する挟持部32A、32Bと、それぞれの一端が前記挟持部32A、32Bに連結される幅狭な橋架部34A、34Bと、前記橋架部34A、34Bの他端が一体に連結される反応ガス供給部36とを備える。
挟持部32A、32Bと電解質・電極接合体26との間には、カソード集電体22aを介装して酸化剤ガス通路37が形成されるとともに、アノード集電体24aを介装して燃料ガス通路38が形成される。
セパレータ30は、例えば、2枚のプレートである第1プレート40及び第2プレート42を備え、前記第1プレート40及び前記第2プレート42は、例えば、ステンレス合金等の板金で構成され、ろう付け、拡散接合やレーザ溶接等により互いに接合される。なお、セパレータ30は、3枚以上のプレートを接合して構成してもよい。
図2及び図5に示すように、第1プレート40は、反応ガス供給部36を構成する長円形状の第1反応ガス供給部材44を備える。この第1反応ガス供給部材44には、積層方向(矢印A方向)に沿って燃料ガスを供給するための燃料ガス供給連通孔46、燃料ガス通路38を流通した前記燃料ガスを導出するための燃料ガス導出連通孔48、及び酸化剤ガスを供給するための酸化剤ガス供給連通孔50が形成される。
燃料ガス供給連通孔46、燃料ガス導出連通孔48及び酸化剤ガス供給連通孔50の通路断面積は、A(空気)/F(燃料)に応じて設定される。すなわち、酸化剤ガス供給連通孔50の通路断面積は、燃料ガス供給連通孔46の通路断面積及び燃料ガス導出連通孔48の通路断面積よりも大きく設定される。これにより、酸化剤ガスは、ポンプ等での圧力損失の低減を図ることができ、圧力損失を最適化して運転効率が向上する。
反応ガス供給部36は、燃料ガス供給連通孔46と酸化剤ガス供給連通孔50との間に、燃料ガス導出連通孔48が設けられるとともに、前記燃料ガス供給連通孔46、前記燃料ガス導出連通孔48及び前記酸化剤ガス供給連通孔50は、挟持部32A、32Bの中央と橋架部34A、34Bとを結ぶ仮想直線L1(矢印B方向)に交差する方向(例えば、直交する方向)(仮想直線L2)(矢印C方向)に配列される(図2参照)。
図5に示すように、第1反応ガス供給部材44の両長辺には、幅狭な第1橋架部材52a、52bを介して比較的大径な第1挟持部材54a、54bが一体に設けられる。第1橋架部材52a、52bの電極面に沿う短尺側の幅寸法(図中、寸法t)の内方には、燃料ガス導出連通孔48が設けられるとともに、前記第1橋架部材52a、52bの前記幅寸法の外方には、燃料ガス供給連通孔46及び酸化剤ガス供給連通孔50が設けられる。
燃料ガス供給連通孔46には、一対の燃料ガス供給通路56a、56bの一端が連通する。燃料ガス供給通路56a、56bの他端は、第1橋架部材52a、52bの長手方向(矢印B方向)に沿って第1挟持部材54a、54b内に延在し、前記第1挟持部材54a、54bの中心で終端する。
燃料ガス導出連通孔48には、一対の燃料ガス戻し通路58a、58bの一端が連通し、前記燃料ガス戻し通路58a、58bの他端は、第1橋架部材52a、52bの長手方向(矢印B方向)に沿って第1挟持部材54a、54bの外周縁部まで延在する。
酸化剤ガス供給連通孔50には、一対の酸化剤ガス供給通路60a、60bの一端が連通し、前記酸化剤ガス供給通路60a、60bの他端は、第1橋架部材52a、52bの長手方向(矢印B方向)に沿って第1挟持部材54a、54b内に延在する。
酸化剤ガス供給通路60a、60bの通路断面積は、燃料ガス供給通路56a、56bの通路断面積及び燃料ガス戻し通路58a、58bの通路断面積よりも大きく設定される。これにより、圧力損失を最適化して運転効率が向上する。
第1橋架部材52a、52bは、燃料ガス供給通路56a、56bと酸化剤ガス供給通路60a、60bとの間に、燃料ガス戻し通路58a、58bが設けられる。
第1挟持部材54a、54bは、電解質・電極接合体26の直径よりも大径の円板形状に設定される。第1挟持部材54a、54bには、酸化剤ガスを供給するための酸化剤ガス供給孔62a、62bが、例えば、前記第1挟持部材54a、54bの中心に対して偏心した位置に、少なくとも1つずつ形成される。酸化剤ガス供給孔62a、62bは、酸化剤ガス供給通路60a、60bの他端に連通し、この酸化剤ガス供給通路60a、60bを介して、酸化剤ガス供給連通孔50に連通する。
図2に示すように、第2プレート42は、反応ガス供給部36を構成する長円形状の第2反応ガス供給部材64を備える。第2反応ガス供給部材64には、燃料ガス供給連通孔46、燃料ガス導出連通孔48及び酸化剤ガス供給連通孔50が形成される。第2反応ガス供給部材64の両長辺には、幅狭な第2橋架部材66a、66bを介して比較的大径な第2挟持部材68a、68bが一体に設けられる。
第2挟持部材68a、68bには、燃料ガスを供給するための燃料ガス供給孔70a、70bが、例えば、前記第2挟持部材68a、68bの中心に、少なくとも1つずつ形成される。燃料ガス供給孔70a、70bは、燃料ガス供給通路56a、56bの他端に連通し、この燃料ガス供給通路56a、56bを介して、燃料ガス供給連通孔46に連通する。
第2挟持部材68a、68bには、電解質・電極接合体26の外周外方を周回して燃料ガス戻し溝72a、72bが設けられる。この燃料ガス戻し溝72a、72bには、燃料ガス通路38と燃料ガス戻し通路58a、58bとを連通させる燃料ガス戻し孔74a、74bが、それぞれ少なくとも1つ以上連通する。燃料ガス戻し溝72a、72bには、第2挟持部材68a、68bの厚さ方向に燃料ガス供給通路56a、56b及び酸化剤ガス供給通路60a、60bを跨いで、燃料ガスを燃料ガス戻し孔74a、74bに流通させる跨路部76a、76bが設けられる。
酸化剤ガス供給孔62a、62bの通路断面積は、燃料ガス供給孔70a、70bの通路断面積及び燃料ガス戻し孔74a、74bの通路断面積よりも大きく設定される。これにより、圧力損失を最適化して運転効率が向上する。
図2及び図4に示すように、挟持部32A、32Bには、前記挟持部32A、32Bと電解質・電極接合体26のアノード電極24側との間に形成される空間78a、78bを封止する封止部材(封止部)80a、80bが設けられる。封止部材80a、80bは、略リング形状を有し、第2挟持部材68a、68bに燃料ガス戻し溝72a、72bを周回して固定されるフランジ部82a、82bと、各電解質・電極接合体26のカソード電極22の外周縁部を、カソード集電体22aの外方を周回して押圧する押圧部84a、84bとを一体に設ける。
図1に示すように、燃料電池スタック12は、複数の燃料電池10の積層方向一端にエンドプレート90を配置するとともに、積層方向他端に押圧プレート92A、92B及び94を配置する。押圧プレート92A、92Bは、挟持部32A、32Bに対応して配置される一方、押圧プレート94は、反応ガス供給部36に対応して配置される。
押圧プレート92A、92Bは、複数のボルト96によりエンドプレート90に固定されることによって、矢印A方向に積層された電解質・電極接合体26及び挟持部32A、32Bに積層方向に比較的小さな締付荷重を付与する。押圧プレート94は、複数のボルトによりエンドプレート90に固定されることによって、矢印A方向に積層された反応ガス供給部36に積層方向に比較的大きな締付荷重を付与する。
なお、図示しないが、エンドプレート90、押圧プレート92A、92B及び94のいずれかに、燃料ガスを供給するための配管、一旦使用された燃料ガスを導出するための配管及び酸化剤ガスを供給するための配管が配設される。
このように構成される燃料電池スタック12の動作について、以下に説明する。
図2及び図3に示すように、燃料ガス供給連通孔46に燃料ガス(例えば、水素含有ガス)が供給されるとともに、酸化剤ガス供給連通孔50に酸化剤ガスである酸素含有ガス(以下、空気ともいう)が供給される。燃料ガスは、燃料電池スタック12の燃料ガス供給連通孔46に沿って積層方向(矢印A方向)に移動しながら、各燃料電池10に設けられる燃料ガス供給通路56a、56bに沿ってセパレータ30の面方向に移動する。
燃料ガスは、燃料ガス供給通路56a、56bから第2挟持部材68a、68bに形成された燃料ガス供給孔70a、70bを通って各燃料ガス通路38に導入される。
燃料ガス供給孔70a、70bは、電解質・電極接合体26のアノード電極24の中心位置に設定されている。このため、燃料ガスは、燃料ガス供給孔70a、70bからアノード電極24の中心に供給された後、燃料ガス通路38に沿って前記アノード電極24の外周部に向かって移動する。
燃料ガス通路38を流通した燃料ガスは、図3及び図4に示すように、電解質・電極接合体26の外周外方を周回する燃料ガス戻し溝72a、72bに導入され、前記燃料ガス戻し溝72a、72bに案内されて燃料ガス戻し孔74a、74bに移動する。従って、燃料ガスは、燃料ガス戻し孔74a、74bを通って燃料ガス戻し通路58a、58bに供給され、前記燃料ガス戻し通路58a、58bから燃料ガス導出連通孔48に導出される。
一方、空気は、燃料電池スタック12の酸化剤ガス供給連通孔50に沿って積層方向(矢印A方向)に移動しながら、各燃料電池10に設けられる酸化剤ガス供給通路60a、60bに沿ってセパレータ30の面方向に移動する(図2及び図3参照)。
空気は、酸化剤ガス供給通路60a、60bから第1挟持部材54a、54bに形成された酸化剤ガス供給孔62a、62bを通って各酸化剤ガス通路37に導入される。酸化剤ガス供給孔62a、62bは、各電解質・電極接合体26のカソード電極22の略中心位置に設定されている。このため、空気は、酸化剤ガス供給孔62a、62bから各カソード電極22の略中心に供給された後、酸化剤ガス通路37に沿って前記カソード電極22の外周部に向かって移動する。
従って、電解質・電極接合体26では、アノード電極24の電極面の中心側から周端部側に向かって燃料ガスが供給されるとともに、カソード電極22の電極面の略中心側から周端部側に向かって空気が供給される。その際、酸化物イオンが電解質20を通ってアノード電極24に移動し、化学反応により発電が行われる。
この場合、第1の実施形態では、各マニホールドである燃料ガス供給連通孔46、燃料ガス導出連通孔48及び酸化剤ガス供給連通孔50が、単一の反応ガス供給部36に集中して設けられている。従って、ガスシールのために高荷重が必要な各マニホールド(燃料ガス供給連通孔46、燃料ガス導出連通孔48及び酸化剤ガス供給連通孔50)は、互いに分散されることがない。これにより、熱に起因する膨張や収縮によって、セパレータ30に歪みが発生することを可及的に抑制することができるという効果が得られる。
しかも、歪みによるセパレータ30と電解質・電極接合体26との密着不良が抑制され、発電性能の向上が図られる。さらに、歪みによる電解質・電極接合体26の損傷が抑制されるため、前記電解質・電極接合体26の耐久性が良好に向上する。
さらにまた、反応ガスマニホールドである反応ガス供給部36には、燃料ガス供給連通孔46、燃料ガス導出連通孔48及び酸化剤ガス供給連通孔50が設けられるとともに、橋架部34A、34Bには、燃料ガス供給通路56a、56b、燃料ガス戻し通路58a、58b及び酸化剤ガス供給通路60a、60bが形成されている。これにより、供給ガスである燃料ガス及び酸化剤ガスは、高温の燃料ガスによって加熱され易く、熱自立(外部から熱を加えることなく自ら発生する熱のみで燃料電池の動作温度を維持すること)が促進されて熱効率の向上が図られるという利点が得られる。
また、第1の実施形態では、反応ガス供給部36は、燃料ガス供給連通孔46と酸化剤ガス供給連通孔50との間に、燃料ガス導出連通孔48が設けられるとともに、前記燃料ガス供給連通孔46、前記燃料ガス導出連通孔48及び前記酸化剤ガス供給連通孔50は、挟持部32A、32Bの中央と橋架部34A、34Bとを結ぶ仮想直線L1に交差する方向(仮想直線L2)に配列されている(図2参照)。
このため、供給ガスである燃料ガス及び酸化剤ガスは、燃料ガス通路38を流通して燃料ガス導出連通孔48を移動する高温の燃料ガスにより加熱される。従って、熱自立が促進され、熱効率の向上が図られる。
さらに、反応ガス供給部36は、橋架部34A、34Bの電極面に沿う短尺側の幅寸法の内方に燃料ガス導出連通孔48を設けるとともに、前記橋架部34A、34Bの前記幅寸法の外方に燃料ガス供給連通孔46及び酸化剤ガス供給連通孔50を設けている。
これにより、橋架部34A、34Bの幅寸法が良好に短尺化され、挟持部32A、32Bと反応ガス供給部36との間で、それぞれ所望の荷重を独立して確実に付与することができる。
さらにまた、橋架部34A、34Bは、燃料ガス供給通路56a、56bと酸化剤ガス供給通路60a、60bとの間に、燃料ガス戻し通路58a、58bが設けられている。このため、供給ガスである燃料ガス及び酸化剤ガスは、燃料ガス通路38を流通した高温の燃料ガスにより加熱される。従って、熱自立が促進され、熱効率の向上が図られる。
また、挟持部32A、32Bには、燃料ガス通路38と燃料ガス供給通路56a、56bとを連通させる燃料ガス供給孔70a、70bが、それぞれ少なくとも1つ以上設けられている。燃料ガス供給孔70a、70bの数は、電解質・電極接合体26の面積に応じて設定可能であるため、前記電解質・電極接合体26の電極面内における燃料ガス濃度を均等化して燃料枯渇を抑制することが可能になる。
さらに、挟持部32A、32Bには、酸化剤ガス通路37と酸化剤ガス供給通路60a、60bとを連通させる酸化剤ガス供給孔62a、62bが、それぞれ少なくとも1つ以上設けられている。酸化剤ガス供給孔62a、62bの数は、電解質・電極接合体26の面積に応じて設定されるため、前記電解質・電極接合体26の電極面内における酸化剤ガス濃度が均等化されて空気枯渇を抑制することができる。
さらにまた、挟持部32A、32Bには、各燃料ガス通路38と燃料ガス戻し通路58a、58bとを連通させる燃料ガス戻し孔74a、74bが、それぞれ少なくとも1つ以上設けられている。各燃料ガス通路38から燃料ガス戻し通路58a、58bに燃料ガスを円滑且つ確実に戻すことが可能になり、電解質・電極接合体26の電極面内における燃料ガス濃度の均等化を図ることができる。
また、挟持部32A、32Bの周縁部には、燃料ガス通路38に供給された燃料ガスを、燃料ガス戻し孔74a、74bに案内するための燃料ガス戻し溝72a、72bが設けられている。これにより、燃料ガス通路38を流通した燃料ガスは、燃料ガス戻し溝72a、72bから燃料ガス戻し孔74a、74bに円滑且つ確実に案内され、効率的な燃料ガス戻し処理が遂行される。
さらに、燃料ガス戻し溝72a、72bには、挟持部32A、32Bの厚さ方向に燃料ガス供給通路56a、56b及び酸化剤ガス供給通路60a、60bを跨いで、燃料ガスを燃料ガス戻し孔74a、74bに流通させる跨路部76a、76bが設けられている。このため、セパレータ30には、コンパクトな構成で、燃料ガス、酸化剤ガス及び戻し燃料ガスの流路を容易且つ確実に設けることができる。
さらにまた、セパレータ30及び電解質・電極接合体26の周縁部に密着するとともに、前記セパレータ30と前記電解質・電極接合体26のアノード電極24との間に形成される空間78a、78bを封止する封止部材80a、80bが設けられている。従って、電解質・電極接合体26の外方に燃料ガスが漏れることがなく、前記電解質・電極接合体26の外方からカソード電極22に前記燃料ガスが進入することを阻止することが可能になる。これにより、カソードの還元による発電性能の低下を防止するとともに、セパレータ30や電解質・電極接合体26の耐久性の向上を図ることができる。
しかも、電解質・電極接合体26の外方からアノード電極24に酸化剤ガスが進入することを阻止することが可能になる。従って、アノードの酸化による発電性能の低下を防止するとともに、セパレータ30や電解質・電極接合体26の耐久性の向上を図ることができる。
また、燃料電池10は、高温型燃料電池である固体酸化物形燃料電池を構成することにより、特に懸念される熱応力による挟持部32A、32Bや電解質・電極接合体26の熱歪等を良好に抑制することが可能になる。
さらに、燃料電池10は、平板積層型固体酸化物形燃料電池である。このため、特に、平板型SOFC(固体酸化物形燃料電池)のような高温型燃料電池に好適に適用することが可能になる。
図6は、本発明の第2の実施形態に係る燃料電池100の分解斜視図である。なお、第1の実施形態に係る燃料電池10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3の実施形態においても同様に、その詳細な説明は省略する。
燃料電池100は、一組のセパレータ102間に1個の電解質・電極接合体26を挟んで構成される。セパレータ102は、1個の電解質・電極接合体26を挟持する挟持部32と、一端が前記挟持部32に連結される幅狭な橋架部34と、前記橋架部34の他端が一体に連結される反応ガス供給部36とを備える。
セパレータ102は、例えば、2枚のプレートである第1プレート104及び第2プレート106を備える。第1プレート104は、第1反応ガス供給部材44、幅狭な第1橋架部材52及び第1挟持部材54を一体に設ける。第1橋架部材52には、燃料ガス供給通路56、燃料ガス戻し通路58及び酸化剤ガス供給通路60が形成される一方、第1挟持部材54には、酸化剤ガス供給孔62が形成される。
第2プレート106は、第2反応ガス供給部材64、幅狭な第2橋架部材66及び第2挟持部材68を一体に設ける。第2挟持部材68には、燃料ガス供給孔70、燃料ガス戻し溝72、燃料ガス戻し孔74及び跨路部76が設けられる。
挟持部32には、前記挟持部32と電解質・電極接合体26のアノード電極24側との間に形成される空間78を封止する封止部材80が設けられる。
酸化剤ガス供給通路60の通路断面積は、燃料ガス供給通路56の通路断面積及び燃料ガス戻し通路58の通路断面積よりも大きく設定される。酸化剤ガス供給孔62の通路断面積は、燃料ガス供給孔70の通路断面積及び燃料ガス戻し孔74の通路断面積よりも大きく設定される。
このように構成される第2の実施形態では、セパレータ102間に単一の電解質・電極接合体26が挟持されている他、上記の第1の実施形態と同様の効果が得られる。
図7は、本発明の第3の実施形態に係る燃料電池110の分解斜視図である。
燃料電池110は、一組のセパレータ112間に4個の電解質・電極接合体26が、このセパレータ112の中心部である反応ガス供給部114を中心に同心円上に配列される。
セパレータ112は、図7及び図8に示すように、4個の電解質・電極接合体26を挟持する挟持部32A、32B、32C及び32Dと、それぞれの一端が前記挟持部32A、32B、32C及び32Dに連結される幅狭な橋架部34A、34B、34C及び34Dと、前記橋架部34A、34B、34C及び34Dの他端が一体に連結される反応ガス供給部114とを備える。
セパレータ112は、例えば、2枚のプレートである第1プレート116及び第2プレート118を備える。第1プレート116は、反応ガス供給部114を構成する円形状の第1反応ガス供給部材120を設ける。第1反応ガス供給部材120には、4本の幅狭な第1橋架部材52a、52b、52c及び52dが等角度(90°)間隔ずつ離間して一体化されるとともに、前記第1橋架部材52a、52b、52c及び52dには、比較的大径な第1挟持部材54a、54b、54c及び54dが一体に設けられる。
第1反応ガス供給部材120は、中心に燃料ガス導出連通孔48が形成されるとともに、前記燃料ガス導出連通孔48の外方には、それぞれ対角位置に燃料ガス供給連通孔46aと46b及び酸化剤ガス供給連通孔50aと50bが形成される。燃料ガス供給連通孔46aは、第1橋架部材52a、52d間に、燃料ガス供給連通孔46bは、第1橋架部材52b、52c間に、酸化剤ガス供給連通孔50aは、第1橋架部材52a、52c間に、酸化剤ガス供給連通孔50bは、第1橋架部材52b、52d間に、それぞれ設けられる。
第1橋架部材52a、52b、52c及び52dには、燃料ガス供給通路56a、56b、56c及び56dと、燃料ガス戻し通路58a、58b、58c及び58dと、酸化剤ガス供給通路60a、60b、60c及び60dとが形成される。燃料ガス供給通路56a、56dの一端は、燃料ガス供給連通孔46aに連通する一方、燃料ガス供給通路56b、56cの一端は、燃料ガス供給連通孔46bに連通する。酸化剤ガス供給通路60a、60cの一端は、酸化剤ガス供給連通孔50aに連通する一方、酸化剤ガス供給通路60b、60dの一端は、酸化剤ガス供給連通孔50bに連通する。
第1挟持部材54a、54b、54c及び54dには、酸化剤ガス供給孔62a、62b、62c及び62dが形成される。酸化剤ガス供給通路60a、60b、60c及び60dの他端は、酸化剤ガス供給孔62a、62b、62c及び62dに連通する。
第2プレート118は、反応ガス供給部114を構成する円形状の第2反応ガス供給部材122を設ける。第2反応ガス供給部材122には、4本の幅狭な第2橋架部材66a、66b、66c及び66dが等角度(90°)間隔ずつ離間して一体化されるとともに、前記第2橋架部材66a、66b、66c及び66dには、比較的大径な第2挟持部材68a、68b、68c及び68dが一体に設けられる。
第2挟持部材68a、68b、68c及び68dの中央には、燃料ガス供給通路56a、56b、56c及び56dの他端が連通する燃料ガス供給孔70a、70b、70c及び70dが形成される。第2挟持部材68a、68b、68c及び68dには、燃料ガス戻し溝72a、72b、72c及び72dと、燃料ガス戻し孔74a、74b、74c及び74dと、跨路部76a、76b、76c及び76dとが設けられる。
酸化剤ガス供給連通孔50a、50bの通路断面積は、燃料ガス供給連通孔46a、46bの通路断面積及び燃料ガス導出連通孔48の通路断面積よりも大きく設定される。酸化剤ガス供給通路60a、60bの通路断面積は、燃料ガス供給通路56a、56bの通路断面積及び燃料ガス戻し通路58a、58bの通路断面積よりも大きく設定される。酸化剤ガス供給孔62a、62bの通路断面積は、燃料ガス供給孔70a、70bの通路断面積及び燃料ガス戻し孔74a、74bの通路断面積よりも大きく設定される。
このように構成される第3の実施形態では、セパレータ112間に4個の電解質・電極接合体26が挟持されている他、上記の第1及び第2の実施形態と同様の効果が得られる。
10、100、110…燃料電池 12…燃料電池スック
20…電解質 22…カソード電極
22a…カソード集電体 24…アノード電極
24a…アノード集電体 26…電解質・電極接合体
30、102、112…セパレータ 32、32A〜32D…挟持部
34、34A〜34D…橋架部 36、114…反応ガス供給部
37…酸化剤ガス通路 38…燃料ガス通路
40、42、104、106、116、118…プレート
44、64、120、122…反応ガス供給部材
46、46a、46b…燃料ガス供給連通孔
48…燃料ガス導出連通孔 50…酸化剤ガス供給連通孔
52、52a〜52d、66、66a〜66d…橋架部材
54、54a〜54d、68、68a〜68d…挟持部材
56、56a〜56d…燃料ガス供給通路
58、58a〜58d…燃料ガス戻し通路
60、60a〜60d…酸化剤ガス供給通路
62、62a〜62d…酸化剤ガス供給孔
70、70a〜70d…燃料ガス供給孔
72、72a〜72d…燃料ガス戻し溝
74、74a〜74d…燃料ガス戻し孔
76、76a〜76d…跨路部 78、78a、78b…空間
80、80a、80b…封止部材 90…エンドプレート

Claims (12)

  1. 電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体が、セパレータ間に積層される燃料電池であって、
    前記セパレータは、前記電解質・電極接合体を挟持するとともに、前記アノード電極に接する一方の面側に形成され、前記アノード電極の電極面に沿って燃料ガスを供給する燃料ガス通路、及び前記カソード電極に接する他方の面側に形成され、前記カソード電極の電極面に沿って酸化剤ガスを供給する酸化剤ガス通路が設けられる挟持部と、
    前記挟持部に連結される橋架部と、
    前記橋架部に連結される反応ガス供給部と、
    を備え
    前記橋架部には、前記燃料ガスを積層方向に形成される燃料ガス供給孔を介して前記燃料ガス通路に供給するための燃料ガス供給通路、前記燃料ガス通路を流通した前記燃料ガスを前記積層方向に形成される燃料ガス戻し孔を介して戻すための燃料ガス戻し通路、及び前記酸化剤ガスを前記積層方向に形成される酸化剤ガス供給孔を介して前記酸化剤ガス通路に供給するための酸化剤ガス供給通路が、それぞれ前記積層方向に交差する方向に形成され、
    前記反応ガス供給部には、前記燃料ガスを前記燃料ガス供給通路に供給するための燃料ガス供給連通孔、前記燃料ガス戻し通路を流通した前記燃料ガスを導出するための燃料ガス導出連通孔、及び前記酸化剤ガスを前記酸化剤ガス供給通路に供給するための酸化剤ガス供給連通孔が、それぞれ前記積層方向に形成されることを特徴とする燃料電池。
  2. 請求項1記載の燃料電池において、前記反応ガス供給部は、前記燃料ガス供給連通孔と前記酸化剤ガス供給連通孔との間に、前記燃料ガス導出連通孔が設けられるとともに、
    前記燃料ガス供給連通孔、前記燃料ガス導出連通孔及び前記酸化剤ガス供給連通孔は、前記挟持部の中央と前記橋架部とを結ぶ仮想直線に交差する方向に配列されることを特徴とする燃料電池。
  3. 請求項1又は2記載の燃料電池において、前記反応ガス供給部は、前記橋架部の前記電極面に沿う短尺側の幅寸法の内方に前記燃料ガス導出連通孔を設けるとともに、
    前記橋架部の前記幅寸法の外方に前記燃料ガス供給連通孔及び前記酸化剤ガス供給連通孔を設けることを特徴とする燃料電池。
  4. 請求項1〜3のいずれか1項に記載の燃料電池において、前記橋架部は、前記燃料ガス供給通路と前記酸化剤ガス供給通路との間に、前記燃料ガス戻し通路が設けられることを特徴とする燃料電池。
  5. 請求項1〜4のいずれか1項に記載の燃料電池において、前記挟持部には、前記燃料ガス通路と前記燃料ガス供給通路とを連通させる少なくとも1つ以上の前記燃料ガス供給孔が前記積層方向に設けられることを特徴とする燃料電池。
  6. 請求項1〜5のいずれか1項に記載の燃料電池において、前記挟持部には、前記酸化剤ガス通路と前記酸化剤ガス供給通路とを連通させる少なくとも1つ以上の前記酸化剤ガス供給孔が前記積層方向に設けられることを特徴とする燃料電池。
  7. 請求項1〜6のいずれか1項に記載の燃料電池において、前記挟持部には、前記燃料ガス通路と前記燃料ガス戻し通路とを連通させる少なくとも1つ以上の前記燃料ガス戻し孔が前記積層方向に設けられることを特徴とする燃料電池。
  8. 請求項7記載の燃料電池において、前記挟持部の周縁部には、前記燃料ガス通路に供給された前記燃料ガスを、前記燃料ガス戻し孔に案内するための燃料ガス戻し溝が設けられることを特徴とする燃料電池。
  9. 請求項8記載の燃料電池において、前記燃料ガス戻し溝には、前記挟持部の厚さ方向に前記燃料ガス供給通路及び前記酸化剤ガス供給通路を跨いで、前記燃料ガスを前記燃料ガス戻し孔に流通させる跨路部が設けられることを特徴とする燃料電池。
  10. 請求項1〜9のいずれか1項に記載の燃料電池において、前記セパレータ及び前記電解質・電極接合体の周縁部に密着するとともに、前記セパレータと前記電解質・電極接合体の前記アノード電極との間に形成される空間を封止する封止部が設けられることを特徴とする燃料電池。
  11. 請求項1〜10のいずれか1項に記載の燃料電池において、前記燃料電池は、固体酸化物形燃料電池であることを特徴とする燃料電池。
  12. 請求項11記載の燃料電池において、前記固体酸化物形燃料電池は、平板積層型固体酸化物形燃料電池であることを特徴とする燃料電池。
JP2010278727A 2010-12-15 2010-12-15 燃料電池 Expired - Fee Related JP5502714B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010278727A JP5502714B2 (ja) 2010-12-15 2010-12-15 燃料電池
PCT/JP2011/075230 WO2012081321A1 (en) 2010-12-15 2011-10-26 Fuel cell
US13/824,225 US8951692B2 (en) 2010-12-15 2011-10-26 Fuel cell
EP11785797.9A EP2652828B1 (en) 2010-12-15 2011-10-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278727A JP5502714B2 (ja) 2010-12-15 2010-12-15 燃料電池

Publications (2)

Publication Number Publication Date
JP2012129037A JP2012129037A (ja) 2012-07-05
JP5502714B2 true JP5502714B2 (ja) 2014-05-28

Family

ID=45003016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278727A Expired - Fee Related JP5502714B2 (ja) 2010-12-15 2010-12-15 燃料電池

Country Status (4)

Country Link
US (1) US8951692B2 (ja)
EP (1) EP2652828B1 (ja)
JP (1) JP5502714B2 (ja)
WO (1) WO2012081321A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975573B2 (ja) * 2017-08-01 2021-12-01 森村Sofcテクノロジー株式会社 燃料電池発電単位および燃料電池スタック

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244579B2 (ja) * 2002-07-17 2009-03-25 三菱マテリアル株式会社 平板積層型の固体酸化物形燃料電池
JP5023429B2 (ja) * 2004-08-13 2012-09-12 三菱マテリアル株式会社 平板積層型燃料電池
US20110151348A1 (en) 2005-01-19 2011-06-23 Naoya Murakami Flat plate laminated type fuel cell and fuel cell stack
JP4291299B2 (ja) * 2005-06-02 2009-07-08 日本電信電話株式会社 平板型固体酸化物形燃料電池
US20070111068A1 (en) * 2005-11-17 2007-05-17 General Electric Company Compliant feed tubes for planar solid oxide fuel cell systems
JP4949737B2 (ja) * 2006-05-29 2012-06-13 日本電信電話株式会社 固体酸化物形燃料電池セルスタックおよび固体酸化物形燃料電池
JP4963195B2 (ja) * 2006-06-09 2012-06-27 日本電信電話株式会社 セパレータおよび平板型固体酸化物形燃料電池
JP2008218278A (ja) * 2007-03-06 2008-09-18 Mitsubishi Materials Corp 平板積層型の燃料電池
JP2008251239A (ja) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp 燃料電池
JP2008251236A (ja) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp 平板積層型の燃料電池
JP5383051B2 (ja) * 2008-01-21 2014-01-08 本田技研工業株式会社 燃料電池及び燃料電池スタック
WO2009119615A1 (ja) * 2008-03-26 2009-10-01 京セラ株式会社 燃料電池モジュールおよび燃料電池装置
JP2009283146A (ja) * 2008-05-19 2009-12-03 Honda Motor Co Ltd 燃料電池

Also Published As

Publication number Publication date
EP2652828A1 (en) 2013-10-23
JP2012129037A (ja) 2012-07-05
EP2652828B1 (en) 2014-12-10
WO2012081321A1 (en) 2012-06-21
US20130177828A1 (en) 2013-07-11
US8951692B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
JP4344484B2 (ja) 固体高分子型セルアセンブリ
JP4598287B2 (ja) 燃料電池スタックおよび燃料電池スタックの運転方法
JP5383051B2 (ja) 燃料電池及び燃料電池スタック
JP4268536B2 (ja) 燃料電池
JP2007179926A (ja) 燃料電池及び燃料電池スタック
JP5269470B2 (ja) 燃料電池
JP5613392B2 (ja) 燃料電池スタック
WO2010113630A1 (ja) 燃料電池
JP5042588B2 (ja) 燃料電池
JP2005183304A (ja) 燃料電池
JP5502714B2 (ja) 燃料電池
JP4664030B2 (ja) 燃料電池スタック
JP4185734B2 (ja) 燃料電池スタック
JP5504145B2 (ja) 燃料電池スタック
JP5220379B2 (ja) 燃料電池及び燃料電池スタック
WO2010113629A1 (ja) 燃料電池
JP2007324122A (ja) 燃料電池
US8652700B2 (en) Fuel cell
JP5613391B2 (ja) 燃料電池
JP5123824B2 (ja) 燃料電池スタックおよび燃料電池スタックの運転方法
JP2010165692A (ja) 固体高分子型セルアセンブリ
JP2012129035A (ja) 燃料電池
JP5675437B2 (ja) 燃料電池スタック
JP2012182029A (ja) 燃料電池スタック
JP2008123710A (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees