JP5496793B2 - Electric storage motor driving apparatus and method - Google Patents

Electric storage motor driving apparatus and method Download PDF

Info

Publication number
JP5496793B2
JP5496793B2 JP2010151230A JP2010151230A JP5496793B2 JP 5496793 B2 JP5496793 B2 JP 5496793B2 JP 2010151230 A JP2010151230 A JP 2010151230A JP 2010151230 A JP2010151230 A JP 2010151230A JP 5496793 B2 JP5496793 B2 JP 5496793B2
Authority
JP
Japan
Prior art keywords
power supply
superconducting coil
secondary battery
motor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151230A
Other languages
Japanese (ja)
Other versions
JP2012016186A (en
Inventor
優 富田
篤 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010151230A priority Critical patent/JP5496793B2/en
Publication of JP2012016186A publication Critical patent/JP2012016186A/en
Application granted granted Critical
Publication of JP5496793B2 publication Critical patent/JP5496793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、超電導コイルへの急速な蓄電と、これより時間のかかる二次電池への充電とを組み合わせて車両等のモータを駆動する装置および方法に関する。   The present invention relates to an apparatus and a method for driving a motor of a vehicle or the like by combining rapid storage of electric power in a superconducting coil and charging of a secondary battery which takes more time.

現在、リチウムイオン電池のような二次電池を搭載した路面電車では、駅に停車している短時間の間に充電し、この充電電力を利用して、次の駅までの架線の無い非電化区間を走行する方式が考えられている。このような充電走行方式では、駅に停車する毎に、例えば、パンタグラフ、コネクタで充電設備に接続して急速充電することが考えられる。   Currently, trams equipped with secondary batteries such as lithium-ion batteries are charged for a short period of time when they are stopped at a station, and this charging power is used to de-electrically eliminate the overhead line to the next station. A method of traveling in the section is considered. In such a charging traveling system, it is conceivable that rapid charging is performed by connecting to a charging facility with, for example, a pantograph or a connector every time the vehicle stops at a station.

そして、このような二次電池を搭載した路面電車に関する技術として、特許文献1に示される路面電車を利用した都市交通システムが知られている。
この都市交通システムは、路面電車が蓄電池及び地上の架線から集電するパンタグラフを備えており、路面電車の軌道が架線のない区間と架線を設置した区間とを有し、架線を設置した区間でパンタグラフにより架線から集電して路面電車に搭載した蓄電池を充電し、架線のない区間で蓄電池を電源として路面電車の走行を行わせる構成である。
As a technique related to a streetcar equipped with such a secondary battery, an urban traffic system using a streetcar disclosed in Patent Document 1 is known.
This urban traffic system is equipped with a pantograph that collects electricity from the storage battery and the overhead line on the tramway. The tramway has a section where there is no overhead line and a section where the overhead line is installed. In this configuration, the battery is collected from the overhead line by a pantograph, the storage battery mounted on the tram is charged, and the tram is run using the storage battery as a power source in the section without the overhead line.

特開2002‐281610号公報JP 2002-281610 A

ところで、上記のような二次電池を搭載した路面電車では、駅での停車時間と、駅間距離との兼ね合いで、必要な二次電池の量が決まることになるが、駅間が長い場合には、駅でない場所に部分的に架線を設けて走行しながら急速充電する、又は必要に応じて低速走行して充電時間を稼ぐことも考えられる。
しかしながら、このような二次電池の急速充電には限界があり、また、急速充電は電池の寿命を縮めるので、できれば急速充電ではなく、時間をかけた通常充電を採用することが好ましいが、現状では、運行スケジュールの都合上、長い充電時間を確保することができず、電池寿命を縮める急速充電に頼らざるを得ない状況である。
By the way, in a tram with a secondary battery as described above, the amount of secondary battery required is determined by the balance between the stop time at the station and the distance between stations. For example, it is conceivable that a part of the vehicle is not installed at a station and a part of the overhead line is provided for rapid charging while traveling, or if necessary, the vehicle is traveled at a low speed to increase the charging time.
However, there is a limit to the rapid charging of such a secondary battery, and rapid charging shortens the life of the battery. Therefore, it is preferable to use normal charging over time instead of rapid charging if possible. Then, due to the schedule of operation, it is impossible to secure a long charging time, and it is necessary to rely on rapid charging to shorten the battery life.

この発明は、上述した事情に鑑みてなされたものであって、車両に搭載される二次電池に対して劣化を発生させない長時間の通常充電を行うことができ、あるいは短時間の停車中により多くの電力を蓄電することのできができる蓄電式モータ駆動装置および方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can perform normal charging for a long time without causing deterioration of the secondary battery mounted on the vehicle, or when the vehicle is stopped for a short time. An object of the present invention is to provide a storage motor driving apparatus and method capable of storing a large amount of electric power.

上記課題を解決するために、この発明は以下の手段を提案している。すなわち、本発明では、外部電源に接続される外部電力給電線と、この外部電力給電線に接続される超電導コイル及び二次電池と、これら超電導コイル及び二次電池から電力の供給を受ける回生式モータと、前記超電導コイルと二次電池とモータとの間の電力供給回路を開閉する給電制御部とから構成され、前記給電制御部は、停車中等に前記超電導コイルを前記外部電力給電線に接続し、該外部電力給電線から給電がない場合に、前記電力供給回路を介して前記超電導コイルから、前記二次電池及びモータへ電力を供給することを特徴とする。   In order to solve the above problems, the present invention proposes the following means. That is, in the present invention, an external power supply line connected to an external power supply, a superconducting coil and a secondary battery connected to the external power supply line, and a regenerative type that receives power from the superconducting coil and the secondary battery. A power supply control unit that opens and closes a power supply circuit between the motor, the superconducting coil, the secondary battery, and the motor, and the power supply control unit connects the superconducting coil to the external power supply line while the vehicle is stopped. When no power is supplied from the external power supply line, power is supplied from the superconducting coil to the secondary battery and the motor via the power supply circuit.

そして、上記構成によれば、外部電源から電力が供給される外部電力給電線に超電動コイルを接続し、給電制御部での電力供給回路の切り換えにより、停車中等に該超電導コイルに対して、外部電力給電線からの電力を供給し、また、外部電力給電線から給電がない場合に該超電導コイルから二次電池へ電力を供給する。すなわち、給電制御部での電力供給回路の切り換えにより、停車中等の極めて短時間に超電導コイルに対して、外部電力給電線からの外部電力を供給して蓄えることができ、また、該外部電力給電線から給電がない場合に、電気を蓄えた該超電導コイルから二次電池に対して時間を掛けて充電処理を行うことができる。その結果、本発明の超電導電力供給装置では、停車中に瞬時に電気を蓄えた超電導コイルから、二次電池に対して時間を掛けて充電処理を行うことができる。   And, according to the above configuration, the super electric coil is connected to the external power supply line to which power is supplied from the external power source, and the power supply control unit switches the power supply circuit to stop the superconducting coil while the vehicle is stopped. Power is supplied from the external power supply line, and power is supplied from the superconducting coil to the secondary battery when there is no power supply from the external power supply line. That is, by switching the power supply circuit in the power supply control unit, it is possible to supply and store the external power from the external power supply line to the superconducting coil in a very short time, such as when the vehicle is stopped. When there is no power supply from the electric wire, the secondary battery can be charged from the superconducting coil storing electricity over time. As a result, in the superconducting power supply device of the present invention, the secondary battery can be charged over time from the superconducting coil that instantaneously stores electricity while the vehicle is stopped.

また、本発明では、前記給電制御部は、停車中に前記超電導コイルを前記外部電力給電線に接続することにより、瞬時に該超電導コイルへの充電を完了することを特徴とする。   Further, in the present invention, the power supply control unit connects the superconducting coil to the external power supply line while the vehicle is stopped, thereby completing charging of the superconducting coil instantaneously.

そして、上記構成によれば、停車中に超電導コイルを外部電力給電線に接続することにより、瞬時に該超電導コイルへの充電を完了することができるので、短い停車時間に充電作業を完了することができる。   And according to the said structure, since a superconducting coil can be instantaneously completed by connecting a superconducting coil to an external electric power feeder line during a stop, charging work can be completed in a short stop time. Can do.

また、本発明では、前記給電制御部は、車両が停車中の他、駅間に設けられた架線区間にて、走行中に前記超電導コイルに対して外部電力給電線を介して電力供給を行うことを特徴とする。   In the present invention, the power supply control unit supplies power to the superconducting coil via an external power supply line during traveling in an overhead line section provided between stations in addition to when the vehicle is stopped. It is characterized by that.

そして、上記構成によれば、給電制御部により、車両が停車中の他、駅間に設けられた架線区間にて、走行中に超電導コイルに対して外部電力給電線を介して電力供給を行うようにしたので、車両の状況に応じて、超電導コイルに対する充電を多様に行うことができる。   According to the above configuration, the power supply control unit supplies power to the superconducting coil via the external power supply line during traveling in the overhead line section provided between the stations as well as when the vehicle is stopped. Since it did in this way, according to the condition of a vehicle, charge with respect to a superconducting coil can be performed variously.

また、本発明では、前記給電制御部は、回生ブレーキ作動中に発生した電力を前記ニ次電池に供給することを特徴とする。   Moreover, in this invention, the said electric power feeding control part supplies the electric power which generate | occur | produced during regenerative brake operation | movement to the said secondary battery, It is characterized by the above-mentioned.

そして、上記構成によれば、回生ブレーキ作動中に発生した電力をニ次電池に供給するようにしたので、エネルギーを無駄なく利用することができ、エネルギー利用効率を高めることができる。   And according to the said structure, since the electric power which generate | occur | produced during the regenerative brake operation was supplied to the secondary battery, energy can be utilized without waste and energy utilization efficiency can be improved.

本発明によれば、外部電源から電力が供給される外部電力給電線に超電動コイルを接続し、給電制御部での電力供給回路の切り換えにより、停車中等に該超電導コイルに対して、外部電力給電線からの電力を供給し、また、外部電力給電線から給電がない場合に該超電導コイルから二次電池へ電力を供給する。すなわち、給電制御部での電力供給回路の切り換えにより、停車中等の極めて短時間に超電導コイルに対して、外部電力給電線からの外部電力を供給して蓄えることができ、また、該外部電力給電線から給電がない場合に、電気を蓄えた該超電導コイルから二次電池に対して時間を掛けて充電処理を行うことができる。
その結果、本発明の超電導電力供給装置では、停車中に瞬時に電気を蓄えた超電導コイルから、二次電池に対して時間を掛けて充電処理を行うことができ、車両に搭載される二次電池に対して、劣化を発生させない通常充電が可能となる。
According to the present invention, a super electric coil is connected to an external power supply line to which power is supplied from an external power source, and external power is supplied to the superconducting coil while the vehicle is stopped by switching the power supply circuit in the power supply control unit. Power is supplied from the power supply line, and power is supplied from the superconducting coil to the secondary battery when power is not supplied from the external power supply line. That is, by switching the power supply circuit in the power supply control unit, it is possible to supply and store the external power from the external power supply line to the superconducting coil in a very short time, such as when the vehicle is stopped. When there is no power supply from the electric wire, the secondary battery can be charged from the superconducting coil storing electricity over time.
As a result, in the superconducting power supply device of the present invention, it is possible to perform the charging process for the secondary battery from the superconducting coil that instantaneously stores electricity while the vehicle is stopped, and the secondary battery mounted on the vehicle. The battery can be charged normally without causing deterioration.

本発明の超電導電力供給装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the superconducting power supply apparatus of this invention. 本実施例に係る超電導電力供給装置のタイムチャートを示す図である。It is a figure which shows the time chart of the superconducting power supply apparatus which concerns on a present Example. 本実施例に係る超電導電力供給装置の電力供給経路を示す説明図である。It is explanatory drawing which shows the electric power supply path | route of the superconducting power supply apparatus which concerns on a present Example. 本実施例に係る超電導電力供給装置で使用される超電導コイルのSMESを具体的に示す図である。It is a figure which shows concretely SMES of the superconducting coil used with the superconducting power supply apparatus which concerns on a present Example.

[実施例]
本発明の実施例について図1〜図4を参照して説明する。
図1は本発明の一実施例を示す概略構成図であって、同図において符号1で示すものは軌道2上を走行する路面電車(車両)である。
この路面電車1は車体3の下部に超電導コイル10と二次電池11を備えたものである。二次電池11は、リチウムイオン電池等の複数の蓄電池が直列/並列配置されるものであって、各蓄電池に充電した電力によりモータ12を駆動して車両1を走行させる他、該車両1に設置した空調機等の補機も作動させる。また、車両1に搭載されるモータ12は、回生時には発電機として機能し、発生した電気エネルギーを先の二次電池11に供給する回生式モータである。
また、超電導コイル10は数秒という短時間で多量の電力を充電できることを特徴とするものであって、具体的なSMES(Superconducting Magnetic Energy Storage)については後述する。
[Example]
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a tram (vehicle) traveling on a track 2.
This tram 1 is provided with a superconducting coil 10 and a secondary battery 11 at the bottom of a vehicle body 3. The secondary battery 11 is a battery in which a plurality of storage batteries such as lithium ion batteries are arranged in series / parallel. The motor 1 is driven by the electric power charged in each storage battery to drive the vehicle 1. Auxiliary equipment such as installed air conditioners is also operated. The motor 12 mounted on the vehicle 1 is a regenerative motor that functions as a generator during regeneration and supplies generated electric energy to the secondary battery 11.
The superconducting coil 10 is characterized by being able to charge a large amount of power in a short time of several seconds, and specific SMES (Superconducting Magnetic Energy Storage) will be described later.

また、本例の路面電車1は、超電導コイル10と二次電池11に蓄えた電力により、駅間の架線の無い非電化区間を走行する。そのときの駆動電力は、まず、超電導コイル10から供給されるが、該超電導コイル10の貯蔵電力量の残量が少なくなった、又は無くなった場合には、二次電池11より供給されることになる(詳細は後述する)。   Moreover, the tram 1 of this example travels in a non-electrified section without an overhead line between stations by the electric power stored in the superconducting coil 10 and the secondary battery 11. The driving power at that time is first supplied from the superconducting coil 10, but is supplied from the secondary battery 11 when the remaining amount of stored power in the superconducting coil 10 decreases or disappears. (Details will be described later).

また、前記超電導コイル10及び二次電池11には、外部電力給電線13〜15を通じて外部電源16から供給された電力を、モータ12に適切に配分するための給電制御部Cが設けられている。
この給電制御部Cは、外部電力給電線14・15の途中に設けられた接触子17及び電極18からなる給電手段19、外部電力給電線13〜15の分岐部に設けられた外部電力供給回路20、超電導コイル10と二次電池11との間の給電線21に設けられた電力供給回路22、超電導コイル10及び二次電池11とモータ12の間の給電線23・24に設けられたモータ駆動回路25、を有している。
Further, the superconducting coil 10 and the secondary battery 11 are provided with a power supply control unit C for appropriately distributing the power supplied from the external power supply 16 through the external power supply lines 13 to 15 to the motor 12. .
The power supply control unit C includes a power supply unit 19 including a contact 17 and an electrode 18 provided in the middle of the external power supply lines 14 and 15, and an external power supply circuit provided at a branch part of the external power supply lines 13 to 15. 20, a power supply circuit 22 provided in the power supply line 21 between the superconducting coil 10 and the secondary battery 11, a motor provided in the power supply lines 23 and 24 between the superconducting coil 10 and the secondary battery 11 and the motor 12. A drive circuit 25;

前記接触子17は前記路面電車1の下部に位置し、前記電極18は軌道2内に設けられているものであって、路面電車1が駅の所定位置に停車した際に、該路面電車1の下部に位置する接触子17が、軌道2内に設けられている電極18に接触し、これによって外部電力給電線13〜15を通じて外部電源16から超電導コイル10及び二次電池11に対して外部電力を供給する。なお、前記接触子は、パンタグラフ等の集電子であっても良い。
また、前記路面電車1が駅を出発した場合には、接触子17が電極18から離れることになり、これによって外部電源16と、超電導コイル10及び二次電池11との接続状態が遮断される。
The contact 17 is located below the tram 1, and the electrode 18 is provided in the track 2. When the tram 1 stops at a predetermined position of the station, the tram 1 The contact 17 located in the lower part of the electrode contacts the electrode 18 provided in the track 2, thereby externally connecting the external power supply 16 to the superconducting coil 10 and the secondary battery 11 through the external power supply lines 13 to 15. Supply power. The contact may be a current collector such as a pantograph.
Further, when the tram 1 leaves the station, the contact 17 is separated from the electrode 18, whereby the connection between the external power source 16, the superconducting coil 10 and the secondary battery 11 is cut off. .

なお、このような給電手段19の電極18は、駅毎(例えば、1km毎)に設け、列車が停止する毎に接触子17を通じて充電作業を行うと良い。
また、図1において、符号26で示すものは、モータ12で発生した回生エネルギーを二次電池11に回収するための給電線である。
In addition, it is good to provide the electrode 18 of such the electric power feeding means 19 for every station (for example, every 1 km), and to perform a charging operation through the contact 17 whenever a train stops.
Further, in FIG. 1, what is denoted by reference numeral 26 is a power supply line for recovering the regenerative energy generated by the motor 12 to the secondary battery 11.

前記外部電力供給回路20は、外部電力給電線13〜15の分岐部に設けられて、外部電源16から超電導コイル10及び二次電池11に供給する充電電力量が適正値になるように調整する。   The external power supply circuit 20 is provided at a branch portion of the external power supply lines 13 to 15 and adjusts the charging power supplied from the external power supply 16 to the superconducting coil 10 and the secondary battery 11 to an appropriate value. .

前記電力供給回路22は、超電導コイル10と二次電池11との間の給電線21に設けられるものであって、予め定められた電力供給工程(後述する)に従って、超電導コイル10に充電された電力を二次電池11に供給する。   The power supply circuit 22 is provided on the power supply line 21 between the superconducting coil 10 and the secondary battery 11, and is charged in the superconducting coil 10 according to a predetermined power supply process (described later). Electric power is supplied to the secondary battery 11.

前記モータ駆動回路25は、超電導コイル10及び二次電池11とモータ12との間の給電線23・24に設けられるものであって、超電導コイル10及び二次電池11に充電された電力によりモータ12を駆動する。   The motor drive circuit 25 is provided on the superconducting coil 10 and the feeders 23 and 24 between the secondary battery 11 and the motor 12, and the motor is driven by the electric power charged in the superconducting coil 10 and the secondary battery 11. 12 is driven.

次に、図2のタイムチャートを参照して給電制御部Cの電力供給工程とともに、本発明に係る方法について説明する。
図2において、(a)は路面電車1の速度を示すグラフ、(b)は超電導コイル10への電力供給状態を示すグラフである。(c)は外部電源16から超電導コイル10への電力入力(in)のON・OFFを示す図であって、給電手段19により実行される。(d)は超電導コイル10から二次電池11への電力出力(out)のON・OFFを示す図であって、電力供給回路22により実行される。(e)は超電導コイル10からモータ12への電力出力(out)のON・OFFを示す図であって、モータ駆動回路25により実行される。
また、(f)は外部電源16から二次電池11への電力入力(in)のON・OFFを示す図であって、給電手段19により実行される。(g)は超電導コイル10から二次電池11への電力入力(in)のON・OFFを示す図であって、電力供給回路22により実行される。(h)は回生式のモータ12から二次電池11への電力入力(in)のON・OFFを示す図であって、給電線26を通じて実行される。(i)は二次電池11からモータ12への電力出力(out)のON・OFFを示す図であって、モータ駆動回路25により実行される。
Next, the method according to the present invention will be described together with the power supply process of the power supply controller C with reference to the time chart of FIG.
2A is a graph showing the speed of the streetcar 1, and FIG. 2B is a graph showing the power supply state to the superconducting coil 10. In FIG. (C) is a diagram showing ON / OFF of power input (in) from the external power supply 16 to the superconducting coil 10, and is executed by the power supply means 19. (D) is a diagram showing ON / OFF of the power output (out) from the superconducting coil 10 to the secondary battery 11, and is executed by the power supply circuit 22. (E) is a diagram showing ON / OFF of the power output (out) from the superconducting coil 10 to the motor 12, which is executed by the motor drive circuit 25.
Further, (f) is a diagram showing ON / OFF of power input (in) from the external power source 16 to the secondary battery 11, which is executed by the power supply means 19. (G) is a diagram showing ON / OFF of power input (in) from the superconducting coil 10 to the secondary battery 11, and is executed by the power supply circuit 22. (H) is a diagram showing ON / OFF of power input (in) from the regenerative motor 12 to the secondary battery 11, which is executed through the feeder line 26. (I) is a diagram showing ON / OFF of the power output (out) from the secondary battery 11 to the motor 12, and is executed by the motor drive circuit 25.

なお、上記(c)〜(g)の電力供給において、「○」はON.「×」はOFFを示し、この中で、「△」は状況に応じてONとの意味である。また、上記給電制御部Cでは、超電導コイル10と二次電池11に蓄えた貯蔵電力によりモータ12を駆動するが、そのときのモータ12への駆動電力は、まず、超電導コイル10から供給するが、該超電導コイル10の貯蔵電力量の残量が少なくなった、又は無くなった場合には、二次電池11より供給するといった動作をモータ駆動回路25にて実行させることを基本とする。   In the above power supply (c) to (g), “◯” indicates ON. “X” indicates OFF, and among these, “Δ” means ON depending on the situation. Further, in the power supply control unit C, the motor 12 is driven by the stored power stored in the superconducting coil 10 and the secondary battery 11, and the driving power to the motor 12 at that time is first supplied from the superconducting coil 10. Basically, the motor drive circuit 25 performs an operation of supplying from the secondary battery 11 when the remaining amount of the stored power amount of the superconducting coil 10 is reduced or disappears.

そして、この図2のグラフを参照して分るように、車両停車中の(ア)(エ)(キ)の区間においては、給電手段19を通じて外部電源16から超電導コイル10及び二次電池11に電力が供給され、これと同時に、超電導コイル10から二次電池11への電力供給も行われる。そして、このときの車両停車中の(ア)(エ)(キ)の区間において、外部電源16から超電導コイル10へは数秒という短時間で多量の電力を蓄えることができる。   As can be seen with reference to the graph of FIG. 2, the superconducting coil 10 and the secondary battery 11 are supplied from the external power source 16 through the power feeding means 19 in the sections (a), (d), and (g) when the vehicle is stopped. At the same time, power is supplied from the superconducting coil 10 to the secondary battery 11. A large amount of power can be stored in a short time of several seconds from the external power source 16 to the superconducting coil 10 in the sections (a), (d), and (g) when the vehicle is stopped.

また、車両走行中の(イ)(オ)の区間においては、給電手段19を通じての外部電源16から超電導コイル10及び二次電池11への電力供給が停止され、これと同時に、超電導コイル10から二次電池11への電力供給、超電導コイル10からモータ12への電力供給が行われる。すなわち、車両走行中において、超電導コイル10から二次電池11に電力が徐々に供給されることにより、該二次電池11に対して従来のような急速充電によらない通常充電が行われる。
また、車両走行中の(イ)(オ)の区間においては、二次電池11からモータ12への電力供給が行われることを示す「△」が示されているが、これは超電導コイル10内の貯蔵電力が不足したことを条件として行われる。
Further, in the sections (a) and (e) while the vehicle is running, the power supply from the external power source 16 through the power supply means 19 to the superconducting coil 10 and the secondary battery 11 is stopped. Power supply to the secondary battery 11 and power supply from the superconducting coil 10 to the motor 12 are performed. That is, when the vehicle is traveling, electric power is gradually supplied from the superconducting coil 10 to the secondary battery 11, so that the secondary battery 11 is normally charged without using rapid charging as in the related art.
Further, in the sections (a) and (e) while the vehicle is running, “Δ” indicating that power is supplied from the secondary battery 11 to the motor 12 is shown. This is indicated in the superconducting coil 10. It is performed on the condition that the stored power of is insufficient.

また、車両減速中の(ウ)(カ)の区間においては、超電導コイル10及び二次電池11からモータ12への電力供給が停止されるとともに、モータ12で発生した回生エネルギーを二次電池11に供給する。   In the section (c) (f) during vehicle deceleration, power supply from the superconducting coil 10 and the secondary battery 11 to the motor 12 is stopped, and the regenerative energy generated by the motor 12 is used as the secondary battery 11. To supply.

次に、給電制御部Cによる、外部電源16から超電導コイル10及び二次電池11への電力供給の具体例について図3及び図4を参照して説明する。
図3に示すように超電導コイル10として、例えば10mm幅線600A材、37500mを使用した場合には4MJの電磁エネルギーを貯蔵することができ、また、10mm幅線600A材、75000mを使用した場合には8MJの電磁エネルギーを貯蔵することができる。そして、このような超電導コイル10を使用し、かつ600Vの電圧、1000Aの電流で充電した場合、該超電導コイル10に1秒以下の時間で充電を完了することができる。また、外部電源16又は超電導コイル10から、二次電池11へは充電地1個当たり20W(1sで20J)で通常充電する。
Next, a specific example of power supply from the external power supply 16 to the superconducting coil 10 and the secondary battery 11 by the power supply control unit C will be described with reference to FIGS. 3 and 4.
As shown in FIG. 3, when a 10 mm wide wire 600A material, 37500 m, for example, is used as the superconducting coil 10, 4 MJ electromagnetic energy can be stored, and when a 10 mm wide wire 600 A material, 75000 m is used. Can store 8 MJ of electromagnetic energy. When such a superconducting coil 10 is used and charged with a voltage of 600 V and a current of 1000 A, charging of the superconducting coil 10 can be completed in a time of 1 second or less. Moreover, the secondary battery 11 is normally charged from the external power supply 16 or the superconducting coil 10 at 20 W (20 J for 1 s) per charging place.

また、実施例の超電導コイル10のサンプルとして図4(a)(b)に示すものを作成した。これらのサンプルでは、単位長さが3000m、内径10cm、外径107.7cmの超電導コイルを、高さ(線材の幅に相当)を5〜1000mの範囲で変化させた場合の単位体積当たりの電磁エネルギー〔J〕、電磁エネルギー〔kJ/m〕を測定した。そして、この図4によれば、線材の高さを大きくして、超電導コイルの個数及び線材の使用量を少なくすることによって、単位体積当たりの電磁エネルギー〔J〕、電磁エネルギー〔kJ/m〕が大きく増加することが確認されている。おおよそでは、図4(a)と(b)を比較して分かるように、電流を2倍にすると単位体積当たりの電磁エネルギーは4倍になり、幅を2倍にして電流も2倍にすると単位体積当たりの電磁エネルギーも2倍になることが確認されている。 Moreover, what was shown to Fig.4 (a) (b) as a sample of the superconducting coil 10 of an Example was created. In these samples, electromagnetic waves per unit volume when a superconducting coil having a unit length of 3000 m, an inner diameter of 10 cm, and an outer diameter of 107.7 cm is varied in the range of 5-1000 m in height (corresponding to the width of the wire). Energy [J] and electromagnetic energy [kJ / m 3 ] were measured. According to FIG. 4, by increasing the height of the wire and reducing the number of superconducting coils and the amount of wire used, the electromagnetic energy [J] per unit volume, the electromagnetic energy [kJ / m 3 ] Has been confirmed to increase significantly. Approximately, as can be seen by comparing FIGS. 4A and 4B, when the current is doubled, the electromagnetic energy per unit volume is quadrupled, and when the width is doubled and the current is doubled, It has been confirmed that the electromagnetic energy per unit volume is also doubled.

以上詳細に説明したように本実施例に示す超電導電力供給装置では、外部電源16から電力が供給される外部電力給電線13〜15に超電動コイル10を接続し、給電制御部Cでの電力供給回路22の切り換えにより、停車中に該超電導コイル10に対して、外部電力給電線13〜15からの電力を供給し、また、外部電力給電線13〜15から給電がない場合に該超電導コイル10から二次電池11へ電力を供給する。
すなわち、給電制御部Cでの電力供給回路22の切り換えにより、停車中等に極めて短時間に超電導コイル10に対して、外部電力給電線13〜15から電力を供給して蓄えることができ、また、外部電力給電線13〜15から給電がない場合に、電気を蓄えた該超電導コイル10から二次電池11に対して時間を掛けて充電処理を行うことができる。
その結果、本実施例の超電導電力供給装置では、停車中に瞬時に電気を蓄えた超電導コイル10から、二次電池11に対して時間を掛けて充電処理を行うことができるので、車体3に搭載される二次電池11に対して、常に劣化を発生させない通常充電ができる効果が得られる。
As described above in detail, in the superconducting power supply apparatus shown in the present embodiment, the super electric coil 10 is connected to the external power supply lines 13 to 15 to which power is supplied from the external power source 16, and the power in the power supply control unit C is obtained. By switching the supply circuit 22, power from the external power supply lines 13 to 15 is supplied to the superconducting coil 10 while the vehicle is stopped, and when there is no power supply from the external power supply lines 13 to 15, the superconducting coil is supplied. Power is supplied from 10 to the secondary battery 11.
That is, by switching the power supply circuit 22 in the power supply control unit C, it is possible to supply and store power from the external power supply lines 13 to 15 to the superconducting coil 10 in a very short time during a stop or the like, When power is not supplied from the external power supply lines 13 to 15, the secondary battery 11 can be charged from the superconducting coil 10 storing electricity over time.
As a result, in the superconducting power supply device according to the present embodiment, the secondary battery 11 can be charged over time from the superconducting coil 10 that instantaneously stores electricity while the vehicle is stopped. The secondary battery 11 to be mounted can be charged normally without causing deterioration.

また、本実施例に示す超電導電力供給装置では、停車中に超電導コイル10を外部電源16に通じる外部電力給電線13・14に接続することにより、瞬時に該超電導コイル10への充電を完了することができるので、短い停車時間に充電作業を完了することができる。   Further, in the superconducting power supply apparatus shown in the present embodiment, the superconducting coil 10 is instantaneously charged by connecting the superconducting coil 10 to the external power supply lines 13 and 14 leading to the external power source 16 while the vehicle is stopped. Therefore, the charging operation can be completed in a short stoppage time.

また、本実施例に示す超電導電力供給装置では、回生ブレーキ作動中に発生した電力を二次電池11に供給するようにしたので、エネルギーを無駄なく利用することができ、エネルギー利用効率を高めることができる。   Further, in the superconducting power supply device shown in the present embodiment, since the electric power generated during the regenerative braking operation is supplied to the secondary battery 11, energy can be used without waste and energy use efficiency can be improved. Can do.

なお、本例では、接触子17と電極18からなる給電手段19を介して、外部電源16と超電導コイル10及び二次電池11とを接続したが、これに限定されずに、パンタグラフを利用して架線から外部電力を超電導コイル10及び二次電池11に供給しても良い。また、パンタグラフを利用した場合に、駅の列車停止位置に部分的に架線を設けて、車両停車中に外部電源から超電導コイル10及び二次電池11に給電を行う他、駅間において適宜、架線区間を設け、この架線区間を走行しながら、外部電源から超電導コイル10及び二次電池11に対して給電を行うようにしても良い。そして、このような駅間に架線区間を設けることにより、車両の位置及び走行状況に応じて、超電導コイル10に対する充電を多様に行うことができる。   In this example, the external power source 16 and the superconducting coil 10 and the secondary battery 11 are connected via the power feeding means 19 including the contact 17 and the electrode 18, but the present invention is not limited to this, and a pantograph is used. Thus, external power may be supplied from the overhead wire to the superconducting coil 10 and the secondary battery 11. In addition, when a pantograph is used, an overhead line is partially provided at the train stop position of the station, and power is supplied to the superconducting coil 10 and the secondary battery 11 from an external power source while the vehicle is stopped. A section may be provided, and power may be supplied to the superconducting coil 10 and the secondary battery 11 from an external power source while traveling in the overhead line section. And by providing an overhead wire section between such stations, the superconducting coil 10 can be charged in various ways according to the position of the vehicle and the traveling situation.

また、上記実施例では、路面電車1を例に挙げたが、都市交通システム、一般の鉄道車両にも適用可能である。   Moreover, in the said Example, although the streetcar 1 was mentioned as an example, it is applicable also to a city traffic system and a general railway vehicle.

以上、本発明の実施例について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものでは無く、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although the Example of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明は、二次電池により非電化区間の軌道を走行する路面電車、都市交通システム、あるいは給電線を持たない移動式作業車すなわちフォークリフトやクレーンなどに利用できる技術である。   INDUSTRIAL APPLICABILITY The present invention is a technique that can be used for a tram that travels on a track in a non-electrified section using a secondary battery, an urban transportation system, or a mobile work vehicle that does not have a power supply line, that is, a forklift or a crane.

1 路面電車
3 軌道
10 超電導コイル
11 二次電池
12 モータ(回生式モータ)
13〜15 外部電力給電線
16 外部電源
22 電力供給回路
C 給電制御部
1 tram 3 track 10 superconducting coil 11 secondary battery 12 motor (regenerative motor)
13 to 15 External power supply line 16 External power supply 22 Power supply circuit C Power supply control unit

Claims (4)

外部電力給電線に集電手段を介して接続される超電導コイル及び二次電池と、これら超電導コイル及び二次電池の少なくとも一方から電力の供給を受けて走行運転されるとともに、回生運転により減速されて電力を発生するモータと、前記超電導コイルと二次電池とモータとの間の電力供給回路を開閉する給電制御部とを有し、
前記給電制御部は、前記超電導コイルを前記外部電力給電線に接続して給電を受けるとともに、該外部電力給電線から給電がない場合に、前記走行運転においては、前記電力供給回路を介して前記超電導コイルから前記二次電池及びモータへ電力を供給し、前記回生運転においては、前記電力供給回路を介して前記超電導コイル及びモータから前記二次電池へ電力を供給することを特徴とする蓄電式モータ駆動装置。
The superconducting coil and the secondary battery connected to the external power supply line via the current collecting means, and the vehicle is operated by receiving power from at least one of the superconducting coil and the secondary battery, and is decelerated by the regenerative operation. A motor that generates electric power, and a power supply control unit that opens and closes a power supply circuit between the superconducting coil, the secondary battery, and the motor ,
The power supply control unit receives the power supply by connecting the superconducting coil to the external power supply line, and when there is no power supply from the external power supply line, in the running operation, the power supply circuit Electric power is supplied from a superconducting coil to the secondary battery and motor, and in the regenerative operation, electric power is supplied from the superconducting coil and motor to the secondary battery via the power supply circuit. Motor drive device.
前記給電制御部は、停車中に前記超電導コイルを前記外部電力給電線に接続することにより、該超電導コイルへ充電することを特徴とする請求項1に記載の蓄電式モータ駆動装置。 2. The electric storage motor driving device according to claim 1, wherein the power supply control unit charges the superconducting coil by connecting the superconducting coil to the external power supply line while the vehicle is stopped. 3. 前記給電制御部は、車両が停車中の他、駅間に設けられた架線区間にて、走行中に前記超電導コイルに対して外部電力給電線を介して電力供給を行うことを特徴とする請求項1又は2のいずれか1項に記載の蓄電式モータ駆動装置。   The power supply control unit supplies power to the superconducting coil via an external power supply line during traveling in an overhead line section provided between stations in addition to when the vehicle is stopped. Item 3. The power storage motor drive device according to any one of Items 1 and 2. 外部電源から集電手段を介して超電導コイル及び二次電池に電力を貯蔵する過程と、これら超電導コイル及び二次電池の少なくとも一方からモータに電力を供給して運転する過程と、回生運転により減速されるモータから電力を発生する過程と、前記超電導コイルと二次電池とモータとの間の電力供給回路を開閉する過程とを有し、
前記電力供給回路の開閉は、前記超電導コイルを前記外部電源から給電を受けるとともに、外部から給電がない場合に、前記走行運転においては前記電力供給回路を介して前記超電導コイルから前記二次電池及びモータへ電力を供給し、前記回生運転においては前記電力供給回路を介して前記超電導コイル及びモータから前記二次電池へ電力を供給することを特徴とする蓄電式モータ駆動方法。
A step of storing the electric power to the superconducting coil and a secondary battery from an external power source via the current collecting means, and the process of operating by supplying electric power from at least one of these superconducting coils and the secondary battery to the motor, the deceleration by the regenerative operation Generating electric power from the motor, and opening and closing a power supply circuit between the superconducting coil, the secondary battery, and the motor ,
When the power supply circuit is opened and closed, the superconducting coil is supplied with power from the external power source, and when no power is supplied from the outside, in the running operation, the secondary battery and the superconducting coil are connected via the power supply circuit. An electric storage motor driving method, wherein electric power is supplied to a motor, and electric power is supplied from the superconducting coil and motor to the secondary battery via the electric power supply circuit in the regenerative operation .
JP2010151230A 2010-07-01 2010-07-01 Electric storage motor driving apparatus and method Active JP5496793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151230A JP5496793B2 (en) 2010-07-01 2010-07-01 Electric storage motor driving apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151230A JP5496793B2 (en) 2010-07-01 2010-07-01 Electric storage motor driving apparatus and method

Publications (2)

Publication Number Publication Date
JP2012016186A JP2012016186A (en) 2012-01-19
JP5496793B2 true JP5496793B2 (en) 2014-05-21

Family

ID=45601955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151230A Active JP5496793B2 (en) 2010-07-01 2010-07-01 Electric storage motor driving apparatus and method

Country Status (1)

Country Link
JP (1) JP5496793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650500A (en) * 2021-08-12 2021-11-16 上海海事大学 High-temperature superconducting hybrid energy storage system
CN113954678B (en) * 2021-10-28 2024-03-12 上海海事大学 Charging system and method for high-temperature superconducting module battery for hybrid energy storage of automobile battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430402A (en) * 1987-07-24 1989-02-01 Hitachi Ltd Trolley car
JPS6430403A (en) * 1987-07-24 1989-02-01 Hitachi Ltd Electric automobile charger
JPH0182601U (en) * 1987-09-28 1989-06-01
JPH01185101A (en) * 1987-12-02 1989-07-24 Hitachi Ltd Power regenerative vehicle
JPH01270705A (en) * 1988-04-22 1989-10-30 Japan Electron Control Syst Co Ltd Electric motor car system
JPH0226204A (en) * 1988-07-14 1990-01-29 Tokyo Tatsuno Co Ltd New traffic system
JPH04150703A (en) * 1990-10-11 1992-05-25 Toshiba Corp Power supply for electric motor vehicle
JPH06113408A (en) * 1992-09-30 1994-04-22 Hitachi Ltd Mobile body

Also Published As

Publication number Publication date
JP2012016186A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
CN101138967B (en) Vehicle driving system
JP4574643B2 (en) Battery-powered railway train
JP6717826B2 (en) Electric power supply and energy harvesting auxiliary system for electric vehicle and method of operating the power supply and energy harvesting auxiliary system
CN104670028B (en) urban rail vehicle traction system
KR101237552B1 (en) Railway system installing power supply facility on railroads between stations
JP4415874B2 (en) Charge and discharge method for transportation system
US20080021602A1 (en) Electrically Powered Rail Propulsion Vehicle and Method
EP3103675A1 (en) Electric vehicle control device
CN203937528U (en) The rail system with energy exchange station
WO2011099193A1 (en) Vehicle system, method of controlling vehicle system, and transportation system
JP2009273198A (en) Power flow control method and control device of battery-driven vehicle
CN101549650A (en) Traction system of railway car
CN203697980U (en) Urban railway vehicle traction system
JP2010011711A (en) Microgrid using electric railroad system
JP2011004566A (en) Auxiliary power supply apparatus for electric vehicle
JP2003134604A (en) Rolling stock
JP2014075864A (en) Railway vehicle
JP4968596B2 (en) In-vehicle power supply
JP5496793B2 (en) Electric storage motor driving apparatus and method
JP2006280113A (en) Control unit for railway vehicle
KR100838177B1 (en) Hydrogen fuelcell railway car
JP2015053837A (en) Electric power supply system and method for railway vehicle during power outage
KR100981305B1 (en) Regeneration energy storage system of electric railway vehicles
JP2001320804A (en) Power supply facility and electric car
JP2006335289A (en) Electricity feeding method and device to electric drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150